
Grammar-Based Integer Programming Models for
Multi-Activity Shift Scheduling

Abstract

This paper presents a new implicit formulation for shift scheduling problems, using
context-free grammars to model the rules for the composition of shifts. From the
grammar, we generate an integer programming (IP) model having a linear programming
(LP) relaxation equivalent to that of Dantzig’s set covering model. When solved by a
state-of-the-art IP solver on problem instances with a small number of shifts, our model,
the set covering formulation and a typical implicit model from the literature yield
comparable solution times. On instances with a large number of shifts, our formulation
shows superior performance and can model a wider variety of constraints. In particular,
multi-activity cases, which cannot be modeled by existing implicit formulations, can
easily be handled with grammars. We present comparative experimental results on a
large set of instances involving one work-activity, as well as on problems dealing with
up to ten work-activities.

Keywords: Shift Scheduling, Implicit Models, Mixed Integer Programming, Context-

Free Grammars

1 Introduction

In this paper, we consider shift scheduling problems defined over a planning horizon of one

day, divided into multiple periods. In this context, a shift is defined by its starting and

ending times and by the activities or breaks to be performed at each period. The assignment

of activities and breaks to a shift is constrained by different rules mainly arising from work

regulation agreements and ergonomic considerations. In a single-activity shift scheduling

problem, one only specifies, at each period, if an employee is working or taking a break. In

a multi-activity shift scheduling problem, there are several work-activities and whenever an

employee is working at a given period, it is further necessary to specify which work-activity

is assigned to that employee. In this paper, we deal with multi-activity shift scheduling

problems in which all employees are identical.

The problem we consider is defined as follows. Given a planning horizon I divided into

periods of equal length, a set of work-activities J , the set of all feasible shifts Ω, and the

number of employees bij required at each period i ∈ I for each work-activity j ∈ J , one

must select from Ω a subset and multiplicities for each shift in this subset that covers the

required number of employees at minimum cost. Each feasible shift s ∈ Ω has an associated

cost cs ≥ 0, which we assume to be decomposable by period and by work-activity as follows:

cs =
�

i∈I

�
j∈J

δijscij, where cij ≥ 0, for each i ∈ I and j ∈ J , and δijs = 1 if work-activity

j ∈ J is assigned to period i ∈ I in shift s ∈ Ω.

We will consider two types of integer programming (IP) models for this problem, explicit

and implicit, a terminology that is also used to characterize formulations for single-activity

shift scheduling problems. In an explicit model, one obtains the schedule for each employee

simply by scanning the optimal solution (i.e., in a time linear to the model size), while

in an implicit model, a post-processing algorithm must be called upon in order to derive

the schedule for each employee. This algorithm is typically efficient (i.e. polynomial in

the model size), especially when compared to solving the model, but its running time is

generally not linear in the model size.

The following IP model, denoted D, extends in a straightforward manner the original

set covering formulation proposed in Dantzig (1954) for the shift scheduling problem first

1

described in Edie (1954). This model uses a variable xs for each shift s ∈ Ω corresponding

to the number of employees assigned to shift s:

f(D) = min
�

s∈Ω

csxs

�

s∈Ω

δijsxs ≥ bij, ∀i ∈ I, j ∈ J, (1)

xs ≥ 0 and integer, ∀s ∈ Ω. (2)

Model D explicitly enumerates all feasible shifts; therefore, we will call it the shift-based

explicit model. Note that model D allows the formulation of problems with any cost struc-

tures that decompose by shift, not only by period and by work-activity, as we assume in our

problem definition (see the Conclusion for a discussion on more general cost structures).

In practice, such explicit models can only be solved when Ω is relatively small, or else, by

using column generation approaches as in Demassey et al. (2006), Mehrotra et al. (2000). In

this paper, we present a new implicit formulation based on assignment variables yij indicating

the number of employees assigned to activity j ∈ J at period i ∈ I. These variables are

related to the variables in the shift-based explicit model by the simple equations yij =
�

s∈Ω δijsxs. More precisely, the nonnegative integer variables xs defined over feasible shifts

s ∈ Ω in model D are represented equivalently by using an additional set of integer variables

v ≥ 0 such that (y, v) ∈ H, where H is a bounded polyhedron. The implicit model that we

propose, denoted Q, has therefore the following form:

f(Q) = min
�

i∈I

�

j∈J

cijyij

yij ≥ bij and integer, ∀i ∈ I, j ∈ J, (3)

(y, v) ∈ H, (4)

v ≥ 0 and integer. (5)

Côté et al. (2007) and Côté et al. (2009) exploit automata and context-free grammars

to formulate similar IP models that represent all feasible shifts for any single employee.

Since they explicitly represent the assignment of work-activities to each employee, these for-

mulations belong to the class of explicit models, but unlike model D, they do not use the

set of shifts; hence, we will call them employee-based explicit models. When the number of

2

employees or activities increase, these employee-based explicit models do not scale well as

performance degrades rapidly, mainly due to symmetry issues (see Section 5.2 for experi-

mental results). In this paper, we show how to derive grammar-based models with tractable

size, allowing us to handle large-scale problems with multiple activities. Assuming that any

feasible shift can be represented by a word in a context-free language, we will show how to

derive polyhedron H from the context-free grammar G defining the language. Moreover,

we will show that polyhedron H is integral, and therefore that Q and D have equivalent

linear programming (LP) relaxations. To the best of our knowledge, our approach is the

first implicit modeling technique that is able to accurately formulate and efficiently solve

multi-activity shift scheduling problems.

The remainder of the paper is organized as follows. In the next section, we present

a literature review on shift scheduling problems and we introduce formal languages and

grammar theory. In Section 3, we describe our modeling methodology using grammars to

formulate shift scheduling problems. In Section 4, we present theoretical results relevant

to our model; in particular, we demonstrate that our model has the same LP relaxation as

Dantzig’s set covering model. In Section 5, we present comparative computational results

on classical shift scheduling problems from Mehrotra et al. (2000) and on a set of large-scale

problem instances with multiple activities.

2 Background Material

This section reviews the literature on shift scheduling problems and presents basic notions

of context-free grammars which are relevant to our study.

2.1 Shift Scheduling

For many organizations, finding the best schedule satisfying all their requirements and con-

straints is an important, but difficult task. Consequently, several studies have been dedi-

cated to this problem. Ernst et al. (2004a,b) present an exhaustive overview of models and

methods for problems related to staff scheduling and rostering.

