
A Constraint Programming Approach for a Batch Processing

Problem with Non-identical Job Sizes

Arnaud Malaperta,c,ú, Christelle Guéretb, Louis-Martin Rousseauc

aÉcole des Mines de Nantes, LINA UMR CNRS 6241, Nantes, France
bÉcole des Mines de Nantes, IRCCyN UMR CNRS 6597, Nantes, France
cÉcole Polytechnique de Montréal, CIRRELT, Montréal, Québec, Canada

Abstract

This paper presents a constraint programming approach for a batch processing machine
on which a finite number of jobs of non-identical sizes must be scheduled. A parallel
batch processing machine can process several jobs simultaneously and the objective is to
minimize the maximal lateness. The constraint programming formulation proposed relies
on the decomposition of the problem into finding an assignment of the jobs to the batches,
and then minimizing the lateness of the batches on a single machine. This formulation
is enhanced by a new optimization constraint which is based on a relaxed problem and
applies cost-based domain filtering techniques. Experimental results demonstrate the e�-
ciency of cost-based domain filtering techniques. Comparisons to other exact approaches
clearly show the benefits of the proposed approach: it can optimally solve problems that
are one order of magnitude greater than those solved by a mathematical formulation or
by a branch-and-price.

Keywords: combinatorial optimization, artificial intelligence, constraint programming,
scheduling, packing.

1. Introduction

This paper presents a constraint programming approach for a batch processing ma-
chine on which a finite number of jobs with non-identical sizes must be scheduled. A
parallel batch processing machine can process several jobs simultaneously. Such machines
are encountered in chemical, pharmaceutical, aeronautical, and semiconductor wafer in-
dustries where an oven, a drier, or an autoclave is used during the process. For example
the composite components used in aerospace are made up of a matrix covered by carbon
fiber which are consolidated into a solid structure at elevated temperature and pressure
in an autoclave. Several parts of di�erent size can be processed in a same autoclave
at the same time. Another example is the final stress testing stage of semiconductor

úCorresponding author
Email addresses: arnaud.malapert@mines-nantes.fr (Arnaud Malapert),

christelle.gueret@mines-nantes.fr (Christelle Guéret), louis-martin.rousseau@polymtl.ca

(Louis-Martin Rousseau)
Preprint submitted to Elsevier April 5, 2012

manufacturing, where several di�erent integrated circuits are transferred to an oven at
elevated temperature for an extended period of time.
Early work on batch processor models can be traced to Ikura & Gimple (1986) who pro-
posed an optimal algorithm for a problem with identical job processing times, identical
job sizes, dynamic job arrivals and the objective of minimizing the makespan. Since then,
heuristics (Perez et al., 2000; Wang & Uzsoy, 2002; Uzsoy, 1995), genetic algorithm (Wang
& Uzsoy, 2002) and exact methods (Webster & Baker, 1995; Mehta & Uzsoy, 1998; Liu
et al., 2007) have been proposed for identical job sizes and due date related performance
measures. Several papers describe approaches for batch processing machine problems
with non-identical job sizes, but concern mostly completion time related performance
measures: heuristics (Azizoglu & Webster, 2000); genetic algorithm (Damodaran et al.,
2006); simulated annealing (Damodaran et al., 2007); exact methods (Azizoglu & Web-
ster, 2000, 2001; Dupont & Dhaenens-Flipo, 2002; Parsa et al., 2010; Kashan et al., 2009;
Sabouni & Jolai, 2010). For an extensive review on scheduling with batching, we refer
the reader to Potts & Kovalyov (2000).
On the other hand, constraint programming (CP) is an appealing technology in a va-
riety of combinatorial problems which has grown steadily since the last three decades.
According to Boucher et al. (1997), the main reason for success of CP on scheduling
problems is the use of constraint propagation, which aims at removing from variable
domains combinations of values which cannot appear in any consistent solution. Sur-
prisingly, although CP has been successfully used to solve various scheduling problems,
only a few papers concern scheduling problems with batching decisions. Moreover, these
works focus on serial-batching problems in which a serial batching machine can process
jobs contiguously as a batch whereas we discuss a parallel-batching problem. For ex-
ample, Zeballos & Henning (2003); Kotecha et al. (2007); Felizari et al. (2009) discuss
the modeling aspects of the multistage batch scheduling problem where each product
has to be sequentially processed in a number of stages, and each stage contains one
or more parallel processing units. The methods proposed in these papers assume that
batching and scheduling decisions are made independently, i.e. each product order is
divided into a number of batches (batching), which are then assigned to processing units
and sequenced (scheduling). In another paper, Vilím (2007) proposes new filtering al-
gorithms for a serial-batching machine with job families and sequence dependent setup
times which adjust the time windows of the tasks.

In this paper, we propose a new constraint programming approach for a problem de-
rived from a real application in the aeronautical industry. Composite components used
in this kind of industry are made up of two categories of constituent materials: matrix
(epoxy resin) and reinforcement (carbon fiber). They are fabricated according to the
following process: the matrix is covered by carbon fiber, then the resulting part is con-
solidated into a solid structure at elevated temperature and pressure in an autoclave.
Several parts can be processed at the same time as a batch in a same autoclave (batch
processing machine). The size of a batch is then limited by the capacity (volume) of the
autoclave. The processing time of each part (job) in the autoclave partially depends on
the size of the part. When several parts are regrouped in an autoclave, the processing
time of the batch is the longest processing time of its parts. As the processing times of
such operations are longer than the other operations of the process, theses machines are
often bottleneck. To our knowledge, only two papers (Daste et al., 2008b,a) concern the
resolution of the problem which consists in scheduling jobs with non-identical job sizes

2

on a batch processing machine to minimize the maximal lateness. Daste et al. propose
a mathematical formulation and a branch-and-price.
More formally, the problem can be described as follows. A set J of n jobs and one single
parallel batch processing machine with capacity b are given. Each job j is characterized
by an integer triplet (p

j

, s
j

, d
j

), where p
j

is its processing time, s
j

is its size, and d
j

is its due date. The sizes of the jobs are non-identical. The batch processing machine
can process several jobs simultaneously as a batch as long as the sum of the sizes of
the jobs that are in the batch does not exceed the capacity b of the machine. The pro-
cessing time of a batch is equal to the longest processing time among the jobs in the
batch.The completion time C

j

of a job j is the completion time of the batch to which it
belongs. The machine and jobs are assumed to be continuously available from time zero
onward, or equivalently, they have equal release dates. Once the processing of a batch
has been initiated, no job can be removed from or added to the batch. The objective is
to minimize the maximal lateness L

max

= max1ÆjÆn

(C
j

≠ d
j

). This problem, denoted
by 1|p-batch; b < n; non-identical|L

max

, is unary NP-hard because Brucker et al. (1998)
proved that the same problem with identical job sizes is unary NP-hard.
This paper presents the first constraint programming approach for the problem 1|p-batch; b <
n; non-identical|L

max

. After a brief overview of constraint programming techniques in
Section 2, a new constraint programming model based on the decomposition of the prob-
lem is introduced in Section 3. Then, Section 4 describes a new optimization constraint
based on the resolution of a relaxed problem enhanced by cost-based domain filtering
techniques. In Section 5, specialized search strategies inspired from well- known bin
packing approaches are presented. Finally, Section 6 evaluates the performance of fil-
tering rules and search strategies, then compares our results to those of a mathematical
formulation and to a branch-and-price approach.

2. Constraint programming background

Constraint programming (CP) has attracted high attention among experts from many
areas because of its potential for solving hard real-life problems. A constraint satisfaction
problem (CSP) consists of a set V of variables defined by a corresponding set of possible
values (the domains D) and a set C of constraints. A constraint is simply a logical re-
lation between a subset of variables, each taking a value in its domain. The constraints
thus restrict the possible values that variables can take. The important feature of con-
straints is their declarative manner, i.e. they only specify what relationship must hold.
A partial assignment represents the case where the domains of some variables have been
reduced, possibly to a singleton (namely a variable has been assigned a value). More
formally, a partial assignment A is the Cartesian product of all variable current domains.
The current domain D(x) of each variable x œ V is always a (non-strict) subset of its
initial domain. A partial assignment AÕ extends another partial assignment A, denoted
AÕ ™ A, if the domain of any variable x in AÕ is a subset of its domain in A. Clearly,
the relation ™ defines a partial order on partial assignments. A solution of a CSP is
an assignment of a value to each variable such that all constraints are simultaneously
satisfied (or consistent).
Solutions can be found by searching systematically through the possible assignments of
values to variable. A backtracking scheme incrementally extends a partial assignment A
that specifies consistent values for some of the variable, toward a complete solution, by

