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Abstract

Column generation is a well-known mathematical programming technique based on two compo-

nents: a master problem, which selects optimal columns (variables) in a restricted pool of columns,

and a subproblem that feeds this pool with potentially good columns until an optimality criterion is

met. Embedded in Branch and Price algorithms, this solution approach proved to be very efficient in

the context of numerous vehicle routing problems, where columns represent feasible vehicle routes. The

subproblem is then usually expressed as a shortest path problem with resource constraints, which can

be solved using dynamic programming methods that are generally very effective in practice. In this

paper, we propose some new refinements to improve the capabilities of column generation approaches

in this context, with a focus on the subproblem phase. For the sake of simplicity, we restrict our study

to the case of the Vehicle Routing Problem with Time Windows. We first introduce the notion of

Limited Discrepancy Search, which is well known in the field of Constraint Programming, and we show

how LDS can be applied to dynamic programming. We also discuss how the state graph of dynamic

programming can be manipulated in order to simulate local search during label extension. Finally, we

present some lower bounds that allow removing a substantial number of labels during the search. Com-

putational results demonstrate the considerable impact of these refinements in terms of computing time.

Keywords: column generation; branch and price; vehicle routing.

Introduction

Vehicle routing problems are widely present in today’s industries, ranging from distribution problems to

fleet management. They account for a significant portion of the operational costs of many companies.

Operations research techniques have been used with success in many situations for reducing such costs.

Even if most real instances of vehicle routing problems are solved with heuristic methods, the desire to

produce optimal solutions has given rise to a prolific research area. Through the years, the Branch and

Price methodology proved to be a cornerstone for the exact solution of many vehicle routing problems.

This includes routing problems with time windows (Desrochers et al. 1992), backhauls (Gélinas et al. 1995)

or pick-up and delivery (Sol 1994) to mention only a few.

Among these problems, the Vehicle Routing Problem with Time Windows (VRPTW) can be described

as follows. Given a set of customers, a set of vehicles, and a depot, the VRPTW is to find a set of routes

of minimal total length, starting and ending at the depot, such that each customer is visited by exactly

one vehicle to satisfy a specific demand. The time at which a vehicle visits a customer must respect that

customer’s requested time window. A vehicle can wait in case of early arrival, but late arrival is not allowed.

In connection with customer demands, a capacity constraint restricts the load that can be carried by a

vehicle.
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In 1992, Desrochers et al. (1992) published a seminal paper for the solution of the VRPTW with a

Branch and Price procedure. The procedure was evaluated on a large set of instances, involving up to 100

customers, but only managed to solve a limited subset of these instances. Since then, several authors have

adapted this approach, introducing some more advanced concepts and solving more and more instances.

Even so, some of these instances still remain open today while many can only be solved with unduly long

computing times.

The purpose of this paper is to propose some new refinements to the Branch and Price methodology,

helping in the solution of difficult instances with rather simple techniques. For the sake of simplicity, we

restrict our study to the case of the VRPTW. Even so, these refinements could easily be transposed to

solve several other vehicle routing problems.

This paper is organized as follows. Section 1 introduces more precisely the VRPTW and reviews

Branch and Price approaches for its solution. Section 2 describes the refinements and the algorithm that

we propose. Thorough computational experiments first evaluating the algorithm and then the different

refinements separately are provided in Section 3. The conclusion follows.

1 Branch and Price Methodology for the VRPTW

In this section we first describe the VRPTW and recall a standard formulation. We then explain the basics

of Branch and Price applied to this problem and how this general scheme can efficiently be improved.

1.1 Formal Description of the VRPTW

The VRPTW is defined on a network G = (V,A), where V = {v0, . . . , vn} is the set of nodes and A is

the set of arcs. Vertex v0 is a special node called the depot, vertices v1 to vn represent customers. A

cost cij and a travel time tij are defined for every arc (vi, vj) ∈ A. Every customer vi ∈ V \ {v0} has a

positive demand di, a time window [ai, bi] and a positive service time si. A fleet of K vehicles of capacity

Q is available for servicing the customers. Vehicles must begin and end their routes at the depot within

a time horizon [a0, b0]. The total demand of customers visited by a route is limited by Q. The service

of a customer has to start within its time window, but a vehicle is allowed to arrive earlier and to wait.

The VRPTW consists in finding a minimum cost set of routes visiting exactly once each customer, while

respecting the capacity, time window and fleet size constraints discussed above.

In the following, we make these additional common assumptions: the cost and travel time matrices are

supposed to be identical to each other, to be nonnegative, and to satisfy the triangle inequality. For the

sake of simplicity, we also define d0 = 0 and s0 = 0.

The VRPTW can then be described with the following model:

minimize
∑

1≤k≤K

∑

(vi,vj)∈A

cijf
k
ij (1)

subject to
∑

{vj∈V |(vi,vj)∈A}

fk
ij −

∑

{vj∈V |(vj ,vi)∈A}

fk
ji = 0 (vi ∈ V, 1 ≤ k ≤ K), (2)

∑

{vi∈V |(v0,vi)∈A}

fk
0i ≤ 1 (1 ≤ k ≤ K), (3)

∑

1≤k≤K

∑

{vj∈V |(vi,vj)∈A}

fk
ij = 1 (vi ∈ V \ {v0}), (4)

∑

(vi,vj)∈A

dif
k
ij ≤ Q (1 ≤ k ≤ K), (5)
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sk
i + si + cij − sk

j + Mfk
ij ≤ M ((vi, vj) ∈ A, vj 6= v0, 1 ≤ k ≤ K), (6)

sk
i + si + ci0 − b0 + Mfk

i0 ≤ M ((vi, v0) ∈ A, 1 ≤ k ≤ K), (7)

ai ≤ sk
i ≤ bi (vi ∈ V, 1 ≤ k ≤ K), (8)

fk
ij ∈ {0, 1} ((vi, vj) ∈ A, 1 ≤ k ≤ K), (9)

where fk
ij and sk

i are decision variables and M is a large number. Variable fk
ij indicates whether arc (vi, vj)

is used by vehicle k or not. For a customer vi visited by a vehicle k∗, sk∗

i is the time at which service starts

for vi, while sk
i is meaningless for k 6= k∗. For the depot, sk

0 is the departure time of vehicle k.

Constraints (2)-(3) define the route structure for the vehicles. Constraints (4) enforce the visit of every

customer. Constraints (5) and constraints (6)-(8) respectively concern vehicle capacity and time windows.

1.2 Branch and Price Methodology for the VRPTW

In this subsection, we describe the principles of Branch and Price algorithms for the VRPTW and we

review the most important work on the subject.

The motivation for using a Branch and Price technique here is that the linear relaxation of model (1)-(9)

is very weak. Hence, this model cannot be used directly with a Branch and Bound approach, except when

fairly small instances are considered. To circumvent this difficulty, Branch and Price methods rely on a

different model having a better linear relaxation. This new model can be obtained through a Dantzig-Wolfe

decomposition from (1)-(9) as detailed in Desrochers et al. (1992). Before presenting this model, we have

to introduce some new notation. Let Ω = {r1, . . . , r|Ω|} be the set of feasible vehicle routes, i.e., the set

of paths in G issued from the depot, going to the depot, satisfying capacity and time window constraints

and visiting at most once each customer. Let ck be the cost of route rk ∈ Ω. Let aik = 1 if route rk ∈ Ω

visits customer vi and 0 otherwise. The new model for the VRPTW is then:

minimize
∑

rk∈Ω

ckxk (10)

subject to
∑

rk∈Ω

aikxk ≥ 1 (vi ∈ V \ {v0}), (11)

∑

rk∈Ω

xk ≤ K, (12)

xk ∈ {0, 1} (rk ∈ Ω). (13)

In this model, decision variable xk indicates whether a route rk is used in the solution or not. Constraint

(12) limits the number of vehicles used. Constraints (11) enforce that each customer is visited at least once.

Note that these constraints are not formulated as
∑

rk∈Ω aikxk = 1 for technical reasons to be explained

later and because the triangle inequality ensures that there exists an optimal solution of (10)-(13) visiting

each customer exactly once.

Although having a better linear relaxation value than (1)-(9), this model is not tractable with a standard

Branch and Bound approach. This stems from the fact that the size of the set Ω grows exponentially with

instance size. Indeed, the linear programs that would be used to evaluate search tree nodes would contain

too many variables to be solved in a classical manner. This evaluation can, however, be tackled with a

column generation technique, which, when repeated at every node of the Branch and Bound tree, yields

the so-called Branch and Price algorithm.

