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Abstract

In this paper we consider the vehicle routing problem with hard time windows and stochastic

service times (VRPTW-ST); in this variant of the classic VRPTW the service times are random

variables. In particular, given a set of vehicle routes, some of the actual service times might not

lead to a feasible solution, given the customer time windows. We consider a chance-constrained

program to model the VRPTW-ST and provide a new set partitioning formulation that includes

a constraint on the minimum success probability of the set of vehicle routes. Under some mild

conditions, we develop a method to exactly compute the success probability of the routes. We

then solve the VRPTW-ST by a branch-price-and-cut algorithm, where the main challenges are

in the solution of the subproblems of the column generation procedure. We adapt the dynamic

programming algorithm to account for the probabilistic resource consumption by extending the

label dimension and by providing new dominance rules. Extensive computational experiments

prove the effectiveness of both the solution method and the stochastic model.

Keywords: Vehicle routing problem, service time, stochastic programming, chance constraint,

column generation

1 Introduction

In this paper we consider the vehicle routing problem with hard time windows and stochastic service

times (VRPTW-ST) which is a variant of the classical vehicle routing problem where customers’

service times are random variables and hard constraints are enforced on the time window limits.

In this context, the service to a customer starts within the given time window and vehicles are not

allowed to arrive after the end of the time window. Vehicles are however allowed to arrive before

the beginning of a time window. In this case they must postpone the beginning of the service until
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1



the time window opens. The central point in this problem is to plan a set of routes before the time

required to serve each customer is known, and such that customers’ time window constraints are

satisfied. Our goal is to develop an exact method for the VRPTW-ST.

The vehicle routing problem (VRP) with deterministic data has been widely studied and applied

in many real-world situations. However, usually not all the problem data are available in advance.

This has led to an increased interest in probabilistic VRP (for a recent review, see Gendreau et al.

2014). The most common sources of uncertainty considered in the literature are: 1) demand volumes

(see for example Bertsimas 1992; Laporte et al. 2002), 2) the presence of customers (see for example

Gendreau et al. 1995), and 3) stochastic travel and/or service times (see for example Adulyasak and

Jaillet 2016; Kenyon and Morton 2003; Laporte et al. 1992; Lei et al. 2012; Taş et al. 2012). There

are three main modeling strategies for stochastic problems: a) stochastic programs with recourse,

where an “a priori” solution is provided together with a modification strategy (recourse) to be

applied in a second stage, once all the uncertainty is disclosed, b) chance-constrained programs

where an a priori plan is provided together with a bound on the probability that the given plan will

be feasible once all the uncertainty is disclosed and c) multi-stage dynamic reoptimization, where

the problem is reoptimized as new information becomes available.

The VRPTW-ST has the third type of uncertainty (service times). In most of the related

literature, customer time windows are absent or soft, or a maximal route duration is considered.

With respect to these studies, the VRPTW-ST is structurally different and more challenging

because hard time windows imply more complex relations between the probability distributions of

vehicle arrival times at consecutive customers, thus requiring new methodological development.

The problem tackled in this paper corresponds to the situation faced by several companies who

provide technicians to repair their equipment in industrial settings. An example of this situation

can be found in the paper of Cortés et al. (2014), who describe a collaboration project with Xerox in

Santiago, Chile. In that paper, the authors consider the problem of routing the technicians who are

responsible for repairing office machines that fail, according to individual Service Level Agreements,

which are specified in terms of a time window for the arrival of the technician.

In Cortés et al. (2014), deterministic service times were considered. However, in practice, some

time windows cannot be met due to the uncertainty of the service times. The stochastic version

of this problem can be tackled through a two-stage stochastic program with recourse, as we did in

a companion paper (Errico et al. 2015) by considering different possible recourse strategies. The

problem might also be tackled using robust optimization, as was done by Souyris et al. (2013).

There are some intangible costs paid by the company in terms of image, for arriving late too

often. While a stochastic program with recourse can indirectly decrease the failure probability of

the a priori plan by increasing the penalty cost associated with the recourse actions, a chance-

constrained model is more suited for a direct control of the failure probability. In this paper, we

thus chose to investigate a pure chance-constrained approach to enforce a minimum probability

that the planned routes are successful. This kind of approach is typical, for example, of call centre

management policies, where the goal is to schedule the agents such that the calls are answered in a

reasonable delay (typically 20 seconds) 80% of the time. The idea of success rate can also be used

to enforce that the drivers’ route runs smoothly most of the time. By bounding the probability that
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routes miss a Service Level Agreement, the company makes sure that, in the long run, the drivers

do not have to deal too often with unsatisfied customers.

In its chance-constrained version, the VRPTW-ST can be described as follows. Consider a

directed graph G = (V,A) where V = {0, 1, . . . , n} is the node set, and A = {(i, j) | i, j ∈ V } is

the arc set. Node 0 represents a depot where a fleet of homogeneous vehicles is initially located,

and Vc = {1, . . . , n} is the customer set. A time window [ai, bi] and a stochastic service time are

associated with each customer i ∈ Vc. The service time probability distributions are assumed to be

known and mutually independent. A non-negative travel cost cij and travel time tij are associated

with each arc (i, j) ∈ A. Furthermore, a global “reliability” threshold 0 < α < 1 is given.

The VRPTW-ST consists of finding a set of vehicle routes (a route plan) such that: (i) The

routes start and end at node 0. (ii) All the customers are served. (iii) The service to a customer

must start within the given time window. As previously mentioned, however, vehicles are allowed

to arrive before the beginning of a time window. (iv) The global probability that the route plan

will be feasible with respect to the time windows when realizations of customers’ service times

become known, is greater than the reliability threshold. (v) The travel distance is minimized. For

convenience, we use the expression “success probability” to indicate the probability that a given

route will be feasible with respect to time windows when the realization of the customers’ service

times become known. This allows us to rephrase (iv) as: the global success probability of the route

plan is greater than the reliability threshold.

The VRPTW-ST finds application in several practical situations such as the dispatch of tech-

nicians or repairmen to perform either installation, maintenance or repair operations. On the one

hand, customers might specify hard time windows dictated by their specific needs. On the other

hand, the service times at customers vary according to different factors that are inherently stochas-

tic: accessibility at the customer’s location (e.g., parking conditions), diagnostic of the particular

service to perform (e.g., identification of the problems in case of a repair), complexity of the opera-

tion to carry out, etc. The proposed chance-constrained model allows the dispatching company to

design routes in such a way that the probability of violating a customer time window is bounded by

the reliability threshold, which could be determined at the manager’s discretion. In the long term,

this allows the company to maintain a given service quality to its customers, and be able to quantify

the corresponding requirements in terms of the number of needed vehicles/repairmen, route costs,

etc.

We provide a set partitioning formulation of the VRPTW-ST that includes a constraint on

the minimum total success probability of the route plan. This constraint is linearized by applying

the properties of logarithms. It should be noted that the computation of the success probability

for a route requires knowledge of the vehicle arrival-time probability distribution at the customer

locations. However, the presence of hard time windows generally implies the truncation of these

distributions, thus generally preventing the straightforward application of convolution properties

when summing the random variables. For these calculations we propose an exact method valid for

any discrete service-time distribution with finite support.

Given the success of column-generation-based approaches for the deterministic VRPTW, we

decided to implement a branch-price-and-cut algorithm for the VRPTW-ST. With respect to the
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deterministic VRPTW, the major challenges are in the solution of the subproblems in the column

generation algorithm. The resource consumption is probabilistic, and we propose a label-setting

algorithm where the label dimension is suitably extended to account for the probabilistic constraint.

Furthermore, to reduce the number of labels, we deploy new heuristic and exact dominance rules. We

also implement several algorithmic improvements and in particular a tabu search column generator

based on the work of Desaulniers et al. (2008).

We perform extensive computational tests. We first build a set of benchmark instances derived

from Solomon’s database (Solomon 1987) and consider several service-time distributions and relia-

bility thresholds. We then perform two sets of experiments. The first tests our algorithm over the

whole instance set and compares the algorithmic efficiency for different problem types and charac-

teristics. The second analyzes the model behavior in terms of cost and solution quality; it compares

several stochastic solutions with deterministic solutions based on the median and worst-case values

of the service-time probability distributions. The results show that our method is generally effective

and able to solve instances with up to 50 customers exactly. Furthermore, the results underline the

advantages of the stochastic model over its deterministic counterparts.

The rest of the paper is organized as follows. In Section 2 we provide a review of the related

literature. In Section 3 we formulate the VRPTW-ST as a set partitioning problem with a proba-

bilistic constraint and show how to compute the success probability of a given route. In Section 4 we

detail our branch-price-and-cut algorithm. In Section 5 we report our computational experiments

before concluding in Section 6.

