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Abstract: This paper introduces a green inventory routing problem with a heterogeneous fleet 

which extends the conventional inventory routing problem by considering environmental impacts 

and heterogeneous vehicles. A comprehensive objective is proposed, which minimizes the sum of 

inventory cost and routing cost, where the latter includes driver wage, vehicle fixed cost, fuel and 

emission costs, in which fuel consumption and emissions are determined by load, distance, speed 

and vehicle characteristics. We first construct a mixed-integer program, and then conduct numerical 

tests to quantify the benefits of using a comprehensive objective and heterogeneous vehicles. 

Managerial insights are also drawn from parameter analyses. 
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1. INTRODUCTION 

Global warming is among the greatest challenges of this century, which is mainly caused by 

carbon dioxide (CO2) emissions. To respond to this challenge, the United Nations, the European 

Union, and many countries have enacted legislations to control CO2 emissions (Hua et al., 2011). 

Some companies, like IEKA, HP, IBM and GE, also begin to proactively implement ‘green’ 

initiatives, such as designing greener products or re-optimizing their supply chain networks (Wang 

et al., 2011). 

Supply chain activities, such as production, transportation and inventory, all emit CO2. 

However, transportation is the most visible sector of the supply chain which produces most of the 

CO2 (Dekker et al., 2012). The Intergovernmental Panel on Climate Change (IPCC) reports that 

transportation represents 14% of the greenhouse gases (GHG) emissions by economic sectors in 

2010 (Pachauri et al., 2014). Since CO2 is the second-greatest contributor to the GHG emissions 
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(the first one is water vapor), reducing emissions (for simplicity, in following sections, when we say 

“emissions”, we specifically refer to “CO2 emissions”) by road freight transport will make a good 

environmental sense. To this end, some companies in Germany and in the United Kingdom have 

started to adopt more fuel efficient vehicles such as electric and hybrid vehicles (Browne et al., 

2011; Taefi et al., 2013). On the other side, companies can also optimize their operational decisions 

to curb emissions. Benjaafar et al. (2013) suggest that sometimes the second method might provide 

a greater reduction in emissions with less cost than employing low-energy-consumption 

technologies.  

Moreover, Xiao et al. (2012) state that it is the cost of fuel consumption not the travel distance 

which is the greater concern to transportation companies. Therefore, in recent years, many 

researchers begin to employ fuel consumption cost as variable transportation cost in their models, 

trying to simultaneously describe the cost configuration correctly and reduce CO2 emissions. Up to 

now, there are several papers that tend to minimize fuel consumption (or CO2 emissions), or use 

fuel cost to measure variable transportation cost in vehicle routing problem (VRP) (Suzuki, 2011; 

Xiao et al., 2012; Zhang et al., 2014; Fukasawa et al., 2015；Xiao and Konak, 2016). There are also 

researchers who combine environmental effects into supply chain network design (Wang et al., 

2011; Elhedhli and Merrick, 2012; Martí et al., 2015; Zhalechian et al., 2016). However, studies 

considering environmental concern in inventory routing problem (IRP) are scare (Treitl et al., 2014; 

Malekly, 2015). Thus, to enrich the research in this direction, a new IRP variant, i.e., the green IRP 

with a heterogeneous fleet (GIRP-H), is proposed, where both fuel consumption and CO2 emissions 

are considered.  

Demir et al. (2011) have analyzed several models for estimating fuel consumption for road 

freight transportation. Their study indicates that fuel consumption is determined by a number of 

factors, such as distance, load, speed and vehicle characteristics. In this study, we compute fuel 

consumption based on a comprehensive model of Barth et al. (2005), and Barth and 

Boriboonsomsin (2009). This model has been adopted by Bektaş and Laporte (2011), Franceschetti 

et al. (2013) and Koç et al. (2014) in pollution-routing problem. Since fuel consumption is the 

direct cause of CO2 emissions (Zhang et al., 2014; Cachon, 2014), we can directly transform the 

amount of fuel consumption, through multiplying by a coefficient, into that of CO2 emissions.  

The rest of this paper is organized as follows. Section 2 introduces related literatures and 

clarifies the contributions of this study. Section 3 describes our problem and constructs the 

mathematical model. In Section 4, we add some valid inequalities to strengthen the model and 

describe solution method. Computational tests and analyses are conducted in Section 5. Section 6 

concludes this paper and suggests future research opportunities. 
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2. LITERATURE REVIEW 

The IRP is to determine simultaneously the optimal inventory strategy and vehicle scheduling, 

thereby minimizing the supply chain system’s total (or average) cost. It is first introduced by Bell et 

al. (1983), since then the academic world has conducted extensive research on it. It can be classified 

according to following criteria: time horizon, demand pattern, supply chain topology, inventory 

strategy and vehicle fleet (Andersson et al., 2010). Based on different assumptions, some other 

kinds of IRP can also be defined, such as the IRP with a single product (Zhao et al., 2007) or with 

multiple products (Coelho and Laporte, 2013a). Interested readers are recommended to review 

papers by Moin and Salhi (2007), Andersson et al. (2010), and Coelho et al. (2013). In this section, 

we only present the studies in terms of time horizon, which is more closely related to our research. 

In terms of time horizon, IRP can be divided into two categories: infinite time horizon IRP 

and finite time horizon IRP (sing period or multiple periods). The objective of infinite time horizon 

IRP is to minimize the system’s average cost by determining optimal replenishment intervals, 

product quantities delivered and vehicle routes. For finite time horizon IRP, we need to determine 

the customer sets visited in each period and corresponding product quantities delivered, as well as 

vehicle routes, in order to minimize the system’s total cost. 

To solve infinite time horizon IRP efficiently, several policies are introduced, such as 

fixed-partition policies (FPP) and power-of-two (POT) policy. Under the FPP, retailers are 

partitioned into different regions. Each time if a retailer in a specific region is served, then the same 

vehicle must visit all other retailers in the same region (Anily and Federgruen 1990, 1993; Anily 

and Bramel, 2004). Under the POT policy, retailers’ replenishment intervals are limited to 

power-of-two multiples of a base planning period (Viswanathan and Mathur, 1997; Zhao et al., 

2008).  

For most companies, logistics planning requires some changes after running for a period of 

time due to variations in demands and production plans. In this circumstance, infinite time horizon 

IRP is not applicable. Therefore, recently many researchers begin to study finite time horizon IRP 

(Archetti et al., 2007; Mion et al., 2011; Coelho and Laporte, 2013; Adulyasak et al., 2013, 

Desaulniers, et al., 2015). In this study, a multi-period IRP considering environmental implications 

is investigated. 