Column generation can be described as follows. We call the Master Problem (MP ) the linear relaxation

of (10)-(13). We introduce MP (Ω1), the restriction of the Master Problem MP to a subset of variables
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Ω1 ⊂ Ω. MP (Ω1) is called the Restricted Master Problem. Let also D(Ω1) be the dual program of

MP (Ω1). Note that MP is then identically MP (Ω) and that D(Ω) is the dual program of MP . The

optimal solution of MP (Ω1), with the simplex algorithm for instance, provides an optimal solution λ∗

for D(Ω1). This solution is also a solution of D(Ω), but it is not necessarily feasible. When every dual

constraint deriving from the routes in Ω \Ω1 is satisfied, the solution λ∗ is feasible for D(Ω), and therefore

optimal, since D(Ω) is more constrained than D(Ω1). When one or several constraints deriving from the

routes in Ω \Ω1 are violated, the principle of the column generation method is to identify one or several of

these constraints, with the help of a subproblem, in order to integrate the corresponding variables in the

set Ω1. Thus, solving alternately MP (Ω1) and the subproblem allows to converge toward dual feasibility.

The algorithm terminates when the subproblem solution attests that there are no more violated constraints

and that therefore the current dual solution is feasible for D(Ω).

In our situation, dual constraints are of the form
∑

vi∈V \{v0}
ak

i λi+λ0 ≤ ck, where λi is the nonnegative

dual variable associated with the visit of customer vi (constraints (11)) and λ0 is the nonpositive dual

variable associated with the fleet size constraint (12). Note that formulating constraints (11)
∑

rk∈Ω aikxk =

1 would have led to free variables λi, which would have complicated the convergence of the algorithm.

The purpose of the subproblem is finally to find routes rk ∈ Ω such that

ck −
∑

vi∈V \{v0}

ak
i λi − λ0 < 0.

It consists equivalently of columns with a negative reduced cost in MP (Ω), when the basic solution is the

optimal solution of MP (Ω1). In the following, we call these columns routes with a negative reduced cost.

Using the notation δk
ij = 1 when (vi, vj) is included in rk and δk

ij = 0 otherwise, this condition can be

expressed as:

∑

(vi,vj)∈A

δk
ij(cij − λi) < 0.

From the above expression and from the definition of a vehicle route, we see that the subproblem

reduces to an elementary shortest path problem with resource constraints (ESPPRC) from the depot to

the depot, satisfying capacity and time constraints, where the cost of each arc (vi, vj) is (cij − λi). A

solution procedure based on dynamic programming for this problem is proposed in Feillet et al. (2004).

Dynamic programming is particularly well adapted to this context because it computes a set of Pareto

optimal paths and might provide MP with several columns at a time. Here, we give a brief description of

the algorithm used to solve the subproblem.

The algorithm is an extension of the classical Bellman’s algorithm. The principle is to construct partial

paths, that are successively extended in every direction checking resource constraints. The mechanism

is initiated with a void path corresponding to the starting depot and is stopped when every possible

extension has been performed for every partial path appeared during the process. Dominance rules are

used to compare partial paths arriving at a same location and to discard some of them. Feasibility and

dominance rules lead us to characterize partial paths by labels of the form L = (Lc, Lt, Ll, Lu, Le), with

fields respectively representing the cost, the shortest service starting time at the ending vertex, the load

level, the set of unreachable vertices, and the ending vertex of the partial path. Unreachable vertices are

vertices that cannot be reached anymore due to resource constraints or because they already have been

visited. This information is used to maintain elementary paths and is coded with a set of binary resources,

indicating the reachability status for every vertex. Unlike Bellman’s algorithm when no resources are

considered, each vertex of the graph can maintain a large number of labels since the comparison of two labels

takes into account their consumption level for each resource. A common practice is to avoid computing

the complete Pareto optimal path set by stopping the subproblem solution algorithm prematurely when a

sufficient number of good columns has been found.
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Another important point of the Branch and Price method concerns the branching scheme. Instead of

branching on MP variables, it is generally preferred to branch on variables fk
ij from the original formulation

(1)-(9). It is fairly easy to see that when MP has a fractional optimal solution, there exists at least one arc

(vi, vj) that is traversed a fractional number of times fij , where fij =
∑

rk∈Ω1
δk
ijxk and with 0 < fij < 1.

It is then possible to derive two branches: one branch where vj cannot follow vi, the other where a vehicle

visiting vi necessarily goes immediately to vj . These two rules can very easily be transposed to MP : in

both cases, inadequate columns are just set to 0. For the subproblem, it is not much more complicated.

In the first case, arc (vi, vj) is simply removed. In the second case, any arc (vi, vl) with vl 6= vj and any

arc (vl, vj) with vl 6= vi must be removed.

1.3 Advanced Branch and Price Implementations

In this subsection we review several techniques that have been introduced within this general scheme and

that have significantly increased its efficiency.

In the first implementation of Branch and Price for the VRPTW, Desrochers et al. (1992) transformed

(10)-(13) to obtain a more tractable subproblem. This transformation takes advantage of the fact that the

Elementary Shortest Path Problem with Resource Constraints, though NP-hard in the strong sense, admits

a pseudo-polynomial algorithm when the elementary path condition is removed. Thereby, Desrochers et

al. (1992) propose the two following modifications:

- Ω is enlarged to include non-elementary paths,

- ak
i becomes the number of times vertex vi is visited in route rk.

With these two simple changes, the model remains valid and the subproblem is changed into a (non-

elementary) shortest path problem with resource constraints (SPPRC). It can be solved with a dynamic

programming procedure similar to the one mentioned above. Actually, Feillet et al.’s algorithm (2004) for

the ESPPRC derives from this one. Even if the size of the subproblem state space increases with this

modification, dominance rules are far more efficient and the global efficiency is improved. However, with

this new formulation, the linear relaxation provides a weaker lower bound, which complicates the pruning

of nodes during the tree search.

Actually, Desrochers et al. (1992) were more clever and forbade paths with 2-cycles, i.e., paths with

cycles composed of two arcs. This condition can easily be added to the Master Problem and can be

handled by the SPPRC dynamic programming solution algorithm with a low computing cost. Following

this idea, Irnich (2001) and Irnich and Villeneuve (2003) study the removing of k-cycles. They evaluate

it for k = 3 and k = 4 and conclude that the quality of the lower bound can come significantly closer

to the ESPPRC-based bound, with a reasonable computing time. Note that in parallel with the work of

of Feillet et al. (2004), Chabrier (2006) adapted the SPPRC dynamic programming solution algorithm

to effectively address the ESPPRC situation. This collection of ideas has recently converged toward an

efficient compromise solution simultaneously developed by Boland et al. (2006) and Righini and Salani

(2005). These authors propose to solve dynamically the ESPPRC by progressively adding the elementary

path constraint. The SPPRC is first solved. If the set of routes of negative cost found is not empty and

only contains non-elementary routes, single-visit constraints are added for some vertices and the problem

is solved again. This process stops when an elementary route of negative cost is found or when no route

(elementary or not) with negative reduced cost exists.

Another approach proposed for increasing the quality of the lower bound is the addition of cuts. Kohl

et al. (1999) introduced the so-called k-path cuts:
∑

vi∈V \S

∑

vj∈S

fij ≥ k, (14)

where fij is the flow on arc (vi, vj) as defined above and S is a vertex set whose demand cannot be

satisfied with k − 1 vehicles. These cuts can easily be integrated into the Master Problem and handled

5



by the subproblem by only taking into account new dual variables on appropriate arcs. However, they

are quite complicated to separate. Kohl et al. (1999) limit their study to k-path cuts with k ≤ 2. The

case k = 1 is very simple. When k = 2, a heuristic algorithm is proposed to find maximal sets S such

that
∑

vi∈V \S

∑
vj∈S fij < 2 and a Traveling Salesman Problem with Time Windows (TSPTW) solution

algorithm is used to determine whether these sets can be visited with a single vehicle. The case k = 3 was

addressed later by Cook and Rich (1999). These cuts were recently generalized in Desaulniers et al. (2006).

Other types of cuts, called subset row inequalities and based on the Chvatal-Gomory cutting scheme, were

also recently proposed in Jespen et al. (2006).

Finally, Kallehauge et al. (2001) proposed to hybridize the Branch and Price scheme with Lagrangean

relaxation. Column generation can then be viewed as a decomposition scheme where the Master Problem

and the subproblem communicate with the help of values λi, when these values are set to be the dual vari-

ables of the Master Problem. Lagrangean relaxation involves an identical Master Problem and subproblem,

communicating with values λi, but these values are guided by a different strategy. Kallehauge et al. (2001)

propose to use Lagrangean relaxation at the root node to improve the convergence of the method.

Beside these strategies, many computational tricks have been proposed to accelerate the solution pro-

cess. Most of these tricks are summarized in Desaulniers et al. (2001). These tricks have enabled a large

set of instances to be solved for the first time. The recent working paper by Desaulniers et al. (2006)

integrates most of these ideas. The resulting algorithm is rather complex but provides the most efficient

approach up to now.

2 New Acceleration Techniques

The contribution of this paper lies in the following improvements that are incorporated in the subproblem

solution algorithm. Note that contrary to usual implementations of column generation for routing problems,

we only consider elementary routes in Ω, i.e., routes where customers are never visited more than once.