2 Related Literature

In this section we survey research on the VRP with stochastic service and/or travel times. We also

include some research on the traveling salesman problem (TSP) with stochastic times and hard

time windows, as well as work considering different sources of uncertainty in combination with hard

time constraints. This survey focuses on stochastic programming approaches and excludes dynamic

re-optimization approaches.

The work by Laporte et al. (1992) is one of the first addressing travel and service time uncer-

tainty. The authors consider a non-capacitated version of the VRP with no time-window constraints.

However, a soft maximal route duration is considered. The authors propose one model based on

chance constraints and two models with recourse where the recourse action is the payment of a

penality if the maximal route duration is violated. The results obtained by a branch-and-cut al-

gorithm on instances involving a limited number of scenarios are reported. Lambert et al. (1993)

present a variant of this problem considering stochastic travel times, customer time windows, and

a penalty dependent on the vehicle’s load. The authors consider worst-case scenarios to impose the

time-window constraints. The problem is solved by adapting the Clarke and Wright heuristic.

Kenyon and Morton (2003) focus on a version of the VRP with stochastic travel and service

times and no capacity or time-window constraints. The authors study two versions of the problem:

one minimizes the expected completion time, and the other minimizes the probability that the

completion time exceeds a given threshold. The authors propose an exact branch-and-cut procedure
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suitable for problems with small sample spaces, and a combination of Monte Carlo simulation and

a branch-and-cut procedure for problems with larger sample spaces.

Wang and Regan (2001) consider the VRP with soft time windows, no capacity constraints,

and stochastic travel times. If a customer is visited after its time-window deadline, the service is

skipped, but not the visit itself. The goal is to maximize the number of customers serviced and

to minimize the routing costs. The authors develop an analytical model and algorithm for the

evaluation of the expected load of a route; the computational complexity is O(2n), where n is the

number of customers. A model with a constraint on the minimum expected load is also analyzed.

No computational results are provided. Sungur et al. (2010) investigate a non-capacitated version

of the VRP with uncertainty in the customer presence and the service times. Soft customer time

windows and hard route-duration limits are considered. The authors aim to produce a monthly

route plan that can be modified daily according to the actual demand. The objective is to maximize

the number of customers served, minimize the total vehicle times, minimize penalties for early or

late arrivals at customers, and maximize a measure of route consistency. The modeling approach

is based on a combination of robust optimization and stochastic programming with recourse. The

solution method is a two-phase heuristic.

Li et al. (2010) consider a capacitated vehicle routing problem with soft time windows, soft route-

duration limits, and stochastic service and travel times. The authors propose two formulations: the

first considers a chance constraint for each time window and route-duration limit, and the second

uses a recourse consisting of the payment of penalties for violated time constraints. The authors

develop a tabu-search-based heuristic for the solution of both problems; the probability evaluation

of the solutions is obtained by Monte Carlo simulation. A similar problem is investigated in Lei

et al. (2012). The recourse action is the payment of a penalty when the route-duration limit is

violated. The objective is the minimization of the sum of the travel costs, the expected service

cost, and the expected recourse cost. The authors provide a closed-form expression of the expected

route cost in the case of normally distributed service times, and they develop a generalized variable

neighborhood search (GVNS) algorithm for the problem. GVNS is shown to perform better than the

variable neighborhood descent and the variable neighborhood search heuristics. A similar problem

is considered in Taş et al. (2012), where the objective is the minimization of the combination

of customer inconvenience, i.e., the expected earliness and lateness at customers, and operational

costs, i.e., the expected driver overtime, vehicle costs, and travel costs. The authors propose a three-

phase tabu-search-based algorithm. For a related problem, a branch-and-price solution approach is

developed in Taş et al. (2014).

More recently Adulyasak and Jaillet (2016) focus on the VRP with capacity constraints, cus-

tomer deadlines and stochastic travel times. They consider two modeling approaches: a stochastic

program assuming exact knowledge of the probability distributions and minimizing the sum of the

probabilities of deadline violations, and a robust approach, where probability distributions are par-

tially unknown, minimizing a suitably defined lateness index. The authors develop branch-and-cut

based algorithms and perform extensive computational analyses.

A robust optimization approach for the VRP with travel and demand uncertainty and customer

deadlines is presented in Lee et al. (2012). The authors develop a method based on column genera-
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tion. A comparison of the robust and deterministic solutions is carried out by performing a Monte

Carlo simulation. The results show that the robust solutions are more expensive but also more

reliable.

The TSP with hard time windows and stochastic travel and service times is considered in Jula

et al. (2006). In their setting, the aim is to find the least-cost tour such that for each customer the

success tour probability is greater than a given value. The authors develop a heuristic algorithm

based on dynamic programming and on an estimation of the mean and variance of the arrival-time

distribution at the customers. Similarly, assuming normally distributed time events and negligible

late arrival times at the customers, Chang et al. (2009) provide an approximation of the mean and

variance of the arrival time at the customers and propose a dynamic programming algorithm.

Campbell and Thomas (2008) investigate the TSP with customer deadlines and uncertainty

about the customer presence. The authors study three different approaches: the first has as a

recourse strategy the payment of a penalty in the event of late arrival, the second also skips the

corresponding customer, and the third imposes a probabilistic constraint. The paper focuses on the

modeling aspects and the calculation of the expected costs. A simple heuristic approach is proposed

and experiments comparing the deterministic and stochastic solutions are performed.

With respect to the reviewed literature, our approach has several novel features. The VRPTW-

ST generalizes the VRP with a combination of stochastic service times and hard time windows.

This setting is much more challenging than the corresponding soft case. Given a route, the arrival-

time probability distributions at the customers have to be suitably truncated because of the time

windows, and this prevents the straightforward application of convolution, as well as stochastic

dominance properties (Wellman et al. 1995), when summing and comparing the random variables.

Jula et al. (2006) and Chang et al. (2009) consider a similar setting but focus on the TSP case.

Furthermore, they propose heuristic approaches. In this paper we propose an exact procedure

for the calculation of the arrival-time probability distributions at the customers, we prove that

stochastic dominance holds for the VRPTW-ST, and we develop an exact solution framework

based on column generation. In Errico et al. (2015), some of the material presented in this paper is

further developed to address the VRPTW-ST as a stochastic program with recourse. Two recourse

strategies are proposed and the resulting problems are solved by branch-price-and-cut algorithms.

Finally, a computational comparison between recourses is performed.

3 The VRPTW-ST

In Section 3.1 we formally introduce the chance-constrained formulation for the VRPTW-ST. In

Section 3.2 we show how to compute the success probability of a given route.

3.1 Set partitioning formulation with a probabilistic constraint

Consider a route r defined as a sequence of nodes r = (v0, v1, . . . , vq, vq+1) where v1, . . . , vq ∈ Vc

and v0 and vq+1 represent the depot 0, and let R be the set of all possible routes. Let air be a

parameter with value 1 if route r visits customer i and 0 otherwise. The cost associated with a
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route r is cr =
∑q

i=0 cvi,vi+1
. Given binary variables xr with value 1 if route r ∈ R is chosen and 0

otherwise, the VRPTW-ST can be formulated as follows:

min
∑

r∈R

crxr (1)

s.t.
∑

r∈R

airxr = 1 ∀i ∈ Vc (2)

Pr{All chosen routes are successful} ≥ α (3)

xr ∈ {0, 1} ∀r ∈ R, (4)

where the objective function (1) minimizes the total travel cost. Constraints (2) ensure that all

customers are visited exactly once. Constraint (3) is the probabilistic constraint; it ensures that the

success probability of the overall plan is greater than the reliability threshold. Constraints (4) ensure

that the solution vector is binary. The assumption that the service times are mutually independent

implies the property stated in the following proposition.

Proposition 3.1. Let R′ denote a set of routes inducing a proper partition of the customer set

Vc. Given any two routes r1, r2 ∈ R′, the success probability of r1 is independent of the success

probability of r2.

Proposition 3.1 allows us to rewrite constraint (3):

∏

r∈R:xr=1

Pr{Route r is successful} ≥ α. (5)

By the properties of logs we have

∑

r∈R:xr=1

ln(Pr{Route r is successful}) ≥ ln(α), (6)

and extending the summation to all R we have

∑

r∈R

xr ln(Pr{Route r is successful}) ≥ ln(α). (7)

Substituting

βr := − ln(Pr{Route r is successful}) (8)

and β := −ln(α), we can write (3) as

∑

r∈R

βrxr ≤ β. (9)

7



3.2 Computing the route success probability

In this section, assuming a discrete customer service-time probability distribution with finite sup-

port, we show that the route success probability is strictly linked to the vehicle arrival-time proba-

bility distribution at the customers, and we compute it recursively.