In traditional supply chain system, companies and researchers only care about profits, costs 

and service levels. However, with increasing environmental pressures, many begin to consider fuel 

consumption or CO2 emissions in their problems. Although in recent years, a few scholars start to 

consider environmental issues in IRP, they usually simplify the calculation of fuel consumption or 

emissions, which is not accurate and realistic. For example, Alkawaleet et al. (2014), and Mirzapour 
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and Rekik (2014) only consider travel distance in computing emissions. In our study, a 

comprehensive model is constructed, where fuel consumption and CO2 emissions are influenced not 

only by distance, but also by load, speed and vehicle characteristics. 

Another key aspect of our work is that a heterogeneous fleet is used, because in real-world 

distribution problems, deliveries are usually implemented by several types of vehicles (Hoff et al., 

2010; Koç et al., 2014). There are two types of problems belonging to this category: the fleet size 

and mix VRP and the heterogeneous VRP. The distinction is that the former one usually assumes the 

number of vehicles to be unlimited; however, the latter often works with a limited fleet. Although a 

few papers that study green IRP calculate fuel consumption as we will do (Al Shamsi et al., 2014; 

Treitl et al., 2014; Malekly, 2015; Soysal et al., 2015, 2016), within our knowledge, the green IRP 

with a heterogeneous fleet has not yet been studied. Al Shamsi et al. (2014) and Malekly (2015) 

work with 1 vehicle, and the other three papers use a homogeneous fleet. We believe there is merit 

in investigating heterogeneous green IRP, because it is often difficult for a homogeneous fleet to 

simultaneously control costs and CO2 emissions. For instance, as to light duty vehicles, although 

their fixed transportation cost is low, their limited capacity will lead to more trips and travel 

distance, which might result in more fuel cost and CO2 emissions. For medium and heavy duty 

vehicles, although their travel distance can be lowered, their curb weight and fixed transportation 

cost are much higher, which may still influence cost and CO2 emissions. Actually, our numerical 

tests in later section do demonstrate that a heterogeneous fleet can better balance costs and 

environmental impacts.  

The third aspect of our work is that we develop a comprehensive objective function, to make 

the problem as realistic as possible. The objective includes the inventory cost, driver wage, vehicle 

fixed cost, fuel cost and emission cost. In traditional IRP models, the objective is simple, only 

inventory cost and variable transportation cost (distance-oriented) are included (Archetti et al., 2007; 

Coelho and Laporte, 2013a, 2013b, 2014). 

To conclude, our research contributes to the literature on IRP by (1) introducing a 

comprehensive IRP objective that accounts for cost, environmental implications and different 

vehicle types, which is a new IRP variant; (2) analyzing the benefits of using a comprehensive 

objective function and a heterogeneous fleet, respectively; and (3) performing numerical tests to 

provide managerial insights. 

3. PROBLEM DEFINITION AND MATHEMATICAL FORMULATION 

3.1 Problem Definition 

We consider an outbound distribution network in which a supplier, denoted by 0, distributes a 

single product to 𝑁 geographically dispersed retailers over a finite time horizon 𝑇 ={1,2, … 𝑝}. In 
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each period, the quantity of products made available at the supplier is 𝑟𝑡. Retailer 𝑖 ∈ 𝑉′ =

{1,2, … 𝑁} faces an external demand of 𝑑𝑖
𝑡 in period 𝑡 ∊ 𝑇 and keeps the inventory level 𝐼𝑖

𝑡 at 

the end of period 𝑡. We assume that in the beginning of the time horizon the initial inventory level 

at vertex  𝑖 ∊ 𝑉 = 𝑉′ ∪ {0} is 𝐼𝑖
0. Both the supplier and retailers incur a unit inventory holding cost 

ℎ𝑖  per period. Meanwhile, inventories are not permitted to be negative at any vertex. A 

maximum-level inventory replenishment policy is applied at retailers, which indicates that any 

quantity of products can be delivered to a retailer as long as the retailer’s maximal inventory 

capacity 𝐶𝑖 is not exceeded. There are 𝑀 = {1,2, … , |𝑀|} types of vehicles housed at the supplier, 

and the number of vehicles available for type 𝑚 ∊ 𝑀 is 𝑛𝑚. 𝑄𝑚 is the weight capacity of vehicle 

type 𝑚. In each period, vehicles start their trips from the supplier and return to it after finishing 

deliveries, and all related trips can be finished in one day. We limit a retailer to be visited by at most 

one vehicle in each period. The travel distance from vertex 𝑖 to vertex 𝑗 is 𝑐𝑖𝑗. 

The binary variable 𝑥𝑖𝑗
𝑚𝑡 is equal to 1 if and only if a vehicle of type 𝑚 travels from vertex 

𝑖 to vertex 𝑗 in period 𝑡. Let 𝑎𝑖𝑗
𝑚𝑡 be the product weight carried by vehicle type 𝑚 between arc 

(𝑖, 𝑗) in period 𝑡. 𝑣𝑖𝑗
𝑚𝑡 represents the speed at which vehicle type 𝑚 travels from vertex 𝑖 to 

vertex 𝑗 in period 𝑡. 𝑞𝑖
𝑚𝑡 is the product weight delivered to retailer 𝑖 by vehicle type 𝑚  in 

period 𝑡. 𝑦𝑖
𝑚𝑡 takes value 1 if and only if vertex 𝑖 is visited by vehicle type 𝑚 in period 𝑡, and 0 

otherwise. The order of events at the supplier and retailers are shown in Figure 1, in which the 

supplier first receives (or manufactures) 𝑟𝑡  and then replenishes retailers, and retailer 𝑖 first 

receives ∑ 𝑞𝑖
𝑚𝑡

𝑚∈𝑀  and then consumes 𝑑𝑖
𝑡. 

𝐼0
𝑡    𝐼0

𝑡+1  

𝑟𝑡   

Inventory level at t, 

Supplier:

Inventory level at t+1, 

Amount available 
Amount delivered � 𝑞𝑖

𝑚𝑡

𝑚∈𝑀

 

𝐼𝑖
𝑡    𝐼𝑖

𝑡+1   

𝑑𝑖
𝑡   

Retailer i:

Inventory level at t, Inventory level at t+1, 

Amount received Amount consumed � 𝑞𝑖
𝑚𝑡

𝑚∈𝑀

 

 

Figure 1 The order of events at the supplier and retailers 

3.2 Fuel Consumption Calculation 

Based on a comprehensive model of Barth et al. (2005), and Barth and Boriboonsomsin 
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(2009), the fuel consumption 𝐹𝑚 (liters) of a vehicle of type 𝑚 over a distance 𝑑 at a speed of 

𝑣 can be calculated as  

𝐹𝑚 =  (
𝑘𝑚𝑁𝑚𝑉𝑚𝑑

𝑣
+ 𝑀𝑚𝑚𝑑 + 𝑚𝑚𝑑𝑣2)                         (1) 

in which  = /(), 𝑚 = 1 (1000𝑛𝑡𝑓
𝑚)⁄ ,  =  + 𝑔sin + 𝑔𝐶𝑟 cos , 𝑚 = 0.5𝐶𝑑

𝑚𝜌𝐴𝑚. 𝑀𝑚 

represents the total vehicle weight (kg), which is the sum of curb weight and payload. Other 

parameters’ definition and typical values can refer to Table 1 and Table 2.  

