
1 23

Journal of Scheduling

ISSN 1094-6136

J Sched
DOI 10.1007/s10951-017-0513-5

Solving a wind turbine maintenance
scheduling problem

Aurélien Froger, Michel Gendreau, Jorge
E. Mendoza, Eric Pinson & Louis-Martin
Rousseau

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

J Sched
DOI 10.1007/s10951-017-0513-5

Solving a wind turbine maintenance scheduling problem

Aurélien Froger1 · Michel Gendreau2 · Jorge E. Mendoza3,4 · Eric Pinson1 ·
Louis-Martin Rousseau2

© Springer Science+Business Media New York 2017

Abstract Driven by climate change mitigation efforts, the
wind energy industry has significantly increased in recent
years. In this context, it is essential to make its exploita-
tion cost-effective. Maintenance of wind turbines therefore
plays an essential role in reducing breakdowns and ensuring
high productivity levels. In this paper, we discuss a challeng-
ing maintenance scheduling problem rising in the onshore
wind power industry. While the research in the field primar-
ily focuses on condition-based maintenance strategies, we
aim to address the problem on a short-term horizon consid-
ering the wind speed forecast and a fine-grained resource
management. The objective is to find a maintenance plan
that maximizes the revenue from the electricity production
of the turbines while taking into account multiple task exe-

B Aurélien Froger
aurelien.froger@uco.fr

Michel Gendreau
michel.gendreau@cirrelt.ca

Jorge E. Mendoza
jorge.mendoza@univ-tours.fr

Eric Pinson
eric.pinson@uco.fr

Louis-Martin Rousseau
louis-martin.rousseau@cirrelt.net

1 Université Bretagne Loire, Université Catholique de l’Ouest,
LARIS EA 7315, Angers, France

2 CIRRELT Interuniversity Research Centre on Enterprise
Networks, Logistics and Transportation, and Département de
mathématiques et de génie industriel, Polytechnique
Montréal, Montreal, Canada

3 CNRS, LI EA 6300, ROOT ERL CNRS 6305, Université
François-Rabelais de Tours, Tours, France

4 Centre de Recherches Mathématiques (UMI 3457 CNRS),
Montreal, Canada

cution modes and task-technician assignment constraints. To
solve this problem, we propose a constraint programming-
based large neighborhood search (CPLNS) approach. We
also propose two integer linear programming formulations
that we solve using a commercial solver. We report results
on randomly generated instances built with input from wind
forecasting and maintenance scheduling software compa-
nies. The CPLNS shows an average gap of 1.2%with respect
to the optimal solutions if known, or to the best upper bounds
otherwise. These computational results demonstrate the over-
all efficiency of the proposed metaheuristic.

Keywords Maintenance · Scheduling · Large neighborhood
search · Constraint programming

1 Introduction

With a 63-gigawatt (GW) increase in the global installed
capacity in 2015 (and a total of about 432 GW), wind energy
is currently the world’s fastest growing source of electric-
ity.1 Boosted by the ever-increasing environment awareness
and the constantly decreasing cost of turbines, wind power
is expected to account for up to 20% of the global elec-
tricity production by 20501 (vs. 2.4% in 2015). The Paris
Agreement (resulting from the 2015 United Nations Climate
Change Conference—COP21) is in this respect a clear evi-
dence that the renewable energy sector will keep growing in
order to reduce greenhouse gas emissions. In this context,
efficient wind turbine maintenance planning and scheduling

1 The Global Wind Energy Council—Global Wind Report Annual
Market Update 2015—http://www.gwec.net/wp-content/uploads/
vip/GWEC-Global-Wind-2015-Report_April-2016_22_04.pdf, last
accessed: 2016-09-15.

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-017-0513-5&domain=pdf
http://www.gwec.net/wp-content/uploads/vip/GWEC-Global-Wind-2015-Report_April-2016_22_04.pdf
http://www.gwec.net/wp-content/uploads/vip/GWEC-Global-Wind-2015-Report_April-2016_22_04.pdf

J Sched

become a critical tool to prevent unnecessary downtime and
excessive operational costs.