3

repeatedly choosing a consistent value for another variable. The variables are labelled
(given a value) sequentially and as soon as all the variables relevant to a constraint are
assigned values, the validity of the constraint is checked. The variable and value selection
heuristics select the next variable and value to try. If a partial solution violates any of the
constraints, backtracking is performed to the most recently assigned variable that still
has alternative values available in its domain. Clearly, whenever a partial assignment
violates a constraint, backtracking is able to eliminate a subspace from the Cartesian
product of all variable domains. Note that the running complexity for most nontrivial
problems is exponential.
Another approaches, called consistency techniques, consist in removing inconsistent val-
ues from the domains of the variables until a solution is found. A filtering algorithm
is associated to each constraint which removes inconsistent values from the domains of
the variables, i.e. assignments which can not belong to a solution of the constraint.
Constraints are handled through a constraint propagation mechanism which allows the
reduction of the domains of variables until a global fixpoint is reached (no more domain
reductions are possible). Di�erent consistency levels are often available for a constraint.
In fact, a constraint specifies what relationship must hold and its filtering algorithm is the
computational procedure which enforces that relationship. Generally, consistency tech-
niques are not complete, i.e. they do not remove all inconsistent values from the domains
of the variables. Since each constraint applies its own local consistency techniques, global
inconsistencies, i.e. associated to several constraints, are not always detected. Global con-
straints lessen this drawback by using the semantic information from subproblems in or-
der to detect more inconsistencies or to reduce the computation time. Global constraints
often exploits complex combinatorial structures such as graphs (cliques, matching, trees,
paths . . .).
Both systematic search and (some) consistency techniques can be used alone to solve
a CSP completely, but their combination allows the search space to be explored in a
complete and more e�cient way. In this case, the propagation mechanism allows the
reduction of the domains of variables and the pruning of the search tree. Scheduling is
probably one of the most successful areas for CP thanks to specialized global constraints,
which allow modelling an expressive and concise condition involving a non-fixed number
of variables, as for instance resource limitations. For an extensive review on constraint
programming and constraint-based scheduling, we refer the reader to Rossi et al. (2006)
and Baptiste et al. (2001) respectively.

3. Constraint programming formulation

Our constraint programming formulation relies on the decomposition of the problem
into finding an assignment of the jobs to the batches, and then minimizing the maximal
lateness of the batches on a single machine. The problem of assigning the jobs to the
batches is equivalent to the one-dimensional bin packing problem. Indeed, the definition
of this problem is the following: given n indivisible items (jobs), each of a known non-
negative size s

j

, and m bins (batches), each of capacity b, can we pack the n items into the
m bins such that the sum of the sizes of the items in any bin is not greater than b? This
problem has been shown NP-complete (Garey & Johnson, 1979). Then, once the jobs are
packed into the batches, the problem of scheduling the batches is equivalent to minimizing
the maximal lateness of a set of jobs (batches) on a single machine. This problem, denoted

4

as 1||L
max

, is polynomially solvable (Lawler, 1973): an optimal schedule is obtained by
applying Jackson’s scheduling rule, also known as the earliest due date (EDD-)rule which
schedules the tasks in order of non decreasing due dates. The main advantages of such
a decomposition are twofold. First, the search space is restricted to batching decisions
because sequencing decisions are independently computed in polynomial time. Then, the
new optimization constraint introduced in Section 4 strongly relies on the decomposition
because its filtering rules are based on a relaxation of the batch sequencing subproblem.

We now present the CP model of the studied problem. Without loss of generality,
we assume in the remainder of the paper that the jobs are numbered according to non-
increasing size (s

j

Ø s
j+1), and that the size of each job is not greater than the batch

capacity (s
j

Æ b). Note that the number m of batches is lower than or equal to n. Let
J = [1, n] denote the set of job’s indices and K = [1, m] denote the set of batch’s indices.
Let d

max

= max
J

{d
j

} and p
max

= max
J

{p
j

} be respectively the greatest due date and
processing time of the jobs. Let B

j

œ K denote the batch where the job j is packed,
and J

k

™ J denote the set of jobs which are packed into the batch k. These variables
satisfy the relation: ’j œ J, B

j

= k … j œ J
k

. The non-negative integer variables
P

k

œ [0, p
max

], D
k

œ [0, d
max

] and S
k

œ [0, b] represent the processing time, the due
date, and the load of the batch k respectively. Lastly, let M œ [0, m] and L

max

be the
number of non-empty batches and the objective variable (unbounded) respectively. The
constraint programming formulation is given below:

maxOfASet
!
P

k

, J
k

, [p
j

]
J

, 0
"

’k œ K (1)
minOfASet

!
D

k

, J
k

, [d
j

]
J

, d
max

"
’k œ K (2)

pack
!
[J

k

]
K

, [B
j

]
J

, [S
k

]
K

, M, [s
j

]
J

"
(3)

sequenceEDD
!
[B

j

]
J

, [D
k

]
K

, [P
k

]
K

, M, L
max

"
(4)

Constraints (1), where [p
j

]
J

is the associative array of processing times, enforce that the
duration P

k

of batch k is the maximal duration of its jobs (set J
k

) if the batch is not
empty, and equals 0 otherwise. Similarly, Constraints (2) enforce that the due date D

k

of a batch k is the minimal due date of its jobs if the batch is not empty, and equals
d

max

otherwise. Indeed, the lateness of batch k defined as max
jœJ

k

(C
k

≠ d
j

) is equal to
C

k

≠min
jœJ

k

(d
j

) where C
k

is the completion time of the batch k. Note that the lateness
is negative if the job is early, nil if the job is on time, and positive if the job is tardy.
Constraint (3) is inspired from the global constraint of Shaw (2004) for the bin-packing
problem. This constraint uses propagation rules incorporating knapsack-based reasoning,
as well as a dynamic lower bound on the number of non-empty bins. This constraint
replaces the channeling constraints between assignment variables (’j œ J, B

j

= k … j œ
J

k

) and enforces the consistency between assignments and loads (’k œ K,
q

jœJ

k

s
j

=
S

k

). Furthermore, pack propagates the redundant constraint specifying that the sum of
the bin loads is equal to the sum of the item sizes (

q
jœJ

s
j

=
q

kœK

S
k

). Note that the
limited capacity of the batches is enforced by the initial domain of the load variables S

k

.
AppendixA page 19 describes our implementation of pack.
Lastly, Constraint (4) enforces that the objective value L

max

is equal to the maximal
lateness of the batches scheduled according to the EDD-rule. This constraint applies
several filtering rules that are explained in details in Section 4.
Finally, a solution to the constraint programming formulation is composed of a feasible

5

assignment of the jobs to the batches, and of the maximal lateness of the instance of
the problem 1||L

max

associated with these batches. Note that this model is also valid
in the presence of additional constraints such as heterogeneous capacities (restrictions
on the domains D(S

k

)), job incompatibilities (inequalities between variables B
j

), load
balancing (a spread constraint over variables S

k

imposes a maximum standard deviation
and an interval for the mean).

Dominance conditions on feasible assignments, which allow to consider a small subset
of them, are a key property to solve bin packing problems (Martello & Toth, 1990; Shaw,
2004; Fukunaga & Korf, 2007). These conditions often consider that equal-sized items
and equal-loaded bins can be swapped without sacrificing solution quality. These rules
cannot be applied in batching machine problems because swapping equal-sized items or
equal-loaded bins may modify the durations and due dates of the batches and possibly
sacrificing solution quality. However, the search space still can be reduced by making
sure that two jobs i and j such that s

i

+ s
j

> b belong to di�erent batches. Since the
jobs are sorted according to non-increasing size, let j0 denote the largest index such that
any pair of jobs with indices lower than j0 are in di�erent batches: j0 = max{j | ’ 1 Æ
i < j, s

i+1 + s
i

> b}. Then, Constraints (5) which pack the largest jobs into the first
consecutive batches, can be added to the formulation.

B
j

= j 1 Æ j Æ j0 (5)

4. Description of the sequenceEDD constraint

Pruning generally derives from feasibility reasoning. When coping with optimization
problems, pruning can be done also on the basis of costs, i.e. optimality reasoning. Prop-
agation can be aimed at removing combination of values which cannot lead to solutions
whose cost is better than the best one found so far. Focacci et al. (1999) proposed to
embed in global constraints optimization components representing suitable relaxations of
the constraint itself. These components provide e�cient operations research algorithms
computing the optimal solution of the relaxed problem and a gradient function repre-
senting the estimated cost of each variable-value assignment. They show the benefit of
using this information for pruning and for guiding the search on a variety of combina-
torial optimization problems. In this section, we introduce an optimization constraint
following the idea of Focacci et al. based on new relaxations and gradient functions.

As explained in Section 3, the global constraint sequenceEDD enforces that the objec-
tive value L

max

is equal to the maximal lateness of an EDD-sequence of batches. This
constraint uses a relaxation of the problem that yields a lower bound for the objective
function to prune portions of the search space. The general idea is to infer primitive
constraints on the basis of information on costs. We use optimization components within
a global constraint representing a proper relaxation of the problem, which consists in
minimizing the maximal lateness of batches on a single machine. The optimization com-
ponents provide the optimal solution of the relaxed problem, its value and a gradient
function computing the cost to be added to the optimal solution for some variable-value
assignments. The optimal value of this solution improves the lower bound of the objective
function and prunes portions of the search space for which their lower bound is bigger
than the best solution found so far. Section 4.1 defines a relaxed problem in which the

6

jobs that have not yet been assigned to a batch are ignored. Then, four filtering rules
are presented in Sections 4.2, 4.3 and 4.4.