Table 1 Vehicle common parameter definition 

Notation Description Typical values 

 Fuel-to-air mass ratio 1 

𝑔 Gravitational constant (m/s2) 9.81 

𝜌 Air density (kg/m3) 1.2041 

 𝐶𝑟 Coefficient of rolling resistance 0.01 

 Efficiency parameter for diesel engines 0.45 

 𝑓𝑐 Unit fuel cost (£/L) 0.7382* 

 𝑓𝑒 Unit CO2 emission cost (£/kg) 0.248* 

𝑓𝑑 Driver wage (£/s) 0.0022 

 CO2 Emitted by unit fuel consumption (kg/L) 2.669* 

 Heating value of a typical diesel fuel (kj/g) 44 

𝑣 Speed (m/s) -- 

 Conversion factor (g/s to L/s) 737 

 Road angle 0 

 Acceleration (m/s2) 0 

𝑑 Travel distance (m) -- 

             *Source: Cachon (2014), Demir et al. (2012), Koç et al. (2014) and Soysal et al. (2015, 2016). 

            Other parameters’ values can refer to Koç et al. (2014). 

 

Table 2 Vehicle specific parameter definition 

Notation Description Light duty Medium duty Heavy duty 

𝑤𝑚 Curb weight (kg) 4672 6328 13154 

𝑄𝑚 Maximum payload (kg) 2585 5080 17236 

𝑓𝑚 Vehicle fixed cost (£/day) 41.68 59.90 93.92 

𝑘𝑚 Engine friction factor (kj/rev/L) 0.25 0.20 0.15 

𝑁𝑚 Engine speed (rev/s) 39 33 30.2 

𝑉𝑚 Engine displacement (L) 2.77 5.00 6.66 

𝐶𝑑
𝑚 Coefficient of aerodynamics drag 0.6 0.6 0.7 

𝐴𝑚 Frontal surface area (m2) 9.0 9.0 9.8 

𝑛𝑡𝑓
𝑚  Vehicle drive train efficiency 0.40 0.45 0.50 

  Parameters’ values can refer to Koç et al. (2014). 
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We use Equation (1) to plot the fuel consumption of different vehicles with respect to speed, 

shown in Figure 2, in which vehicles’ payloads are set to 75% of their maximum payloads. We find 

that for each type of vehicles the fuel consumption at a speed of 30 or 40 km/h is the least, and that 

under the same speed different vehicle type has a big difference in fuel consumption. Therefore, it 

makes sense to consider the influence of speed and vehicle characteristics in GIRP-H.  

10 20 30 40 50 60 70 80 90 100 110 120

20

30

40

50

60

70

80

90

100

Speed (km/h)

F
u

el
 c

o
n

su
m

p
ti

o
n

 (
L

/1
0

0
k

m
)

 

 
lighht duty

medium duty

heavy duty

 

Figure 2 The fuel consumption of each type of vehicles under different speeds 

3.3 Mathematical Formulation 

The completed formulation for the proposed problem can be represented as follows: 

Minimize  ∑ ∑ ℎ𝑖𝑡∈𝑇𝑖∈𝑉 𝐼𝑖
𝑡                                                  (2.a) 

+ ∑ ∑ ∑ ∑ (𝑐𝑖𝑗/𝑣𝑖𝑗
𝑚𝑡)𝑡∈𝑇𝑚∈𝑀𝑗∈𝑉𝑖∈𝑉 𝑓𝑑𝑥𝑖𝑗

𝑚𝑡                                        (2.b) 

+ ∑ ∑ ∑ 𝑓𝑚
𝑗∈𝑉′𝑚∈𝑀𝑡∈𝑇 𝑥0𝑗

𝑚𝑡                                                 (2.c) 

+ ∑ ∑ ∑ ∑  (
𝑥𝑖𝑗

𝑚𝑡𝑘𝑚𝑁𝑚𝑉𝑚𝑐𝑖𝑗

𝑣𝑖𝑗
𝑚𝑡 + (𝑤𝑚𝑥𝑖𝑗

𝑚𝑡 + 𝑎𝑖𝑗
𝑚𝑡)𝑚𝑐𝑖𝑗 + 𝑥𝑖𝑗

𝑚𝑡
𝑚
𝑚𝑐𝑖𝑗(𝑣𝑖𝑗

𝑚𝑡)2)𝑡∈𝑇𝑚∈𝑀𝑗∈𝑉𝑖∈𝑉 (𝑓𝑐 + 𝑓𝑒𝜎)   (2.d) 

Subject to  

𝐼0
𝑡 = 𝐼0

𝑡−1 + 𝑟𝑡 − ∑ ∑ 𝑞𝑖
𝑚𝑡

𝑚∈𝑀𝑖∈𝑉′               𝑡 ∈ 𝑇                                   (3) 

𝐼𝑖
𝑡 = 𝐼𝑖

𝑡−1 + ∑ 𝑞𝑖
𝑚𝑡

𝑚∈𝑀 − 𝑑𝑖
𝑡                      𝑖 ∈ 𝑉′, 𝑡 ∈ 𝑇                               (4) 

𝐼𝑖
𝑡 ≤ 𝐶𝑖                                                            𝑖 ∈ 𝑉′, 𝑡 ∈ 𝑇                               (5) 
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∑ 𝑞𝑖
𝑚𝑡

𝑚∈𝑀 ≤ 𝐶𝑖 − 𝐼𝑖
𝑡−1                            𝑖 ∈ 𝑉′, 𝑡 ∈ 𝑇                                 (6) 

𝑞𝑖
𝑚𝑡 ≤ 𝐶𝑖𝑦𝑖

𝑚𝑡                                      𝑖 ∈ 𝑉′, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇                             (7) 

𝑎𝑖𝑗
𝑚𝑡 ≤ 𝑄𝑚𝑥𝑖𝑗

𝑚𝑡                                    𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇                         (8) 

 ∑ 𝑥0𝑖
𝑚𝑡 ≤ 𝑛𝑚                                𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇𝑖∈𝑉′                                    (9) 

∑ ∑ 𝑥𝑖𝑗
𝑚𝑡 ≤ 1𝑖∈𝑉𝑚∈𝑀                       𝑗 ∈ 𝑉′, 𝑡 ∈ 𝑇                                    (10) 

∑ 𝑥𝑖𝑗
𝑚𝑡 = ∑ 𝑥𝑗𝑖

𝑚𝑡
𝑗∈𝑉𝑗∈𝑉                         𝑖 ∈ 𝑉, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇                            (11) 