Consider a route r = (v0, . . . , vq, vq+1) where v0 and vq+1 represent the depot 0, and let rvi =

(v0, . . . , vi), 1 ≤ i ≤ q, be the subroutes of r starting at the origin and ending at node vi. Let tvi and

svi be random variables representing the vehicle arrival time and service time, respectively, at client

vi, and let dvi be the probability mass function of the service time duration at client vi. Functions

dvi are assumed to have discrete, finite supports.

Recalling that the depot does not have time-window restrictions, we can write:

Pr{r is successful} = Pr(

q
∧

i=1

{rvi is successful}) = Pr(

q
∧

i=1

{tvi ≤ bvi}). (10)

Equivalently,

Pr{r is successful} = Pr({tvq ≤ bvq} ∧ {rvq−1
is successful}) (11)

Let mvi(z) be the probability mass function associated with the event tvi = z and the event that

rvi−1
is successful, i.e.,

mvi(z) := Pr({tvi = z} ∧ {rvi−1
is successful}). (12)

Then we can write

Pr{r is successful} =
∑

z≤bvq

mvq(z). (13)

Equation (13) shows that the computation of the success probability of a given route requires the

computation of the mass probability function of the vehicle arrival time at the last visited customer.

We now show how to do this recursively.

To correctly account for the time-window restrictions, and considering that the vehicle is never

allowed to arrive later than bvi , we introduce random variables t̄vi with values in the interval [avi , bvi ],

defined as

t̄vi =







avi if tvi < avi

tvi if avi ≤ tvi ≤ bvi ,
(14)

and the corresponding probability mass function m̄vi(z)

m̄vi(z) =































0 if z < avi
∑

l≤avi
mvi(l) if z = avi

mvi(z) if avi < z ≤ bvi

0 otherwise.

(15)
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Note that:

tvi = t̄vi−1
+ svi−1

+ tvi−1,vi . (16)

We now substitute the above definitions into (12) and use the independence of ti and si. This allows

us to write distribution mvi in terms of m̄vi−1
and dvi−1

:

mvi(z) = Pr({t̄vi−1
+ svi−1

+ tvi−1,vi = z} ∧ {rvi−1
is successful}) (17)

=
∑

k∈N

dvi−1
(k)m̄vi−1

(z − tvi−1,vi − k). (18)

Substituting the above expression into (13), we can write:

Pr{r is successful} =
∑

z≤bvq

∑

k∈N

dvq−1
(k)m̄vq−1

(z − tvq−1,vq − k), (19)

Considering

m̄v1(z) =







1 if z = max{av1 , t0,v1},

0 otherwise,
(20)

expression (19) can be recursively applied to obtain the route success probability.

Observe that, for ease of presentation, we sometimes allow summations to range in N (e.g., in

(18), (19) and other expressions that can be found in the rest of the paper). In practical computa-

tions, the summation indexes are restricted to values compatible with the support of the functions

involved.

As a final observation, we note that our development is general and independent of the given

discrete probability distribution.

3.3 Limitations and extensions

The target application of model (1), (2), (9) and (4) is the dispatch of technicians or repairmen to

perform maintenance or repair operations. In this context, the vehicle capacity is not a primary

concern. For this reason, in the rest of the paper we do not account for vehicle capacity constraints.

As it will be pointed out in Section 4.1.2, however, our methodology can be trivially extended to

enforce the capacity restrictions.

Similarly, we focus on stochastic service times (repair times are unknown), while travel times

are assumed to be deterministic. We observe that our methodology can be easily generalized to

account for stochastic travel times, as far as the same assumptions made for service times hold

(discrete random variables with finite support and independent). In fact, the main difference is in

relation (16), were tvi−1,vi would be a random variable, thus the probability distribution of tvi can

be obtained by applying one more convolution step.

Finally, our approach can be generalized to the case of repairman-specific service time probability

distributions by considering one set of variables for each repairman in the model (1), (2), (9) and (4).

This modification does not change the structure of the problem, and the proposed method solution

still applies. However, instead of solving one subproblem at each iteration of the column generation
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algorithm (see Section 4.1.2), several subproblems need to be solved, one for each repairman.

4 Branch-price-and-cut algorithm for the VRPTW-ST

Branch-price-and-cut is an algorithm based on implicit enumeration. Lower bounds at each node of

the search tree are computed by applying column generation to the linear relaxation of the original

problem, which corresponds, for the VRPTW-ST, to (1), (2), and (9), as well as the nonnegativity

requirements on the xr variables. The lower bounds are then tightened by the dynamic generation

of valid inequalities.

In Section 4.1 we provide the details of our column generation procedure, and in Section 4.2 we

propose several accelerating strategies. The cutting planes used in our algorithm are described in

Section 4.3. In Section 4.4 we describe the branching strategies.

4.1 Column generation

At a generic node of the enumeration scheme we need to solve the linear program (1), (2), (9), with

the nonnegativity requirements on the xr variables, and augmented by the applicable branching

decisions and cutting planes. This problem has an extremely large number of variables and cannot

be explicitly solved in this form, except for very small instances. Instead, the column generation

algorithm (for details, see Lübbecke and Desrosiers 2005) iteratively solves a restricted master

problem (RMP) that considers only a subset of the original variables (routes). When a solution

x̄ of the current RMP has been obtained by applying the primal simplex algorithm, a subproblem

verifies if the solution is optimal. If it is not, new routes are added to the RMP and the process

iterates.

The subproblem verifies the optimality of the RMP solution by looking for routes with negative

reduced costs. If we associate dual multipliers γi ≥ 0 and δ ≥ 0 with constraints (2) and (9)

respectively, the reduced cost c̄r of a given route r ∈ R̄ can be expressed as

c̄r := cr −
∑

i∈Vc

airγi + βrδ. (21)

Hence, the subproblem minimizes expression (21) over the setR of feasible routes. Note that possible

incompatibilities among routes (e.g., total success probability less than the threshold, customers

visited more than once) are handled in the RMP directly.

The resulting subproblem belongs to the family of elementary shortest path problems with

resource constraints (ESPPRC) and is usually solved by dynamic programming. In contrast to

previous work, the probabilistic constraint (9) implies that the consumption of one of the resources

(the time) is probabilistic. This leads to questions about label choices, extension functions, and the

dominance rule adopted in the dynamic programming algorithm. These issues are addressed in the

next sections.
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4.1.1 Classic shortest path problems with resource constraints.

The ESPPRC (see Irnich and Desaulniers 2005) is generally solved by dynamic programming in the

form of labeling algorithms. These methods have been considerably improved by several authors

(see Feillet et al. 2004 and Righini and Salani 2008, for example). The main concepts of the labeling

algorithm are as follows. A feasible partial route starting from the depot 0 and ending at any node

i ∈ Vc is implicitly represented by a label associated with node i. A label E = (C, T, L, V 1, . . . , V n)

typically has one component C representing the reduced cost of the partial path and several resource

components. A resource is a quantity that accumulates along a route, and at each node its value is

restricted within a so-called resource window. For the VRPTW, there is one resource T for the time,

one resource L for the current load, and n additional resources V i for each i ∈ Vc, accounting for the

path elementarity. In particular, as proposed by Feillet et al. (2004), V i takes the value 1 if either

customer i has already been visited or it cannot be visited because of other resource restrictions.

Starting from an initial label associated with the depot 0, the algorithm extends labels along

a route using extension functions. For example, consider the extension from node i to j, where

i, j ∈ Vc. Let Ci and Ti be the cost and time components of label Ei associated with i, and let

[aj , bj ] be the time-window restriction at node j. Extending Ei along arc (i, j) produces a new label

Ej with cost component Cj = gCij(Ci) and time component Tj = gTij(Ti), where g
C
ij(C) and gTij(T ) are

resource extension functions defined as gCij(C) = C + c̄ij and gTij(T ) = max{aj , T + tij + t̃si}, where

t̃si denotes the deterministic service time at customer i. A new label is feasible and not discarded

by the algorithm only if all the resource windows are satisfied.

From the computational-efficiency point of view, the concept of dominance is extremely impor-

tant because it allows us to limit the number of labels by discarding non-useful paths. Consider two

partial routes r1 and r2 ending at the same node i and represented by labels E1
i and E2

i , respectively.

Generally speaking, label E2
i is said to be dominated by E1

i if

1) Any feasible extension e of r2 ending at a generic node j is also feasible for r1;

2) For any such extension e, the inequality C1
j ≤ C2

j holds, where C l
j is the reduced cost of the

route obtained by extending route rl, l = 1, 2.

In the VRPTW, because of the properties of the extension functions, it can be proved that a

sufficient condition for dominance is that each component in E1
i is not larger than the corresponding

component in E2
i .

4.1.2 Shortest path problems with probabilistic resource consumption

The above label components, extension function, and dominance rules cannot be applied to the

VRPTW-ST, but the main algorithmic structure can still be used.

Label choice. The first difference is that in the VRPTW-ST we disregard capacity constraints.