While these techniques are implemented in the context of elementary shortest paths, they can easily be

transposed to a non-elementary context, unless the opposite is explicitly mentioned.

2.1 Limited Discrepancy Search

Limited Discrepancy Search (LDS) is a well-known tree search method, introduced by Harvey and Ginsberg

(1995) in the context of Constraint Programming (CP). A heuristic criterion is used, indicating which

descendant nodes of a given node are the most promising. A branching decision that does not lead the

search towards these nodes is called a discrepancy. An upper bound on the number of discrepancies limits

the search: a condition to explore a node is that the number of discrepancies accumulated along the path

connecting the root node to this node does not exceed this upper bound. The search is thus limited to

the most promising part of the arborescence, according to the heuristic criterion. However, compared to a

heuristic tree search that would only explore good branches, LDS has the advantage of allowing some rare

bad decisions during the search, which might reflect the structure of optimal solutions. While a satisfactory

solution is not found (generally a feasible solution in the context of CP), the search is repeated with an

increasing discrepancy limit, possibly until the search is complete.

We embed the concept of LDS in the Dynamic Programming (DP) solution scheme described in Section

1. Our objective is to efficiently drive the search towards the most promising paths, i.e., quickly generate

paths of negative value. For each vertex of the original VRPTW, we need to partition the set of neighbor

nodes into two sets: a set of good neighbors and a set of bad ones. These sets are constructed according to

reduced cost values, as detailed below. LDS is then implemented by adding an additional field Ld to the

labels. This new field indicates for each label the number of discrepancies performed to generate the label:

Ld = 0 for the label initiating the DP algorithm at the depot node; Ld is incremented when L is extended

6



in direction of one of its bad neighbors. If the extension of a label would cause the discrepancy level of the

new label to exceed the current discrepancy limit, this extension is discarded.

Figure 1 provides an illustration of this concept. In this figure, bad neighbors are represented with

dashed arcs. With a discrepancy limit 0, the only labels accepted are the ones propagating along the path

v0 → v1 → v4 → v5. When the discrepancy limit is 1, all labels with ending vertex v1, v3 or v4 are

accepted; labels with ending vertex v2 or v5 are accepted except v0 → v3 → v2 and v0 → v3 → v2 → v5;

vertex v6 can only be reached with label v0 → v6. With a discrepancy limit 2, every label is accepted

except v0 → v3 → v2 → v6. The search is complete when the discrepancy limit is 3.

5v

3v

2v0v

1 4

6

v v

v

Figure 1: LDS in Dynamic Programming.

Although simple, this technique can be implemented in many ways. In our implementation, we have

proceeded as follows. Two parameters are defined for the size of the good neighbor set and for the number

of discrepancies allowed (called DISC). The size of the good neighbor set is fixed throughout the solution

process to two. DISC is increased when the subproblem fails to find new routes, which we refer to as a fail.

The ESPPRC is then solved again until routes are found or the value of DISC ensures that the search is

complete, which closes the subproblem solution phase.

Good neighbors are the two reachable neighbors with the minimum reduced cost value cij − λi, plus

the depot. For the sake of efficiency, lists of successors are sorted according to reduced cost at each new

iteration of the column generation scheme (i.e., when dual values have changed). This allows us to stop

trying to extend a label towards its neighbors once an extension is discarded due to discrepancy.

The DISC parameter is regulated as follows. DISC is initialized at 0, which implies that the subproblem

is first solved using only good neighbors. After a fail, the DISC parameter is generally increased by 1.

When the new value exceeds 25% of the maximal number of customers that a route can contain (computed

as explained below), DISC is fixed to this latter value, so that the search is complete. If DISC is maximal

and the subproblem still fails to find new routes, column generation is stopped. When, following a fail,

the ESPPRC is solved again with a higher value for DISC, former labels are preserved. DP then performs

normally with a set of labels that can potentially be extended.

This method quickly finds routes that mainly connect customers to their nearest neighbours, but use

a short number of long arcs, where “nearest” and “long” are measured with respect to reduced cost value.

By contrast, a classic heuristic tree search that progressively enlarges the set of neighbors, as described in

Desaulniers et al. (2001), will have difficulties in finding such routes.

The upper bound on the maximal number of vertices in routes is precomputed with the solution of two

knapsack problems where items are vertices and weights are respectively the demand and the minimum

time consumed for visiting a vertex (service time plus cost of the cheapest outgoing arc). In both cases,
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the item corresponding to the depot is enforced in the solution. These two knapsack problems are:

maximize z1
KP = 1 +

∑

vi∈V \{v0}

yi

subject to
∑

vi∈V \{v0}

diyi ≤ Q,

yi ∈ {0, 1} (vi ∈ V \ {v0}).

and

maximize z2
KP = 1 +

∑

vi∈V \{v0}

yi

subject to

min
vj∈V \{v0}

c0j +
∑

vi∈V \{v0}

(si + min
vj∈V \{vi}

cij)yi ≤ b0 − a0,

yi ∈ {0, 1} (vi ∈ V \ {v0}).

The upper bound is then given by min{z1
KP , z2

KP }. As all items have unit costs, the two knapsack problems

can be solved quickly with the smallest-weight-first rule.

Note that more precise estimations of the maximal number of vertices in routes could be performed,

but would not be very useful here, since this estimation is only used for triggering LDS off.

2.2 Label Loading and Meta Extensions

The motivation behind these techniques is to use, whenever possible, the information about the “good”

paths that have been previously identified. Indeed, once MP is solved, we already have in hand a number

of routes whose reduced cost value is zero (namely, MP basic columns).

Label Loading (LL) consists of adding a set of labels to the graph before the DP search process is

undertaken. This is very simple and has presumably been implemented in other DP algorithms addressing

similar problems. Our implementation consists in selecting in Ω1 all routes r for which xr > 0. We then

traverse each of these routes while generating the label associated with the visit to each vertex. All the labels

thus generated are added to the DP graph before we start the solution process. Label Loading is illustrated

in Figure 2. In this figure, Li1−...−ik
represents the label associated with partial path {vi1 , . . . , vik

}

The Meta Extension (ME) operator is used to obtain the complementary effect of Label Loading. While

traversing each of the routes previously selected, we also add new metavertices to the original graph. These

metavertices correspond to the remaining path from their associated original vertex to the destination

depot and can be viewed as metadepots. Every metavertex is defined as a successor of its associated

original vertex. For example, when traversing route {v0, v1, v3, v4, v0}, the metavertex we associate with v3

is equivalent to the remaining subpath {v3, v4, v0}. This metavertex is added in the graph as a successor

of v3, as illustrated in Figure 3.

When a metavertex is added to the graph, we compute upper bounds on cost, time and load that would

allow any path to be extended along the remaining partial path represented by the metavertex, to obtain a

time- and capacity-feasible negative reduced cost route. This is easily done with a backward strategy from

the final depot. To be extended to a metavertex, a label must respect these bounds. When this happens,

we can obtain a complete route by simply checking that the elementary path condition holds (i.e., that no

vertex is visited more than once). The resulting label is then added to the set of depot labels as any other

label extended to the depot.
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v0
v2

v1

v3

v4

LLLL0000

LLLL0000----1111

LLLL0000----1111----3333

LLLL0000----1111----3333----4444

Figure 2: Label Loading: initial DP graph when xr > 0 for route r = {v0, v1, v3, v4, v0}.

v0
v2

v1

v3

v4

v1-3--4-0

v3-4-0

Figure 3: Meta Extension: metavertices when xr > 0 for route r = {v0, v1, v3, v4, v0}.

Note that, with regard to the LDS policy, metavertices are considered as good neighbors, but are not

counted in the good neighbor set.

The two techniques LL and ME, when used together, have the ability to rapidly identify small variants of

the current MP solution routes. Operators like node insertion, node deletion, and path crossing (connecting

the end of one route to the beginning of another) can be obtained with only a few label extensions. This

enables rapid exploration of the neighborhood of the current MP solution. These techniques are very

helpful to guide the search with the help of the global information provided by the current MP solution.

They are very complementary with the LDS approach, which drives the search using local information (arc

reduced costs). Actually, one can see the combination of these two techniques as a method progressively

switching from local search to dynamic programming. It is also interesting to note that ME can be seen

as a way of capturing the benefits of bi-directional DP for the ESPPRC, which was shown to be quite

effective by Righini and Salani (2006).

2.3 Label Elimination

When the resource limits are not very constraining, a very large number of labels can be generated during

the search for negative reduced costs paths. Many of these labels correspond to ineffective combinations
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of arcs and none of their extensions is going to provide a valuable column. The motivation here is to

determine (and remove) such labels, that can never be extended to the final depot with a negative cost.