Maintenance planning and scheduling have been widely
studied in different industrial contexts (see, for example,
Budai et al. 2008 for a survey). In general, however, solutions
remain sector-specific. In the particular case of traditional
electricity generation plants, the problem is concerned with
the definition of time intervals for preventive maintenance of
generating units under financial (cost minimization, profits
maximization) and/or reliability (leveling, maximization of
the net reserves) considerations.Bynow, the literature reports
on a number of solution approaches to tackle these problems.
We refer the reader to Froger et al. (2016) for a comprehen-
sive review. Unfortunately, these approaches are inapplicable
to the wind power industry. One of the main reasons is that
wind farms are usually owned by investment funds, and the
operation and the maintenance of the turbines are often out-
sourced to a third party. As it stands, the stakeholders and
the contractors may potentially face conflicting objectives:
maximize energy production versus minimize maintenance
costs. Therefore, service contracts are set between these two
entities. They include incentives and penalties if some tar-
get values (on the production and/or the availability factor2

of wind turbines) are reached or not. Another specificity of
the wind power industry is that maintenance decisions are
not correlated with the electricity demand, since producers
are mostly not required to satisfy production goals fixed in
advance. The objective then tends to be the maximization of
the efficiency of thewind turbines. Last but not least, thewind
power production is inherently volatile, and the meteorolog-
ical conditions have a great impact on the maintenance plan
and can induce last-minute adjustments. In summary, the aim
of maintenance companies is to schedule the maintenance in
order to meet their contract commitments. Although some-
times it is not their top priority, producing maintenance plans
for which the production of the turbines is maximized, while
taking into consideration their internal constraints, is amean-
ingful strategy to avoid interferencewith the stakeholders and
to potentially increase their revenue. If themaintenance is not
outsourced, this objective is all the more relevant.

Maintenance optimization for wind turbines has only
recently started to received attention in the literature (we
refer the reader to Ding et al. 2013 for a survey). This stream
of research primarily focuses on the definition of mainte-
nance policies according to failure models or/and condition
monitoring. Although existing studies precisely define time
intervals during which the maintenance has to be performed
in order to reduce the loss of energy production, they do not
consider a fine-grained resourcemanagement. Therefore, the

2 The ratio of the duration that a generating unit is available to provide
energy to the grid, for the time considered, to the duration of the same
time period.

obtained results are usedmore as guidelines to definemainte-
nance time windows, than as an actual maintenance plan. In
this regard, they can be used to set the service contracts (e.g.,
preventive maintenance has to be performed every 6months
on each turbine).

Fine-grained resource management implies, among oth-
ers, considering a multi-skilled workforce, coping with indi-
vidual or global resource unavailability time periods (e.g.,
vacations) and taking into account resource location-based
constraints. Dealing with these issues requires considering a
short-term planning horizon. In this context, existing stud-
ies allow planners to define the tasks to be performed during
the planning horizon and to set the maintenance time win-
dow constraints. Nonetheless, the maintenance scheduling
problem still contains a degree of operational flexibility.
Considering fine-grained resource management then aims to
build detailed maintenance plans that can be used on a daily
or weekly basis. These latter providemore accurate estimates
of turbine downtimes and loss of production, twometrics that
can otherwise be underestimated, which may lead to signifi-
cant prediction errors. Indeed, producing a maintenance plan
in which no operations generate a loss of production (e.g., is
scheduled during time periods where thewind speed is below
4ms−1, which is too low to produce electricity) can almost
never be achieved in practice, since human resources are a
major bottleneck.

To our knowledge, Kovács et al. (2011) is the only
study considering fine-grained resource management while
scheduling maintenance operations in onshore wind farms
on a 1-day time horizon. These authors aimed to minimize
lost production due to maintenance and failures. They intro-
duced incompatibilities between pairs of tasks and managed
the assignment of teams of skilled workers to tasks. They
modeled the problem as an integer linear program and solved
it using a commercial solver. They performed experiments
on instances with up to 50 tasks.