∑ 𝑥𝑖𝑗
𝑚𝑡 + ∑ 𝑥𝑗𝑖

𝑚𝑡 =𝑗∈𝑉𝑗∈𝑉  2𝑦𝑖
𝑚𝑡                     𝑖 ∈ 𝑉, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇                       (12) 

∑ 𝑎𝑖𝑗
𝑚𝑡 − ∑ 𝑎𝑗𝑖

𝑚𝑡
𝑖∈𝑉 = 𝑞𝑗

𝑚𝑡
𝑖∈𝑉                 𝑗 ∈ 𝑉′, 𝑖 ≠ 𝑗, 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀                     (13) 

𝑥𝑖𝑖
𝑚𝑡 = 0                                     𝑖 ∈ 𝑉, 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀                                 (14) 

𝑎𝑖𝑗
𝑚𝑡 ≥ 0                                 𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇                                (15) 

𝑞𝑖
𝑚𝑡 ≥ 0                                    𝑖 ∈ 𝑉′, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇                                 (16) 

𝐼𝑖
𝑡 ≥ 0                                        𝑖 ∈ 𝑉, 𝑡 ∈ 𝑇                                        (17) 

𝑥𝑖𝑗
𝑚𝑡 ∈ {0,1}                             𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇                             (18) 

𝑦𝑖
𝑚𝑡 ∈ {0,1}                          𝑖 ∈ 𝑉, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇                                    (19) 

The objective comprises four parts: (2.a) inventory holding cost, (2.b) driver cost, (2.c) 

vehicles’ fixed cost, and (2.d) fuel and CO2 emission costs. Constraints (3) and (4) are the inventory 

balance equations at the supplier and retailers respectively. Constraints (5) limit maximal inventory 

level at retailers. Constraints (6) impose maximum-level inventory replenishment policy. 

Constraints (7) represent that if no vehicles of type 𝑚 visit retailer 𝑖, then the product quantity 

delivered to retailer 𝑖 by vehicle type 𝑚 is 0. Constraints (8) mean that vehicles’ capacities must 

be respected. Constraints (9) limit the number of vehicles that can be used. Constraints (10) indicate 

that each retailer can be visited at most once in each period. Constraints (11) are the vehicle balance 

equations. Constraints (12) are degree constraints. Constraints (13) are the product flow balance 

equations at retailers and eliminate all subtours. Constraints (14) define impossible arcs. Constraints 

(15)-(19) enforce non-negativity and integrality conditions on variables.  

It is noticed that the objective function involves two nonlinear terms, i.e., equations (2.b) and 

(2.d). We use the procedure proposed by Bektaş and Laporte (2011) to linearize them, through a 

discretization of the speed variable 𝑣𝑖𝑗
𝑚𝑡. We assume that the lower and upper bounds of speed on 
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each arc are 𝑙 and 𝑢 respectively, and define a set of speed levels ℛ =  {1, 2, … , 𝑟}. Then each 

𝑟 ∈ ℛ for a given arc (𝑖, 𝑗) corresponds to a speed interval [𝑙𝑟 , 𝑢𝑟] with 𝑙1 = 𝑙 and 𝑢|ℛ| = 𝑢. 

Next we compute the average speed as 𝑣̅𝑟 =  (𝑙𝑟 + 𝑢𝑟)/2 for each speed level 𝑟 ∈ ℛ . We 

introduce a binary variable 𝑧𝑖𝑗
𝑚𝑡𝑟 = 1 if vehicle type 𝑚 travels at speed level 𝑟 on arc (𝑖, 𝑗) in 

period 𝑡, and 0 otherwise. Therefore, 𝑧𝑖𝑗
𝑚𝑡𝑟 and 𝑥𝑖𝑗

𝑚𝑡 are linked by the following equation 

∑ 𝑧𝑖𝑗
𝑚𝑡𝑟

𝑟∈ℛ =  𝑥𝑖𝑗
𝑚𝑡    𝑖, 𝑗 ∈ 𝑉, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇                                      (20) 

And the linearized model is as follows: 

Minimize  ∑ ∑ ℎ𝑖𝑡∈𝑇𝑖∈𝑉 𝐼𝑖
𝑡                                                    (2.a’) 

+ ∑ ∑ ∑ ∑ ∑
𝑐𝑖𝑗

𝑣̅𝑟𝑟∈ℛ𝑡∈𝑇𝑚∈𝑀𝑗∈𝑉𝑖∈𝑉 𝑧𝑖𝑗
𝑚𝑡𝑟𝑓𝑑                                          (2.b’) 

+ ∑ ∑ ∑ 𝑓𝑚
𝑗∈𝑉′𝑚∈𝑀𝑡∈𝑇 𝑥0𝑗

𝑚𝑡                                                   (2.c’) 

+ ∑ ∑ ∑ ∑  (∑
𝑘𝑚𝑁𝑚𝑉𝑚𝑐𝑖𝑗

𝑣̅𝑟
𝑧𝑖𝑗

𝑚𝑡𝑟
𝑟∈ℛ + (𝑤𝑚𝑥𝑖𝑗

𝑚𝑡 + 𝑎𝑖𝑗
𝑚𝑡)𝑚𝑐𝑖𝑗 + 

𝑚
𝑚𝑐𝑖𝑗(∑ 𝑣̅𝑟

𝑟∈ℛ )2𝑧𝑖𝑗
𝑚𝑡𝑟)𝑡∈𝑇𝑚∈𝑀𝑗∈𝑉𝑖∈𝑉 (𝑓𝑐 + 𝑓𝑒)   (2.d’) 

Subject to constraints (3)-(20). 

4. VALID INEQUALITIES and SOLUTION METHOD 

4.1 Valid Inequalities 

Archetti et al. (2007) and Coelho and Laporte (2014) propose several classes of valid 

inequalities for the IRPs. We extend some of them to strengthen our model.  

𝑦𝑖
𝑚𝑡 ≤ 𝑦0

𝑚𝑡                                  𝑖 ∈ 𝑉′, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇                               (21) 

Inequalities (21) mean that if no vehicle of type 𝑚 leaves the supplier, then no vehicle of 

type 𝑚 will visit retailers. 

Constraints (22) imply that during the time interval [𝑡1, 𝑡2] retailer 𝑖 is visited at least the 

number of times corresponding to the right side of the inequality, in which 𝑄 is the maximal value 

among 𝑄1, 𝑄2, … 𝑄𝑚, that is, 𝑄= max{𝑄1, 𝑄2, … 𝑄𝑚}. 