We therefore omit the load component in our labels. As mentioned in Section 3.3, had we wanted

to enforce capacity constraints, we would have kept this component. The second main difference

is that in the VRPTW-ST the customer service times, and consequently the vehicle arrival times

at customers, are random variables. Furthermore, constraint (9) is a probabilistic constraint. To
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handle this constraint we could consider the route success probability as a resource. It would

then be possible to replace the label component T of the VRPTW by a new label component

P := Pr{r is successful} representing the total success probability of the route. However, according

to the recursion in Section 3.2, the computation of the success probability at a node of a route

requires the probability mass function of the arrival time at its predecessor. In other words, when

we extend a path with arc (i, j) ∈ A, it is not possible to express Pj as a function gPij(Pi) depending

on Pi only, as it was for the label component T in the VRPTW case. A similar issue arises for the

extension of the reduced cost, given its dependence on βr, which in turn depends on the success

probability. Hence, to completely represent a path by a label in the context of the VRPTW-ST,

we need more components. We therefore represent a feasible partial path from node 0 to i ∈ Vc by

a label with the following 2 + n+ bi − ai components:

• One component Ci represents the reduced cost.

• n components V 1
i , . . . , V

n
i represent visited or unreachable nodes.

• bi − ai + 1 components M̄i(ai), . . . , M̄i(bi), one for each z ∈ N and z ∈ [ai, bi], represent the

arrival distribution, where we define

M̄i(t) :=
∑

l≤t

m̄i(l), (22)

and m̄i(l) was defined in (15). Note that, given the effects of the time windows described in

(15), M̄i(t) turns out to be the restriction to values in t ∈ [ai, bi] of the cumulative probability

distribution of the arrival time at customer i. This fact will be useful when proving dominance

properties in Lemma 4.2.

To avoid a redundant label representation, we do not include Pi among the label components. By

the definition of Pi and Equations (13) and (22) we can write

Pi = Pr{ri is successful} = M̄i(bi), (23)

where ri denotes a generic partial route ending in node i. Furthermore, the number of label compo-

nents at each node is node-dependent and varies according to the customer’s time-window width.

A feasible label Ei = (Ci, V
1, . . . , V n, M̄i(ai), . . . , M̄i(bi)) must satisfy the following constraints:

V n
i ∈ [0, 1] for all n ∈ Vc; M̄i(z1) ≤ M̄i(z2) for all z1 ≤ z2, z1, z2 ∈ [ai, bi]; and M̄i(bi) ≥ α, where the

last inequality is implied by (9). The reduced-cost component Ci is not restricted by any resource

window.

Extension functions. Given a node i ∈ Vc, we now show how the associated feasible label

Ei = (Ci, V
1
i , . . . , V

n
i , M̄i(ai), . . . , M̄i(bi)) can be extended along an arc (i, j) ∈ A. Let us start by

considering the label components V 1, . . . , V n. Their extension is straightforward and follows the

approach of Feillet et al. (2004). In particular V j
j = 1, and V l

j = V l
i for all l ∈ Vc. Furthermore, for

any l ∈ Vc with V l
j = 0 such that the earliest possible arrival time from j causes infeasibility with

the time windows of l, V l
j is set to 1 (that is, j is not considered unreachable).

12



For the label components of type M̄(·), the extension of a partial route on arc (i, j) ∈ A requires

the creation of bj −aj +1 label components M̄j(zj), for each zj ∈ [aj , bj ]. Each of these components

can be expressed as a function of the bi − ai + 1 labels M̄i(zi), for each zi ∈ [ai, bi]. In fact, observe

that by combining definition (22) with expression (18), we can write

M̄j(zj) =
∑

k∈N

di(k)
∑

z≤zj

m̄i(z − tij − k)

=
∑

k∈N

di(k)M̄i(zj − tij − k) (24)

for all zj ∈ [aj , bj ].

For the extension of the reduced cost, observe that its expression (21) depends on βr, which

depends in turn (see definition (8)) on the total route success probability. Hence, to give the

expression for the reduced-cost extension function, we first state and prove the following lemma.

Lemma 4.1. Consider any feasible route r = (v0, . . . , vq, vq+1) where v0 and vq+1 represent the

depot 0 and its subroutes rvi = (v0, . . . , vi), 1 ≤ i ≤ q, starting at the origin and ending at node vi.

Then, parameter βr in definition (21) can be expressed as

βr =

q
∑

i=1

pvi−1,vi (25)

where pvi−1,vi := − ln(M̄vi(bvi)/M̄vi−1
(bvi−1

)) ∀ i ≥ 2, and pv0,v1 = 0.

Proof. Since no time window is associated with vq+1, and conditioning on the probability that rvq−1

is successful, we can write:

Pr{r is successful} = Pr{rvq is successful}

= Pr{rvq is successful | rvq−1
is successful}Pr{rvq−1

is successful},

where we have used the fact that the probability Pr{rvq is successful | rvq−1
is not successful} is

zero. Applying the same reasoning to rvq−1
, rvq−2

, . . . , rv1 we can write:

Pr{r is successful} =

q
∏

i=1

Pr{rvi is successful | rvi−1
is successful}, (26)

where we have used Pr{rv1 | is successful} = 1 and Pr{rv0 is successful} = 1. Now, substituting (26)

into the definition (8) of βr, we can write

βr = − ln(

q
∏

i=1

Pr{rvi is successful | rvi−1
is successful}).

Observing that {rvi is successful} implies {rvi−1
is successful} and using properties of the conditional
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probability and (23) we can write

βr = − ln(

q
∏

i=1

Pr({rvi is successful} ∧ {rvi−1
is successful})/Pr{rvi−1

is successful})

= − ln(

q
∏

i=1

Pr{rvi is successful}/Pr{rvi−1
is successful})

= − ln(

q
∏

i=1

M̄vi(bvi)/M̄vi−1
(bvi−1

))

=

q
∑

i=1

pvi−1,vi .

We can now prove the following proposition.

Proposition 4.1. (Reduced cost decomposition) Consider any feasible route r =

(v0, . . . , vq, vq+1) where v0 and vq+1 represent the depot 0 and its subroutes rvi = (v0, . . . , vi),

1 ≤ i ≤ q, starting at the origin and ending at node vi. Then, its reduced cost can be expressed as

c̄r =

q+1
∑

i=1

c̄vi−1,vi ,

where

c̄vi−1,vi = cvi−1,vi − γvi + δpvi−1,vi , i = 1, . . . , q and c̄vq ,vq+1
= cvq ,vq+1

= cvq ,0.

Proof. Consider Equation (25) and recall that cr =
∑q+1

i=1 cvi−1,vi . Consequently, by substituting

(25) into (21) and rearranging, we can express the reduced cost in the form:

c̄r =

q
∑

i=1

(cvi−1,vi − γvi + δpvi−1,vi) + cvq ,vq+1
=

q+1
∑

i=1

c̄vi−1,vi ,

which proves the proposition.

Proposition 4.1 shows that the reduced cost of a route can be decomposed into single arc con-

tributions. Hence, it is straightforward to see that the reduced-cost extension function is defined

by Cj = Ci + c̄ij . Notice that the reduced-cost extension function depends not only on the label

component C, as in the case of VRPTW, but also on the label components M̄i(ai), . . . , M̄i(bi).

Dominance. As previously mentioned, a key element for the labeling algorithm is the ability

to discard non-useful labels. Consider two feasible partial routes r1 and r2, both ending in a given

node i ∈ Vc and represented by the labels E1
i and E2

i . Similarly to the VRPTW, in the context of

the VRPTW-ST, we say that E1
i dominates E2

i when:

1) Any feasible extension e of r2 ending at a given node j is also feasible for r1, and
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2) For any such extension e, the inequality C1
j ≤ C2

j holds, where C l
j is the reduced cost of the

route obtained by extending route rl, l = 1, 2.

If the inequality in (2) is satisfied at equality for all feasible extensions e, then these labels dominate

each other and at most one can be deleted. Because these two conditions are difficult to verify, we

derive below sufficient conditions to identify dominated labels. These conditions are based in part

on the following lemma.

Lemma 4.2. (Stochastic dominance). If two routes r1 and r2 are such that their labels satisfy

M̄1
i (z) ≥ M̄2

i (z) for all z ∈ [ai, bi], then for any common feasible extension e ending at a given node

j, the extended labels satisfy M̄1
j (z) ≥ M̄2

j (z) for all z ∈ [aj , bj ].

Proof. First consider the case of a single-arc extension along arc (i, j). In this case, using Equation

(24) and the hypotheses of the lemma, we can write

M̄1
j (z) =

∑

k∈N

di(k)M̄
1
i (z − tij − k)

≥
∑

k∈N

di(k)M̄
2
i (z − tij − k) = M̄2

j (z)

for all z ∈ [aj , bj ], which proves the lemma in the case of a single-arc extension. To prove the lemma

in the case of a more general extension, it suffices to recursively apply the single-arc result to all

arcs in the extension.