In this paper, we introduce a maintenance scheduling
problem with resource management rising in the onshore
wind power industry. Our problem differs from that intro-
duced by Kovács et al. (2011) in several ways. First, we
manage resources (i.e., technicians) individually rather than
by teams. Second,we considermultiple task executionmodes
that impact the task duration as well as the resource require-
ments (Reyck et al. 1998). Third, we present an alternative
way to consider technician transfer times by introducing
location-based incompatibility constraints between tasks.
The objective of this new problem is tomaximize the revenue
generated by the total power production of the wind turbines.
Thework targets a short-termhorizon aswindpredictions can
only be reliably established few days in advance.

The contributions of this paper are twofold. First, we
introduce a new maintenance scheduling problem that is
especially relevant to the onshore wind power industry. We

123

Author's personal copy

J Sched

formally define our problem using two different program-
ming paradigms, namely integer linear programming (ILP)
and constraint programming (CP). Second, we introduce a
constraint programming-based large neighborhood search to
efficiently tackle the problem. The proposed approach uses
destruction operators either specifically conceived for the
problem or adapted from the literature. The repair opera-
tor consists in solving a CP model with some fixed variables
using branching strategies specially tailored for the prob-
lem.We report computational results on randomly generated
instances with up to 80 tasks, 3 different skills and 40-period
time horizons.

The remainder of this paper is organized as follows. In
Sect. 2, we describe the problem. In Sects. 3 and 4, we
introduce two integer linear programming formulations and
a constraint programming formulation for the problem. In
Sect. 5, we present our constraint programming-based large
neighborhood search approach. In Sect. 6, we report and dis-
cuss computational experiments. In Sect. 7, we describe the
handling of corrective tasks. Finally in Sect. 8, we present
our conclusions and outline research perspectives.

2 Problem statement

The maintenance scheduling problem we consider consists
in scheduling a set I of tasks during a finite time horizon T
in order to maximize the revenue from the electricity pro-
duction of a set W of wind turbines. These wind turbines
are geographically distributed over a set L of locations. We
denote lw ∈ L the location ofwind turbinew ∈ W . Each task
i ∈ I is also associatedwith a specific location, denoted as li .

The time horizon is partitioned in periods of identical
length and spans over several days from a set D. We denote
Td the set of time periods covered by day d ∈ D. Moreover,
since the execution of a task can impact the production dur-
ing non-working hours, we introduce a special time period
(hereafter referred to as a rest time period) between two con-
secutive days to represent, for example, a night or a weekend.
Maintenance tasks are non-preemptive, but, obviously, they
are interrupted during rest time periods when overlapping
consecutive days (e.g., a technician can start a task at the end
of 1day and complete it at the beginning of the next day).

Although we do not include rest time periods in T , we
count in the objective function the loss of revenue generated
by tasks overlapping these specific timeperiods.More specif-
ically, tasks may have different impact on the availability of
the turbines. Some tasks shut down one (or more) turbine(s)
since the task starts until the task ends. For instance, dur-
ing the maintenance of a wind farm’s substation3 no turbines

3 A wind farm substation collects the electricity produced by all the
turbines of the farm and distributes it through the grid.

Fig. 1 Illustration of the daily location-based incompatibilities

in the farm can produce electricity. It should be noted, how-
ever, that tasks that shut downmore than one turbine are very
rare in practice. Some tasks shut down the turbines when the
technicians are effectively working on the task, but not nec-
essarily during the rest time periods they overlap. This is the
case for the majority of the preventive maintenance jobs, as
well as for wind turbines retrofit. Other tasks do not have
any impact on electricity production (e.g., some wind farm
inspections). We model the impact on power production of
the tasks using two parameters. Parameter bwi takes the value
1 if task i ∈ I shuts down turbine w ∈ W when technicians
are effectively working on the task, and 0 otherwise. Param-
eter˜bwi takes the value of 1 if task i additionally shuts down
turbinew during the rest time periods it overlaps, and 0 other-
wise. It must be noted that parameters bwi and˜bwi are equal
to 0 if turbine w is not located at wind farm li .