∑ ∑ 𝑦𝑖
𝑚𝑡′

≥
𝑡2
𝑡′=𝑡1𝑚∈𝑀 ⌈

∑ 𝑑𝑖
𝑡′

−𝐶𝑖
𝑡2
𝑡′=𝑡1

min {𝑄,𝐶𝑖}
⌉               𝑖 ∈ 𝑉′, 𝑡1, 𝑡2 ∈ 𝑇, 𝑡2 ≥  𝑡1                  (22) 

We extend inequalities (22) by considering retailer’s actual inventory level in the numerator 

rather than its inventory capacity, which yields inequalities (23): 

∑ ∑ 𝑦𝑖
𝑚𝑡′

≥
𝑡2
𝑡′=𝑡1𝑚∈𝑀

∑ 𝑑𝑖
𝑡′

−𝐼𝑖
𝑡1−1𝑡2

𝑡′=𝑡1

min {𝑄,𝐶𝑖}
            𝑖 ∈ 𝑉′, 𝑡1, 𝑡2 ∈ 𝑇, 𝑡2 ≥  𝑡1                  (23) 

For retailer 𝑖, if its inventory at the end of period 𝑡1-1 is enough to satisfy its demands 

over [𝑡1, 𝑡2], then it is not mandatory for vehicles to visit the retailer. Otherwise, at least one visit 

must take place. Consequently, we propose inequalities (24): 
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∑ ∑ 𝑦𝑖
𝑚𝑡′

≥
𝑡2
𝑡′=𝑡1𝑚∈𝑀

∑ 𝑑𝑖
𝑡′

−𝐼𝑖
𝑡1−1𝑡2

𝑡′=𝑡1

∑ 𝑑𝑖
𝑡′𝑡2

𝑡′=𝑡1

        𝑖 ∈ 𝑉′, 𝑡1, 𝑡2 ∈ 𝑇, 𝑡2 ≥  𝑡1                    (24) 

Note that the right side of equation (22) has a difference from those of (23) and (24). In 

equation (22), we round up the right side, because they are constants. However, this is not permitted 

in the latter two equations, as their numerators include decision variables and they will become 

non-linear otherwise. The impact of these inequalities on computational efficiency will be evaluated 

in later section. 

4.2 Solution Method 

In order to exactly display the difference between objective functions and the benefits of 

using a heterogeneous fleet, exact solutions are preferred in this study. Furthermore, as multi-period 

IRP belongs to a medium-term planning for companies, which will affect their operations for 

several weeks or months, the quality of solutions is more important than the computation time. Thus, 

the branch-and-cut algorithm is employed. 

In our branch-and-cut algorithm, we first add user cuts (i.e., equations (21)-(24)) to the model 

at the search tree’s root node. Then we use a commercial solver to solve linear programming 

relaxation problems at each node. If no feasible solution is found for a node’s relaxation problem, 

then this node is pruned and the algorithm starts to check other active nodes based on a best bound 

strategy; however, if a feasible one is found, the algorithm either updates the incumbent optimal 

solution (if the feasible solution has no fractional variables, and it is better than the current solution) 

or adds cuts (if the feasible solution has fractional variables). When new cuts are added to the 

relaxation model, the model is re-optimized. If all cuts are respected and the current solution of a 

relaxation problem still includes fractional variables, then the algorithm begins to branch on a 

fractional variable to produce two new subproblems. This process is reiterated until no active nodes 

exist.  

5. COMPUTATIONAL ANALYSES 

The aim of computational tests is fourfold: (1) to test the efficiency of valid inequalities 

(Section 5.2), (2) to compute the savings that could be achieved by considering a comprehensive 

objective function over the traditional objective (Section 5.3), (3) to quantify the benefits of 

applying a heterogeneous fleet (Section 5.4), and (4) to analyze the influence of parameters on key 

performance indicators (Section 5.5). 

The branch-and-cut algorithm is implemented in C++ language using the IBM Concert 

Technology and CPLEX 12.6 as the solver. 4 threads are used. All computations are executed on a 

PC with Intel Core i5 Processor (2.3 GHz) and 4 GB memory.  
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5.1  Instance Data 

We conduct our numerical analyses based on the data generated by Coelho and Laporte 

(2013a) for a single product. We use their data of vertices’ coordinates and compute distance as 

𝑐𝑖𝑗 = 100 × ⌊√(𝑥𝑖−𝑥𝑗)2 + (𝑦𝑖−𝑦𝑗)2 + 0.5⌋, where (𝑥𝑖 ,𝑦𝑖 ) are the coordinates of vertex 𝑖 . We 

enlarge their product-related data by a factor of 10 for 10 retailers’ instances, a factor of 6 for 20 

retailers’ instances, including 𝑟𝑡, 𝑑𝑖
𝑡 , 𝐼𝑖

0 and 𝐶𝑖 . Besides, all vertices’ inventory holding cost 

coefficients are reduced by a factor of 10. We also employ their labels for each instance, for 

example, label “10-1-3-5-2” means that it is the second instance with 10 customers, 1 kind of 

products, 3 homogeneous vehicles and 5 periods in their study. Since there are 3 types of vehicles in 

our paper, the label indicates that it is the second instance with 10 customers, 1 kind of products, 3 

types of vehicles and 5 periods in our work.  

We assume the number of vehicles for each type is unlimited (i.e., 𝑛𝑚 = 𝑁, ∀𝑚 ∈ 𝑀), which 

provides flexibility since it allows the actual number to be determined later. The lower and upper 

bounds of speed for each type of vehicles are 20 km/h and 70 km/h, respectively. 5 speed levels are 

defined, that is, the speed is divided into 5 intervals (i.e., [20, 30], [30, 40], [40, 50], [50, 60], [60, 

70]). 

5.2  Computational Complexity 

To evaluate the influence of valid inequalities on computational efficiency, we perform an 

analysis based on randomly selected 10 instances.  

Table 3 The influence of valid inequalities on the computational time  

Case Instance Model  Model +(21)  Model +(22)  Model +(23)  Model +(24)  Model +(21)-(24) 

Time(s) Gapa  Time(s) Gap  Time(s) Gap  Time(s) Gap  Time(s) Gap  Time(s) Gap 

1 20-1-1-3-1 2558.74 0.00  529.15 0.00  1472.23 0.00  3600.00 1.93  544.10 0.00  324.41 0.00 

2 20-1-1-3-2 735.48 0.00  21.84 0.00  901.53 0.00  943.52 0.00  334.21 0.00  44.69 0.00 

3 20-1-1-3-3 3600.00b 8.69  3038.80 0.00  673.94 0.00  323.27 0.00  1170.67 0.00  537.01 0.00 

4 20-1-1-3-4 923.49 0.00  420.39 0.00  1501.4 0.00  2289.79 0.00  1554.08 0.00  1292.58 0.00 

5 20-1-1-3-5 3600.00 5.47  3353.50 0.00  3600.00 8.86  3600.00 4.94  3600.00 4.69  3600.00 1.25 