4.1. Relaxed problem
In this section, we describe the relaxed instance I(A) of the problem 1||L

max

built
upon a partial assignment A of the variables, as well as an algorithm to solve it. At each
point in the resolution, the relaxed problem consists in scheduling the current batches
(partially filled) without considering the remaining jobs (not yet assigned to a batch).
Let recall that, at each point in the resolution, we have a partial assignment A which
we define as the set of current domains of all variables. The current domain D(x) of a
variable x is always a (non-strict) subset of its initial domain. An assignment AÕ extends
a partial assignment A, denoted AÕ ™ A, if the domain of any variable x in AÕ is a subset
of its domain in A. Let min(x) and max(x) be the minimum and maximum value of
the domain D(x) in the current partial assignment. Let x Ω v denote the restriction of
the domain of x to a single value v. Let ”1, ”2, . . . , ”

n

ı be the distinct increasing values
of the due dates d

j

(j œ J). Note that nı can be smaller than n if some jobs have
identical due dates. However, for sake of clarity, we will consider that nı = n. Let
KRq

(A) = {k œ K | max(D
k

) R ”
q

} be the set of batches related to the due date ”
q

by
the arithmetic relation R œ {<, Æ, =, Ø, >}. Similarly, let JRq

(A) = {j œ J | d
j

R ”
q

}
be the set of jobs related to the due date ”

q

. Finally, let P (A, K̃) =
q

kœK̃

min(P
k

) be
the minimal total duration of a set of batches K̃ ™ K in the partial assignment A.
An instance I(A) of the relaxed problem consists of n buckets where a bucket q œ J
is the set of batches K=q

(A). Each bucket q has a due date ”
q

and a processing time
fi

q

(A) = P (A, K=q

(A)). As the buckets are, by definition, numbered according to a
strictly increasing order of their due date (”

q

< ”
q+1), minimizing the maximal lateness

of I(A) is equivalent to computing the maximal lateness of the sequence of buckets in this
order. Let C

q

(A) =
q

q

i=1 fi
i

(A) and L
q

(A) = C
q

(A) ≠ ”
q

be respectively the completion
time and lateness of bucket q in the sequence. Therefore, the optimal objective value of
instance I(A) is given by: L(A) = max

qœJ

(L
q

(A)).
Figure 1 illustrates the solutions of two relaxed problems for a batching machine

of capacity b = 10. Table 1(a) contains the jobs to schedule in the original problem
1|p-batch; b < n; non-identical|L

max

. Table 1(b) gives the buckets of instance I(A1)
where A1 is a solution of the problem, i.e. a total assignment. In this example, note that
there are less buckets (nı = 3) than jobs (n = 4). Figure 1(d) shows an optimal solution
of the relaxed instance I(A1) which is also an optimal solution of the original problem.
The batching machine is represented as a drawing where the horizontal and vertical axes
correspond respectively to the time and the load of the resource. A job is represented as
a rectangle for which the length and the height respectively match its duration and its
size. Jobs with identical starting times belong to the same batch. The solution contains
three batches: the first one contains only job 1; the second one contains the jobs 2 and
4, and has a load equal to s2 + s4 = 9, a minimal duration equal to max{p2, p4} = 9
and a maximal due date equal to min{d2, d4} = 2; the third one contains only job 3. A
bucket is represented as a dashed rectangle which encapsulates its batches. The batches
of a bucket are separated by a dashed line with a square marker. The lateness of each
bucket is represented on the right part of the figure as a line starting from its due date
and ending at its completion time. At this point, the bucket 1 contains batches 1 and 2

7

Job 1 2 3 4
s

j

8 7 5 2
p

j

5 8 7 9
d

j

2 7 10 2
(a) Initial instance.

Bucket 1 2 3
”

q

2 7 10
fi

q

(A) 14 0 7
(b) Relaxed instance I(A1).

Bucket 1 2 3
”

q

2 7 10
fi

q

(A) 5 8 7
(c) Relaxed instance I(A2).

J1
J3

d2 d3
0

5

load
10

2

5 10 15 20 time lateness

1

capa
11

bucketbucket 1

7

12

bucket 3

d1,d4

3

J2

J4

(d) Solution of the relaxed problem for the solution (total assignment) A1.
A1 = {B1 Ω 1, B2 Ω 2, B3 Ω 3, B4 Ω 2}

J2J1
J3

d2 d3
0

5

load
10 capa

5 10 15 20 time lateness

10

6

31

bucket 1 bucket 2 bucket 3

3

2

d1,d4

bucket

(e) Solution of the relaxed problem for the partial assignment A2.
Job 4 is not present since it is not yet assigned.

A2 = {B1 Ω 1, B2 Ω 2, B3 Ω 3, B4 œ [1, 4]}.

Figure 1: Two illustrative examples of the construction of I(A).

because max(D1) = max(D2) = d1. The bucket 2 is empty because there is no batch k
such that max(D

k

) = ”2 and its lateness, drawn as a dashed line, is therefore dominated
by its first non-empty predecessor (bucket 1). The bucket 3 contains batch 3 with job 3.
Table 1(c) gives the buckets of instance I(A2) where A2 is a partial assignment in which
the job 4 is not yet assigned. Figure 1(e) shows a solution of the relaxed instance I(A2)
in which the job 4 does not appear. At this point, each bucket contains a unique batch:
the first, second and third buckets contain respectively the batches 1, 2 and 3. In fact,
A2 is inferred at the root node by the propagation of Constraints (5) which enforces that
B1 = 1, B2 = 2, and B3 = 3.

At each point of the resolution, the construction of instance I(A) can be done in
O(n). Indeed, the due dates of the jobs need to be sorted in increasing order which
takes O(n log n), but this can be done once and for all before starting the search process.
Then, building instance I(A) consists in assigning each batch k to a bucket q. This can
be done in O(1) as the bucket of a batch k is the bucket q such that ”

q

= max(D
k

).
Inserting batch k in its bucket, and updating the duration of the bucket is also done in
constant time. The overall complexity is O(n), because the number of batches m is lower
than n. Finally, the resolution of I(A) simply consists in sequencing the buckets in their

8

numbering order, which can be done in O(n). The following sections present filtering
rules based on the resolution of this relaxed problem.

4.2. Filtering the lateness variable
The filtering rules on the lateness variable are based on the two following propositions.

Proposition 1. L is a monotonic function from the partially ordered set of partial
assignments onto the integers:

AÕ ™ A ∆ L(AÕ) Ø L(A).

Proof. Since Constraints (1) enforce that the minimal duration of a batch in AÕ is greater
than or equal to its minimal duration in A, the total duration of a set of batches K̃ does
not decrease from A to AÕ: ’K̃ ™ K, P (A, K̃) Æ P (AÕ, K̃).
Furthermore, since Constraints (2) enforce that assigning a new job in a batch belonging
to bucket q can only imply its transfer to a bucket qÕ such that qÕ Æ q, the set of batches
before bucket q can only increase from A to AÕ: ’q œ J, KÆq

(A) ™ KÆq

(AÕ). Besides,
since P

k

is a non-negative integer variable, the function P (A, K̃) is an increasing function
from the sets of batches onto the integers: K̃ ™ K̃ Õ ∆ P (A, K̃) Æ P (A, K̃ Õ). Therefore,
the following inequalities hold:

C
q

(A) =
ÿ

1ÆiÆq

fi
i

(A) = P (A, KÆq

(A))

Æ P (AÕ, KÆq

(A)) Æ P (AÕ, KÆq

(AÕ))
Æ C

q

(AÕ).

Since the completion time of each bucket q can only increase from A to AÕ, the mono-
tonicity of the function I(A) is proven as follows: ’q œ J, C

q

(AÕ) Ø C
q

(A) ∆ L(A) Æ
L(AÕ).

Proposition 2. Once all durations and due dates of the batches are fixed, the optimal
schedule of the relaxed problem I(A) corresponds also to an optimal schedule of any
feasible assignment which extends A.

Proof. Once all durations and due dates of the batches are assigned values, the durations
and latenesses of buckets stay unchanged until a feasible solution is found. Therefore, the
proposition is satisfied if and only if the maximal lateness of the relaxed problem is equal
to the maximal lateness of any solution which extends A. As all the batches of a bucket q
have the same due date ”

q

, all the orderings of these batches are equivalent regarding the
EDD-rule. Thus, the optimal schedule of the buckets for the relaxed problem corresponds
to an optimal schedule of the batches (respecting the EDD-rule) for the initial problem.
Note that scheduling the batches of a bucket according to non-decreasing processing time
improves the average lateness of these batches.