To execute the maintenance tasks, we have a finite set R
of technicians. To avoid time-consuming traveling between
distant locations, during a single day technicians can only
perform tasks at compatible locations. Compatible locations
are simply those that can be reached from each other in travel
times that are negligible with respect to the duration of a time
period in T . Let us assume that tmax is the maximum travel
time between two locations that we can consider “negligible”
with respect to the duration of a time period. The top of Fig. 1
then shows the locations that are compatible with l1 (i.e., l2
and l3). To model these daily location-based incompatibili-
ties, we introduce binary parameter σll ′ taking the value of
1 if and only if locations l and l ′ are compatible (naturally
σll ′ = σl ′l). The bottom of Fig. 1 shows the 4 sets of com-
patible locations in our example. During a single day, one
should observe that a technician can only execute tasks at l1

123

Author's personal copy

J Sched

and l2 or l3 but not both. It is worth mentioning that wind
turbine maintenance tasks usually span along hours (if not
days), and therefore, technicians tend to travel between very
few locations during a single working day.

We assume that all the technicians work the same shift,
which is a common practice in this industry. Nonetheless,
each technician r ∈ R has an individual availability sched-
ule expressed by a binary vector πr , with π t

r = 1 if r is
available during time period t ∈ T , and π t

r = 0 otherwise.
The availability schedule of every technician is related to
training time, personal holiday time and assignments to tasks
(not part of the optimization) that have been already started
or that are performed along with external companies. When
a technician r is not available during a time period t , his or
her location is fixed to ltr ∈ L. Notice that for technician
personal holidays and training sessions, this parameter is set
to a dummy location l∗ such that ∀l ∈ L, σl∗l = 1.

Technicians master specific skills from a set S. Techni-
cian skills are expressed by a binary vector λr over S such
that λrs = 1 if technician r ∈ R masters skill s ∈ S, and
λrs = 0 otherwise. Each task i ∈ I has a set Mi of execu-
tion modes. For each mode m ∈ Mi , there is an associated
task duration dim and a number qim of required technicians.
Switching modes after starting the execution of a task is for-
bidden. Additionally, only technicians mastering a specific
skill si ∈ S can work on task i . For the sake of clarity, we
denote as Ri the set of technicians that can perform task
i . Note that Ri = {r ∈ R|λrsi = 1}. We consider that a
technician cannot perform more than one task during a given
time period. Moreover, a technician assigned to a task has to
work on it from the beginning to the end, even if the task is
interrupted during one or multiple rest time periods.

Tasks can only be executed during some specific time
periods. These take into account maintenance periodicity
time windows, spare parts availability, safety work condi-
tions (e.g., a technician cannot perform certain tasks on a
turbine when the wind is too strong) and external restric-
tions imposed by the operator and/or the wind farms owners.
To model these restrictions, we introduce parameter γ t

i that
takes the value 1 if task i ∈ I can be performed during
time period t ∈ T , 0 otherwise. Additionally, some subsets
of tasks cannot overlap due, for instance, to the use of dis-
junctive resources, an interference (e.g., two tasks cannot be
executed on the same turbine at the same time) or managerial
preferences. We define ov (I) the set containing all subsets
of tasks that should not overlap.

The objective of the problem is to determine a sched-
ule that maximizes the revenue generated by the electricity
production of the wind farms while meeting the constraints
described above. We denote gtw the revenue generated by
wind turbine w ∈ W if it can produce electricity during time
period t ∈ T . Similarly, we denote g̃dw the revenue gener-
ated by wind turbine w if it can produce electricity during

the rest time period following day d ∈ D. The revenue val-
ues are estimated according to the forecasted wind speed. In
this study, we do not consider other maintenance costs: We
assume that, as it is common in practice, technicians earn a
fixed salary, andwe disregard travel costs as they are insignif-
icant. One particularity of this problem is the possibility to
postpone the scheduling of some tasks until the next plan-
ning horizon. To model the postponement of task i ∈ I, we
create an additional execution modem0

i and we add it toMi

(we have qim0
i

= 0 and dim0
i

= 0). When task i is postponed,
we apply to the objective a penalty of ci ≥ 0. In practice,
the value of this penalty is fixed according to multiple fac-
tors. It takes into account the relative degree of priority of the
tasks. This priority depends on reliability consideration (the
more a maintenance operation is delayed, the higher is the
probability of failure) and contract commitments. Moreover,
when a task is postponed, it obviously does not impact the
production of any wind turbines and thus the value of the
revenue. Therefore, if a task needs to be scheduled during
the time horizon, this penalty is fixed in connection to the
revenue in order to ensure that the postponement of this task
is non-profitable. This penalty includes an estimation of the
loss of revenue induced by the schedule of the corresponding
task, to which may be added outsourcing costs (the decision
maker then being responsible for the choice of outsourcing a
task rather than postponing it). Notice that if the penalties are
high enough, postponing a task is just triggered to overcome
a possible lack of technicians. In short, the objective function
to be maximized in the problem always corresponds to the
difference between the revenue and the postponing penalties.
“Appendix 1” summarizes the notation used in this paper.