Implicit formulations provide an interesting alternative to the explicit model D. While

the explicit model uses one variable by shift (a shift is defined by its starting and

3

ending times, and the placement of the breaks within the shift), existing implicit

formulations introduce the notion of shift types, which are characterized only

by starting and ending times, giving no details about how breaks are assigned

within the shifts. Typically, contrarily to explicit models, these models capture

the number of employees assigned to each shift type and to each break with

different sets of variables. From an optimal solution to such an implicit model, one can

retrieve the number of employees assigned to each shift type and each break, and construct

an optimal set of shifts through a polynomial-time procedure.

Rekik et al. (2004) give such an implicit model based on a transportation problem to

assign breaks to shifts. They show that the LP relaxation of their model is equivalent to the

LP relaxations of two other classical implicit formulations, namely those proposed in Aykin

(1996) and in Bechtolds and Jacobs (1990). Since Dantzig’s set covering model has the same

integrality gap as Aykin’s model, the LP relaxations of these four models are equivalent.

Rekik et al. (2005) propose extensions to allow more flexibility in the definition of breaks.

However, to this date, we are not aware of any implicit formulation that can accurately

represent multi-activity shift scheduling problems.

An alternative to existing explicit and implicit models is to use formal languages to

model work regulations. Côté et al. (2007) propose an IP model based on a regular language,

represented by a finite deterministic automaton, to formulate the constraints defining a shift,

and to represent all feasible shifts using a network flow formulation. Côté et al. (2009) extend

these results by using context-free grammars in modeling shift scheduling problems. From

a grammar describing work regulations, they generate an IP model based on assignment

variables yije, that describe all feasible shifts for each employee e. Since the number of

employees is bounded from below by maxi∈I

�
j∈J

bij, this model generates a large number

of variables. Moreover, in the case where many employees are alike, this model has symmetry

issues.

Multi-activity shift scheduling problems. With the use of formal languages, many

constraints in the planning of shifts can be considered. In particular, these modeling methods

can deal with contexts where multiple work-activities can be performed during the same

shift, each activity having its own labor requirements. Compact models for multi-activity

4

problems are not common in the literature. Among the few papers addressing this topic,

Loucks and Jacobs (1991) and Ritzman et al. (1976) model the tour scheduling problem

(shift scheduling over one week) with Boolean assignment variables specifying the number of

employees assigned to a given task at any given time. Since such modeling approaches yield

very large IP formulations, both papers propose heuristic methods to construct and improve

the solutions. Moreover, they do not place breaks or meals during the shifts, nor do they

handle regulations concerning the transition between activities. Approaches using column

generation were suggested in Bouchard (2004), Vatri (2001) and Demassey et al. (2006).

The first two propose approaches to schedule air traffic controllers. While Vatri (2001)

uses a heuristic method to build the schedule without taking into account break placement,

Bouchard (2004) extends his work to include break placement and solves the problem with a

heuristic column generation approach. Demassey et al. (2006) propose a column generation

procedure based on constraint programming, that solves efficiently the LP relaxation of the

problem stated below in Section 5.2 for up to 10 work-activities. However, they

report that branching to find integer solutions is difficult and succeeds only for the smallest

instances. More recently, Lequy et al. (2009) address another type of multi-activity shift

scheduling problem where shifts and breaks are fixed a priori for each employee and where

work-activities must then be assigned to shifts. Each employee has a set of skills that restricts

the set of activities he can perform. Lequy et al. (2009) present three integer programming

models and show good computational results with a heuristic column generation method

embedded within a rolling horizon procedure.

In the following, we study some basic properties of grammars and show how they can be

used in the context of shift scheduling problems.

2.2 Grammars

A context-free grammar defines a language over a given alphabet by means of a set of

rules called productions. A production is a rule that specifies a substitution of symbols.

These symbols are of two types: the terminal symbols are letters of the alphabet, generally

represented by lower case letters, and the non-terminal symbols designate a subsequence

that could be rewritten using the associated productions, generally represented by upper

5

case letters. More formally, a production is represented as follows: α → β, where α is a

non-terminal symbol and β is a sequence of terminal and/or non-terminal symbols. The

productions of a grammar can be used recursively to generate new symbol sequences until

only terminal symbols are part of the sequence. A sequence of terminal symbols is called a

word.

Definition. A context-free grammar G is characterized by a tuple (Σ, N, P, S) where:

• Σ is an alphabet;

• N is a set of non-terminal symbols;

• P is a set of productions;

• S is the starting non-terminal.

A word, or sequence of letters from alphabet Σ, is recognized by a grammar G if it can be

generated by successive applications of productions from G, starting with non-terminal S.

In the following, we will use the term grammar to refer to a context-free grammar and we

will assume that, except when specified otherwise, all grammars are in Chomsky normal form,

meaning that all productions are of the form X → β where X ∈ N and β ∈ (N×N)∪Σ. Note

that this assumption is not restrictive since any context-free grammar can be converted to

Chomsky normal form; see Hopcroft et al. (2001) for more information on formal languages.

Example 1 The following grammar G defines all feasible shifts for a simple shift scheduling

problem. A shift must have a duration equal to the planning horizon and contain one break

of one period anywhere during the shift except at the first or the last period. Work and break

periods are respectively represented by letters w and b.

G = (Σ = (w, b), N = (S,X,W, B), P, S), where P is:

S → XW , X → WB, W → WW | w, B → b,

where the symbol | specifies a choice of production. The shifts wbw, wwwwwbw and wbww,

among others, are recognized by G. wbwb is not recognized by G. Word wwbw is obtained

by the derivation shown in Table 1, where P is the production used and CS is the current

sequence, obtained from the previous sequence by applying the production on the left side.

6

Table 1: Derivation of word wwbw from grammar G of Example 1

P CS

− S
S → XW XW
X → WB WBW
W → WW WWBW
W → w wWBW
W → w wwBW
B → b wwbW
W → w wwbw

A common way to illustrate the derivation of a word from a grammar is to use a tree,

called parse tree, where the root node is the starting non-terminal S, the interior nodes are

non-terminals and leaves are letters of the alphabet. A production X → Y Z is represented

by nodes Y and Z as left and right children of node X, while X → a is represented by

node X and a unique child, leaf a. When listed from left to right, the leaves form a word

recognized by the grammar. Figure 1 shows the two parse trees induced by grammar G from

Example 1 on words of length four (wwbw and wbww).

A parse tree representing a word ω of length n has the following properties:

• An interior node and its children represent a production in P .

• A leaf is associated with a position i ∈ {1, . . . , n} in ω and represents the letter from

Σ taking place at position i.

• Any interior node is the root of a tree inducing a subsequence of ω, starting at position

i ∈ {1, . . . , n} with length l ∈ {1, . . . , n− i + 1}.