What we propose is to compute two very simple lower bounds on the costs of all paths that can be

generated from a given label L = (Lc, Lt, Ll, U, vk). The principle is to determine whether extensions of

L may yield a negative cost path or not. The bounding schemes have to be chosen to balance the quality

of the information they provide with the time taken for computation. The two bounding schemes that we

propose are very similar to the ones presented in Subsection 2.1 and rely on simple knapsack problems

defined as follows:

minimize Lc + ( min
vj∈V \{v0}

cj0 − λ0) +
∑

vi∈V \(U∪{v0})

( min
vj∈V \{vi}

cji − λi)yi

subject to

∑

vi∈V \(U∪{v0})

diyi ≤ Q − Ll,

yi ∈ {0, 1} (vi ∈ V \ (U ∪ {v0})).

and

minimize Lc + ( min
vj∈V \{v0}

cj0 − λ0) +
∑

vi∈V \(U∪{v0})

( min
vj∈V \{vi}

cji − λi)yi

subject to

min
vj∈V \{v0}

cj0 +
∑

vi∈V \(U∪{v0})

(si + min
vj∈V \{vi}

cji)yi ≤ b0 − Lt − sk,

yi ∈ {0, 1} (vi ∈ V \ (U ∪ {v0})).

In both cases, the set of items to be selected is a subset of customers. This subset is the complete set of

customers minus the set U of unreachable customers. Vertex v0 is automatically selected, since returning

to the depot is compulsory. The cost of an item (customer) is the cost of the cheapest ingoing arc minus

the dual price of the customer. Note that λ0 is the dual variable associated with constraint (12) and is

counted when the label returns to the depot in our implementation.

The first bounding scheme relies on a load-based constraint. The consumption level of a customer

for this constraint is the demand of the customer. The higher limit is the remaining load allowable in

the vehicle. The second bounding scheme relies on a time-based constraint. The consumption level of a

customer is its service time plus the cost of the cheapest ingoing arc. The higher limit is the remaining

time allowable to return to the depot.

For the sake of efficiency, we only compute the linear relaxation of these bounds. This can be done

in linear time when items are sorted, which is done once, before dynamic programming is started. The

computing time needed is acceptable in the context of an Elementary Shortest Path algorithm where the

elementary path condition already necessitates linear computations for constructing a label. If the cost

of one of these bounds is nonnegative the label is removed. Note that items with a nonnegative value

can directly be discarded. Also, the solution of the knapsack LP relaxations can be stopped as soon as a

negative cost is reached. As this technique is expected to be useful essentially when the number of labels

is large, we only trigger Label Elimination (LE) when the DISC parameter is at least 2.

Note that our lower bounds would not be valid when the elementary path condition is relaxed: in this

case, new lower bounding schemes would be required in order to apply Label Elimination. Furthermore,

these schemes should preferably be computed in constant time to avoid slowing down label extension.

Hence, contrary to previous techniques (LDS, LL and ME), Label Elimination seems only convenient for
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the elementary path version of the column generation scheme. LE can however be integrated in solution

schemes where the elementary condition is partially and dynamically introduced (Boland et al. 2006,

Righini and Salani 2005 – see Section 1); indeed, some labels might be discarded wrongly, but a path of

negative cost will always be found if an elementary path of negative cost exists, which ensures the proper

functioning of the algorithm.

One should also note that, as we were performing this study, Lübbecke (2005) investigated the use of

lower bounds in column generation subproblems when solved by dynamic programming. Our proposal can

then be seen as a special case and as an implementation of the general scheme he sketches.

Note finally that when 2-path cuts are used, new dual variables λij , issued from constraints (14), should

be considered on some arcs. These dual prices have to be subtracted from item costs when computing the

bounds defined above, changing minvj∈V \{vi} cji − λi to minvj∈V \{vi}(cji − λji) − λi.

2.4 Other Computational Issues

As noted before, 2-path cuts stand out as a standard component of column generation schemes for vehicle

routing problems. These cuts are very useful for improving the quality of the bounding scheme and for

limiting the number of nodes explored during the tree search. Although less essential when the ESPPRC-

based lower bound is used, we have included this component in our implementation. 2-path cuts are

generated at the root node of the search tree. They are implemented as described in Kohl et al. (1999)

except for three points. First, TSPTW feasibility is checked using the ESPPRC solution module. This is

simply done by giving high rewards (dual values) to the requested vertices and null rewards to the others.

Second, we generate 2-path cuts each time that DISC (the LDS parameter) is greater than two, instead of

waiting for the end of the column generation process. By doing this, we avoid having to solve repeatedly

the last iterations of the process for which DISC is high and computing times are longer. Third, a limit is

set on the total time spent for generating 2-path cuts. This limit is equal to 50% of the current running

time. When the total computing time spent for generating 2-path cuts reaches this limit, 2-path cuts are

not searched for anymore. This limit avoids wasting a lot of computing time by trying to solve some very

difficult TSPTW instances, although some useful cuts may be missed.

It is also well known that column generation methods often show very slow convergence due to heavy

degeneracy problems. In order to limit this phenomenon, we use a very simple stabilization method,

Interior Point Stabilization, described in Rousseau et al. (2007). However, the impact of this method on

computing times is rather slight here, since it mainly influences the first iterations of column generation,

which are very fast here. Actually, as mentioned above, LDS already acts as a stabilization method that

will constraint dual variables through a sometimes large number of quick iterations. As a matter of fact,

we stop using Interior Point Stabilization as soon as 2-path cuts are generated or when the tree search

begins.

A third noticeable issue concerns the handling of branching. At each node of the search tree, we

classically first try to branch on the number of vehicles. Unfortunately, limiting the number of vehicles

sometimes leads to infeasibility. We then check whether feasibility can be recovered easily by only generating

new columns with the DISC parameter set to 0. We adapt this strategy when the maximal number of

vehicles is set to one. Indeed, in this case, the possibility that a solution using a single vehicle exists is

very small. We prefer to just check whether the new restricted master problem is feasible or not, without

attempting to generate new columns. We branch on the number of vehicles when feasibility is recovered.

Otherwise, or when the number of vehicles is not fractional, we select an arc for branching. We then

proceed in the following way. The impact of the removal of every arc traversed a fractional number of

times is evaluated by solving the updated Restricted Master Problem. The arc whose deletion has the

larger impact is selected. This policy enables us to derive two branches for which the new constraint has

an effective impact. The time needed for the selection of the arc is needlessly long when subproblems are

11



very easy to solve, but this time becomes negligible for difficult instances, where limiting the number of

nodes in the search tree can be very useful.

Finally, some implementation details need to be mentioned. During the subproblem solution phase, the

first 50 columns extended to the destination depot with a negative cost are stored, without referring to

dominance rules. Dominance rules are then activated for the remaining columns. This precaution avoids

removing good columns when they are rare. The subproblem is stopped as soon as 500 columns of negative

cost have been found, even if dominance rules have rejected many of them. We then attempt to complete

the set of columns by extending every label of the DP graph towards the depot. At the Master Problem

level, integrality of solutions is checked each time the simplex algorithm has been called for. This helps in

finding good solutions quickly. The nodes of the search tree are treated in a best-first order. This order is

based on the value of the linear relaxation for their parent node. This enables us to maintain an increasing

lower bound throughout the algorithm. When a linear program reaches this lower bound, one can then

avoid triggering column generation uselessly.

3 Experimental Results

We have evaluated the performance of the proposed techniques on the well-known Solomon instances (1983).

These instances are constituted of 3 types of geographical layouts. Customers are randomly located in

problem sets r and clustered in problem sets c, while problem sets rc display a mix of random and clustered

structures. Each type of instances is divided into two parts, the first part (r101-r112, c101-c109, rc101-

rc108) having narrower time windows than the second part (r201-r211, c201-c208, rc201-rc208). Customer

coordinates are identical for all instances within one type (i.e., r1,. . . ,rc2): within one type, instances only

differ with respect to the width of the time windows. Each instance contains 100 customers, but smaller

instances are created by considering only the first 25 or the first 50 customers. In the data sets, the

distance matrix is not explicitly stated, but customer locations are given. Euclidean distances between

these customers are calculated with one decimal point and truncation, to allow comparison with other

published methods.

The computational study is divided into two parts. First, we evaluate the algorithm and compare its

performance with other column generation based solution schemes. Second, we select a representative

subset of instances and evaluate more deeply the impact of our refinements.

Computational experiments were carried out on a 1.6 GHz processor with 256 Mb of RAM. The Master

Problem was modeled and solved with Cplex 9.0 leaving all parameters to their default values. The

maximum allowed time to find a solution was set to 3600 seconds.