6 20-1-3-3-1 3600.00 7.76  3600.00 3.33  3600.00 3.37  3600.00 1.29  3159.38 0.00  960.55 0.00 

7 20-1-3-3-2 3600.00 7.14  3600.00 0.80  3600.00 2.26  3600.00 1.43  3600.00 2.05  3600.00 3.24 

8 20-1-3-3-3 1212.16 0.00  196.91 0.00  315.29 0.00  324.00 0.00  1027.46 0.00  103.40 0.00 

9 20-1-3-3-4 103.32 0.00  19.68 0.00  56.45 0.00  176.05 0.00  106.20 0.00  20.94 0.00 

10 20-1-3-3-5 98.36 0.00  32.25 0.00  270.52 0.00  148.38 0.00  117.46 0.00  32.94 0.00 

 Average 2180.72 2.91  1481.25 0.41  1599.14 1.45  1860.50 0.96  1521.36 0.67  1051.65 0.45 

a The percentage gap between the best integer and the lower bound 

b The algorithm ends after 3600 second time limit 

Bold numbers indicate that the computation time or gap is smaller than that without any valid inequalities. 
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Table 3 demonstrates that all the valid inequalities can improve computational efficiency, 

equations (21) in particular. The model with all valid inequalities can reduce computation time by 

47.50% on average with a smaller gap, compared to the scenario without any valid inequalities. 

More specifically, for cases 1, 2, 3 and 8, computational time can be reduced by 5 to 15 times. 

Besides, through observing the computation process, we find that for most instances the 

branch-and-cut algorithm is able to find satisfying solutions in 5 minutes (the percentage gap 

between the best integer and the lower bound is less than 2%). Therefore, in realistic applications if 

decision-makers do not want to spend too much time on computation, they can require the 

algorithm to end when a preset gap is met. In following analyses, we solve instances with 10 and 20 

retailers to optimality. 

Moreover, since there are three types of binary variables in our model, i.e., 𝑥𝑖𝑗
𝑚𝑡, 𝑦𝑖

𝑚𝑡 and 

𝑧𝑖𝑗
𝑚𝑡𝑟, in the branching phase we consider four methods: branching is conducted in priority on 𝑥𝑖𝑗

𝑚𝑡, 

𝑦𝑖
𝑚𝑡 and 𝑧𝑖𝑗

𝑚𝑡𝑟respectively; and let CPLEX automatically decide which variable to branch on. It is 

observed that the last method works best and the first one (𝑥𝑖𝑗
𝑚𝑡 in priority) is the worst case.  

We also add lazy constraints ∑ ∑ 𝑥𝑖𝑗
𝑚𝑡 ≤ |𝑆|𝑗∈𝑆𝑖∈𝑆 − 1, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇, 𝑆 ∈ 𝑉′  dynamically 

during executing the algorithm. However, numerical tests show that they do not help improve 

computational efficiency. Thus, when executing the branch-and-cut algorithm, we employ user cuts 

(21)-(24) and cuts generated by CPLEX automatically.  

5.3  Impact of Cost Components 

We now calculate the cost saving companies can achieve by considering a comprehensive 

objective. To this end, we compare the proposed objective with the traditional one (Archetti et al., 

2007; Coelho and Laporte, 2013a, 2013b, 2014), where the latter is to minimize the sum of 

inventory holding cost and variable transportation cost, that is,  

Minimize  ∑ ∑ ℎ𝑖𝑡∈𝑇𝑖∈𝑉 𝐼𝑖
𝑡 + ∑ ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑚𝑡
𝑡∈𝑇𝑚∈𝑀𝑗∈𝑉𝑖∈𝑉                          (25) 

The experiments are performed on all instances with 20 retailers and 3 periods, which are 

more time-efficient compared to instances with more retailers and more representative than 

instances with 10 retailers. As vehicles’ travel speed is not a decision variable in the traditional 

objective, they can travel at any speed as long as they respect the speed bounds. In this situation, we 

may obtain various values of speed for each road, resulting in different driver wage, fuel 

consumption and emissions, which makes it difficult to compare the cost components of the two 

models. Therefore, for the traditional model, we fix vehicles’ travel speed to the optimal one got 

from the comprehensive model, and compute corresponding cost components. Results are reported 
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in Table 4, and Table 5 presents the two objectives’ deviations. 

From Table 4 and Table 5, it is observed that the traditional objective will lead to a poor total 

cost performance, increases by 6.71% on average, which is mainly caused by higher transportation 

and emission costs. Further, it consumes more fuel and emits more CO2 (increase by 23.09% on 

average). It should be noted that we preset the optimal speed for the traditional model; otherwise, it 

will produce solutions with even more cost and emissions. Therefore, in our experimental setup the 

proposed comprehensive model can not only save cost, but also have a better environmental benefit.  

Table 4 The difference between a comprehensive objective and a traditional objective 

Instance 
Traditional objective  Comprehensive objective 

IC DC VFC FC EC TC  IC DC VFC FC EC TC 

20-1-1-3-1 313.73 66.30 93.92 103.99 93.25 671.19  313.73 66.30 59.90 80.95 72.58 593.45 

20-1-1-3-2 331.55 61.65 93.92 96.91 86.90 670.94  331.55 61.65 59.90 73.35 65.77 592.23 

20-1-1-3-3 231.96 54.19 93.92 88.26 79.14 547.47  232.10 58.91 101.58 68.36 61.30 522.25 

20-1-1-3-4 268.55 58.12 93.92 94.03 84.32 598.94  252.53 69.98 101.58 80.65 72.32 577.06 

20-1-1-3-5 216.41 78.28 93.92 125.51 112.54 626.66  225.66 89.09 101.58 103.23 92.56 612.12 

20-1-3-3-1 264.20 63.10 93.92 100.17 89.81 611.19  250.49 71.07 101.58 83.32 74.71 581.18 

20-1-3-3-2 216.79 75.20 93.92 133.88 120.04 639.83  227.27 87.67 101.58 98.50 88.32 603.33 

20-1-3-3-3 271.01 58.40 93.92 91.52 82.06 596.92  252.41 68.39 101.58 80.71 72.37 575.47 

20-1-3-3-4 288.65 55.21 59.90 65.42 58.66 527.85  288.65 55.21 59.90 64.82 58.12 526.71 

20-1-3-3-5 228.21 61.88 93.92 96.91 86.90 567.82  228.21 61.88 59.90 75.45 67.65 493.10 

20-1-5-3-1 248.85 53.28 93.92 88.48 79.34 563.86  253.19 53.28 93.92 85.94 77.06 563.39 

20-1-5-3-2 298.16 57.27 93.92 92.67 83.09 625.11  270.11 76.30 101.58 86.51 77.57 612.05 

20-1-5-3-3 263.18 64.36 93.92 112.62 100.98 635.07  260.42 74.25 101.58 85.81 76.94 599.01 