Using these observations, the next developments characterize a graph embedding all parse

trees associated to words of a given length.

The DAG Γ. In the following, we describe a directed acyclic graph (DAG) Γ that encap-

sulates all parse trees associated to words of a given length n recognized by a grammar

G = (Σ, N, P, S). The DAG Γ has an and-or structure containing two types of nodes: nodes

O (the or-nodes) represent non-terminals from N and letters from Σ, and nodes A (the

7

S

X

X

S

W

W W W

W

WB BW W

w w w w w wb b

Figure 1: parse trees for grammar G from Example 1 on words of length 4.

and-nodes) represent productions from P . Each node is characterized by its symbol (non-

terminal, letter, or production) and the position and length of the subsequence it generates.

We define Oπ

il
the node associated with non-terminal or letter π that generates a subsequence

at position i of length l. Note that if π ∈ Σ, the node is a leaf and l is equal to one. Also, Γ

has a root node described by OS

1n
. Likewise, AΠ,t

il
is the tth node representing production Π

generating a subsequence from position i of length l. There are as many AΠ,t

il
nodes as there

are ways of using Π to generate a sequence of length l from position i. We will refer to this

set as the (potentially empty) set A(Π, i, l).

The DAG Γ is built in such a way that a path from one node to any other node alter-

nates between or-nodes O and and-nodes A. More precisely, the DAG Γ has the following

properties:

• Children of an or-node Oπ

il
with l > 1, denoted ch(Oπ

il
), are all and-nodes AΠ,t

il
such

that Π : π → β, β ∈ (N ×N) ∪ Σ and t ∈ A(Π, i, l).

• Each or-node Oπ

i1 where π is a non-terminal has only one child: ch(Oπ

i1) = AΠ,1
i1 such

that Π : π → a, where a ∈ Σ.

• Parents of an or-node Oπ

il
where π �= S is a non-terminal, denoted par(Oπ

il
), are and-

8

O
S
14

O
X
13

O
W
12O

X
12 O

W
32

O
W
11 O

B
21 O

W
21 O

B
31 O

W
31 O

W
41

O
w
11 O

b
21 O

w
21 O

b
31 O

w
31 O

w
41

AS→XW,1
14 AS→XW,2

14

AX→WB,1
13

AX→WB,1
12 AW→WW,1

12 AW→WW,1
32

AW→w,1
11 AB→b,1

21 AW→w,1
21 AB→b,1

31 AW→w,1
31 AW→w,1

41

Figure 2: DAG Γ for grammar from Example 1 on a word of length 4.

nodes of the form AΠ,t

jm
such that Π : X → πZ or Π : X → Y π, where j ≤ i and

m ≥ l.

• Each and-node AΠ,t

il
with l > 1 such that Π : X → Y Z has exactly two children: OY

ik

and OZ

i+k,l−k−1, where k < l − 1.

• Each and-node AΠ,1
i1 such that Π : X → a, where a ∈ Σ, has only one child: Oa

i1.

• Each and-node AΠ,t

il
has only one parent: Oπ

il
such that Π : π → β, β ∈ (N ×N) ∪ Σ,

if l > 1, and Π : π → a, a ∈ Σ, if l = 1.

Figure 2 presents the DAG Γ associated with grammar G from Example 1 on a word of

length 4. It is easy to verify the above properties on this DAG.

To derive any parse tree from Γ, we start at the root OS

1n
. We visit an or-node Oπ

il
by

selecting exactly one child, which is necessarily an and-node. We visit an and-node AΠ,t

il
by

choosing all its children (exactly two if l > 1, one otherwise). By traversing Γ in this way

until the only remaining unvisited nodes are leaves, we obtain a parse tree associated to the

word defined by the leaves. Conversely, starting from a given word ω, we can traverse Γ

backwards in a straightforward way to derive the parse tree associated to ω. In practice, Γ

9

is built by a procedure suggested in Quimper and Walsh (2007) inspired by an algorithm

from Cooke, Younger, and Kasami (see Hopcroft et al. (2001)).

Grammar-based IP model. Using the structure of the DAG Γ, Côté et al. (2009) present a

system of linear equations in 0-1 variables that allow the identification of any word recognized

by a given grammar G. To each node Oπ

il
and AΠ,t

il
in Γ are associated 0-1 variables uπ

il
and

vΠ,t

il
, respectively. If we denote by L, the set of leaves in Γ, these equations are as follows:

uπ

il
=

�

A
π,t
il ∈ch(Oπ

il)

vΠ,t

il
, ∀Oπ

il
∈ O \ L, (6)

uπ

il
=

�

A
Π,t
il ∈par(OΠ

il)

vΠ,t

il
, ∀Oπ

il
∈ O \ OS

1n
, (7)

uπ

il
∈ {0, 1} , ∀Oπ

il
∈ O, (8)

vΠ,t

il
∈ {0, 1} , ∀AΠ,t

il
∈ A. (9)

Constraints (6) ensure that if variable uπ

il
is equal to one, exactly one of the variables

associated with its children must be equal to one. Similarly, constraints (7) ensure that if

variable uπ

il
is equal to one, exactly one of the variables associated with its parents must be

equal to one. Consequently, when we set uS

1n
= 1, if this system of equations has a solution,

then, in any solution, the variables equal to one form a parse tree associated to a word of

length n recognized by G. Conversely, let ω be a word of length n on alphabet Σ. If we set to

one the uj

i1 variables that form ω when the letters j are listed from left to right, then, if this

system of equations has a solution, ω is recognized by G and the variables of the solution

set to one form a parse tree associated to word ω.

We can rewrite equations (6) and (7) as follows:

uS

1n
=

�

A
Π,t
1n ∈ch(OS

1n)

vΠ,t

1n
, (10)

�

A
Π,t
il ∈par(Oπ

il)

vΠ,t

il
=

�

A
Π,t
il ∈ch(Oπ

il)

vΠ,t

il
, ∀Oπ

il
∈ O \

�
L ∪ {OS

1n
}
�

, (11)

uj

i1 =
�

A
Π,t
i1 ∈par(Oj

i1)

vΠ,t

i1 , ∀Oj

i1 ∈ L. (12)

This system of equations presents a structure similar to network flow conservation equa-

tions, but the two systems are different. Indeed, a solution to equations (10)-(12) does not

10

specify a path in a network, but rather a tree in the DAG Γ, since any variable associated to

an and-node which is equal to one in a solution will also have its two children with variables

equal to one. Hence, (10)-(12) are not flow conservation equations. Further, if we represent

system (10)-(12) in matrix notation, we can easily show that the corresponding matrix is not

totally unimodular, contrary to the incidence matrix of a network, which is used to represent

flow conservation equations. In spite of this, Pesant et al. (2009) have shown (see Section

4) that the polyhedron defined by (10)-(12) is integral, like the polyhedron defined by flow

conservation equations.