It is worth noticing that the concept of stochastic dominance has been introduced and used in

more general contexts than in this paper (see for example Wellman et al. (1995)). In our setting,

however, Lemma 4.2 assures that stochastic dominance holds in spite of the presence of hard time

windows.

To present the dominance rule and to simplify the notation, we express the reduced cost c̄r of a

partial route r ending in node i ∈ Vc as c̄r = ρi− δ ln M̄i(bi), obtained by setting ρi := cr −
∑

h∈r γh

and substituting this into (21), together with (8) and (22).

Proposition 4.2. (Dominance rule). If r1 and r2 are such that

(i) ρ1i ≤ ρ2i ,

(ii) V 1j
i ≤ V 2j

i for all j ∈ Vc,

(iii) M̄1
i (z) ≥ M̄2

i (z), for all z ∈ [ai, bi],

then r1 dominates r2 in the sense specified by conditions 1) and 2).

Proof. Proof. We need to show that conditions 1) and 2) are satisfied under the hypotheses (i), (ii),

and (iii). Consider an extension e of routes r1 and r2, resulting in routes denoted r1 ⊕ e and r2 ⊕ e,

respectively. Assume that r2 ⊕ e is feasible, that is, it is elementary and its success probability

is greater than or equal to α. From hypotheses (ii) and (iii), Lemma 4.2, and the fact that the
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extension functions of the V j components are nondecreasing, it follows that r1 ⊕ e is also feasible

and condition 1) is met.

Now let A(e) = {(i, j) ∈ A | (i, j) belongs to e} and assume that extension e ends in node j.

We can write:

C1
j = ρ1i +

∑

(h,k)∈A(e)

(chk − γk)− δ ln M̄1
j (bj)

≤ ρ2i +
∑

(h,k)∈A(e)

(chk − γk)− δ ln M̄1
j (bj)

≤ ρ2i +
∑

(h,k)∈A(e)

(chk − γk)− δ ln M̄2
j (bj) = C2

j ,

where the first inequality follows from (i), and the second follows from Lemma 4.2, together with

the fact that logarithms are increasing functions and δ ≥ 0. Thus, condition 2) is satisfied.

4.2 Acceleration strategies

To improve the efficiency of our algorithm, we adapted several known techniques from the literature.

Below we briefly describe these accelerating strategies.

4.2.1 The ng-path relaxation

The ESPPRC is strongly NP-hard (see Dror 1994) and it must be solved many times during a

branch-price-and-cut algorithm. Much work has been done to speed up its solution, including the

total or partial relaxation of the path elementarity. We adopt a path relaxation called the ng-path

introduced in Baldacci et al. (2011). This approach associates a subset Ni ⊆ Vc with each customer

i ∈ Vc, such that i ∈ Ni and |Ni| ≤ ∆, where ∆ is a given integer parameter. Given a partial

route r = (v0, . . . , vq), the subsets Ni allow us to define a new subset Π(r) whose elements are

prevented from being extension candidates for r. The subset Π(r) is defined as Π(r) = {vi ∈ r | vi ∈
⋂q

l=i+1Nvl , i = 1, . . . , q − 1} ∪ {vq}. If ∆ is too small, the ng-paths may contain many cycles. If

∆ = |Vc|, the ng-paths are elementary but computationally expensive to handle.

We implemented the ng-path relaxation by modifying the extension function for the V1, . . . , Vn

label components. Specifically, we set Vi = 0 for all i /∈ Π(r) that are still reachable from vq.

In our implementation we eliminate 2-cycles according to the procedure described in Irnich and

Villeneuve (2006). As a final remark, we build subsets Ni by taking the nearest ∆ − 1 customers,

and we experimented with three different values of ∆. Preliminary computational tests with different

values of ∆ showed a slight advantage for ∆ = 10.

4.2.2 Decremental state space relaxation

The decremental state space relaxation was introduced independently by Boland et al. (2006) and

Righini and Salani (2008). This technique initially solves the subproblem without considering any

elementarity requirements, i.e., without considering any label component V 1, . . . , V n. If the com-

puted shortest path is non-elementary, some of the corresponding label components are added to
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avoid non-elementarity and the subproblem is solved again. This process is iterated until an elemen-

tary shortest path is found. In a column-generation context, however, the algorithm may be stopped

either if a negative reduced cost elementary path is found, or if no negative reduced cost (cyclic)

path is found. As proposed in Desaulniers et al. (2008), instead of restarting the decremental state

space with an empty set of visit-label components at each iteration of the column generation, we

use the components from the previous iteration. In our implementation we straightforwardly adapt

this technique to ng-paths.

4.2.3 Heuristic dynamic programming

To speed up the exact dynamic programming algorithm, we use two common techniques. The first

temporarily eliminates unpromising arcs from the arc set A. This operation depends on the current

value of the dual variables. If no routes with negative reduced costs are found, the number of arcs

is progressively increased until all the arcs are considered. See Desaulniers et al. (2008) for a more

detailed description of this technique.

The second technique consists in applying an aggressive dominance rules by eliminating a large

number of labels, some of them possibly yielding shortest paths. Similarly to the previous technique,

if no route with a negative reduced cost is found, we try again with a weaker dominance rule. In

our algorithm we define two parameters Vmax and Mmax indicating that the dominance comparison

must be done on a subset of the conditions in Proposition 4.2, specifically on (i), on the Vmax

label components in (ii), and on the Mmax label components in (iii), according to the following

mechanism. Initially, Vmax = 10 (the actual number of visit-label components considered might be

lower because of the interaction with the decremental state space relaxation) and Mmax = 1 (we

start by considering the last label component, indicating the total route probability). If no routes

with negative reduced costs are found, Vmax is increased in steps of 10 and the process iterates. If

at the end of these iterations no routes with negative reduced costs are found, Mmax is progressively

increased by Mtot/Mres, where Mtot is the maximum number of M(·) at a given customer, and

Mres is a parameter set to 4 in our algorithm. This mechanism iterates until either a route with a

negative reduced cost is found or all the M(·) label components have been considered.

4.2.4 Tabu search column generator

To find columns with negative reduced costs, it is not always necessary to solve the ESPPRC by

dynamic programming. In fact, in many cases, good heuristics can be effective. In our algorithm

we adopt a method similar to that presented in Desaulniers et al. (2008); it solves the ESPPRC

by a multi-start tabu search algorithm. The method is based on two moves: the insertion and

deletion of individual customers from a given solution. We adapt the procedure to our case by

restricting the explored solution space to solutions that are feasible with respect to the worst-case

service-time scenario. To diversify the search, the algorithm is run several times with different

initial solutions and is limited to a maximum of Imax iterations for each run. The set of initial

solutions considered is given by the routes in the basis of the current RMP. These routes are good

starting points because they have reduced costs of zero. In our experiments we tested Imax =
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5, 15, 25. Preliminary computational tests showed that this technique gave a significant average

improvement in the computational time (ranging from 10% to more than 50%). The best results were

obtained with Imax = 15. Given that our tabu search procedure does not involve any randomness,

experimental replication was unecessary.

4.3 Cutting planes: Subset-row inequalities

Once a valid lower bound and the corresponding solution have been obtained by column generation

at a given node of the branch-and-bound search tree, we strengthen the bound by looking for

violated valid inequalities. We consider a family of inequalities introduced in Jepsen et al. (2008)

called subset-row inequalities that can be seen as Chvátal–Gomory rank I cuts. In the general case,

subset-row inequalities are expressed as:

∑

r∈R

⌊1

k

∑

i∈S

air

⌋

xr ≤
⌊ |S|

k

⌋

, ∀S ⊆ Vc, 2 ≤ k ≤ |S|.

Similarly to Jepsen et al. (2008), we consider only the cuts obtained with |S| = 3 and k = 2 because

they are easier to find. In this case, the cuts can be rewritten as:

∑

r∈RS

xr ≤ 1, ∀S ⊆ Vc : |S| = 3, (27)

where RS is the subset of paths visiting at least two customers in S. In a column generation

method, the addition of subset-row inequalities to the RMP requires several adjustments to the

subproblem, as well as careful management when the number of added cuts increases. We follow

the implementation of Desaulniers et al. (2008), to which we refer for the details.

4.4 Branching strategies

To find integer solutions, we apply the following branching rules whenever required. First, we branch

on the total number of vehicles used. If this number is integer, we branch on the arc-flow variables.

In this case, we select the arc (i, j) with flow closest to 0.5. To fix the flow on this arc to 0, we

simply remove (i, j) from set A. To fix it to 1, we remove all arcs (i, ℓ), ℓ 6= j and all arcs (ℓ, j), ℓ 6= i

from A. The corresponding columns in the RMP are deleted. Finally, the branch-and-bound tree

is explored using a best-first strategy.