3 Integer linear programming formulations

In the following subsections, we present two integer linear
programming models for the problem. The first formulation
is an immediate natural formulation, whereas the second
one aggregates some decision variables leading to a more
compact formulation.

3.1 Natural formulation

Let us introduce the following decision variables:

xim =
{

1 if task i ∈ I is executed in mode m ∈ Mi ,

0 otherwise.

sti =
{

1 if task i ∈ I starts at the beginning of time period t ∈ T ,

0 otherwise.

yri =
{

1 if technician r ∈ R is assigned to task i ∈ I,

0 otherwise.

cti =
{

1 if task i ∈ I ends at the end of time period t − 1 ∈ T ,

0 otherwise.

123

Author's personal copy

J Sched

eti =
{

1 if task i ∈ I is executed during time period t ∈ T ,

0 otherwise.

udi =
{

1 if task i ∈ I is executed during day d ∈ D,

0 otherwise.

f tw =
⎧

⎨

⎩

1 if turbine w ∈ W can produce electricity
during time period t ∈ T ,

0 otherwise.

˜f dw =
⎧

⎨

⎩

1 if turbine w ∈ W can produce electricity
during the rest time period following day d ∈ D,

0 otherwise.

ztri =
⎧

⎨

⎩

1 if technician r ∈ R is assigned to task
i ∈ I during time period t ∈ T ,

0 otherwise.

vtrl =
⎧

⎨

⎩

1 if technician r ∈ R is at location l ∈ L
during time period t ∈ T ,

0 otherwise.

An intuitive formulation is defined as the following integer
linear program [P1]:

[P1] max
∑

w∈W

(

∑

t∈T
gtw f tw +

∑

d∈D
g̃dw ˜f dw

)

−
∑

i∈I
oi xim0

i

(1)

subject to:
∑

m∈Mi

xim = 1 ∀i ∈ I, (2)

e0i = 0 ∀i ∈ I, (3)

eti = et−1
i + sti − cti ∀i ∈ I, ∀t ∈ T \ {0}, (4)

∑

t∈T
sti = 1 ∀i ∈ I, (5)

∑

t∈T
cti = 1 ∀i ∈ I, (6)

eti ≤ γ t
i ∀i ∈ I, ∀t ∈ T , (7)

∑

i∈B
eti ≤ 1 ∀B ∈ ov (I) , ∀t ∈ T , (8)

∑

t∈Td
eti ≤ |Td |udi ∀i ∈ I, ∀d ∈ D, (9)

f tw + bwi e
t
i ≤ 1 ∀w ∈ W, ∀i ∈ I, ∀t ∈ T , (10)

˜f dw +˜bwi

(

udi + ud+1
i

)

≤ 2 ∀w ∈ W, ∀i ∈ I, ∀d ∈ D,

(11)
∑

t∈T
eti =

∑

m∈Mi

dimxim ∀i ∈ I, (12)

∑

r∈Ri

yri =
∑

m∈Mi

qimxim ∀i ∈ I, (13)

eti + yri − ztri ≤ 1 ∀i ∈ I, ∀r ∈ Ri , ∀t ∈ T , (14)

ztri ≤ yri ∀i ∈ I, ∀r ∈ Ri , ∀t ∈ T , (15)

ztri ≤ eti ∀i ∈ I, ∀r ∈ Ri , ∀t ∈ T , (16)

∑

i∈Il∩Ri

ztri ≤ π t
r v

t
rl ∀r ∈ R, ∀l ∈ L, ∀t ∈ T , (17)