Let recall that x Ω v denotes the restriction of the domain of x to a single value v, let
min(x) Ω v denote the restriction to values greater than v, and let max(x) Ω v denote
the restriction to values lower than v. Furthermore, let x ”Ω v denote the elimination
of a single value v. From Proposition 2, we deduce the final lateness filtering rule (FF)

9

which solves the relaxation problem to assign the objective variable once all durations
and due dates have been assigned values:

’k œ K, P
k

and D
k

are assigned ∆ L
max

Ω L(A). (FF)

Note that this case occurs sometimes before a total assignment of the jobs to the batches
is reached, since propagation can reduce all domains to singleton. A corollary of Propo-
sitions 1 and 2 is that, at each point of the search, the maximal lateness L(A) of I(A)
is a lower bound on any feasible schedule which extends A. Thus, the minimal objective
value can be updated at each relevant domain change by the lateness filtering rule (LF):

÷k œ K, min(P
k

) or max(D
k

) have changed ∆ min(L
max

) Ω L(A) (LF)

4.3. Cost-based domain filtering of assignments
The cost-based domain filtering rule of assignments (AF) reduces the search space

based on the marginal cost of the assignment of job j to batch k (B
j

Ω k). The idea is
to eliminate, at each relevant domain change, every job j, as a candidate for packing in
a batch k, if the marginal cost associated with the assignment of the job j to the batch
k exceeds the best upper bound found so far, or more formally:

÷k œ K, min(P
k

) or max(D
k

) have changed ∆
’j œ J, such that |D(B

j

)| > 1 and ’k œ D(B
j

),
L(A fl {B

j

Ω k}) > max(L
max

) ∆ B
j

”Ω k (AF)

where Afl{B
j

Ω k} stands for Afl{B
j

Ω k, min(P
k

) Ω p
j

, max(D
k

) Ω d
j

}. Indeed, the
propagation of Constraints (1) and (2) after the assignment B

j

Ω k implies respectively
that min(P

k

) Ω p
j

and max(D
k

) Ω d
j

.
A simple filtering algorithm can compute the marginal cost from scratch for each possible
assignment with an overall complexity of O(n3). We propose, in AppendixB, an O(nm)
version of this algorithm based on the incremental computation of marginal costs.

4.4. Cost-based domain filtering based on bin packing
In this section, we introduce a cost-based domain filtering rule based on the com-

putation of marginal cost associated with a number of non-empty batches M . Let
Kı = {k œ K | ÷j œ J, B

j

= k} be the set of non-empty batches. Note that we as-
sume that |Kı| = max {k œ Kı}, i.e. jobs are packed into the first consecutive batches.
Let Jı = {j œ J | D(B

j

) > 1 · max(B
j

) > |Kı|} denote the set of open jobs, i.e. un-
packed jobs that can be used to create new batches. The rule (PF1) updates the possible
number of non-empty batches by considering the current number of non-empty batches
and the number of open jobs.

min(M) Ω |Kı| max(M) Ω |Kı| + |Jı| (PF1)

This rule (also applied by pack) is required to ensure correctness of the reasoning pre-
sented below. Let AÕ = A fl (fi

jœJ̃

{B
j

Ω k
j

}) denote the assignment of a subset J̃ ™ Jı

of open jobs to new batches, i.e. pairwise di�erent empty batches (’j œ J̃ , k
j

> |Kı|
and ’i ”= j œ J̃ , k

i

”= k
j

). Therefore, the completion time and lateness of each bucket
10

q have to be updated according to the total duration increase of its predecessors. In-
deed, the new completion time of bucket q is equal to its completion time before the
assignments plus the duration increase of its predecessors: C

q

(AÕ) = C
q

(A)+
q

jœJ̃Æq

p
j

.
Unfortunately, the combinatorial of such assignments grows exponentially, and filtering
them is di�cult and costly.
Therefore, we compute a lower bound of C

q

(AÕ) by computing a lower bound of the
completion time C

q

(A fl {M Ω mı}) of a bucket q for a given number mı of non-empty
batches as follow. Let �(mı) be the sum of mı open jobs of smallest processing times.
If mı ≠ |Kı| new batches are created with the open jobs, at least mı ≠ |Kı| ≠ |Jı

>q

| new
batches are scheduled before bucket q. Then, the completion time of any bucket q after
the creation of mı ≠ |Kı| batches is greater than its completion time before the creation
of the new batches plus the minimal sum �(mı ≠ |Kı| ≠ |Jı

>q

|) of the processing times
of mı ≠ |Kı| ≠ |Jı

>q

| open jobs:

C
q

(A fl {M Ω mı}) = C
q

(A) + �(mı ≠ |Kı| ≠ |Jı

>q

|)

Æ C
q

1
A fl

1
fi

jœJ̃

{B
j

Ω k
j

}
22

’J̃ ™ Jı, |J̃ | = mı ≠ |Kı|

As a consequence, the maximal lateness of any solution extending A with exactly mı non-
empty batches is greater than L(A fl {M Ω mı}). The rule (PF2) updates the minimal
objective value according to the marginal cost associated with the current minimum
number of batches. The rule (PF3) decrements the maximum number of batches if its
marginal cost exceeds the best upper bound found so far.

min(L
max

) Ω L(A fl {M Ω min(M)}) (PF2)
L(A fl {M Ω max(M)}) > max(L

max

) ∆ max(M) Ω max(M) ≠ 1 (PF3)

At each relevant domain change, the cost-based domain filtering rule based on bin pack-
ing (PF) applies the three filtering rules described above.

(÷j œ J, D(B
j

) has changed) ‚ (÷k œ K, min(P
k

) or max(D
k

) have changed) ∆
Apply rules (PF1), (PF2) and (PF3) (PF)

The computation of function � is O(n log n) since it can be performed during initial-
ization by sorting, and then summing the processing times of open jobs. The rules (PF1)
and (PF2) are applied within linear time, since L(A) can be computed in O(n). The
rule (PF3) is applied until the marginal cost associated with the maximum number of
batches becomes feasible, i.e. at most |Jı| times. Therefore, the overall complexity of
the cost-based domain filtering based on bin packing is O(n2).

Figure 2 illustrates the computation of marginal costs associated to the presence of
exactly mı = 4 non-empty batches for the instance introduced in Table 1(a) and an empty
assignment A3 (before the initial propagation). The set of open jobs Jı is equal to the set
of jobs J whereas the set of non-empty batches Kı is empty. Therefore, rules (PF1) and
(PF2) do not modify the domain of M . Since the completion time C

q

(A3) of each bucket
q is equal to 0, the new completion time C

q

(A3 fl{M Ω 4}) is equal to �(mı≠ |Jı

>q

|). As
a consequence, the bucket 1 ends at �(4 ≠ |{2, 3}|) = p1 + p3 = 12, the bucket 2 ends at
�(4≠|{3}|) = p1+p3+p2 = 20, and the bucket 3 ends at �(4≠|ÿ|) = p1+p3+p2+p4 = 29.

11

0

5

load
10

5 10 15 20 time d2 d3

1

capa

latenessd1,d4

2

3

bucket 2 bucket 3bucket 1

19

13

bucket

p1 + p3 p2 p4

10

Figure 2: Example of the computation of L(A3 fl {M Ω 4}) for the (empty) assignment A3.
A3 = {B1 œ [1, 4], B2 œ [1, 4], B3 œ [1, 4], B4 œ [1, 4]}.

If we suppose that the best upper bound found so far is equal to 15, then the maximum
number of non-empty batches is reduced from 4 to 3 and the rule (PF2) is applied for
mı = 3.

5. Search strategy

At each node in the search tree, the branching selects the variable B
j

of a job j
using a variable selection heuristic, and assigns job j to a batch k chosen with a value
selection heuristic, i.e. takes the decision B

j

Ω k. On backtracking, the search states
that the chosen job cannot be placed in the selected batch. If this batch becomes empty, a
symmetry breaking rule is applied which eliminates "equivalent" batches, i.e. other empty
batches, from the list of candidates for the current job. Note that this dynamic symmetry
breaking rule generalizes the idea behind Constraints (5) because, on backtracking, we
would forbid packing a large job into another batch.
Several variable selection heuristics based on durations, sizes and due dates can be used.
We chose the heuristic called complete decreasing (Gent & Walsh, 1997) which packs jobs
in order of non-increasing size. Indeed, preliminary experiments showed that packing
large jobs first improves filtering of pack and sequenceEDD constraints more than simple
variants using also processing times and due dates.
Concerning the value selection heuristics, we investigated two classical heuristics in bin
packing problems, namely first fit that selects the first available batch, and best fit which
selects an available batch with the least free space. We also propose a new value selection
heuristic named batch fit which selects an available batch having the least value of “(B

j

Ω
k) where “(B

j

Ω k) measures roughly the fitness of the assignment within the instance
I(A) as follows:

“(B
j

Ω k) = | min(P
k

) ≠ p
j

|
max

J

(p
j

) ≠ min
J

(p
j

) + | max(D
k

) ≠ d
j

|
max

J

(d
j

) ≠ min
J

(d
j

)

The idea of this heuristic is that a perfect solution would be composed of batches con-
taining jobs having all identical durations and due dates.