5 Computational experiments

We performed two sets of experiments to investigate different aspects of our work, namely 1) tests

on benchmark instances; 2) evaluation under a variety of conditions, such as different probability

distributions and reliability thresholds, and comparison with a deterministic approach.

The experiments were performed on machines running Linux (Suse) and an Intel Core i7-2600

3.40GHz CPU with 16G of RAM.
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5.1 Instance set

Following the current practice in testing algorithmic methods for VRP-related problems, we derived

our benchmark instances from Solomon’s well-known database (Solomon (1987)). It is made up of

six instance classes: R1, RC1, C1, R2, RC2, C2. All Solomon’s instances contain 100 customers

located on a 100*100 square. The prefixes of the class names indicate how the customer locations are

chosen: R for random, C for clustered, and RC for hybrid random and clustered. The numeric suffix

(1 or 2) is related to the average time-window width compared to the average traveling time: class

names ending with 1 usually have narrower time windows. There are between 8 and 12 instances

for each class, for a total of 85.

We derived several instance families. For all of them we disregarded the vehicle capacity and

the customer demands. The time horizon was discretized in intervals of 0.1 minutes. Then, starting

from the original service times, we constructed several discrete triangular distributions and several

values for the reliability threshold. Our instance families are as follows:

1. Basic: Symmetric triangular distribution with median equal to the deterministic value of

the service time, i.e., 10 for R and RC classes and 90 for C classes, and support intervals

of {8.0, 8.1, . . . , 12.0} for R and RC classes and {70.0, 70.1, . . . , 110.0} for C classes. The

reliability threshold is set to α = 95%.

2. Low-probability: Similar to the previous family, but with α = 85%.

3. Large-support: Similar to the Basic family, but the support of the probability distributions

is considerably larger: {5.0, 5.1, . . . , 15.0} for R and RC classes, and {45.0, 45.1, . . . , 135.0} for

C classes.

4. Positive-skewed: This is a variant of the Large-support family. The distributions have the

same support as the Large-support, but different medians: 7.0 for R and RC classes and 63.0

for C classes. This represents practical situations where service times have large variability,

like for Large-support, but they are more likely to be short.

It is worth noticing that we also considered hybrid instances where different service probability

distributions were associated to different subsets of customers. However, preliminary results did

not provide elements that could not be inferred by the analysis of the four cases reported below.

Therefore, hybrid instances have not been further investigated.

Finally, our method was able to solve very few 100-customer instances, so we followed common

practice by reducing the size of Solomon’s instances by considering only the first 25 customers (for

suffixes 1 and 2) and 50 customers (for suffix 1 only).

5.2 Algorithmic behavior on benchmark instances

This section reports the results obtained by our algorithm for the benchmark instances of the

VRPTW-ST in the four classes introduced in Section 5.1. The main goal is to analyze the impact

of different problem settings on the efficiency of our algorithm.
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Figure 1: Number of solved instances by time

Figure 1 reports the evolution of the number of solved instances, aggregated over class type,

over time. The x-axis indicates the computing time in seconds, and the y-axis indicates the number

of instances solved. The first observation we can make is that problems with a larger probability-

distribution support, i.e., Large-support and Positive-skewed, are much harder than those with

a smaller support, i.e., Basic and Low-probability. One of the reasons for this behavior is that

the arrival-time probability distributions at the customers usually have larger supports when the

service-time probability distributions have larger supports. This fact has two general consequences:

1) the memory consumption is larger; and 2) it is harder to find dominated labels because there are

more conditions to be verified. Another reason is that, on average, the root gap increases for large

service-time distributions and this slows the convergence. When comparing the Large-support and

Positive-skewed classes, we observe that the former are slightly more difficult than the latter, and

this seems to be linked to better root-gap values for the Positive-skewed case. There is no significant

difference in performance between the Basic and Low-probability classes, although Low-probability

seems slightly more difficult given the larger feasible region and the related harder fathoming process

in the dynamic programming algorithm. We furthermore observe that around 80% of the instances

are solved within the first hour of computation.

More detailed results are shown in Tables 1, 2, 3, and 4. The data are grouped by instance

type and number of customers, and several levels of aggregation are reported. Columns 1, 2, and

3 identify the instance type, the class, and the number of customers. Columns 4 and 5 report the

mean and standard deviation of the number of vehicles used in the optimal solution. Columns 6

and 7 report the mean and standard deviation of the route success probability. Columns 8 and 9

report the mean and standard deviation of the computing times, while the last two columns report

the total number of instances in the group and the number of instances solved to optimality in 5

hours of computing time. Each column reports aggregated results for a particular instance group

identified by the first three columns. For example, row 1 reports aggregated results for instances

belonging to the C1 family with 25 customers. A missing value in one of the first three columns
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type class n nVehAvg nVehStd SuccProbAvg SuccProbStd TimeAvg TimeStd total count
1 C 25 3.2 0.4 98.3 1.7 2633.1 3291.7 9 9
1 R 25 5.0 1.3 99.4 1.1 13.8 22.3 12 12
1 RC 25 3.3 0.4 99.3 1.1 41.7 55.1 8 8
1 25 4.0 1.2 99.0 1.4 834.4 2195.4 29 29
1 C 50 5.6 0.8 97.4 1.6 8763.7 6031.3 9 5
1 R 50 8.5 2.0 97.7 1.7 1123.0 1449.7 12 11
1 RC 50 6.6 1.0 98.6 1.5 3008.9 4105.4 8 7
1 50 7.3 1.9 97.9 1.7 3358.0 4777.2 29 23
1 5.4 2.3 98.5 1.7 1950.6 3788.5 58 52
2 C 25 2.0 0.0 99.8 0.4 3515.6 5147.3 8 7
2 R 25 2.9 0.7 99.4 1.1 2580.4 4605.5 11 10
2 RC 25 3.0 0.0 100.0 0.0 2594.9 4733.2 8 5
2 25 2.6 0.6 99.7 0.8 2881.3 4832.3 27 22

4.6 2.3 98.9 1.6 2227.3 4148.4 85 74

Table 1: Algorithmic behavior on the Basic instance family

type class n nVehAvg nVehStd SuccProbAvg SuccProbStd TimeAvg TimeStd total count
1 C 25 3.0 0.0 95.4 4.9 5232.8 6983.3 9 8
1 R 25 5.0 1.3 97.5 4.4 15.2 27.2 12 12
1 RC 25 3.3 0.4 99.3 1.1 32.4 41.1 8 8
1 25 3.9 1.3 97.4 4.2 1510.8 4413.1 29 28
1 C 50 5.0 0.0 92.2 1.4 3244.5 4065.2 9 4
1 R 50 8.5 2.0 93.7 3.9 1186.3 1585.7 12 11
1 RC 50 6.6 1.0 94.9 4.3 3284.4 3197.3 8 7
1 50 7.2 2.0 93.8 3.8 2228.1 2932.6 29 22
1 5.4 2.3 95.8 4.4 1826.4 3849.3 58 50
2 C 25 2.0 0.0 99.8 0.4 1703.7 2124.2 8 6
2 R 25 2.9 0.7 99.4 1.1 2923.1 5426.1 11 10
2 RC 25 3.0 0.0 100.0 0.0 497.4 729.1 8 4
2 25 2.7 0.7 99.7 0.9 2072.1 4132.8 27 20

4.6 2.4 96.9 4.1 1896.6 3933.9 85 70

Table 2: Algorithmic behavior on the Low-probability instance family

type class n nVehAvg nVehStd SuccProbAvg SuccProbStd TimeAvg TimeStd total count
1 C 25 4.0 0.9 96.7 1.7 6121.7 6386.5 9 5
1 R 25 5.4 1.4 98.1 1.3 119.5 245.9 12 12
1 RC 25 3.4 0.5 97.2 1.6 476.8 479.1 8 8
1 25 4.5 1.4 97.6 1.6 1434.3 3711.8 29 25
1 C 50 8.0 0.0 96.3 0.0 7271.5 0.0 9 1
1 R 50 9.3 2.2 96.5 0.6 1846.6 1793.7 12 9
1 RC 50 7.8 1.1 95.5 0.1 8201.2 5510.0 8 4
1 50 8.8 2.0 96.2 0.7 4049.7 4419.1 29 14
1 6.0 2.7 97.1 1.5 2373.1 4173.3 58 39
2 C 25 2.0 0.0 99.1 1.5 6331.6 4019.5 8 4
2 R 25 3.0 0.7 100.0 0.0 2264.0 3947.0 11 9
2 RC 25 3.0 0.0 99.8 0.4 1037.4 1454.9 8 4
2 25 2.8 0.6 99.7 0.8 2932.5 4043.2 27 17