∑

l∈L
vtrl = 1 ∀r ∈ R, ∀t ∈ T , (18)

vtrltr
= 1 ∀r ∈ R, ∀t ∈ T s.t.π t

r = 0, (19)

vtrl +
∑

l ′∈L|σll′=0

vt
′
rl ′ ≤ 1

∀r ∈ R, ∀d ∈ D, ∀(t, t ′) ∈ Td × Td , t 	= t ′, ∀l ∈ L,

(20)

eti , s
t
i , c

t
i ∈ {0, 1} ∀i ∈ I, ∀t ∈ T , (21)

udi ∈ {0, 1} ∀i ∈ I, ∀d ∈ D, (22)

f tw ∈ {0, 1} ∀w ∈ W,∀t ∈ T , (23)

˜f dw ∈ {0, 1} ∀w ∈ W, ∀d ∈ D, (24)

yri ∈ {0, 1} ∀i ∈ I, ∀r ∈ Ri , (25)

ztri ∈ {0, 1} ∀i ∈ I, ∀r ∈ Ri , ∀t ∈ T , (26)

vtrl ∈ {0, 1} ∀r ∈ R ,∀l ∈ L, ∀t ∈ T . (27)

The objective in (1) is defined as the difference between
the revenue generated by the turbines and the penalties
induced by the postponement of some tasks. Constraints (2)
guarantee that exactly one execution mode is selected for
each task. For each task, constraints (3)–(6) ensure consis-
tency between the starting time, ending time, and execution
time period variables. Constraints (7) prevent a task to be
scheduled during forbidden time periods. Constraints (8) are
the non-overlapping constraints. Constraints (9) couple the
time periods during which each task is performed to the exe-
cutiondays of this task.Constraints (10) and (11) compute the
impact of the tasks on the availability of the turbines to pro-
duce electricity. Constraints (12) connect the duration of each
task to its selected execution mode. Constraints (13) ensure
that the technician requirements are fulfilled.Constraints (14)
force technicians to be assigned to a task from its beginning to
its end. For each technician, constraints (15)–(16) ensure con-
sistency between the global assignment and the time-indexed
assignment variables. Constraints (17) couple the locations
of the technicians to the tasks they perform. Constraints (18)
prevent technicians to performmultiple tasks during the same
time period. When technicians are not available, constraints
(19) ensure compliance with their known locations. Con-
straints (20) define the daily location-based incompatibilities
for each technician. Finally, (21)–(27) state the binary nature
of the decision variables.

3.2 Compact formulation

In order to restrict the number of constraints involved in the
formulation [P1], we propose a second model based on the
concept of plans. A plan associated with task i ∈ I defines

123

Author's personal copy

J Sched

a feasible schedule for i by setting an execution mode, a
consistent starting date, and, by induction, a duration and a
resource requirement. For example, consider a task i with
two execution modesm1 andm2. Let dm1 and dm2 denote the
corresponding durations and qm1 and qm2 the corresponding
number of required technicians. Assume that task i can be
executed during the whole time horizon. For each t ∈ T
such that t ≤ |T | − dm1 , a feasible plan is created to rep-
resent the planning of task i within mode m1 from period
t to period t + dm1 with a requirement of qm1 technicians.
The same procedure is applied for mode m2. Obviously, we
take into consideration the impossibility of preempting tasks
when building plans.

All the plans are generated a priori. Since in practice the
planning horizon is short (because of weather predictions)
and there are only a few execution modes, the total number
of plans is not so large. We denote by P the set of plans,
i p the task involved in plan p ∈ P , and Pi the set of all
plans involving task i (i.e., Pi = {p ∈ P|i p = i}). For
each task i , we also create a plan p0i ∈ Pi representing the
postponement of the task. For a plan p, execution periods
of i p are expressed by a binary vector ap where atp = 1
if i p is executed during time period t ∈ T , and atp = 0
otherwise. Similarly, we introduce binary vector ãp where
ãdp = 1 if i p overlaps the rest time period following day d ∈
D, and ãdp = 0 otherwise. With a slight abuse of notation, we
introduce parameters bwp, ˜bwp, and Rp, respectively, equal
to bwi p ,˜bwi p andRi p . Moreover, we define qp as the number
of technicians required when selecting plan p ∈ P . Finally,
parameter op is the penalty if plan p is selected (note that
∀i ∈ I,∀p ∈ Pi \ {p0i }, op = 0 and op0i