6. Experimental results

This section presents computational experiments conducted to evaluate our approach.
Section 6.1 describes the set of instances on which the experiments have been done. Sec-
tion 6.2 evaluates the performance of the di�erent filtering rules. The performance of the

12

new value selection heuristic is studied in Section 6.3. Finally, our approach is compared
to a mathematical formulation in Section 6.4 and to a branch-and-price in Section 6.5.
All the experiments were conducted on a cluster of Linux machines, each node with
48GB of RAM and two quad core 2.4GHz processor. Our implementation is based on
choco (http://choco.mines-nantes.fr) which is an open source java library for con-
straint programming built on an event-based propagation mechanism with backtrackable
structures. The constraint pack has been integrated in the latest releases and the solver
has been extended with the optimization constraint sequenceEDDand search heuristics.
The constraint sequenceEDD always applies the algorithm for the rule (AF) presented in
AppendixB. The time limit has been fixed to 3600 seconds (1h).

6.1. Instances
Our algorithm has been tested on randomly generated instances proposed by Daste

et al. (2008b) ranging from 10 to 100 jobs. The processing times are determined using
the uniform distribution (p

j

= U [1, 99]). Job sizes are generated from discrete uniform
distribution between 1 and 10, and the machine capacity is b = 10 (inspired by Ghazvini
& Dupont, 1998). For a given instance, once the processing times and sizes of all jobs are
computed, the due dates are generated using the following formula: d

j

= U [0, –]◊C̃
max

+
U [1, —]◊p

j

(inspired by Malve & Uzsoy, 2007) where C̃
max

= (
q

n

j=1 s
j

◊
q

n

j=1 p
j

)÷(b◊n)
is an approximation of the time required to process all the jobs on the batch processing
machine. For each number of jobs n œ {10, 20, 50, 75, 100}, 40 instances were generated
with – = 0.1 and — = 3.

6.2. Performance of the filtering rules
Improving the filtering of a constraint could benefit the resolution but it happens

that simple and short algorithms outperform more complicated ones. Therefore, it is
reasonable to evaluate their filtering power (see Section 6.2.1) and to ask whether cost-
based domain filtering techniques are useful during search (see Section 6.2.2). In this
section, the name of a filtering rule is an abbreviation which reflects its nested structure,
i.e. (FF) µ (LF) µ (AF) µ (PF). For instance, (PF) refers to the activation of the four
filtering rules.

6.2.1. Destructive lower bound
We measured the performance of the di�erent filtering rules by computing destructive

lower bounds. Destructive lower bounds are obtained by first imposing an upper limit
on the objective function value (say F) as low as possible (the reduced problem). Then,
the technique consists in trying to contradict (destruct) quickly (using only propagation,
and no search) the existence of a solution of value F . In case of success, then F is a valid
lower bound, otherwise F is incremented by one unit and the contraction attempted again
until the infeasibility of the a solution of value F can not be proven without searching.
The computation of such a lower bound has the advantage of being independent from
the search. Three di�erent destructive lower bounds were computed using (LF), (AF),
and (PF) respectively. Note that we ignore (FF) since it is unlikely that it performs
any filtering in this case. Because destructive lower bounds are computed very quickly,
another three (better) lower bounds were computed using also shaving techniques (see
Rossi et al., 2006). Shaving is similar to prove by contradiction. We propagate the

13

Initial Propag. Destr. LB Destr. LB + Shaving

n LF AF PF LF AF PF LF AF PF t̄LF t̄AF t̄PF

10 89.4 89.4 89.7 89.4 97.9 98.1 93.4 99.0 99.2 0.07 0.05 0.05
20 90.1 90.1 90.4 90.1 95.6 95.7 93.6 96.8 97.0 0.17 0.15 0.1
50 89.7 89.7 90.2 89.7 93.6 93.6 91.8 94.1 94.1 2.71 2.71 1.43
75 88.5 88.5 89.1 88.5 91.4 91.5 89.8 91.7 91.8 8.8 12.01 5.25
100 87.2 87.2 87.6 87.2 89.4 89.4 88.3 89.6 89.7 23.20 29.48 14.04

Table 1: Quality of destructive lower bounds.

assignment of a job j to a batch k in the reduced problem. If an infeasibility is found,
then the assignment is invalid and so we can eliminate job j as candidate for packing
in batch k. In this case, if the propagation of the domain reduction B

j

”Ω k lead to a
contradiction, then the reduced problem is infeasible. To limit computation time, shaving
was used only once for each assignment B

j

Ω k.
Let ub denote the best upper bound found for a given instance reported in Ap-

pendixC. The quality of the computed lower bound lb for a given instance is evaluated
by (100 ◊ (lb + d

max

)) ÷ (ub + d
max

) (inspired by Malve & Uzsoy, 2007). This measure
is equal to the optimality gap until the problem’s size n = 20, since these instances have
been solved optimally. Besides, it is almost equal to the optimality gap for problem’s
size n = 50, since only two instances are not solved optimally. Table 1 gives the average
quality of the initial propagation (columns 2–4) and destructive lower bounds without
and with shaving (columns 5–7 and 8–10) as a function of the number of jobs n (column
1). Average computation times t̄ (in seconds) are only reported for destructive lower
bounds with shaving (columns 11–13) because they are not significant otherwise (π 1
second).
The rule (AF) does not strengthen the lower bound during the initial propagation,
whereas it greatly improves the two destructive lower bounds. The rule (PF) slightly
improves on (AF) in any case. Besides, destructive lower bounds without shaving are
e�cient and their computation times stay negligible. However, using shaving slightly
improves the quality of destructive lower bounds, but leads to a significant increase of
the computation time. The rule (PF) improves the destructive lower bound with shaving
in comparison to the rule (AF) while reducing its computation time by half. Note that
Constraints (5) greatly contribute to the quality of these lower bounds.

6.2.2. Complete decreasing first fit
The procedure complete decreasing first fit (Gent & Walsh, 1997) packs jobs in order

of non-increasing size, packing each job in the first available batch that will accommodate
it. Since the destructive lower bound mechanism is deactivated, the impact of the filtering
on the decision process is lessened. We chose instances that could be solved optimally
by most of the filtering rules, from (FF) to (PF), so that comparisons could be made in
reasonable computation times. In this regard, we examined all instances with less than
50 jobs (120 instances).
Figure 3(a) shows the percentage of instances solved optimally as a function of the time in
seconds. First, the performance of the rule (FF) shows that the model is able to capture
some solutions even when filtering only happens once all durations and due dates have

14

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3600 0.01 0.1 1 10 100 1000

%
 s

o
lv

e
d

Time (s)

 FF
 LF
 AF
 PF

(a) Time comparison (n Æ 50).

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1 1.1 1.2 1.3 1.4 1.5

B
a
ck

tr
a
ck

s

Time (s)

(b) (AF) ÷ (PF) (n = 50).

Figure 3: Comparison of filtering rules using complete decreasing first fit.

been assigned values. We believe that the constraint programming approach, within this
model, is extremely e�ective at identifying assignments that lead to equivalent EDD-
schedule. Secondly, the rule (LF) based on the relaxed problem improves both solution
quality and time over the final lateness rule (FF) but a number of instances remains
unsolved optimally. Finally, only two instances with 50 jobs remain unsolved optimally
within the time limit when using rule (AF) or (PF). However, this graph does not show
clearly the gain o�ered by the rule (PF) over the rule (AF).
To this end, Figure 3(b) compares the resolution of rules (AF) and (PF). Each point
represents one instance and its x coordinate is the ratio of the solving time with (AF)
over the solving time with (PF), whereas its y coordinate is the ratio of the number of
backtracks with (AF) over the number of backtracks with (PF). We only report the
results of instances with solving times greater than 2 seconds, which happens only for
problem of size n = 50. All points are located above and on the right of the point (1,1),
because all instances are improved by the use of (PF). In fact, the rule (PF) lead to a
similar behaviour than during the computation of destructive lower bounds. It always
reduces the computation time and some instances are solved approximately 30 % times
faster using (PF). However, the number of backtracks are roughly identical using (AF)
or (PF).

6.3. Performance of value selection heuristics
We evaluate the impact of value selection heuristics on the resolution. In this regard,

we examine all instances using all filtering rules without applying any destructive lower
bound. We only compare batch fit to first fit, because first fit and best fit gives equivalent
results within our approach. Indeed, the di�erence between the solution times of first fit
and best fit is always less than 5 seconds on instances with less than 50 jobs, and even in
this case, the di�erence represents at most 2 % of the solution time. Furthermore, both
heuristics give the same objective values for all instances with more than 50 jobs.
Figure 4(a) analyses the e�ect of the value selection heuristic on instances with 50 jobs
and solving times greater than 2 seconds. Each point represents one instance and its x
coordinate is the ratio of the solving time using first fit over the solving time using batch

15

 0.5

 1

 2

 4

 8

 0.5 1 2 4

B
a
ck

tr
a
ck

s

Time (s)

(a) first fit ÷ batch fit (n = 50).

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

fi
rs

t
fi
t

batch fit

(b) Gap comparison (n > 50).