3 Grammar-Based Model for Shift Scheduling

As explained in Côté et al. (2009), the system of equations (10)-(12) can be used in the

context of shift scheduling problems, where the constraints defining any feasible shift are

represented by a grammar G, i.e., each word ω recognized by grammar G corresponds to a

feasible shift s ∈ Ω. In this context, the number of periods |I| corresponds to n, the length

of any given word recognized by G, while the set of activities J corresponds to Σ, the letters

of the alphabet.

Côté et al. (2009) describe an IP model based on this correspondance, using assignment

variables yije, that describe all feasible shifts for each employee e. But, as explained in

Section 2.1, when employees are similar, this model exhibits a lot of symmetry, which makes

it impractical to solve large-scale instances. Assuming all employees can be assigned to the

same shifts, we introduce here a new grammar-based IP model, that will not suffer from the

same performance issues.

In equations (10)-(12), each variable is binary and specifies whether or not its correspond-

ing node is part of the parse tree selected to generate a word. In the new model, each variable

is a nonnegative integer that specifies how many parse trees the associated node is part of.

Since we minimize an objective function with nonnegative costs, the integer variables do not

need to be bounded from above.

As in the Introduction, let yij denote the number of employees assigned to activity j ∈ J

at period i ∈ I. We can replace the leaf variables uj

i1 by the variables yij. Model Q presented

11

in the Introduction can now be explicitly stated as follows:

f(Q) = min
�

i∈I

�

j∈J

cijyij

yij ≥ bij, ∀i ∈ I, j ∈ J, (13)

uS

1n
=

�

A
Π,t
1n ∈ch(OS

1n)

vΠ,t

1n
, (14)

�

A
Π,t
il ∈par(Oπ

il)

vΠ,t

il
=

�

A
Π,t
il ∈ch(Oπ

il)

vΠ,t

il
, ∀Oπ

il
∈ O \

�
L ∪ {OS

1n
}
�

, (15)

yij =
�

A
Π,t
i1 ∈par(Oj

i1)

vΠ,t

i1 , ∀i ∈ I, j ∈ J, (16)

uS

1n
≥ 0 and integer, (17)

vΠ,t

il
≥ 0 and integer, ∀AΠ,t

il
∈ A, (18)

yij ≥ 0 and integer, ∀i ∈ I, j ∈ J. (19)

Once Q is solved, an implicit solution is obtained. To find the individual schedules from

this solution, we traverse the DAG Γ from the root to the leaves visiting the nodes with

value greater than zero. Each time a node is evaluated, its value is decreased by one. When

a leaf node is reached, its value is inserted to the current schedule at the right position

(see Appendix for the detailed algorithm). Model Q ensures that uS

1n
words recognized by

grammar G can be extracted from the implicit solution. In the context of shift scheduling,

variable uS

1n
= k thus represents the total number of employees needed to perform all required

shifts. The complexity of the algorithm used to extract the explicit set of shifts from the

optimal implicit solution is O(kn3|G|) where n is the sequence length and |G| is the number

of productions in grammar G. In practice, the running time to perform this algorithm is

negligible compared to the time necessary to solve model Q..

4 Theoretical Properties of Grammar-Based Models

In this section, we study the polyhedral properties of the implicit grammar-based model Q

and compare it with other models from the literature. First, using the notation from the

Introduction, we denote by H the polyhedron defined by equations (14)-(16) along with

nonnegativity constraints on all variables. Our first result states that this polyhedron is

12

integral, thus extending the result derived in Pesant et al. (2009) for a similar polyhedron

defined over 0-1 variables.

Theorem 2 H is an integral polyhedron.

Proof. To simplify the notation, we denote H using matrix notation as follows: H = {z ≥

0|Mz = b}. Now, let d be any arbitrary costs associated to variables z. The result will follow

if we can prove that there always exists an integer optimal solution to the linear program:

min{dz|z ∈ H}. For this, it suffices to construct an integer point zI in H that satifies the

complementary slackness conditions: (λ∗M − d)zI = 0, where λ∗ is an optimal solution to

the dual max{λb|λM ≤ d}.

Let z∗ be an optimal solution to the linear program and let λ∗ be the corresponding dual

solution. We assume that m = �uS

1n
� > 0 (otherwise, if m = 0, zI = 0 is an integer point

in H satisfying the complementary slackness conditions). Our objective is to construct an

integer solution zI such that for every k for which λ∗Mk < dk, we have zI

k
= 0. This condition

can be easily maintained by enforcing that zI

k
= 0 whenever z∗

k
= 0 ..

First, set uS

1n
= m in zI . By definition of H, since uS

1n
> 0 in z∗, there exists at least one

variable corresponding to a child of root-node OS

1n
that has a value greater than 0 in z∗, say

z∗
k

corresponding to node AΠ,t

1n
, with Π : X → Y Z. We continue our construction by fixing

zI

k
= m. From constraints (15), since z∗

k
> 0, the two children of AΠ,t

1n
, say OX

1k
and OY

k+1,n−k

have at least one child each with a corresponding value greater than 0, say z∗
k1

and z∗
k2

. We

then fix zI

k1
= m and zI

k2
= m. We continue this process, following the children of the nodes

and setting them to m in zI , until we reach the leaves of the DAG Γ.

The variables set to m in zI form a tree in the DAG Γ that satisfies constraints Mz = b

by construction. Furthermore, since we only used variables that were already set to a value

greater than 0 in the LP optimal solution z∗, we know that zI satisfies the complementary

slackness conditions with respect to λ∗. Therefore, there always exists an optimal integer

solution to the linear program min{dz|z ∈ H}, with arbitrary d, i.e., polyhedron H is

integral..

From this result, we observe that integrality constraints (17) and (18) are redundant in

model Q. However, in practice, we found that leaving these constraints in the formulation

13

helps the IP solver to further presolve the model and, overall, speeds up the solution process.

Consequently, the experimentions in Section 5 were performed by leaving the integrality

constraints in the models.

The next theorem uses the previous result to establish the equivalence between the LP

relaxations of models Q and D, the Dantzig’s set covering formulation presented in the

Introduction.

Theorem 3 Q and D have equivalent LP relaxations.