= oi).
Scheduling the tasks becomes rather implicit as it sim-

ply requires to select a plan for each task. Nevertheless, we
still need to manage the technician-to-task assignments that
should meet the daily location-based incompatibilities and
cope with technician availability. We use the decision vari-
ables f tw, ˜f dw , and vtrl defined in Sect. 3.1. We also introduce
the following decision variables:

x̄ p =
{

1 if plan p ∈ P is selected,
0 otherwise.

ȳr p =
{

1 if technician r ∈ Rp is assigned to plan p ∈ P,

0 otherwise.

As a result,weobtain the following integer linear program,
denoted as [P2].

[P2] max
∑

w∈W

⎛

⎝

∑

t∈T
gtw f tw +

∑

d∈D
g̃dw ˜f dw

⎞

⎠ −
∑

p∈P
op x̄ p

(28)

subject to:

∑

p∈Pi

x̄ p = 1 ∀i ∈ I, (29)

∑

i∈B

∑

p∈Pi

atp x̄ p ≤ 1 ∀B ∈ ov (I) , ∀t ∈ T , (30)

f tw +
∑

p∈Pi

bwpa
t
p x̄ p ≤ 1 ∀w ∈ W, ∀i ∈ I, ∀t ∈ T ,

(31)
˜f dw +

∑

p∈Pi

˜bwpã
d
p x̄ p ≤ 1 ∀w ∈ W, ∀i ∈ I, ∀d ∈ D,

(32)
∑

r∈Rp

ȳrp = qp x̄ p ∀p ∈ P, (33)

∑

i∈Il |r∈Ri

∑

p∈Pi

atp ȳrp ≤ π t
r v

t
rl ∀r ∈ R, ∀l ∈ L, ∀t ∈ T ,

(34)

(18), (19), (20),

x̄ p ∈ {0, 1} ∀p ∈ P, (35)

ȳr p ∈ {0, 1} ∀p ∈ P, ∀r ∈ Rp,

(23), (24), (27). (36)

The objective in (28) is defined as the difference between
the revenue generated by the turbines and the penalties
induced by the postponement of some tasks. Constraints
(29) ensure that exactly one plan is selected for each task.
Constraints (30) are the non-overlapping constraints. Con-
straints (31) and (32) couple turbine availability variables
to plan selection variables. Constraints (33) ensure that the
technician requirements are fulfilled. Constraints (34) cou-
ple the locations of the technicians to the tasks they perform.
This new formulation [P2] uses the same constraints as for-
mulation [P1] to manage the availability calendars of the
technicians and the daily location-based incompatibilities.
Finally, (35)–(36) state the binary nature of the new decision
variables.

4 Constraint programming formulation

The previous section presents two ILP formulations of the
problem. Motivated by the successful implementation of CP
models for solving other hard, and to some extent, related
optimization problems (Baptiste et al. 2001;Rodriguez 2007;
Malapert et al. 2012), we also decided to approach our prob-
lem using CP.

First of all, note that defining for each task: i) an execution
mode, ii) a starting time and iii) the technicians assigned to
it, is enough to obtain a solution to our problem. Therefore,
for each task i ∈ I, we introduce the variables Mi ∈ Mi

and Si ∈ T to represent its execution mode and starting time
period, and we use the binary variables (yri)r∈Ri

introduced
in Sect. 3.1 to decide if technician r performs or not task i . To
make some constraints easier to model, we introduce integer

123

Author's personal copy

J Sched

variables Ci ∈ T , Di ∈ {dim}m∈Mi , Qi ∈ {qim}m∈Mi and
set variables Ei ⊆ T defining for task i its completion time
period, its duration, its number of assigned technicians and
its set of execution time periods, respectively.

Execution time periods of each task are coupled to their
starting and ending time periods with constraints (37)–(38).