Figure 4: Comparison of value selection heuristics.

fit, whereas its y coordinate is the ratio of the number of backtracks with first fit over the
number of backtracks with batch fit. Note also that the scale is logarithmic, and that all
points are around the diagonal because the number of backtracks is roughly proportional
to the time (top-left and bottom-right quadrants are empty). All points located above
or on the right of the point (1,1) are instances improved by the use of batch fit (top-right
quadrant). The heuristic batch fit globally improves the solution time and even by a
factor 4 on some instances. However, the performances over a very few instances located
below (1,1) are slightly degraded (bottom-left quadrant).
Figure 4(b) analyses the e�ect of the value selection heuristic on instances with strictly
more than 50 jobs. Let lb denote the best lower bound found for a given instance
reported in AppendixC. The quality gap of a solution ub for a given instance is evaluated
by (ub + d

max

) ÷ (lb + d
max

) (inspired by Malve & Uzsoy, 2007). This quality measure is
often greater than the optimality gap since these instances have been infrequently solved
optimally. Each point represents one instance and its x coordinate is the quality gap
with batch fit, whereas its y coordinate is the quality gap with first fit. All points located
above the line (x = y) are upper bounds improved by batch fit. Using batch fit globally
improves the solution, but the performances over a few instances are slightly degraded.

6.4. Comparison to a mathematical formulation
Our approach is now compared to a mathematical formulation of the studied problem

inspired by Daste et al. (2008b).

6.4.1. Mathematical formulation
Let x

jk

be a boolean variable equal to 1 if the job j is assigned to the k-th batch of the
sequence. The non-negative integer variables P

k

, D
k

, and C
k

represent the processing
time, due date, and completion time of the k-th batch respectively.

min L
max

Subject to:ÿ

kœK

x
jk

= 1 ’j œ J (6)

16

ÿ

jœJ

s
j

x
jk

Æ b ’k œ K (7)

p
j

x
jk

Æ P
k

’j œ J, ’k œ K (8)
C

k≠1 + P
k

= C
k

’j œ J, ’k œ K (9)
(d

max

≠ d
j

)(1 ≠ x
jk

) + d
j

Ø D
k

’j œ J, ’k œ K (10)
D

k≠1 Æ D
k

’k œ K (11)
C

k

≠ D
k

Æ L
max

’k œ K (12)
’j œ J, ’k œ K, x

jk

œ {0, 1}
’k œ K, C

k

Ø 0, P
k

Ø 0, D
k

Ø 0

The objective function aims to minimize the maximal lateness. Constraints (6) state
that each job must be assigned to exactly one batch, and Constraints (7) ensure that no
batch exceeds the machine capacity b. These constraints define the bin packing model
proposed by Martello & Toth (1990). Constraints (8) state that the duration of each
batch k is equal to the maximum duration of its jobs. Constraints (9) ensure that the
completion time of the k-th batch is equal to the completion time of the (k ≠ 1)-th
batch plus the processing time of the k-th batch, i.e. the solution is a sequence of
batches in their numbering order without idle time. Note that the addition of a first
fictitious batch ending at the initial time (C0 = 0) is required. Constraints (10) state
that the due date D

k

of the k-th batch is equal to the earliest due date of the jobs
that are in the batch. Constraints (11) ensure that the sequence of batches satisfies
the EDD-rule. These constraints help the resolution since most permutations of batches
which lead to the same EDD-schedule are forbidden but they are not mandatory for
model’s correctness. Constraints (12) are the definition of batch latenesses and force
L

max

to be equal to the maximal lateness. Finally, a solution to the mathematical
formulation is a feasible assignment of the jobs to an EDD-sequence of batches. As
opposed to the constraint programming formulation, the solution encoding does not
consider permutations of batches as equivalent solutions.

6.4.2. Comparison
Our approach applies the value selection heuristic batch fit and all filtering rules.

Comparison have been done with the resolution of the mathematical formulation stated
as an Ilog OPL 6.1.1 model and solved by Ilog cplex 11.2.1. Ilog cplex provides
a performance tuning tool which tries to find the best combination of its parameters.
The tuning has been done on instances with 10 jobs since it is required to solve them
optimally several times. First, the tuning changed the kind of cuts to reduce the number
of branches explored. A cut is a constraint added to a model to restrict non-integer
solutions that would otherwise be solutions of the continuous relaxation. Second, the
tuning favoured feasibility by assigning a job j to a batch k in the first branch (x

jk

= 1)
instead of the default behavior which forbids the packing (x

jk

= 0).
Figure 5(a) shows the percentage of instances solved optimally within one hour as a
function of the time in seconds. Our constraint programming approach outperforms the
mathematical formulation: it solves more instances with solution times that are orders
of magnitude lower.
Figure 5(b) compares the quality gap on instances with strictly more than 50 jobs. The
time limit of Ilog cplex has been increased until 43200 seconds (12h). Each point
represents one instance and its x coordinate is the quality gap that we obtained, whereas

17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3600 0.01 0.1 1 10 100 1000

%
 s

o
lv

e
d

Time (s)

 batch fit
 cplex

(a) Time comparison (n Æ 50).

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

cp
le

x

batch fit

(b) Gap comparison (n > 50).

Figure 5: Comparison to the mathematical formulation.

its y coordinate is the quality gap obtained with Ilog cplex. All points located above the
line (x = y) are upper bounds improved by our approach. Despite a smaller time limit,
the constraint programming approach provides better solution than the mathematical
formulation on the vast majority of instances. Furthermore, the di�erence between the
two upper bounds is very tight when the mathematical formulation found the best,
whereas it can be significant when the constraint approach did.

6.5. Comparison to a branch-and-price
Branch-and-price integrates branch-and-bound and column generation methods for

solving large scale integer programs (Barnhart et al., 1998). Daste et al. (2008a) proposed
a branch-and-price algorithm with a master problem where each column is a batch. A
solution of the master problem is a feasible sequence of batches. At each iteration, the
objective of the subproblem is to find one column (batch) which improves the current
solution of the master problem. This pricing subproblem is solved by a greedy algorithm,
then, if needed, by an exact enumeration method.
Their algorithm has been tested on instances presented in Section 6.1 with less than 50
jobs and a time limit of 3600 seconds (1h). All their experiments have been conducted on
a Pentium 2.66GHz with 1GB of RAM. Detailed results on benchmark instances are not
mentioned. 55% and 8% of instances of size n = 20 and n = 50 are solved by the branch-
and-price procedure within one hour. Although their branch-and-price is more e�cient
than the mathematical formulation, it is less e�cient than our constraint programming
which solves optimally all instances of size n = 20 with an average solution time lower
than 1 second, and 95% of instances of size n = 50 with an average solution time lower
than 100 seconds.

7. Conclusion

We have presented a constraint programming approach to minimize the maximal late-
ness for a batch processing machine on which a finite number of jobs with non-identical
sizes must be scheduled. This approach exploits a new optimization constraint based

18

on a relaxed problem which applies cost-based domain filtering rules and the search is
enhanced with dedicated branching heuristics. Computational results demonstrate the
positive e�ect of each component and give better solutions with computation times that
are orders of magnitude lower than a mathematical formulation or a branch-and-price
based on bin packing and sequencing models.
In further research, we will apply our approach to problems with completion time re-
lated measures. In addition, subsequent research topics include the study of parallel
batching machines and additional constraints, for instance job release dates that remain
incompatible with our approach.

AppendixA. Short description of the pack constraint

In this appendix, we briefly describe our implementation of the global constraint
pack originally proposed by Shaw (2004) for the bin-packing problem. Let recall that
this constraint replaces the channeling constraints between assignment variables (’j œ
J, B

j

= k … j œ J
k

) and enforces the consistency between assignments and loads
(’k œ K,

q
jœE

k

s
j

= S
k

). Furthermore, pack propagates the redundant constraint spec-
ifying that the sum of the bin loads is equal to the sum of the item sizes (

q
J

s
j

=
q

K

S
k

).
First the constraint performs the propagation of typical model which corresponds to Con-
straints (6) and (7) of the mathematical formulation (see Section 6.4). In addition, it uses
propagation rules incorporating knapsack-based reasoning, as well as a dynamic lower
bound on the number of bins required.
The additional constraint propagation rules are based upon treating the simpler problem
of packing items into a single bin. That is, given a bin, can we find a subset of items
that when packed in the bin would bring the load in a given interval? This problem is a
type of knapsack or subset sum problem (Kellerer et al., 2004). Proving that there is no
solution to this problem for any bin would mean that search could be pruned. If an item
appears in every set of items that can be placed in the bin, we can commit it to the bin.
Conversely, if the item never appears in such a set, we can eliminate it as a candidate
item. So, if no legal packing can attain a given load, it cannot be a legal load for the
bin. Shaw (2004) proposed e�cient algorithms which do not depend on item sizes or bin
capacity, but which do not in general achieve generalized arc consistency on the subset
sum problem as opposed to Trick (2003). Next, they adapt bounding procedures to par-
tial assignments. The idea is to transform a partial assignment into a new bin packing
instance and to apply a bounding procedure to this new instance. Our implementation
uses the lower bound L1D

CCM

(Carlier et al., 2007), which dominates the lower bound
L1D

MV

originally used.
Our implementation di�ers also from the one of Shaw (2004) by the addition of variables
S

k

and M . Indeed, variables S
k

helps to express additional constraints and were main-
tained internally by Shaw (2004). The variable M represents the objective of the bin
packing problem and its value can be restricted by other constraints.
Shaw (2004) demonstrated that this global constraint can cut search by orders of magni-
tude. Additional comparisons showed that the global constraint coupled with a standard
packing algorithm based on complete decreasing can significantly outperform Martello &
Toth (1990)’s procedure.