3.1 Evaluation of our Algorithm

Tables 1 to 6 show the efficiency of our algorithm. In these tables, LP bound and IP are respectively

the value of the linear relaxation at the root node (rounded to one decimal place) and the value of the

optimal solution. Columns CPU, Iter and Col indicate the computing time, the number of subproblem

calls and the number of generated columns, respectively for the computations of the linear relaxation and

the integer solution (column CPU includes the computing time of the linear relaxation for the integer

solution). Column Cuts gives the number of 2-path cuts generated, while column Nodes represents the

number of nodes explored in the search tree. When the linear relaxation and/or the optimal integer solution

could not be found in the imparted time, an estimation of these values is given in italic. Other columns

are left blank to highlight the fact that the instance is not solved. The value provided in the LP bound

column is the current overestimation of the linear relaxation when the algorithm stops; the value given in

the IP column is the best solution found so far.
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Instance LP bound CPU Iter Col Cuts IP CPU Iter Col Nodes

r101-025 617.1 0.2 8 73 0 617.1 0.2 8 73 1

r102-025 547.1 0.4 15 170 1 547.1 0.5 15 170 1

r103-025 454.6 0.5 12 194 0 454.6 0.5 12 194 1

r104-025 416.9 0.7 15 226 0 416.9 0.7 15 226 1

r105-025 530.5 0.4 12 148 0 530.5 0.4 12 148 1

r106-025 465.4 1.1 37 232 6 465.4 1.1 37 232 1

r107-025 424.3 0.8 16 203 0 424.3 0.9 16 203 1

r108-025 397.3 2.7 35 302 3 397.3 2.8 35 302 1

r109-025 441.3 1.0 11 115 0 441.3 1.1 11 115 1

r110-025 438.8 1.3 29 263 3 444.1 2.7 64 387 7

r111-025 428.8 0.9 22 182 3 428.8 0.9 22 182 1

r112-025 387.9 2.2 23 418 4 393.0 13.5 108 1147 24

c101-025 191.3 0.3 8 260 0 191.3 0.4 8 260 1

c102-025 190.3 1.2 15 594 0 190.3 1.2 15 594 1

c103-025 190.3 1.4 13 613 0 190.3 1.4 13 613 1

c104-025 186.9 8.5 29 779 0 186.9 8.5 29 779 1

c105-025 191.3 0.6 12 288 0 191.3 0.6 12 288 1

c106-025 191.3 0.4 9 281 0 191.3 0.4 9 281 1

c107-025 191.3 0.4 8 212 0 191.3 0.4 8 212 1

c108-025 191.3 0.4 9 142 0 191.3 0.4 9 142 1

c109-025 191.3 1.2 17 412 0 191.3 1.3 17 412 1

rc101-025 461.1 1.0 33 334 8 461.1 1.0 33 334 1

rc102-025 351.8 0.4 6 178 0 351.8 0.4 6 178 1

rc103-025 332.8 0.8 12 185 0 332.8 0.8 12 185 1

rc104-025 306.6 0.5 8 119 0 306.6 0.5 8 119 1

rc105-025 411.3 0.6 15 210 0 411.3 0.7 15 210 1

rc106-025 345.5 0.7 16 208 0 345.5 0.8 16 208 1

rc107-025 298.3 0.8 14 249 0 298.3 0.8 14 249 1

rc108-025 294.5 1.6 11 240 0 294.5 1.7 11 240 1

Table 1: Optimal solutions Series 1: 25 customers
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Instance LP bound CPU Iter Col Cuts IP CPU Iter Col Nodes

r201-025 460.1 0.6 14 231 0 463.3 1.3 44 502 3

r202-025 410.5 0.6 11 236 0 410.5 0.7 11 236 1

r203-025 391.4 3.0 20 524 0 391.4 3.1 20 524 1

r204-025 350.5 13.6 28 772 0 355.0 37.1 136 1586 11

r205-025 390.6 2.5 26 395 0 393.0 3.8 62 518 3

r206-025 373.6 1.7 17 446 0 374.4 4.6 46 564 5

r207-025 360.1 4.6 17 828 0 361.6 18.0 81 1223 7

r208-025 328.2 18.4 24 1183 0 328.2 18.4 24 1183 1

r209-025 364.1 2.7 26 598 0 370.7 8.6 115 1251 9

r210-025 404.2 2.5 19 412 0 404.6 5.8 77 1130 3

r211-025 341.3 5.0 26 794 0 350.9 98.3 400 3441 42

c201-025 214.7 0.5 12 201 0 214.7 0.5 12 201 1

c202-025 214.7 1.6 15 471 0 214.7 1.7 15 471 1

c203-025 214.7 8.4 21 889 0 214.7 8.4 21 889 1

c204-025 213.1 540.2 48 1013 0 213.1 540.2 48 1013 1

c205-025 214.7 0.7 12 409 0 214.7 0.7 12 409 1

c206-025 214.7 0.8 12 561 0 214.7 0.8 12 561 1

c207-025 214.5 1.4 12 576 0 214.5 1.4 12 576 1

c208-025 214.5 0.8 12 343 0 214.5 0.8 12 343 1

rc201-025 360.2 0.4 10 238 0 360.2 0.4 10 238 1

rc202-025 338.0 1.2 15 342 0 338.0 1.2 15 342 1

rc203-025 326.9 1.0 9 264 0 326.9 1.0 9 264 1

rc204-025 299.7 11.0 28 509 0 299.7 11.0 28 509 1

rc205-025 338.0 0.7 17 147 0 338.0 0.7 17 147 1

rc206-025 324.0 0.7 16 144 0 324.0 0.7 16 144 1

rc207-025 298.3 0.9 12 130 0 298.3 0.9 12 130 1

rc208-025 269.1 1015.8 35 747 0 269.1 1015.8 35 747 1

Table 2: Optimal solutions Series 2: 25 customers
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Instance LP bound CPU Iter Col Cuts IP CPU Iter Col Nodes

r101-050 1044.0 1.3 25 274 2 1044.0 1.3 25 274 1

r102-050 909.0 2.2 26 420 0 909.0 2.2 26 420 1

r103-050 769.7 9.5 60 705 5 772.9 21.1 136 1035 12

r104-050 622.5 100.5 75 1171 15 625.4 319.4 222 3113 20

r105-050 893.7 2.7 37 454 4 899.3 10.7 141 746 20

r106-050 793.0 6.0 37 732 6 793.0 6.0 37 732 1

r107-050 707.6 14.1 52 938 9 711.1 80.5 275 2162 23

r108-050 598.3 253.9 88 1455 0 687.0

r109-050 776.6 5.9 53 670 5 788.6 103.2 476 1814 114

r110-050 696.8 9.2 60 936 2 697.0 12.8 84 1028 3

r111-050 697.7 14.0 62 997 16 707.2 237.5 435 2638 72

r112-050 616.8 31.8 56 1249 8 630.2 3327.3 1581 8584 352

c101-050 362.4 0.9 13 352 0 362.4 0.9 13 352 1

c102-050 361.4 2.5 23 393 0 361.4 2.5 23 393 1

c103-050 361.4 5.2 27 609 0 361.4 5.2 27 609 1

c104-050 358.0 3301.7 36 800 0 358.0 3301.7 36 800 1

c105-050 362.4 1.6 18 363 0 362.4 1.6 18 363 1

c106-050 362.4 1.4 18 317 0 362.4 1.4 18 317 1

c107-050 362.4 1.7 19 408 0 362.4 1.7 19 408 1

c108-050 362.4 1.7 20 216 0 362.4 1.7 20 216 1

c109-050 362.4 3.7 25 393 0 362.4 3.7 25 393 1

rc101-050 944.0 6.8 79 859 31 944.0 6.8 79 859 1

rc102-050 813.8 12.1 91 1133 11 822.5 251.0 845 4658 118

rc103-050 710.9 26.2 113 1619 2 710.9 26.2 113 1619 1

rc104-050 545.8 17.5 33 518 0 545.8 17.5 33 518 1

rc105-050 855.1 9.2 93 999 10 855.3 11.6 126 1261 3

rc106-050 720.0 18.6 89 1040 4 723.2 36.6 185 1757 14

rc107-050 640.1 28.0 103 900 1 642.7 60.9 183 1479 10

rc108-050 596.5 77.5 103 1666 2 598.1 243.8 252 2534 11

Table 3: Optimal solutions Series 1: 50 customers

15



Instance LP bound CPU Iter Col Cuts IP CPU Iter Col Nodes

r201-050 791.9 6.9 54 668 0 791.9 7.0 54 668 1

r202-050 698.5 22.9 62 1345 0 698.5 22.9 62 1345 1

r203-050 598.6 125.3 59 1662 0 605.3 381.5 246 3839 9

r204-050 505.3 551.5

r205-050 682.9 20.4 70 1224 0 690.1 565.7 759 4840 80

r206-050 626.3 53.7 65 1803 0 632.4

r207-050 564.1 1285.0 79 2713 0 643.4

r208-050 485.0 541.4

r209-050 599.8 60.5 74 1165 0 600.6 92.6 133 1472 3

r210-050 636.1 56.9 101 2106 0 765.6

r211-050 528.6 614.9 64 2383 0 616.2

c201-050 360.2 5.9 44 597 0 360.2 5.9 44 597 1

c202-050 360.2 85.8 69 3392 0 360.2 85.8 69 3392 1

c203-050 359.8 359.8

c204-050 350.1 350.1

c205-050 359.8 14.0 52 1642 0 359.8 14.0 52 1642 1

c206-050 359.8 6.5 28 768 0 359.8 6.6 28 768 1

c207-050 359.6 22.2 22 1241 0 359.6 22.2 22 1241 1

c208-050 350.5 26.5 59 2211 0 350.5 26.6 59 2211 1

rc201-050 684.8 3.4 27 516 0 684.8 3.4 27 516 1

rc202-050 613.6 12.9 44 613 0 613.6 13.0 44 613 1

rc203-050 555.3 702.7 45 1889 0 555.3 702.7 45 1889 1

rc204-050 448.3 448.3

rc205-050 630.2 7.7 36 615 0 630.2 7.7 36 615 1

rc206-050 610.0 5.8 27 473 0 610.0 5.8 27 473 1

rc207-050 558.6 46.3 48 892 0 558.6 46.3 48 892 1

rc208-050 472.9 494.0

Table 4: Optimal solutions Series 2: 50 customers
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Instance LP bound CPU Iter Col Cuts IP CPU Iter Col Nodes