Proof. The proof is direct using Lagrangean duality arguments. Let γij ≥ 0 denote La-

grangean multipliers associated to the requirement constraints, (1) in model D and (3) in

model Q. Also, let fLP (M) denote the optimal objective value of the LP relaxation of a

model M . We then have:

fLP (Q) = max
γ≥0

�
�

i∈I

�

j∈J

γijbij + min

�
�

i∈I

�

j∈J

(cij − γij)yij | (y, v) ∈ H

��

= max
γ≥0

�
�

i∈I

�

j∈J

γijbij + min

�
�

i∈I

�

j∈J

(cij − γij)yij | (y, v) ∈ H, (y, v) integer

��

= max
γ≥0

�
�

i∈I

�

j∈J

γijbij + min

�
�

i∈I

�

j∈J

(cij − γij)(
�

s∈Ω

δijsxs) |xs ≥ 0 and integer

��

= max
γ≥0

�
�

i∈I

�

j∈J

γijbij + min

�
�

s∈Ω

(cs −
�

i∈I

�

j∈J

γijδijs)xs |xs ≥ 0 and integer

��

= max
γ≥0

�
�

i∈I

�

j∈J

γijbij + min

�
�

s∈Ω

(cs −
�

i∈I

�

j∈J

γijδijs)xs |xs ≥ 0

��

= fLP (D).

Since Dantzig’s set covering model yields the same integrality gap as the models sug-

gested in Aykin (1996), Bechtolds and Jacobs (1990) and Rekik et al. (2004) (see Section 2),

Theorem 3 implies that the LP relaxation of P is also equivalent to the LP relaxations of

these other implicit models. Note however that, to the best of our knowledge, these models

cannot be extended to the multi-activity case.

14

5 Computational Experiments

The objective of our computational experiments is to evaluate the efficiency of our new im-

plicit grammar-based model, when processed by a state-of-the-art IP solver. For this purpose,

we will first compare model Q to the shift-based explicit model D and to another implicit

model, due to Aykin (1996), under the same conditions. In order to compare ourselves to

these other modeling approaches, we will first use instances from the literature, all having

one work-activity. Then, we will present computational results on large-scale instances with

multiple work-activities and compare our approach to employee-based explicit models tested

by Côté et al. (2009) on the same instances.

5.1 Shift Scheduling with Multiple Rest Breaks, Meal Breaks, and
Break Windows

In this section, we compare our model with a state-of-the-art implicit model, proposed in

Aykin (1996), and to the shift-based explicit model D on a large set of shift scheduling

instances used in Mehrotra et al. (2000) from shift specifications and labor requirements

reported in Aykin (1996), Henderson and Berry (1976), Segal (1974) and Thompson (1995).

The problems differ from one another in the labor requirements, the set of allowed shifts,

the planning horizon, the number of breaks, the break windows, the cost structures, and

whether the problem is cyclic or not. We refer to Mehrotra et al. (2000) for details on shift

generation rules. Here, we present a general description of the three classes of problems

studied.

Thompson Set. Thompson (1995) presents two sets of non-cyclic problems. The first set

are problems on 15-h demand patterns. Shifts either allow one break or none depending

on their length. The second set are problems on 20-h demand patterns. Shifts allow one

break of one hour. The planning horizons are divided into periods of 15 minutes and shifts

can start at any period that allows them to finish within the planning horizon. The break

windows depend on the duration of the shifts and the costs are proportional to the number

of work hours in a shift.

Aykin Set. Aykin (1996) presents a set of cyclic problems, with shifts containing exactly

three breaks and differing only in the length of the break windows. The planning horizon is

15

24-h divided into periods of 15 minutes. All shifts have the same length and must start on

the hour or the half-hour. The cyclic case is handled in the same way in the three modeling

approaches. The planning horizon is extended to allow shifts to start at any time in the

original planning horizon.

Mehrotra Set. Mehrotra et al. (2000) use the same shift generation rules as Aykin, but

allow the shifts to have different durations and to start at any period. The problems were

tested as cyclic problems using the same labor requirements as in the Aykin Set.

Definition of the Grammars. The following presents the grammars used for each set of

instances. For the sake of clarity, the grammars are not stated in Chomsky normal form.

In the sets of productions P , →[min,max] restricts the subsequences generated with a given

production to have a length between min and max periods.

Grammar for Thompson Set. Let Φ be the set of feasible shift types. Let bwsl and bwel

be the break window starting and ending periods for shift type l ∈ Φ. Let sll and bll be the

shift and break lengths for shift type l ∈ Φ.

Then G = (Σ = (w, b, r), N = (S,W, R, Al, Bl, Ml ∀l ∈ Φ), P, S),

where w is a period of work, b is a break period and r is a rest period. P is defined as follows:

S → RAlR | AlR | RAl ∀l ∈ Φ, W → Ww | w,
Al →[sll,sll] MlW ∀l ∈ Φ, R → Rr | r,
Ml →[bwsl+bll,bwel+bll] WBl ∀l ∈ Φ,
Bl → bbll , ∀l ∈ Φ.

Grammar for Aykin and Mehrotra Sets. Let Φ be the set of feasible shift types. Note

that in the Aykin Set Φ contains only one element, since all shifts have the same length. Let

bwsn

l
and bwen

l
be the break window starting and ending periods for shift type l ∈ Φ and

break n ∈ {1, 2, 3}. Let sll and bln
l

be the length of the shift and of the breaks n ∈ {1, 2, 3},

respectively, for shift type l ∈ Φ.

Then G = (Σ = (w, b, r), N = (S,W, R, Bn

l
∀n ∈ {1, 2, 3} , Al, MA

l
, MB

l
, MC

l
∀l ∈ Φ), P, S),

where w is a period of work, b is a break period and r is a rest period. P is defined as follows:

16

Table 2: Number of instances solved to optimality within the four minutes time limit

Models/Sets Thom. 15-h (21) Thom. 20-h (80) Aykin (16) Mehrotra (16)

Implicit Grammar 21 75 16 16
Aykin 21 78 16 16
Dantzig 21 76 16 16

S → RAlR | AlR | RAl ∀l ∈ Φ, Bn

l
→ bblnl ∀l ∈ Φ, n ∈ {1, 2, 3} ,

Al →[sll,sll] MA

l
W ∀l ∈ Φ, W → Ww | w,

MA

l
→[bws3

l +bl3l ,bwe3
l +bl3l] MB

l
WB3

l
∀l ∈ Φ, R → Rr | r,

MB

l
→[bws2

l +bl2l ,bwe2
l +bl2l] MC

l
WB2

l
∀l ∈ Φ,

MC

l
→[bws1

l +bl1l ,bwe1
l +bl1l] WB1

l
∀l ∈ Φ.