19

AppendixB. Algorithm for cost-based domain filtering of assignments

We recall that a simple algorithm can compute marginal costs from scratch for each
possible assignment with an overall complexity of O(n3). In this section, we describe an
O(nm) version of this algorithm (cf. Algorithm 1) based on the incremental computation
of marginal costs. The principle consists in exploiting the formula below for quick com-
putation of marginal costs by distinguishing several cases. For instance, the assignment
of a job to any empty batch leads to the same marginal cost. In fact, the completion
time of a bucket q after the assignment of a job j to a batch k œ D(B

j

) is given by:

C
q

(A fl {B
j

Ω k}) ≠ C
q

(A) =

Y
]

[

0 ”
q

< min(max(D
k

), d
j

) (B.1)

max(p
j

, min(P
k

)) d
j

Æ ”
q

< max(D
k

) (B.2)

max(p
j

≠ min(P
k

), 0) ”
q

Ø max(D
k

) (B.3)

Figure B.6 illustrates the idea behind this formula: the assignment of a job j to a
batch k leads to transfer the batch k from a bucket q to one of its predecessors or
itself, i.e. the bucket qÕ Æ q such that ”

q

Õ = min(d
j

, max(D
k

)). First, the sequence
of buckets 1, . . . , qÕ ≠ 1 stays unchanged and so does the completion times (B.1) and
its maximal lateness which is dominated by L(A). Indeed, the rule (LF) is applied
after the initialization of buckets and before the rule (AF). Then, completion times of
buckets qÕ, . . . , q ≠1 are postponed for the updated batch duration max(min(P

k

), p
j

) and
therefore, they are given by (B.2). Last, the duration increase max(p

j

≠ min(P
k

), 0) of
batch k is added to the completion time of buckets q, . . . , n (B.3). If the batch duration
increase is zero, then the maximal lateness of buckets q, . . . , n is also dominated by L(A)

The backward algorithm 1 prunes variables B
j

according to the rule (AF). The
pruning is illustrated in Figure B.7 by considering the assignment of job 4 for the partial
assignment A2 (see Figure 1 page 8). After initialization, Loop L1 iterates over
buckets in descending order to detect infeasible assignments. The maximal lateness �Øq

and the maximal duration increase � of the sub-sequence of buckets q, . . . , n are updated
using recursive formulas derived from Section 4.1.
New batches of B=q

scheduled at the latest at bucket q that are neither empty nor
full are now considered for pruning by the algorithm. Loop L2 updates the maximal
duration of these batches, but the removal of infeasible assignments is delegated to Con-
straints (1). This loop detects simultaneously all infeasible assignments of jobs such that
max(D

k

) Æ d
j

, since their marginal costs depend only on the duration increase of the
batch when (B.2) is not defined as illustrated in Figure 7(c).
Loop L3 updates incrementally the maximal lateness �k

Øq

of the sequence q, . . . , n with-
out the batch k. Then, Loop L4 inspects only assignments of jobs that would e�ectively

piTransfer
min(Pk)

(B.1) (B.3)(B.2)

Insert

Bucket q (”q = max(Dk))Bucket qÕ
(”qÕ

= di)

max(pi, min(Pk))

Figure B.6: Anticipating the impact of an assignment on the buckets.
20

Algorithm 1: Cost-based domain filtering of assignments.
B = ÿ ; // Set of batches to prune

�Øq

= ≠Œ ; // Lateness of sub-sequence q, . . . , n

foreach k œ K do �

k

Øq

= ≠Œ ; // Lateness without batch k of buckets q, . . . , n
/* Try assignments in decreasing order of buckets */

L1 for q Ω n to 1 do

�Øq

= max(L
q

(A), �Øq

); // Maximal lateness of buckets q, . . . , n
� = max(L

max

) ≠ �Øq

; // Maximal duration increase allowed at bucket q
/* Update durations of the new batches to prune at bucket q */

B=q

= {k œ K=q

| min(P
k

) > 0 · (|D(P
k

)| > 1 ‚ |D(D
k

)| > 1)};

L2 foreach k œ B=q

do max(P
k

) Ω min(P
k

) + �;

/* assignments of an available job j to other batches */

L3 foreach k œ B do �

k

Øq

= max(L
q

(A), �

k

Øq

);

L4 forall the j œ J=q

such that |D(B
j

)| > 1 do

/* Assignment to non-empty batches */

L5 foreach k œ B do

if ”
q

< min(D
k

) then B = B\{k};

else if �

k

Øq

+ max(min(P
k

), p
j

) > max(L
max

) then B
j

”Ω k;

/* Assignment to empty batches */

if p
j

> � then max(B
j

) Ω |Kı|;
/* Update data structure */

L6 foreach k œ B=q

do �

k

Øq

= �Øq

≠ min(P
k

);

B = B fi B=q

;

lead to the transfer of the target batch to the bucket q. The internal Loop L5 considers
batches to prune discovered in previously visited buckets. If the transfer is infeasible
because of due date restrictions, then the batch is eliminated from the set B of batches
to prune. Otherwise, the assignment of job j to the batch k is eliminated if the maximal
lateness after its transfer into the bucket q exceeds the current upper bound. In fact,
the incremental computation of �k

Øq

reduces the complexity of (B.2) from linear time to
constant time. In Figure 7(d), the transfer of batch 2 from the bucket 2 to 1 does not
modify the sequence of batches, whereas the transfer of batch 3 from the bucket 3 to 1
leads to swap batches 2 and 3 in Figure 7(e).
Then, the algorithm simultaneously considers all assignments of a job to an empty batches
for which (B.2) and (B.3) are equals, since the duration increase is equal to the updated
duration (min(P

k

) = 0) as illustrated in Figure 7(f). In this case, B
j

is restricted to
values lower than the index |Kı| of the last non-empty batch.
Lastly, Loop L6 initializes the value �k

Øq

of new batches to prune by subtracting their
contribution to the lateness of the sub-sequence. Then, the set B of batches to prune is
updated.
The complexity of Algorithm 1 depends only on its nested loops because instructions are
done in constant time. A simple calculation shows that the complexity depends only on
nested Loops L1, L4, and L5. In the worst case, nested Loops L1 and L4 iterates over a
partition of the jobs J which is done in O(n). Loop L5 is done in O(m), because B ™ K
is a subset of batches. Therefore, the complexity of Algorithm 1 is O(nm).

21

Job 1 2 3 4
s

j

8 7 5 2
p

j

5 8 7 9
d

j

2 7 10 2
(a) Initial instance.

Bucket 1 2 3
”

q

2 7 10
fi

q

(A) 5 8 7
(b) Relaxed instance I(A2).

J1

J4

J2
J3

d2 d3
0

5

load
10

bucket

5 10 15 20 time lateness

1

capa
bucket 1

10

14

7

d1,d4

bucket 2 bucket 3

2

3

(c) Assignment: B4 Ω 1

J1
J3

d2 d3
0

5

load
10

2

5 10 15 20 time lateness

1

capa
11

bucketbucket 1

7

12

bucket 3

d1,d4

3

J2

J4

(d) Assignment: B4 Ω 2

J1 J2
15

d2 d3
0

5

load
10

2

5 10 15 20 time lateness

3

1

capa

12

bucket 2 bucket

12

d1,d4

bucket 1

J3

J4

(e) Assignment: B4 Ω 3

J1
J3

J2

19

12

15

0

5

load
10

5 10 15 20 time d2 d3

1

capa
bucket 3

lateness

bucket

d1,d4

2

3

bucket 2bucket 1

J4

(f) Assignment: B4 Ω 4

Figure B.7: Impact on the solution of the relaxed problem of the assignment of job 4 to a batch for the
partial assignment A2 = {B1 Ω 1, B2 Ω 2, B3 Ω 3, B4 œ [1, 4]}.