r101-100 1634.0 14.8 66 1013 7 1637.7 18.3 90 1147 5

r102-100 1466.6 17.5 48 1110 0 1466.6 17.5 48 1110 1

r103-100 1206.8 124.4 111 1965 3 1208.7 265.0 200 2421 8

r104-100 957.3 2531.2 219 3357 0 1138.7

r105-100 1349.3 46.4 115 1679 17 1355.3 260.3 428 3156 38

r106-100 1228.1 123.3 149 2304 13 1234.6 1920.8 771 5469 68

r107-100 1055.5 579.0 186 2874 0 1402.1

r108-100 915.1 1077.0

r109-100 1135.1 112.9 143 2136 0 1356.3

r110-100 1056.0 174.7 142 2669 0 1200.6

r111-100 1034.9 195.6 127 2787 0 1256.5

r112-100 927.9 2691.6 162 3087 0 1060.6

c101-100 827.3 7.5 31 566 0 827.3 7.5 31 566 1

c102-100 827.3 16.0 34 1009 0 827.3 16.0 34 1009 1

c103-100 826.3 91.6 55 1569 0 826.3 91.6 55 1569 1

c104-100 822.9 822.9

c105-100 827.3 12.2 40 743 0 827.3 12.2 40 743 1

c106-100 827.3 8.4 31 895 0 827.3 8.4 31 895 1

c107-100 827.3 7.9 29 778 0 827.3 7.9 29 778 1

c108-100 827.3 17.6 47 912 0 827.3 17.6 47 912 1

c109-100 827.3 58.1 73 1172 0 827.3 58.1 73 1172 1

rc101-100 1617.4 70.4 161 1907 44 1619.8 222.5 303 2617 16

rc102-100 1441.8 124.3 171 2421 0 1916.3

rc103-100 1245.4 475.8 254 2879 0 1546.2

rc104-100 1117.6 1269.1

rc105-100 1509.8 114.2 196 2270 28 1513.7 199.4 317 2658 14

rc106-100 1343.0 213.9 175 2296 0 1591.2

rc107-100 1196.5 449.6 176 2595 0 1424.0

rc108-100 1105.1 3175.5 276 3427 0 1276.4

Table 5: Optimal solutions Series 1: 100 customers
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Instance LP bound CPU Iter Col Cuts IP CPU Iter Col Nodes

r201-100 1140.3 330.6 158 2574 0 1143.2 1104.4 819 5711 44

r202-100 1022.2 1055.9 142 4311 0 1247.6

r203-100 867.0 1027.8

r204-100 743.2 852.6

r205-100 939.2 848.4 212 3887 0 1138.9

r206-100 866.9 1098.9

r207-100 791.1 916.0

r208-100 702.7 774.8

r209-100 841.4 1777.1 234 4996 0 1072.6

r210-100 889.4 1057.3

r211-100 735.1 883.8

c201-100 589.1 39.0 78 1572 0 589.1 39.1 78 1572 1

c202-100 589.1 374.2 121 4104 0 589.1 374.3 121 4104 1

c203-100 588.7 588.7

c204-100 598.2 715.2

c205-100 586.4 360.2 224 4499 0 586.4 360.3 224 4499 1

c206-100 586.0 124.6 97 2923 0 586.0 124.6 97 2923 1

c207-100 585.8 543.0 154 6956 0 585.8 543.2 154 6956 1

c208-100 585.8 261.7 130 4359 0 585.8 261.7 130 4359 1

rc201-100 1255.9 283.7 167 2343 0 1261.8 992.2 858 5204 26

rc202-100 1088.1 949.7 192 3637 0 1092.3 3526.2 804 7318 24

rc203-100 923.1 1138.3

rc204-100 795.8 924.9

rc205-100 1147.6 869.9 188 2765 0 1567.8

rc206-100 1038.6 2522.5 229 3358 0 1161.8

rc207-100 947.4 1252.4

rc208-100 768.5 819.0

Table 6: Optimal solutions Series 2: 100 customers
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With the time limit set to one hour, 125 instances are solved out of 168: all instances with 25 customers,

45 out of 56 instances with 50 customers, 24 out of 56 with 100 customers. These results compare very

favorably with the results reported in the survey of Cordeau et al. (2001). In this survey, 126 known

optimal solutions are reported, compiled from four different papers, many of which could only be solved

with the help of massive computing resources or time (going up to several days); furthermore, 4 of these

“optimal” solutions later proved to be wrong. Among the methods presented in the 4 papers considered,

which represented the best methods at that time, the method of Kallehauge et al. (2001) clearly emerges

as the best (Note than an updated version of this paper was later published as Kallehauge et al. 2006).

Its mean computing time for the instances with 100 customers solved by both our and their algorithms is

2,764 seconds on a HPJ7000, compared to 301 seconds for our algorithm. Also, apart from the 4 wrong

instances (that we all solved), our method is able to to solve 10 new instances with a mean computing time

of 267 seconds.

A detailed analysis of the results highlights that our method is generally much more effective than

other methods for instances with wide time windows, and suffers for some c instances. In both cases,

the explanation can be found in the fact that we maintain the elementary path condition in our model.

Indeed, the wider the time windows are, the greater the impact of the elementary path condition is. On the

contrary, maintaining the elementary path condition does not improve the quality of the linear relaxation

for most of the c instances. However, even if optimality is not proved, all but one (c204-100) optimal

solutions of the c instances were found.

Beside its efficiency, another interesting feature of our algorithm is its impact on the convergence of

the column generation process. In all cases, the objective function decreases quickly toward the optimal

value. In difficult instances, the intractability that remains lies in the last iterations of the process. Indeed,

except LE, our refinements are not designed to be helpful in proving that no negative reduced cost column

exists. Figure 4 illustrates the convergence of the column generation process (at the root node of the search

tree) in the case of instances r204-25 and r107-50, where the refinements respectively have strong or weak

impacts on computing times. Axes represent time (in seconds) and objective function value. Note that

time scales are different with or without refinements.

As mentioned in Section 1.3, since the results reported in Cordeau et al. (2001) were obtained, several

papers have focussed on the improvement of the lower bounding scheme, enabling a larger set of instances

to be solved with reasonable computing times. Chabrier’s algorithm (2006) uses the ESPPRC bound and

is thus very similar to Feillet et al.’s (2004) and to the present algorithm before refinements. This method

is able to solve 104 instances in less than an hour, with computing conditions similar to the ones used here.

Irnich and Villeneuve (2003) evaluate the efficiency of forbidding k-cycles in the set of feasible routes.

They assess their approach with the elimination of 2-cycles, 3-cycles or 4-cycles respectively. They propose

in this way a compromise between the SPPRC and ESPPRC based bounding schemes. Their approach

solves respectively 111, 117 and 117 instances for k = 2, k = 3 and k = 4, in less than one hour on a Pentium

600 MHz. It is rather difficult to compare precisely these algorithms with ours, since the machine used is

less powerful than ours and since computing times are limited to one hour in their experiments. However,

one can notice that most of the instances we solve are solved with a computing time significantly shorter

than one hour. Hence, one can reasonably claim that the behavior of their algorithm when 3- or 4-cycles

are eliminated is globally comparable to ours. However, it relies on much more complicated algorithmic

structures than ours. Furthermore, our refinements are designed to be generic and could certainly be

advantageously included in their algorithms or in the application of column generation in other contexts.