Results. We compare our model on these instances to the shift-based explicit model D

derived from Dantzig (1954) and to the implicit model from Aykin (1996). We generated

the three IP models and solved them with CPLEX 12.1 with the default parameters.

As in Mehrotra et al. (2000), we gave a four minute time limit to find the optimal solution.

Experiments were run on a 2.3GHz AMD Opteron with 3GB of memory.

Table 2 shows the number of instances solved to optimality within the four-minute time

limit by the three models on each set. The numbers in parentheses are the number of

available instances in each set.

For the instances solved to optimality by all three models, Table 3 presents a summary

of the model sizes and solution statistics. |C|, |V | and |NZ| are the number of constraints,

variables and non-zeroes in the models. Nit, Nnodes and Time(s) give the average values of

the number of simplex iterations, the number of nodes and the time (in seconds) needed to

solve the instances to optimality. Gap(%) is the average IP gap for the instances that were not

solved to optimality by at least one of the three models, i.e., Gap = 100(ZIP−ZLP)/ZIP

where ZIP and ZLP are, respectively, the best upper and lower bounds after the time limit

has been reached.

Tables 2 and 3 show that our approach lead to comparable results when

compared to models from Aykin and Dantzig. However, overall, our model

appears less adapted for these instances. For instances in the Aykin and the

Mehrotra Sets, our model is less efficient than Aykin’s, although it finds the

17

Table 3: Summary for the instances solved to optimality

Model |C| |V | |NZ| Nit Nnodes T ime(s) Gap(%)

Thompson set for 15-h demand curves

Implicit Grammar 6418 9686 28481 2511 42 0.72 −
Aykin 421 3673 27521 2994 17 0.63 −
Dantzig 60 3312 85977 528 51 0.34 −

Thompson set for 20-h demand curves

Implicit Grammar 13432 21513 63768 11865 139 7.14 0.108
Aykin 850 8914 66742 15465 293 7.65 0.012
Dantzig 80 8144 223549 1451 170 2.98 0.045

Aykin set

Implicit Grammar 5703 36184 106902 1485 5 1.67 −
Aykin 274 697 3396 259 2 0.09 −
Dantzig 130 4681 149760 423 0 0.70 −

Mehrotra et al. set

Implicit Grammar 11201 16488 47683 6695 14 3.97 −
Aykin 1572 6961 33955 1971 2 0.93 −
Dantzig 132 46801 1497113 617 7 8.93 −

18

optimal solution for all instances within the time limit, as the two other models

do. On the Thompson Set, with Aykin’s and Dantzig’s model, more instances

are solved to optimality than with our modeling approach. Note that the average

gap for the instances that were not solved to optimality by at least one model is

however quite small.

Mehrotra et al. (2000) present a branch-and-price approach involving specialized branch-

ing rules for solving Dantzig set covering formulation. They compare their method with

Aykin’s model solved with CPLEX 4.0 on the same instances stated above. The results

show that their method is generally superior. Since CPLEX has evolved considerably since

these experiments were performed, it is difficult to deduce from these results a fair compar-

ison between their approach and our model solved with CPLEX 10.1.1.

5.2 Shift Scheduling with Multiple Rest and Meal Breaks, and
Multiple Work Activities

This section presents a shift scheduling problem for a retail store, allowing up to ten different

work activities. We present the specifications of the problem and first compare our model

with Dantzig’s model and an extentsion of Aykin’s model suggested in Rekik et al. (2005),

allowing to model work-stretch duration restrictions for instances with one work-activity.

Then, we report solution times from Côté et al. (2009) on the instances with up to two

work-activities and compare them with the results from our model.

Problem Definition

1. The planning horizon is 24 hours divided into 96 periods of 15 minutes.

2. A shift may start at any period of the day allowing enough time to complete its duration

during the planning horizon.

3. A shift must cover between 3 hours and 8 hours of work activities.

4. If a shift covers at least 6 hours of work activities, it must have two 15-minute breaks

and a lunch break of 1 hour.

19

5. If a shift covers less than 6 hours of work activities, it must have one 15-minute break,

but no lunch.

6. If performed, the duration of a work-activity is at least 1 hour (4 consecutive periods).

7. A break (or lunch) is necessary between two different work activities.

8. Work activities must be inserted between breaks, lunch and rest stretches.

9. For each period of the planning horizon, labor requirements for every work-activity are

available.

10. Overcovering and undercovering are allowed. Costs are associated with overcovering

and undercovering the requirements of a work-activity at a given period.

11. The cost of a shift is the sum over every period of the costs of all work-activities

performed in the shift.

Definition of the Grammar. The following presents the grammar used for this problem.

For the sake of clarity, the grammar is not stated in Chomsky normal form.

G = (Σ = (aj ∀j ∈ A, b, l, r), N = (S, F, P,W, Aj ∀j ∈ A, B, L,R), P, S),

where A is the set of work-activities, aj is a period of work on activity j ∈ A, b is a break

period, l is a lunch period and r is a rest period. In P , →[min,max] restricts the subsequences

generated with a given production to have a length between min and max periods. P is

defined as follows:

S → RFR | FR | RF | RPR | PR | RP, B → b,
F →[30,38] WBWLWBW | WLWBWBW | WBWBWLW, L → llll,
P →[13,24] WBW, R → Rr | r,
W →[4,∞) Aj ∀j ∈ A,
Aj → Ajaj | aj ∀j ∈ A.

Results. To compare the different models for this problem, we generated the IP models

representing these rules and solved them with CPLEX 10.1.1 with the default parameters.

We gave a one-hour time limit to find the optimal solution. Experiments were run on a 3.20

GHz Pentium 4.

20

First, we compare Dantzig’s model and the extension of Aykin’s model suggested in Rekik

et al. (2005), called the Aykin/Rekik model, to our model on ten instances with one work-

activity, which differ only in their labor requirements. Table 4 presents the results. |C|, |V |

and |NZ| are the number of constraints, variables and non-zeroes in the models. Note that

the differences in the number of variables between the instances for the same model come

from the slack variables introduced to allow overcovering and undercovering of requirements

constraints. For periods where no employees are required, we suppose that the retail store

is closed and that no work should be scheduled. Nit, Nnodes and Time(s) give the number

of simplex iterations, nodes and the solution times (in seconds) for the instances solved to

optimality within the time limit; otherwise the sign “>” is used.