5.0 2.7 97.9 1.8 2542.9 4142.2 85 56

Table 3: Algorithmic behavior on the Large-support instance family
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type class n nVehAvg nVehStd SuccProbAvg SuccProbStd TimeAvg TimeStd total count
1 C 25 3.8 1.0 98.1 1.8 4854.7 5430.1 9 5
1 R 25 5.3 1.5 98.1 1.3 86.3 145.5 12 12
1 RC 25 3.3 0.4 96.8 1.4 742.7 1589.9 8 8
1 25 4.3 1.5 97.7 1.6 1250.0 3169.8 29 25
1 C 50 6.0 1.4 96.0 1.2 8644.4 4798.8 9 3
1 R 50 9.2 2.3 96.1 1.1 3543.2 4523.5 12 9
1 RC 50 7.2 1.5 96.1 1.0 6015.2 5150.1 8 5
1 50 8.1 2.4 96.1 1.1 5170.5 5141.9 29 17
1 5.8 2.6 97.1 1.6 2836.9 4515.0 58 42
2 C 25 2.0 0.0 99.4 0.6 4841.2 4741.2 8 4
2 R 25 3.1 0.6 99.7 0.9 1183.5 2305.4 11 8
2 RC 25 3.0 0.0 100.0 0.1 1017.8 1230.9 8 4
2 25 2.8 0.6 99.7 0.8 2056.5 3353.4 27 16

5.0 2.6 97.8 1.8 2621.6 4240.9 85 58

Table 4: Algorithmic behavior on the Positive-skewed instance family

indicates that the data have been aggregated at higher levels. For example, row 4 reports aggregated

data for all the instances in C1, R1, and RC1 with 25 customers; row 9 reports aggregated data

for all the instances in C1, R1, and RC1; and the last row aggregates over all the instances. The

results mostly confirm the highlighted tendencies.

5.3 Model behavior

In this section we analyze the behavior of the proposed model, and we do this in two ways. First,

we compare variations in solution cost, number of vehicles used, and success probability when

testing our model on the four instance families. Second, we compare the solutions obtained by

our probabilistic model with two plans obtained by solving the deterministic VRPTW model. In

the first deterministic case we set the service time to the median of the corresponding stochastic

instance, and in the second we set the service time to the corresponding worst-case value.

type class n %CostDAvg %CostDStd %VehDAvg %VehDStd %SuccDAvg %SuccDStd count countD
1 C 25 -0.9 1.2 -25.0 43.3 -2.92444 3.91583 8 -1
1 R 25 -0.3 0.6 0.0 0.0 -1.93500 3.60071 12 0
1 RC 25 0.0 0.0 0.0 0.0 0.00000 0.00000 8 0
1 25 -0.4 0.8 -7.1 25.8 -1.66484 3.34874 28 -1
1 C 50 -0.1 0.1 0.0 0.0 -5.09193 2.49325 3 0
1 R 50 -0.2 0.2 0.0 42.6 -3.98612 3.94469 11 0
1 RC 50 -0.1 0.2 0.0 0.0 -3.70317 4.81969 7 0
1 50 -0.1 0.2 0.0 30.9 -4.04978 4.12059 21 0
1 -0.3 0.6 -4.1 28.3 -2.68696 3.88302 49 -1
2 C 25 0.0 0.0 0.0 0.0 0.00000 0.00000 6 0
2 R 25 0.0 0.0 0.0 0.0 0.00000 0.00000 10 0
2 RC 25 0.0 0.0 0.0 0.0 0.00000 0.00000 4 -1
2 25 0.0 0.0 0.0 0.0 0.00000 0.00000 20 -1

-0.2 0.5 -2.9 23.9 -1.90813 3.49192 69 -2

Table 5: Comparison between Low-probability and Basic instance families

Table 5 compares the results obtained by running our algorithm on instances with the same

service-time probability distributions and two different reliability thresholds α = (0.85, 0.95), i.e.,

Low-probability and Basic. Specifically, Table 5 shows the relative variation in the results obtained

for the Low-probability family, and it uses as a reference the values obtained for the Basic family.

The values are aggregated as before and the columns report the following data. Columns 1, 2, and 3
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identify the instance type, the class, and the number of customers. Columns 4 and 5 report the mean

and standard deviation of the percentage variation in the solution cost. Columns 6 and 7 report the

mean and standard deviation of the percentage variation in the number of vehicles used. Columns 8

and 9 report the mean and standard deviation of the success probability, while Columns 10 and 11

report the number of instances in the comparison (only solutions that are optimal for both settings

are considered) and the difference in the number of instances solved for each group. The results

show an average solution cost improvement of 0.2%, which is correlated with an average decrease

in the vehicles used, and corresponds approximately to a 2% deterioration in the average success

probability, which is one order of magnitude higher. This suggests that weakening the constraint on

the success probability would not necessarily imply a significant gain in terms of the solution cost.

Finally, for α = 0.85, our algorithm failed to find the optimal solution of two instances that were

solved to optimality for α = 0.95, and this confirms that the problems are more difficult on average.

type class n %CostDAvg %CostDStd %VehDAvg %VehDStd %SuccDAvg %SuccDStd count countD
1 C 25 15.4 12.7 60.0 49.0 -0.91052 1.27116 5 -4
1 R 25 3.0 4.0 41.7 49.3 -1.32654 1.92608 12 0
1 RC 25 3.7 5.0 12.5 33.1 -2.04566 1.89631 8 0
1 25 5.7 8.4 36.0 48.0 -1.47346 1.85286 25 -4
1 C 50 0 -3
1 R 50 4.6 3.7 44.4 83.1 -1.34917 2.27829 9 -2
1 RC 50 4.1 1.6 50.0 50.0 -2.42705 1.69911 4 -3
1 50 4.4 3.3 46.2 74.6 -1.68082 2.17469 13 -8
1 5.3 7.1 39.5 58.7 -1.54440 1.97135 38 -12
2 C 25 0.0 0.0 0.0 0.0 0.34183 0.50852 3 -3
2 R 25 0.3 0.5 0.0 0.0 0.72698 1.21418 8 -2
2 RC 25 0.0 0.0 0.0 0.0 -0.24850 0.43041 4 -1
2 25 0.1 0.4 0.0 0.0 0.38982 1.02816 15 -6

3.8 6.5 28.3 52.8 -0.99698 1.96079 53 -18

Table 6: Comparison between Basic and Large-support instance families

Table 6 compares the results obtained by running our algorithm on instances with different

service-time probability distributions, and the same reliability threshold α = 0.95, i.e., the Basic

and Large-support families. Specifically, Table 6 shows the relative variation in the results obtained

for the Large-support family, and it uses as a reference the values obtained for the Basic family.

The results show that when the uncertainty is higher, the solution cost and the number of vehicles

used might be considerably higher for the same reliability threshold.

Table 7 compares the results obtained by running our algorithm on instances with Large-support

and Positive-skewed service-time probability distributions and the same reliability threshold α =

0.95. Specifically, Table 7 shows the relative variation in the results obtained for the Positively

skewed distribution, and it uses as a reference the values obtained for the Large-support family.

The results show that although the support of both probability distributions is large, the Positive-

skewed distribution has more potential for reductions in the cost and vehicle utilization.

Tables 8 and 9 compare the solutions obtained by the stochastic model and the deterministic

VRPTW model with the service time set to the median of the probability distribution. Specifically,

Table 8 shows the relative variation in the results obtained for the deterministic model, and it

uses as a reference the values obtained for the Basic family. Table 9 shows the results obtained by

the same deterministic model, and it uses as a reference the values obtained for the Large-support
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type class n %CostDAvg %CostDStd %VehDAvg %VehDStd %SuccDAvg %SuccDStd count countD
1 C 25 -0.7 0.5 0.0 0.0 0.69870 1.77200 4 0
1 R 25 -0.5 0.7 -16.7 37.3 0.00942 1.80405 12 0
1 RC 25 -3.0 4.2 -12.5 33.1 -0.37952 2.07888 8 0
1 25 -1.4 2.7 -12.5 33.1 -0.00535 1.92889 24 0
1 C 50 -3.2 0.0 0.0 0.0 -1.20090 0.00000 1 2
1 R 50 -2.6 2.7 -11.1 31.4 -0.33536 1.18514 9 0
1 RC 50 -2.6 1.1 0.0 0.0 0.45972 1.09671 4 1
1 50 -2.6 2.2 -7.1 25.8 -0.17001 1.20556 14 3
1 -1.8 2.6 -10.5 30.7 -0.06602 1.70048 38 3
2 C 25 -0.0 0.0 0.0 0.0 -0.50783 0.74314 3 1
2 R 25 -0.0 0.1 0.0 0.0 -0.34969 0.92519 8 0
2 RC 25 0.0 0.0 0.0 0.0 0.20800 0.36027 4 0
2 25 -0.0 0.1 0.0 0.0 -0.23260 0.82208 15 1