Boland et al. (2006) and Righini and Salani (2005) propose dynamical solution of the ESPPRC by

progressively adding the elementary path constraint, i.e., progressively adding single-visit conditions for

the visit of customers. Their approach leads to significant improvements in the efficiency of the dynamic

programming algorithm proposed in Feillet et al. (2004). However, this approach has not been evaluated

within the context of a column generation scheme. Seeing the potential interest of this strategy, we have
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Figure 4: Convergence of column generation for r204-25 and r107-50, with or without refinements.

implemented and evaluated it here. Our implementation works as follows. Dynamic programming begins

without including any single-visit condition. Three cases can occur:

- At least one elementary route of negative reduced cost is found; the subproblem stops.

- No elementary route, but at least one non-elementary route of negative reduced cost is found; a single-

visit condition is added to the most visited customer (in these routes) and the dynamic programming

algorithm is applied again.

- No elementary or non-elementary route of negative reduced cost is found; the DISC parameter (of

the LDS policy) is increased; if its value was maximal, the algorithm stops.

Table 7 evaluates the impact of this strategy. It presents the CPU time, the number of subproblem calls

and the number of column generated for our algorithm (ESPPRC) and for the variant presented above

(Progressive ESPPRC), on the subset of instances solved with a CPU time greater than 100 seconds in

Tables 1 to 6.

As can be seen in this table, the results are contrasted. The progressive integration of the elementary

path condition does not induce a clear improvement of computing times. This seems related to the some-

times large increase in the number of subproblems solved. Indeed, many iterations stop with a very limited

number of new columns found. One might need a more advanced integration of this new strategy with the

existing heuristic features of the subproblem solution (LDS, premature stopping, etc.) to obtain a clear

positive impact.

Finally, a very recent and efficient implementation of Branch and Price is proposed by Desaulniers et

al. (2006). The resulting algorithm is rather complex, but provides the most efficient approach up to now.
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Progressive ESPPRC ESPPRC

Instance CPU Iter Col CPU Iter Col

c204-025 464.3 74 765 540.2 48 1013

rc208-025 1855.9 55 511 1015.8 35 747

r104-050 128.9 247 1739 319.4 222 3113

r109-050 100.3 550 1945 103.2 476 1814

r111-050 136.4 426 2091 237.5 435 2638

r112-050 4826.9 2598 8304 3327.3 1581 8584

c104-050 512.5 92 543 3301.7 36 800

rc102-050 258.8 935 4160 251.0 845 4658

rc108-050 317.6 457 2390 243.8 252 2534

r203-050 205.9 485 2644 381.5 246 3839

r205-050 617.9 1577 5114 565.7 759 4840

rc203-050 419.7 94 895 702.7 45 1889

r103-100 172.7 297 2429 265.0 200 2421

r105-100 230.8 496 3225 260.3 428 3156

r106-100 1096.2 873 4691 1920.8 771 5469

rc101-100 183.6 276 2307 222.5 303 2617

rc105-100 123.4 293 2274 199.4 317 2658

r201-100 1093.6 1319 6038 1104.4 819 5711

c202-100 107.0 115 2453 374.3 121 4104

c205-100 172.7 274 2830 360.3 224 4499

c206-100 267.0 255 3433 124.6 97 2923

c207-100 436.3 304 3856 543.2 154 6956

c208-100 201.6 201 2392 261.7 130 4359

rc201-100 1528.5 2088 7483 992.2 858 5204

rc202-100 3182.7 1893 8135 3526.2 804 7318

Table 7: Impact of the progressive introduction of elementary path constraints
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It clearly outperforms our method and solves most instances, often with quite short computing times.

Apparently, the main reasons of this success lie in:

- the use of a tabu search heuristic to find new columns,

- the efficient generation of cuts (notably the subset row inequalities proposed by Jepsen et al. (2006)),

- the use of a new lower bounding scheme, inspired by Boland et al. (2006) and Righini and Salani

(2005), authorizing multiple visits only for a subset of customers (dynamically computed).

3.2 Detailed Analysis of the Impact of Refinements

In this subsection, we propose some complementary numerical results, evaluating further the impact of the

refinements. These results are presented in Table 8 and Table 9. For this purpose, a limited set of instances

is used: the ones for which the LP relaxation is found between 10 and 100 seconds in Table 1 to Table 6.

This criterion leads to the selection of 32 instances with diverse characteristics. The LP relaxation is solved

again for these instances using several versions of the algorithm. Since we focus on the refinements, in

these tests we include neither the computation of 2-path cuts nor the tree search. We evaluate five solution

schemes: a scheme without refinement, a scheme with all the refinements and three schemes including

respectively each one of the three refinements alone. In each case, the tables present the CPU time needed

for solving the linear relaxation and the total number of iterations and columns generated.

Some obvious conclusions can be drawn from these tables. First, the impact of the refinements is

clarified in Table 8. In addition to the impressive speeding up of the solution process for difficult instances,

the refinements have a significant impact on the number of columns generated, which is much smaller, but

many more iterations are often needed.

It is important to note that the impact of the refinements is rather negligible, and in some cases even

detrimental, for instances that are solved very quickly (e.g., rc106-050). This is due to the fact that the

refinements imply some additional work that is not offset by the improvements when an instance is easy.

In general, the more difficult the instances are to solve, the greater is the impact of the refinements. The

speedup can even be as high as two orders of magnitude (e.g., c207-050). Out of the 32 instances of this

set, 9 display speedups that are larger than an order of magnitude and 7 others speedups in the range 3-10.

Overall, the total time required to solve the relaxation of these 32 instances is cut down by a factor of 18.6

when using the refinements and every instance can be solved in 90.9 seconds or less.

Table 9 exhibits clearly the efficiency of Label Loading and Meta Extension. These combined techniques

achieve a drastic improvement in terms of computing time and set of columns generated. However, their

impact on the number of iterations is very limited.

The impact of LDS is less consistent. It sometimes gives excellent results (e.g., instance c103-100), but

in other cases it has a slight negative effect (e.g., r206-50). In most cases, it replaces some slow iterations

with several quick ones and produces a smaller set of generated columns. Also, and that is the most

interesting point, it is very complementary with LL and ME, and the best results are obtained when all

three techniques are combined.

Finally, Label Elimination does not have a significant impact on the efficiency of the solution scheme.

Further results show that, for the selected instances, about 25% of the labels are eliminated (with a

very large deviation, the reduction approximately going from 0% to 70%); however, the total number of

labels processed is only reduced by 0.3% on average when LE is used. This small reduction indicates

that, in most cases, the labels eliminated would not have been extended, had they been kept. Figure 5

illustrates this behavior and also shows that no clear relationship exists between the reduction in number

of labels processed and the reduction in computing times. After seeing the inefficiency of LE, we tested

our algorithm with all refinements but LE. Removing LE did not induce significant changes to the results

reported previously.
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without refinements with all refinements

Instance CPU Iter Col CPU Iter Col

r204-025 84.2 12 2136 7.0 28 772

r208-025 396.8 16 3352 18.2 24 1183

rc204-025 676.8 8 1099 11.0 28 509

r107-050 12.5 17 1551 9.4 42 853

r111-050 11.3 17 1355 7.8 47 923

r112-050 39.7 20 1998 11.0 41 1205

rc102-050 4.5 14 1089 4.6 35 740

rc103-050 19.6 16 1204 10.8 41 861

rc104-050 151.0 15 1077 18.1 33 518

rc106-050 3.7 14 993 6.1 42 753

rc107-050 22.7 15 1293 14.4 63 563

rc108-050 109.8 15 1418 13.6 36 857

r202-050 31.6 20 3455 22.3 62 1345

r205-050 17.8 23 2746 14.1 70 1224

r206-050 248.7 25 5318 45.1 65 1803

r209-050 139.6 25 3974 30.9 74 1165

r210-050 205.3 25 5106 54.9 101 2106

c202-050 2418.5 69 15966 86.2 69 3392

c205-050 889.8 123 15366 13.4 52 1642

c207-050 2269.5 61 15281 22.3 22 1241

c208-050 1943.6 95 23237 29.8 59 2211

rc202-050 33.2 17 1433 13.1 44 613

rc207-050 181.5 20 2616 44.3 48 892

r101-100 7.2 19 1162 8.8 35 869

r102-100 48.3 25 2398 18.0 48 1110

r105-100 28.7 29 2304 30.8 82 1522

c102-100 546.9 24 2354 18.2 34 1009

c103-100 3933.6 38 4635 90.9 55 1569

c105-100 20.6 25 1008 12.3 40 743

c108-100 52.9 28 1252 17.7 47 912

c109-100 135.5 28 1780 58.1 73 1172

rc101-100 20.1 30 2170 27.8 87 1400

Mean value 459.5 29.0 4128.9 24.7 50.8 1177.4

Table 8: Global impact of the refinements
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with LDS with LL and ME with LE