The comparison between the three models shows that Dantzig’s model tends

to be less competitive on problems with a large number of shifts. In the one-

activity case, solving the entire model with an IP solver is still manageable, but

both the Implicit Grammar models and Aykin/Rekik models are solved more

rapidly. Our model succeeds in proving optimality for 9 out of 10 instances,

as does the Aykin/Rekik model, but does so in less time for 6 out of these

9 instances. Note also that the number of variables in the Implicit Grammar

model is smaller than in the two other models.

Table 5 shows our results on the multi-activity instances. We ran experiments on our

model on instances ranging from two to ten work activities. For each instance, we tested ten

different labor requirements. Column NbShifts gives the number of feasible shifts for each

of the problems, which would be the number of variables needed by Dantzig’s set covering

model. Nopt gives the number of instances solved to optimality within the one-hour time

limit. |C|, |V | and Time(s) are the average number of constraints and variables, and solution

times (in seconds) for the instances solved to optimality.

To our knowlegde, no other implicit formulations are capable of modeling multi-activity

instances. To solve Dantzig’s model on these problems, one must consider column generation

methods, since the number of feasible shifts is very large. Demassey et al. (2006) present

a column generation approach for these problems. However, their method does not suc-

ceed in finding optimal solutions, even for the single-activity instances. As for our modeling

21

Table 4: Model comparison on the one-activity problem

No |C| |V | |NZ| Nit Nnodes T ime(s)

Implicit Grammar model

1 16191 66621 198517 137 0 0.27
2 16191 66653 198549 2585 0 12.52
3 16191 66653 198549 817435 702 767.75
4 16191 66637 198533 61515 201 16.44
5 16191 66629 198525 1219 0 0.45
6 16191 66629 198525 975 0 0.36
7 16191 66637 198533 153688 544 35.13
8 16191 66653 198549 > > >
9 16191 63068 198525 9027 250 1.31

10 16191 66637 198533 1767 0 0.73

Aykin/Rekik model

1 50007 78247 930056 593 0 2.47
2 50007 78279 930088 248660 389 371.76
3 50007 78279 930088 324511 673 461.69
4 50007 78263 930072 13868 235 5.17
5 50007 78255 930064 647 0 2.22
6 50007 78255 930064 882 0 2.20
7 50007 78263 930072 6015 175 3.41
8 50007 78279 930088 > > >
9 50007 78255 930064 31460 360 12.38

10 50007 78263 930072 1943 0 2.59

Dantzig model

1 96 845176 24605722 23 0 24.58
2 96 845208 24605754 > > >
3 96 845208 24605754 11808 728 1824.11
4 96 845192 24605738 1180 141 52.06
5 96 845184 24605730 85 0 29.86
6 96 845184 24605730 30 0 29.44
7 96 845192 24605738 7455 1209 51.23
8 96 845208 24605754 > > >
9 96 845184 24605730 3769 280 35.68

10 96 845192 24605738 154 0 32.86

22

Table 5: Multi-activity problems with the Implicit Grammar model

NbAct NbShifts |C| |V | Time(s) Nopt(10)

2 13404928 18068 69893 409.07 10
3 67752783 19945 73152 205.38 9
4 214010944 21822 76417 300.47 10
5 522350575 23699 79688 146.16 10
6 1082991744 25576 82961 213.79 10
7 2006203423 27453 86246 230.88 10
8 3422303488 29330 89492 257.06 10
9 5481658719 31207 92731 289.08 10
10 8354684800 33084 96026 516.74 10

approach, the multi-activity problems can easily be handled with a few more productions

than in the one-activity case, and results show that they can rapidly be solved on almost all

available instances. Note that the growth in the number of constraints and variables when

increasing the number of work activities is much slower than the increase in the number of

feasible shifts.

Comparison with existing IP formulations based on formal languages. Table 6

presents the times reported by Côté et al. (2009) to solve the one and two work-activities

instances with two employee-based explicit formulations, the IP Regular model, based on a

finite automaton, and the IP Grammar model, based on a context-free grammar. In both

cases, 0-1 assignment variables for each employee are used, instead of the general integer

variables used in model Q. These experiments were run on a 2.4 GHz Dual AMD Opteron

Processor 250 with 3 GB of RAM, using the MIP solver CPLEX 10.0 and a time limit of

3600 seconds. In this experiment, we also used CPLEX 10.0 to solve our implicit

grammar models to make a more fair comparison. The table reports the time in

seconds to obtain an integer solution with a relative IP gap smaller or equal than 1%. The

symbol “>” represents an instance for which that gap could not be reached within the time

limit. The Implicit Grammar column shows the time needed by the implicit grammar

model to reach the 1% relative IP gap limit.

Table 6 illustrates that the two employee-based explicit formulations suffer from scal-

23

Table 6: Comparison of solution times (seconds) between employee-based explicit formula-
tions and the implicit grammar model on the one and two-activities instances to obtain a
near-optimal solution (Gap ≤ 1%) in less than 3600 seconds

No IP Regular IP Grammar Implicit Grammar
One-activity instances

1 1.03 7.42 0.26
2 40.09 > 110.88
3 64.64 > 75.25
4 46.39 1850.38 2.75
5 14.03 322.57 0.48
6 3.28 130.21 0.34
7 5.99 1662.75 2.71
8 131.77 > 2642.12
9 16.14 1015.10 1.18
10 20.22 1313.28 0.80

Two-activities instances
1 228.07 2826.40 1.27
2 2870.20 1952.58 4.12
3 1541.15 > 81.91
4 169.96 > 16.27
5 > > 2.59
6 1288.56 > 51.16
7 29.94 > 0.60
8 > 325.08 36.20
9 > > >
10 1108.23 > 4.99

24

ability issues as the number of work-activities grows. Observe that the implicit grammar

model shows comparable solution times for both classes of instances. For the one-activity

problem, the IP Regular model is much faster than the implicit grammar model on 3 out

of 10 instances. However, for the instances with two work-activities, the implicit grammar

model solves all instances more rapidly than the two other models, and succeeds in solving

more instances within the time limit. It is interesting to note that, on almost all instances,

the IP Regular model has better solution times than the explicit IP Grammar model, from

which we built the implicit model presented in this paper.

6 Conclusion

In this paper, we presented a new implicit IP model for solving multi-activity shift scheduling

problems. This model differs significantly from the models proposed in the literature, as our

modeling approach uses context-free grammars to represent the constraints defining feasible

shifts. This model yields the same LP relaxation bound as the classical set covering model

by Dantzig (1954) and the other well-known implicit models in the literature, i.e., Aykin

(1996), Bechtolds and Jacobs (1990) and Rekik et al. (2004).