-1.3 2.4 -7.5 26.4 -0.11316 1.50670 53 4

Table 7: Comparison between Postively-skewed and Large-support instance families

type class n %CostDAvg %CostDStd %VehDAvg %VehDStd %SuccDAvg %SuccDStd count countD
1 C 25 -7.2 9.6 -22.2 41.6 -14.95029 14.30632 9 0
1 R 25 -0.3 0.6 8.3 27.6 -5.71342 10.36817 12 0
1 RC 25 -0.3 0.5 0.0 0.0 -14.63575 16.35132 8 0
1 25 -2.5 6.2 -3.4 32.0 -11.04137 14.20596 29 0
1 C 50 -6.4 10.9 -50.0 86.6 -19.94655 25.81939 4 5
1 R 50 -1.4 1.0 -27.3 61.7 -48.76202 21.79792 11 0
1 RC 50 -1.0 1.9 0.0 0.0 -23.69179 23.26045 7 1
1 50 -2.2 5.2 -22.7 59.8 -35.54595 26.59363 22 6
1 -2.3 5.8 -11.8 47.1 -21.61197 23.81429 51 6
2 C 25 0.0 0.0 0.0 0.0 0.00053 0.00119 6 2
2 R 25 0.0 0.0 0.0 0.0 0.00000 0.00000 10 1
2 RC 25 0.0 0.0 0.0 0.0 0.00000 0.00000 5 3
2 25 0.0 0.0 0.0 0.0 0.00015 0.00068 21 6

-1.7 5.0 -8.3 40.0 -15.30844 22.32059 72 12

Table 8: Comparison between deterministic approach (median values) and stochastic (Basic family)

type class n %CostDAvg %CostDStd %VehDAvg %VehDStd %SuccDAvg %SuccDStd count countD
1 C 25 -19.9 16.7 -100.0 89.4 -39.35158 33.97154 5 4
1 R 25 -3.1 3.4 -33.3 47.1 -23.12847 20.30033 12 0
1 RC 25 -3.6 4.2 -12.5 33.1 -34.56294 18.85600 8 0
1 25 -6.7 10.5 -40.0 63.2 -30.03212 24.27375 25 4
1 C 50 -33.3 0.0 -300.0 0.0 -93.01458 0.00000 1 8
1 R 50 -5.6 2.7 -77.8 62.9 -75.77688 13.19437 9 2
1 RC 50 -4.1 1.4 -50.0 50.0 -56.44372 8.65402 4 4
1 50 -7.2 7.6 -85.7 83.3 -71.48438 15.58537 14 14
1 -6.8 9.6 -56.4 74.4 -44.91242 29.33082 39 18
2 C 25 -0.0 0.0 0.0 0.0 -6.33533 8.98435 3 5
2 R 25 -0.3 0.5 0.0 0.0 -7.22580 9.74890 8 3
2 RC 25 0.0 0.0 0.0 0.0 0.00000 0.00000 4 4
2 25 -0.1 0.4 0.0 0.0 -5.12083 8.74546 15 12

-5.0 8.7 -40.7 68.1 -33.85920 30.98746 54 30

Table 9: Comparison between deterministic approach (median values) and stochastic (Large-support
family)
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family. The analysis is restricted to the solved instances only. The two tables display similar

trends, but the Large-support family has more variation. Generally speaking, the results show that

deterministic planning with median values consistently lowers the success probability, while the

solution costs improve only marginally. There are also type-specific differences: the advantages of

the stochastic model are evident for type 1 but almost negligible for type 2. This is because type-2

instances have wide time windows, so service-time uncertainty has little effect on feasibility. When

the time windows are narrower, the stochastic model becomes important. This can be confirmed

by inspecting, for instance, row 9 of both tables where aggregated results are shown for type-1

instances only: an average improvement of 2.3% in the solution cost has a corresponding decrease of

21% in the success probability when the reference is the Basic family, and an average improvement

of 6.8% in the solution cost has a corresponding decrease of 44% in the success probability when the

reference is the Large-support family. These values imply that the deterministic plan has a success

probability below 75% for the Basic family and below 50% for the Large-support family, and such

low values are not acceptable for most practical applications.

type class n %CostDAvg %CostDStd %VehDAvg %VehDStd %SuccDAvg %SuccDStd count countD
1 C 25 18.4 10.4 33.3 47.1 1.71514 1.74803 9 0
1 R 25 1.3 2.4 16.7 37.3 0.55087 1.09193 12 0
1 RC 25 3.9 4.9 12.5 33.1 0.72861 1.10276 8 0
1 25 7.3 10.0 20.7 40.5 0.96123 1.42763 29 0
1 C 50 26.8 3.2 100.0 0.0 3.28417 1.18930 3 2
1 R 50 1.4 0.9 18.2 57.5 2.33595 1.75452 11 1
1 RC 50 7.6 3.9 66.7 47.1 1.44015 1.61291 6 0
1 50 7.0 9.1 45.0 58.9 2.20944 1.74508 20 3
1 7.2 9.6 30.6 50.3 1.47070 1.68095 49 3
2 C 25 3.8 5.5 -16.7 37.3 0.17732 0.39506 6 2
2 R 25 0.2 0.4 0.0 0.0 0.58158 1.12425 10 1
2 RC 25 0.0 0.0 0.0 0.0 0.00000 0.00000 5 3
2 25 1.2 3.4 -4.8 21.3 0.32760 0.84214 21 6

5.4 8.7 20.0 46.6 1.12777 1.57005 70 9

Table 10: Comparison between deterministic approach (worst case values) and stochastic (Basic
family)

type class n %CostDAvg %CostDStd %VehDAvg %VehDStd %SuccDAvg %SuccDStd count countD
1 C 25 19.1 11.6 80.0 40.0 3.25466 1.71267 5 3
1 R 25 3.0 2.0 33.3 47.1 1.87741 1.26070 12 0
1 RC 25 19.9 6.7 100.0 50.0 2.77428 1.57894 8 0
1 25 11.6 10.6 64.0 55.7 2.43986 1.57090 25 3
1 C 50 14.9 0.0 200.0 0.0 3.68960 0.00000 1 4
1 R 50 3.2 2.1 66.7 47.1 3.52046 0.64401 9 3
1 RC 50 10.7 10.0 125.0 43.3 4.50800 0.09573 4 1
1 50 6.2 7.0 92.9 59.3 3.81469 0.68070 14 8
1 9.6 9.8 74.4 58.7 2.93339 1.47755 39 11
2 C 25 8.1 4.0 0.0 0.0 0.01173 0.01659 3 5
2 R 25 0.0 0.0 0.0 0.0 0.00000 0.00000 8 3
2 RC 25 0.3 0.5 0.0 0.0 0.24850 0.43041 4 4
2 25 1.7 3.7 0.0 0.0 0.06861 0.24748 15 12

7.4 9.3 53.7 60.0 2.13762 1.80005 54 23

Table 11: Comparison between deterministic approach (worst case values) and stochastic (Large-
support family)

We end our analysis with Tables 10 and 11, which compare the solutions obtained by the

stochastic model and the deterministic VRPTW model with the service time set to the worst-
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case time of the probability distribution. Specifically, Table 10 shows the relative variation in the

results obtained for the deterministic model, and it uses as a reference the values obtained for the

Basic family. Table 11 shows the results obtained for the deterministic model, and it uses as a

reference the values obtained for the Large-support family. As for the previous case, we restrict

our analysis to the solved instances. The two tables display similar trends, but the Large-support

family has more variation. Generally speaking, the results show that the deterministic plan with

worst-case values consistently increases the solution cost, while the success probability improves

only marginally. There are again type-specific differences. This can be confirmed by inspecting,

for instance, row 9 of both tables where aggregated results are shown for type-1 instances only: an

average improvement of 1.4% in the success probability has a corresponding increase of 7.2% in the

solution cost when the reference is the Basic family, and an average improvement of 2.9% in the

success probability has a corresponding increase of 9.6% in the solution cost when the reference is

the Large-support family.

6 Conclusion

In this paper we have presented the VRPTW-ST, which is an important stochastic variant of the

VRPTW where service times are stochastic and time windows are hard. We formulate the problem

as a set partitioning model with a probabilistic constraint on the global success probability of the

route plan. We solve the VRPTW-ST by a branch-price-and-cut algorithm. The results show

that our method is effective, and that a stochastic chance-constrained model has advantages over

deterministic models.

One of the limitations of our approach is the high dimension of the label in the dynamic program-

ming algorithm. Future research might focus on suitable aggregate representations of the planning

horizon accompanied by new modified dominance rules.
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1995, Montréal, Canada, pp. 532–539.

28