Instance CPU Iter Col CPU Iter Col CPU Iter Col

r204-025 22.8 43 1430 11.4 12 1004 78.5 12 2136

r208-025 45.5 46 2642 49.9 17 1566 354.9 16 3352

rc204-025 11.4 26 522 66.3 6 643 665.5 8 1099

r107-050 12.3 60 1236 10.2 22 1107 12.3 17 1551

r111-050 13.3 76 1228 10.4 21 1012 11.4 17 1355

r112-050 17.9 66 1495 33.1 27 1486 40.4 20 1998

rc102-050 7.4 61 1160 5.9 23 971 3.9 14 1089

rc103-050 13.7 60 1265 18.5 24 1119 16.0 16 1204

rc104-050 38.1 37 659 136.9 17 649 83.0 15 1077

rc106-050 9.0 67 1075 3.3 16 710 3.8 14 993

rc107-050 24.3 71 1092 24.4 22 919 17.9 15 1293

rc108-050 15.7 42 838 80.0 17 897 84.1 15 1418

r202-050 40.9 81 2455 13.3 20 1427 31.5 20 3455

r205-050 49.4 140 2436 9.7 25 1228 18.7 23 2746

r206-050 269.6 154 4305 45.7 29 1734 253.1 25 5318

r209-050 105.3 148 2972 35.6 29 1397 140.8 25 3974

r210-050 223.3 144 3812 109.4 41 2354 210.3 25 5106

c202-050 734.7 219 11617 116.2 42 3639 2378 69 15966

c205-050 786.0 294 11229 9.2 20 1050 894.8 123 15366

c207-050 763.7 219 11147 155.0 38 2617 2293.0 61 15281

c208-050 1030.4 223 11172 53.2 29 1734 2007.1 95 23237

rc202-050 33.0 78 1776 17.1 20 1051 34.1 17 1433

rc207-050 95.5 72 1319 133.9 25 1848 197.3 20 2616

r101-100 23.3 91 1607 8.0 22 972 7.2 19 1162

r102-100 58.7 104 2227 34.4 28 1538 41.3 25 2398

r105-100 64.7 150 3255 28.5 44 1671 23.8 29 2304

c102-100 60.3 109 2085 107.0 28 1388 485.5 24 2354

c103-100 184.8 75 2087 1111.7 33 2293 3066.2 38 4635

c105-100 40.5 111 1306 20.4 27 622 18.4 25 1008

c108-100 36.2 67 1287 34.0 24 915 48.0 28 1252

c109-100 89.9 100 1710 112.0 33 1276 128.9 28 1780

rc101-100 51.7 141 2916 23.6 46 1687 18.8 30 2170

Mean value 155.4 105.5 3042.6 82.1 25.8 1391.4 427.1 29.0 4128.9

Table 9: Impact of the different refinements
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Figure 5: Relationship between the reductions in the number of labels processed and computing times.

4 Conclusion

In this paper, we have presented three techniques that accelerate column generation schemes for vehicle

routing problems. We have applied these techniques to the VRPTW, where the computational experiments

have demonstrated their important impact on the efficiency of the solution scheme, especially when dealing

with difficult instances. Limited Discrepancy Search allows to rapidly execute the first iterations of column

generation and to concentrate the effort on the last iterations. Label Loading and Meta Extension are

simple techniques that prove very efficient, notably because they transform the traditional label extension

procedure into more powerful local search operators. Finally, by computing a lower bound after each exten-

sion, we are able to identify and remove a large number of labels that can be shown to be worthless. This

last technique, which can be seen as an implementation of the ideas independently sketched in Lübbecke

(2005), proved rather inefficient in our case.

All these techniques together, but especially LDS, Label Loading and Meta Extension, have enabled

us to solve quickly many instances that could only be solved before with unduly long computing times.

Furthermore, these techniques provide generic tools to accelerate the convergence of column generation

approaches: good columns are found quickly, which leads to fast convergence toward the optimal solution.

The main difficulties then remain in the last iterations where interesting columns can be very difficult to

find. Thereby, some issues, such as the generation of a good initial set of columns or the use of heuristic

algorithms for trying to generate columns first, tend to become irrelevant.

Very recently, other attempts for solving efficiently the VRPTW using column generation have emerged,

sometimes with a greater success than ours (Desaulniers et al. 2006). However, in our opinion, the main

contributions of our refinements relate to their simplicity and their generic nature. The LDS principle

can easily be applied to any subproblem solution algorithm as soon as an enumerative scheme (Dynamic

Programming, Branch and Bound, Constraint Programming) is applied, in the context of vehicle routing or

not; developing an ad hoc metaheuristic, though possibly more efficient, is certainly much longer and more

complicated. The basic idea of Label Loading and Meta Extension should also be very easy to adapt to

many situations. Furthermore, it is quite original compared to other approaches proposed in the litterature
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and could certainly be included advantageously in the most efficient methods cited above.

Another interesting point in our approach is its robustness against difficult problems where imposing

the elementary path condition is crucial to maintain the quality of the lower bound. This is the case

of several problems like the Team Orienteering Problem, the Capacitated Team Orienteering Problem or

the Capacitated Profitable Tour Problem. Our refinements were all easily applied with success on these

problems (Boussier et al. forthcoming, Archetti et al. 2007).
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[2] Boland N., Dethridge J., and Dumitrescu I. Accelerated label setting algorithms for the elementary

resource constrained shortest path problem. Operations Research Letters, 34:58–68, 2006.

[3] Boussier S., Feillet D., and Gendreau M. An exact algorithm for team orienteering problems. 4OR,

forthcoming.

[4] Chabrier A. Vehicle routing problem with elementary shortest path based column generation. Com-

puters & Operations Research, 33:2972–2990, 2006.

[5] Cook W. and Rich J.L. A parallel cutting-plane algorithm for the vehicle routing problem with time

windows. Technical Report TR99-04, Department of Computational and Applied Mathematics,Rice

University, 1999.

[6] Cordeau, J.F., Desaulniers G., Desrosiers J., Solomon M.M., and Soumis F. The VRP with time

windows. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, SIAM Monographs on

Discrete Mathematics and Applications, pages 157–194. 2001.

[7] Desaulniers G., Desrosiers J., and Solomon M.M. Accelerating strategies in column generation methods

for vehicle routing and crew scheduling problems. In C.C. Ribeiro and P. Hansen, editors, Essays and

surveys in Metaheuristics, pages 309–324. Kluwer, 2001.

[8] Desaulniers G., Lessard F., and Hadjar A. Tabu search, generalized k-path inequalities, and par-

tial elementarity for the vehicle routing problem with time windows. Technical Report G-2006-45,

GERAD,Canada, 2006.

[9] Desrochers M., Desrosiers J., and Solomon M. A new optimization algorithm for the vehicle routing

problem with time windows. Operations Research, 40(2):342–354, 1992.

[10] Desrosiers J., Dumas Y., Solomon M.M., and Soumis F. Time constrained routing and scheduling. In

M.O. Ball, T.L. Magnanti, C.L. Monna, and G.I. Nemhauser, editors, Network Routing, Handbooks

in Operations Research and Management Science, pages 35–139. Amsterdam, North-Holland, 1995.

[11] Feillet D., Dejax P., Gendreau M., and Gueguen C. An exact algorithm for the elementary shortest

path problem with resource constraints: Application to some vehicle routing problems. Networks,

44(3):216–229, 2004.

[12] Gelinas S., Desrochers M., Desrosiers J., and Solomon M.M. A new branching strategy for time

constrained routing problems with application to backhauling. Annals of Operations Research, 61:91–

109, 1995.

26



[13] Harvey W. and Ginsberg M. Limited discrepancy search. In Proceedings of the Fourteenth Interna-

tional Joint Conference on Artificial Intelligence (IJCAI-95), pages 607–615, Montréal, Canada, 1995.

Morgan Kaufmann.

[14] Irnich S. The shortest path problem with k-cycle elimination (k≥3): Improving a branch and price

algorithm for the VRPTW. In TRISTAN IV, volume 3, pages 571–574, 2001.

[15] Irnich S. and Villeneuve D. The shortest path problem with k-cycle elimination (k≥3): Improving a

branch and price algorithm for the VRPTW. Technical Report G-2003-55, GERAD, 2003.

[16] Jepsen M., Petersen B., Spoorendonk S., and Pisinger D. A non-robust branch-and-cut-and-price

algorithm for the vehicle routing problem with time windows. Technical Report 06-03, Department of

Computer Science, University of Copenhagen, Denmark, 2006.

[17] Kallehauge B., Larsen J., and Madsen O.B.G. Lagrangean duality applied on vehicle routing with

time windows - experimental results. Technical Report IMM-TR-2001-9, IMM, Technical University

of Denmark, 2001.

[18] Kallehauge B., Larsen J., and Madsen O.B.G. Lagrangean duality applied to the vehicle routing

problem with time windows. Computers & Operations Research, 33(5):1464–1487, 2006.

[19] Kohl N., Desrosiers J., Madsen O.B.G., Solomon M.M., and Soumis F. 2-path cuts for the vehicle

routing problem with time windows. Transportation Science, 33(1):101–116, 1999.
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