20-1-5-3-4 278.81 56.92 93.92 87.76 78.69 596.10  278.81 56.92 59.90 67.87 60.85 524.35 

20-1-5-3-5 273.14 71.17 93.92 145.90 130.82 714.95  272.57 83.79 101.58 97.92 87.80 643.66 

IC: Inventory holding cost;  DC: driver cost;  VFC: vehicle fixed cost;  FC: fuel cost;  EC: emission cost;  TC: total cost 

The result of instance 20-1-1-3-4 is given in Figure 3, to show the difference in terms of 

solutions’ construction in detail, where the number in the circle is the depot or retailer, and the 

number over each retailer is the product quantity delivered in corresponding period, and the number 

on the arrow is vehicle’s speed between two vertices. It shows that the traditional model tends to use 

heavy duty vehicles, thereby reducing travel distance, although its inventory cost will increase. As 

to the comprehensive model, light and medium duty vehicles are preferred. To conclude, solutions 

obtained from the comprehensive model differ from those generated by the traditional model in 

terms of inventory strategy and vehicle scheduling. 
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Table 5 The traditional objective’s percentage deviation from the comprehensive objective  

Instance IC DC VFC FC EC TC 

20-1-1-3-1 0.00 0.00 56.79 28.47 28.47 13.10 

20-1-1-3-2 0.00 0.00 56.79 32.12 32.12 13.29 

20-1-1-3-3 -0.06a -8.01 -7.54 29.11 29.11 4.83 

20-1-1-3-4 6.35 -16.95 -7.54 16.59 16.59 3.79 

20-1-1-3-5 -4.10 -12.13 -7.54 21.58 21.58 2.38 

20-1-3-3-1 5.47 -11.22 -7.54 20.21 20.21 5.17 

20-1-3-3-2 -4.61 -14.21 -7.54 35.92 35.92 6.05 

20-1-3-3-3 7.37 -14.62 -7.54 13.39 13.39 3.73 

20-1-3-3-4 0.00 0.00 0.00 0.93 0.93 0.22 

20-1-3-3-5 0.00 0.00 56.79 28.45 28.45 15.15 

20-1-5-3-1 -1.72 0.00 0.00 2.95 2.95 0.08 

20-1-5-3-2 10.38 -24.94 -7.54 7.12 7.12 2.13 

20-1-5-3-3 1.06 -13.32 -7.54 31.25 31.25 6.02 

20-1-5-3-4 0.00 0.00 56.79 29.31 29.31 13.68 

20-1-5-3-5 0.21 -15.06 -7.54 49.00 49.00 11.08 

Average 1.36 -8.70 10.62 23.09 23.09 6.71 

a 
Negative values represent that the corresponding cost in the traditional model is lower 
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Figure 3 Solution constructions of different objectives for instance 20-1-1-3-4 

5.4  Impact of a Heterogeneous Fleet 

This section analyzes the influence of applying a heterogeneous fleet. To this end, we conduct 

four groups of experiments on instances with 10 and 20 retailers, and the time horizon is 3. The four 
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groups of experiments include using a heterogeneous fleet and a unique vehicle type (i.e., only light 

duty vehicles, only medium duty vehicles and only heavy duty vehicles). Results are reported in 

Table 6 and Table 7. In Table 6, the “Gap” means the percentage increase in terms of cost when 

using a unique vehicle type as opposed to using a heterogeneous fleet. In Table 7, the gap refers to 

the average percentage decrease in terms of emissions when a heterogeneous fleet is used. 

Table 6 demonstrates that the total cost will increase when a homogeneous fleet is used. 

Compared to the scenario with a heterogeneous fleet, the average increase for light duty vehicles 

ranges from 8.89% to 11.16%. For medium duty vehicles, the average increase is between 2.09% 

and 2.44%. With heavy duty vehicles, the average increase changes from 6.30% to 10.29%. These 

results suggest that in our experimental setup if a homogenous fleet is used, it is desirable to use the 

medium duty vehicles. Table 7 indicates that a heterogeneous fleet also generates low-carbon 

solutions. Compared with the scenario using only heavy duty vehicles, it can reduce CO2 emissions 

by 18.89% and 16.00% on average for instances with 10 and 20 retailers, respectively. 

Table 6 The cost benefits of using a heterogeneous fleet 

 

 

Instance 

 

Heterogeneous 

fleet 

Only 

light 

duty 

Only 

medium 

duty 

Only 

heavy 

duty 

  

 

Instance 

 

Heterogeneous 

fleet 

Only 

light 

duty 

Only 

medium 

duty 

Only 

heavy 

duty 

Total cost Gap (%) Gap (%) Gap (%)  Total cost Gap (%) Gap (%) Gap (%) 

10-1-1-3-1 442.97 8.14 0.00 15.05  20-1-1-3-1 593.45 8.69 0.00 13.08 

10-1-1-3-2 402.01 0.00 6.51 23.61  20-1-1-3-2 592.23 4.24 0.00 12.65 

10-1-1-3-3 401.48 4.04 0.00 13.84  20-1-1-3-3 522.25 16.82 3.66 3.87 

10-1-1-3-4 481.31 10.75 0.00 13.15  20-1-1-3-4 577.06 9.67 3.61 3.13 

10-1-1-3-5 534.93 11.83 0.00 13.65  20-1-1-3-5 612.12 12.09 3.61 2.21 

10-1-3-3-1 511.45 10.85 4.16 3.45  20-1-3-3-1 581.18 8.10 3.47 5.17 

10-1-3-3-2 455.26 17.64 4.17 3.70  20-1-3-3-2 603.33 14.23 3.71 1.26 

10-1-3-3-3 509.16 9.68 4.11 1.43  20-1-3-3-3 575.47 11.73 3.46 3.73 

10-1-3-3-4 475.25 8.56 4.44 2.74  20-1-3-3-4 526.71 11.17 0.00 13.44 

10-1-3-3-5 411.53 6.57 0.00 16.16  20-1-3-3-5 493.10 13.05 0.00 15.15 

10-1-5-3-1 435.40 12.50 0.00 15.34  20-1-5-3-1 563.39 14.27 4.85 0.00 

10-1-5-3-2 434.01 2.47 0.00 15.63  20-1-5-3-2 612.05 10.51 3.71 2.13 

10-1-5-3-3 522.65 10.11 3.68 0.72  20-1-5-3-3 599.01 9.81 3.34 3.36 

10-1-5-3-4 461.95 4.70 0.00 14.84  20-1-5-3-4 524.35 10.38 0.00 13.68 

10-1-5-3-5 502.87 15.56 4.23 1.10  20-1-5-3-5 643.66 12.63 3.18 1.67 

Average 465.48 8.89 2.09 10.29  Average 574.62 11.16 2.44 6.30 

Table 7 The environmental benefits of using a heterogeneous fleet 

Instance 
Emission gap 

(%, Only light duty) 

Emission gap 

(%, Only medium duty) 

Emission gap 

(%, Only heavy duty) 

All instances with 10 retailers -8.56 -0.87 -18.89 

All instances with 20 retailers -13.55 -1.04 -16.00 
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 Figure 4 displays the solution construction for instance 10-1-5-3-5 under the four scenarios. 