22

AppendixC. Results summary

Table C.2 page 23 summarizes the best known lower and upper bounds. The first
column (#) reports the index of the instance. Columns 2–3 report optimum values
(L

max

) for problem sizes n = 10, 20. Columns 4–9 report lower (lb) and upper (ub)
bounds for problem sizes n = 50, 75, 100 (the lower bound is not given when the upper
bound has been proven optimal).

n = 10 n = 20 n = 50 n = 75 n = 100
L

max

L

max

lb ub lb ub lb ub

1 71 389 1349 1548 1712 2647 2939
2 59 282 893 1316 1600 1964 2430
3 37 63 132 -27 263 58 427
4 -103 -147 20 372 453 72 379
5 132 337 1502 1481 1866 2218
6 21 254 1139 1409 1725 1851 2246
7 -90 33 74 59 149 386 400
8 -17 -61 11 9 58 66 190
9 163 309 1043 1807 2164 1863 2575

10 7 313 1114 1327 1435 2509 2863

11 50 -39 285 201 98 310
12 -15 -119 91 314 396 -62 316
13 58 278 948 1743 2033 2421 2702
14 4 209 1322 1450 1830 1770 2024
15 -21 127 178 -31 302 158 633
16 -49 -20 252 -35 192 280 575
17 150 303 802 1598 1919 2840
18 203 256 1022 1052 1423 2485 2595
19 -101 49 367 -41 59 -9 420
20 -49 -16 202 185 288 -120 416

21 59 240 1156 1754 2054 2440 2592
22 44 291 1128 2105 1468 2167
23 -66 17 181 159 181 62 130
24 -43 203 -102 -64 139 473 609
25 136 620 1574 1405 1820 2609
26 84 274 1354 1347 1592 1965 2460
27 58 46 162 10 125 -73 334
28 -105 -34 102 192 273 125 482
29 140 257 1255 1531 1687 2420 2607
30 49 353 1010 1528 1714 1829 2438

31 -13 106 269 67 200 -40 338
32 -64 -33 324 -72 238 449
33 197 423 1117 1776 2032 2134 2528
34 44 293 936 1132 1421 2156 2605
35 27 53 292 204 301 -18 496
36 -32 -55 -41 30 -19 47 -32 259
37 81 227 1328 1535 1880 2516 2780
38 10 216 1025 1260 1452 2027 2323
39 11 58 114 354 355 96 414
40 -24 14 15 102 204 261 175 393

Table C.2: Summary of best known lower and upper bounds for the benchmark instances of Daste et al..

Azizoglu, M., & Webster, S. (2000). Scheduling a batch processing machine with non-identical job sizes.
International Journal of Production Research, 38 , 2173–2184.

Azizoglu, M., & Webster, S. (2001). Scheduling a batch processing machine with incompatible job
families. Computers and Industrial Engineering, 39 , 325–335.

Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-Based Scheduling: Applying Constraint
Programming to Scheduling Problems. Kluwer.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H. (1998). Branch-
and-price: column generation for solving huge integer programs. Operations Research, 46 , 316–329.

23

Boucher, E., Bachelu, A., Varnier, C., Baptiste, P., & Legeard, B. (1997). Multi-criteria comparison
between algorithmic, constraint logic and specific constraint programming on a real scheduling prob-
lem. In Proceedings of the 3rd International Conference on the Practical Application of Constraint
Technology (pp. 47–64). Blackpool: The Practical Application Ltd.

Brucker, P., Gladky, A., Hoogeveen, H., Koyalyov, M., Potts, C., Tautenham, T., & van de Velde, S.
(1998). Scheduling a batching machine. Journal of Scheduling, 1 , 31–54.

Carlier, J., Clautiaux, F., & Moukrim, A. (2007). New reduction procedures and lower bounds for the
two-dimensional bin packing problem with fixed orientation. Computers & Operations Research, 34 ,
2223–2250.

Choco Team (2011). Choco: an open source java constraint programming library. http://choco.

mines-nantes.fr.
Damodaran, P., Manjeshwar, P. K., & Srihari, K. (2006). Minimizing makespan on a batch-processing

machine with non-identical job sizes using genetic algorithms. International Journal of Production
Economics, 103 , 882–891.

Damodaran, P., Srihari, K., & Lam, S. S. (2007). Scheduling a capacitated batch-processing machine to
minimize makespan. Robotics and Computer-Integrated Manufacturing, 23 , 208–216.

Daste, D., Gueret, C., & Lahlou, C. (2008a). A Branch-and-Price algorithm to minimize the maximum
lateness on a batch processing machine. In Proceedings of the 11th international workshop on Project
Management and Scheduling PMS’08 (pp. 64–69). IStanbul Turquie.

Daste, D., Gueret, C., & Lahlou, C. (2008b). Génération de colonnes pour l’ordonnancement d’une
machine à traitement par fournées. In 7ème conférence internationale de modélisation et simulation
(MOSIM 2008) (pp. 1783–1790). Paris France volume 3.

Dupont, L., & Dhaenens-Flipo, C. (2002). Minimizing the makespan on a batch machine with non-
identical job sizes: An exact procedure. Computers & Operations Research, 29 , 807–819.

Felizari, L. C., de Arruda, L. V., Lüders, R., & Stebel, S. L. (2009). Sequencing batches in a real-world
pipeline network using constraint programming. In C. A. O. d. N. Rita Maria de Brito Alves, & E. C.
Biscaia (Eds.), 10th International Symposium on Process Systems Engineering: Part A (pp. 303 –
308). Elsevier volume 27 of Computer Aided Chemical Engineering.

Focacci, F., Lodi, A., & Milano, M. (1999). Cost-based domain filtering. In J. Ja�ar (Ed.), Proceedings of
the 5th International Conference on Principles and Practice of Constraint Programming (CP 1999)
(pp. 189–203). Springer volume 1713 of Lecture Notes in Computer Science.

Fukunaga, A. S., & Korf, R. E. (2007). Bin completion algorithms for multicontainer packing, knapsack,
and covering problems. Journal of Artificial Intelligence Research, 28 , 393–429.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. New York, USA: W. H. Freeman and Company.

Gent, I. P., & Walsh, T. (1997). From approximate to optimal solutions: Constructing pruning and
propagation rules. In Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI 1997) (pp. 1396–1401).

Ghazvini, F. J., & Dupont, L. (1998). Minimizing mean flow times criteria on a single batch processing
machine with non-identical jobs sizes. International Journal of Production Economics, 55 , 273–280.

IBM (2011). IBM Ilog Cplex Optimizer. http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/.
Ikura, Y., & Gimple, M. (1986). Scheduling algorithms for a single batch processing machine. Operations

Research Letters, 5 , 61–65.
Kashan, A. H., Karimi, B., & Ghomi, S. F. (2009). A note on minimizing makespan on a single batch

processing machine with non-identical job sizes. Theoretical Computer Science, 410 , 2754–2758.
Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack Problems. Springer, Berlin, Germany.
Kotecha, P., Gudi, R., Bhushan, M., & Kapadi, M. (2007). On the determination of multiple solutions for

batch scheduling using constraint programming. In AIChE Annual Meeting, Conference Proceedings.
Lawler, E. (1973). Optimal sequencing of a single machine subject to precedence constraints. Manage-

ment Science, 19 , 544–546.
Liu, L., Ng, C., & Cheng, T. (2007). Scheduling jobs with agreeable processing times and due dates on

a single batch processing machine. Theoretical Computer Science, 374 , 159–169.
Malve, S., & Uzsoy, R. (2007). A genetic algorithm for minimizing maximum lateness on parallel identical

batch processing machines with dynamic job arrivals and incompatible job families. Computers &
Operations Research, 34 , 3016–3028.

Martello, S., & Toth, P. (1990). Knapsack Problems: Algorithms and Computer Implementations. New
York: Wiley.

Mehta, S. V., & Uzsoy, R. (1998). Minimizing total tardiness on a batch processing machine with
24

incompatible job families. IIE Transactions, 30 , 165–178.
Parsa, N. R., Karimi, B., & Kashan, A. H. (2010). A branch and price algorithm to minimize makespan

on a single batch processing machine with non-identical job sizes. Computers & Operations Research,
37 , 1720–1730.

Perez, I., Fowler, J., & Carlyle, W. (2000). Minimizing total weighted tardiness on a single batch process
machine with incompatible job families. Computers & Operations Research, 32 , 327–341.

Potts, C. N., & Kovalyov, M. Y. (2000). Scheduling with batching: a review. European Journal of
Operational Research, 120 , 228–249.

Rossi, F., Beek, P. v., & Walsh, T. (2006). Handbook of Constraint Programming (Foundations of
Artificial Intelligence). New York, USA: Elsevier Science Inc.

Sabouni, M. Y., & Jolai, F. (2010). Optimal methods for batch processing problem with makespan and
maximum lateness objectives. Applied Mathematical Modelling, 34 , 314–324.

Shaw, P. (2004). A constraint for bin packing. In M. Wallace (Ed.), Proceedings of the 10th International
Conference on Principles and Practice of Constraint Programming (CP 2004) (pp. 648–662). Springer
volume 3258 of Lecture Notes in Computer Science.

Trick, M. A. (2003). A dynamic programming approach for consistency and propagation for knapsack
constraints. Annals of Operations Reseach, 118 , 73–84.

Uzsoy, R. (1995). Scheduling batch processing machines with incompatible job families. International
Journal of Production Research, 33 , 2685–2708.

Vilím, P. (2007). Global Constraints in Scheduling. Ph.D. thesis Charles University in Prague, Faculty
of Mathematics and Physics, Department of Theoretical Computer Science and Mathematical Logic
Prague, Czech Republic.

Wang, C., & Uzsoy, R. (2002). A genetic algorithm to minimize maximum lateness on a batch processing
machine. Computers & Operations Research, 29 , 1621–1640.

Webster, S., & Baker, K. (1995). Scheduling groups of jobs on a single machine. Operations Research,
43 , 692–703.

Zeballos, L. J., & Henning, G. P. (2003). A constraint programming approach to the multi-stage batch
scheduling problem. In Proceedings of the 4th International Conference on Foundations of Computer-
Aided Operations. Coral Springs, Florida, U.S.A.

25