Our experiments showed that the solution times for our model are comparable with

the solution times for Aykin’s model on one-activity shift scheduling instances from the

literature, and slightly superior to an extension of Aykin’s model suggested in Rekik et al.

(2004) on large-scale one-activity instances. We also showed that our model can be solved

to optimality efficiently on instances with up to ten work activities. To the best of our

knowledge, no other technique in the literature can solve multi-activity instances efficiently.

An interesting feature of our formulation is that the objective function allows many

types of cost structures, contrary to classical implicit formulations. In model Q, costs are

associated with activities and periods, but one can modify the objective function to have

costs on productions (
�

A
Π,t
il ∈A

cost(vΠ,t

il
)vΠ,t

il
), on the root-node (minimizing the root-node

variable, would be equivalent to minimizing the number of employees needed), or even on

subsequences. Indeed,
�

t
vΠ,t

il
corresponds to the number of words having a subsequence of

length l starting in position i generated from production Π. A subsequence can be a shift or

a part of a shift, such as a task. One could be interested in tracking a task corresponding to

25

a consecutive assignment of work activities and do so by using the corresponding variables

v from A. The same idea can be used to model a switch-over or ramp-up (ramp-

down) effects. Therefore, the implicit grammar-based model can easily be extended to

handle problems that require the simultaneous assignment of tasks and activities.

26

APPENDIX

Schedule Construction

In the following, V (N) is initialized to the value of the variable associated to node N in the

implicit solution. cl(N) and cr(N) are the left and right children of and-node N . c(N) is

the set of children of or-node N . schedule is the schedule resulting from the algorithm, i.e.,

the shift assigned to each employee. L is the set of leaves in the DAG.

Data: Solution from an implicit grammar model
Result: Detailed schedule
Stack K = ∅ ;
Array schedule[V (OS

1n
), n] ;

e = 0 ;
while V (OS

1n
) > 0 do

V (OS

1n
) = V (OS

1n
)− 1 ;

Choose N ∈
�
c(V (OS

1n
)) | V (N) > 0

�
;

Push N on K;
while K �= ∅ do

Pop N from K;
V (N) = V (N)− 1;
if cl(N) ∈ L, cl(N) corresponds to Oj

i1 then
schedule[e, i] = j;

else
Choose Nl ∈ {c(cl(N)) | V (Nl) > 0} ;
Push Nl on K;
Choose Nr ∈ {c(cr(N)) | V (Nr) > 0};
Push Nr on K;

end
end
e = e + 1;

end

Algorithm 1: Extracting detailed schedules from an implicit grammar solution

27

Acknowledgments

This work was supported by a grant from the Fond québécois de recherche sur la nature et

les technologies. We would like to thank Claude-Guy Quimper for his useful comments on

our work. We would like to thank two anonymous referees whose constructive comments

and questions helped us to improve our paper.

References

Aykin, T. 1996. Optimal shift scheduling with multiple break windows. Management Science 42
591–602.

Bechtolds, S., L. Jacobs. 1990. Implicit optimal modeling of flexible break assigments. Management

Science 36 1339–1351.
Bouchard, M. 2004. Optimisation des pauses dans le problème de fabrication des horaires avec

quarts de travail. M.Sc. Thesis, Ecole Polytechnique de Montréal.
Côté, M.-C., B. Gendron, C.-G. Quimper L.-M. Rousseau. 2009. Formal languages for integer

programming modeling of shift scheduling problem. Constraints doi:10.1007/s10601-009-
9083-2.

Côté, M.-C., B. Gendron, L.-M. Rousseau. 2007. Modeling the regular constraint with integer
programming. Proc. of CPAIOR’07, Springer-Verlag LNCS 4510 29–43.

Dantzig, G. 1954. A comment on Edie’s traffic delay at toll booths. Journal of the Operations

Research Society of America 2 339–341.
Demassey, S., G. Pesant, L.-M. Rousseau. 2006. A cost-regular based hybrid column generation

approach. Constraints 11 315–333.
Edie, L. 1954. Traffic delays at toll booths. Journal of the Operations Research Society of America

2 107–138.
Ernst, A., H. Jiang, M. Krishnamoorthy, B. Owens, D. Sier. 2004a. An annotated bibliography of

personnel scheduling and rostering. Annals of Operations Research 127 21–144.
Ernst, A., H. Jiang, M. Krishnamoorthy, D. Sier. 2004b. Staff scheduling and rostering: A review

of applications, methods and models. European Journal of Operational Research 153 3–27.
Henderson, W.B., W.J. Berry. 1976. Heuristic methods for telephone operator shift scheduling.

Management Science 22 1372–1380.
Hopcroft, J., R. Motwani, J. D. Ullman. 2001. Introduction to Automata Theory, Languages, and

Computation. Addison Wesley.
Lequy, Q., M. Bouchard, G. Desaulniers, F. Soumis. 2009. Assigning multiple activities to work

shifts. Tech. rep., Les Cahiers du GERAD G-2009-86, HEC Montreal, Montreal, Canada.
Loucks, J.S., F.R. Jacobs. 1991. Tour scheduling and task assignment of a heterogeneous work

force: a heuristic approach. Decision Sciences 22 719–739.
Mehrotra, A., K. Murthy, M. Trick. 2000. Optimal shift scheduling: A branch-and-price approach.

Naval Research Logistics 47 185–200.
Pesant, Gilles, C.-G. Quimper, L.-M. Rousseau, M. Sellmann. 2009. The polytope of context-free

grammar constraints. Proc. of CPAIOR’09, Springer-Verlag LNCS 5547 223–232.

28

Quimper, C.-G., T. Walsh. 2007. Decomposing global grammar constraint. Proc. of CP’07,

Springer-Verlag LNCS 4741 590–604.
Rekik, M., J.-F. Cordeau, F. Soumis. 2004. Using benders decomposition to implicitly model tour

scheduling. Annals of Operations Research 128 111–133.
Rekik, M., J.-F. Cordeau, F. Soumis. 2005. Implicit shift scheduling with multiple breaks ans work

stretch duration restrictions. Publication GERAD-2005-15 .
Ritzman, L., L.J. Krajewski, M.J. Showalter. 1976. The disaggregation of aggregate manpower

plans. Management Science 22 1204–1214.
Segal, M. 1974. The operator-scheduling problem: A network-flow approach. Operations Research

22 808–823.
Thompson, G. 1995. Improved implicit optimal modeling of the labor shift scheduling problem.

Management Science 41 595–607.
Vatri, E. 2001. Integration de la génération de quart de travail et de l’attribution d’activités. M.Sc.

Thesis, Ecole Polytechnique de Montréal.

29