First, results differ from each other in terms of vehicles’ capacity utilization, which reaches its 

maximum level when using a heterogeneous fleet and only light duty vehicles. The loading rate for 

a heavy duty vehicle is the lowest. 

Second, vehicle schedules are different. Take Figure 4.(a) and 4.(b) for example, the visiting 

time are changed for retailers 3, 7 and 9. When using a heterogeneous fleet, these three retailers are 

visited in periods 2 and 3; however, when only light duty vehicles are available, they are visited in 

every period. Moreover, inventory strategies are distinct, which is obvious when retailers’ visiting 

time is changed. 

From Figure 4, it is noticed that vehicles travel at a constant speed, even if the payload is 

decreasing along the trip due to unload at each retailer. Although vehicles can travel faster when 

becoming lighter, thereby reducing driver cost; however, as speed increases, vehicles might 

consume more energy and emit more CO2. Thus, it is more economical for them to travel at a 

constant speed under our experimental setup. Note that this phenomenon is just a coincidence in our 

study, and it does not mean that in all situations vehicles must travel at a constant speed.  
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Figure 4 Solution constructions for instance 10-1-5-3-5 when vehicle types are different  
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5.5 Parameter Analyses 

This section analyzes the effects of parameters on cost and CO2 emissions. All our tests are 

performed on instance 20-1-1-3-2, which is more time-efficient in terms of CPU. 

5.5.1 Unit inventory holding cost 

From the objective function, we find that inventory holding cost coefficient (ℎ𝑖) will influence 

system decision. Since in the instance data the value of each ℎ𝑖 is different, we change all vertices’ 

unit inventory holding cost through multiplying by a coefficient .  

Figure 5 shows the trends of cost and emissions with changing value of ℎ𝑖. The total cost 

increases almost linearly over ℎ𝑖. However, the emission curve demonstrates a “staircase pattern”. 

That is, under some circumstances, the system’s emission level keeps constant while the total cost 

increases with higher ℎ𝑖 values. It can be concluded that to achieve the same emission level, the 

cost may vary significantly for different industries, and that it is difficult for companies with higher 

inventory cost to control emissions at a lower price. Thus, government should consider the 

difference of industries when implementing emission legislations.  
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Figure 5 The trend of costs and emissions when ℎ𝑖 changes 

In Figure 5, there are four break points in terms of CO2 emissions, i.e., 𝛼 =1, 2, 5 and 9. Figure 

6 presents vehicles’ routes and product quantities delivered in these four scenarios, to demonstrate the 

detailed impacts. First, it shows that ℎ𝑖 will influence delivery frequency. When ℎ𝑖 is higher, the 

system tends to delivery fewer products in period 2, aiming to lower inventory; which on the other 
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hand will cause more trips and longer travel distance, leading to more emissions (refer to Figure 

6.(a) and 6.(b)). 

Further, ℎ𝑖 will affect the number of retailers visited in each trip. Take Figure 6.(b), 6.(c) and 

6.(d) for examples, although in these subgraphs the vehicle type used in period 2 is the same, the 

number of retailers visited decreases.   
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Figure 6 The effect of unit inventory holding cost on vehicle scheduling and inventory strategy 

5.5.2 Unit emission price 

Figure 7 suggests the influence of unit emission price on the system’s cost and CO2 emissions. 

It is found that the total cost increases almost linearly with the increase of emission price and that 

on the whole the emission curve exhibits a decreasing trend. When emissions are not considered 
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(i.e., unit emission price = 0), the system emits the most CO2 as expected. However, a higher carbon 

price (or taxing) does not always lead to a better environment benefit. For example, when the price 

increases from 0.496 £/kg to 1.984 £/kg, the emission level does not change, but the system’s cost 

increases dramatically. Therefore, when implementing carbon regulation policies, governments 

should carefully determine the carbon price, under which enterprises can reduce emissions without 

heavy burdens on costs. In addition, since fuel consumption and emissions are linearly dependent, 

Figure 7 can also represent the tendencies of cost and emissions under changing fuel price.  
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Figure 7 The effect of unit emission price on cost and emissions 

In Figure 7, there are three break points in terms of CO2 emissions, i.e., 𝑓𝑒 =0, 0.496, and 

2.480. Figure 8 presents the detailed constructions of solutions in these three scenarios. It shows 

that when emission cost is not considered, the vehicle tends to travel faster, in order to reduce driver 

cost, which leads to more CO2 emissions. As 𝑓𝑒 increases to 0.496, vehicles start to travel at a 

lower speed, aiming to reduce fuel consumption and emissions. However, the system’s decision 

keeps unchanged when 𝑓𝑒 varies from 0.496 to 1.984. In these cases, if the decision makers choose 

to further lower travel speed, the driver cost will increase, more than the decrease of fuel and 

emission costs. When 𝑓𝑒 =2.480, vehicle’s speed is reduced to 35 km/h. 
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Period 2: Medium duty vehicle   
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Period 2: Medium duty vehicle   

(b) unit emission price = 0.496
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(c) unit emission price = 2.480
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Figure 8 The effect of unit emission price on vehicle scheduling and inventory strategy 

6. CONCLUSION and FUTURE WORK 

This paper studies an inventory routing problem simultaneously considering environmental 

issues and a heterogeneous fleet, where fuel consumption and emissions are influenced by load, 

distance, speed and vehicle characteristics. A comprehensive objective comprising inventory cost, 

driver wage, fixed transportation cost, fuel and emission costs is proposed. Numerical tests quantify 

the benefits of using a comprehensive objective and a heterogeneous fleet, including saving costs 

and reducing CO2 emissions. Parameter analyses display that it is difficult for companies with high 

inventory cost to control emissions at a lower price. Moreover, we find that a higher carbon (or fuel) 

price does not always mean a better environmental benefit, which can provide suggestions to 

governments when implementing emission regulation policies. 

Future study can be conducted in four aspects: (1) our results demonstrate that vehicles tend 

to travel at a constant speed during a trip instead of changing speed on each arc. Since Bektaş and 

Laporte (2011) suggest that the impact of speed is more obvious when time windows are imposed, 

future research can include time window constraint and further investigate the influence of speed; (2) 

including the fuel consumption and emissions in inventory activities, especially for the products 

which require being stored in low-temperature environment; (3) developing a multi-objective 

optimization model to capture the tradeoff between costs and emissions; (4) developing powerful 

heuristic algorithms to solve the model presented here, which is able to handle large-sized instances. 
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