Si + Di − 1 = Ci ∀i ∈ I, (37)

t ∈ Ei ⇔ t ∈ [Si ,Ci] ∩ N ∀i ∈ I (38)

The duration of each task (39) as well as the number of
assigned technicians (40) are coupled with the selected exe-
cution mode.

Di = diMi ∀i ∈ I, (39)

Qi = qiMi ∀i ∈ I (40)

Constraints (41) are the non-overlapping constraints.

⋂

i∈B
Ei = ∅ ∀B ∈ ov (I) (41)

Constraints (42) ensure that the technician requirements
are fulfilled for each task.

∑

r∈Ri

yri = Qi ∀i ∈ I (42)

To express the constraints related to the technician-to-task
assignments, we introduce set variables Y t

r ⊆ I ∪{i0} defin-
ing the set of tasks that technician r could potentially perform
during time period t ∈ T . Index i0 represents a dummy task,
created in order to prevent a technician to work when he or
she is unavailable. Constraints (43) couple these variables to
the global assignment variables (yri)i∈I|r∈Ri

. Restrictions
imposed on the locations visited by a technician within each
day lead to the introduction of set variables V t

r ⊆ L defin-
ing the set of potential locations for technician r during time
period t . Constraints (44) and (45) restrict the set of tasks
that a technician can possibly execute according to his or her
potential locations. SetL(Î) defines the set of locations of the
tasks in set Î. Note that L(Î) = {l ∈ L | ∃i ∈ Î s.t. li = l}.

yri = 1 ⇒ (

Y t
r = {i} ∀t ∈ Ei

) ∀i ∈ I, ∀r ∈ Ri ,

(43)

V t
r = L(Y t

r) ∀r ∈ R, ∀t ∈ T , s.t. π t
r = 1, (44)

V t
r = {ltr } ∧ Y t

r = {i0} ∀r ∈ R, ∀t ∈ T , s.t. π t
r = 0

(45)

Denoting dt as the day to which time period t belongs,
constraints (46) ensure that the daily location-based incom-
patibilites are not violated for each technician.

V t
r = {l} ⇒

(

l ′ /∈ V t ′
r ∀l ′ ∈ L s.t. σll ′ = 0, ∀t ′ ∈ Tdt s.t. t ′ 	= t

)

∀r ∈ R, ∀t ∈ T , ∀l ∈ L (46)

In order to define the objective function of our problem,we
introduce two set variables. Variables Fday

w ⊆ {1, . . . , |T |}
define the set of all periods during which turbinew ∈ W can
produce electricity. Variables Frest

w ⊆ {1, . . . , |D|} define
the set of days for which turbine w can produce electricity
during the corresponding rest timeperiods.More specifically,
a day d belongs to this set ifw can produce electricity during
the rest time period between d and d + 1. Additionally, we
denote by trestd the last time period t ∈ T before the rest time
period following day d ∈ D.

We introduce constraints (47), (48), (49) and (50) which
state that a turbine is available to produce electricity during
a time period if and only if no tasks requiring its shutdown
are scheduled during this period.

t ∈ Ei ⇒ t /∈ Fday
w ∀w ∈ W, ∀i ∈ I s.t. bwi = 1,

∀t ∈ T , (47)

t /∈
⋃

i∈I|bwi=1

Ei ⇒ t ∈ Fday
w ∀w ∈ W, ∀t ∈ T , (48)

trestd ∈ Ei ∧ (trestd + 1) ∈ Ei ⇒ d /∈ Frest
w

∀w ∈ W, ∀i ∈ I, s.t.˜bwi = 1, ∀d ∈ D, (49)
∧

i∈I|˜bwi=1

({trestd , trestd + 1} � Ei
) ⇒ d ∈ Frest

w

∀w ∈ W, ∀d ∈ D (50)

Constraint (51) defines the objective function variable
obj ∈ R of our problem.

obj =
∑

w∈W

⎛

⎜

⎝

∑

t∈Fday
w

gtw +
∑

d∈Frest
w

g̃dw

⎞

⎟

⎠
−

∑

i∈I|Mi=m0
i

oi (51)

To remove some symmetries, we add constraints (52) to
impose the starting time of a postponed task to be equal to 0.

Mi = m0
i ⇔ Si = 0 ∀i ∈ I (52)

5 A CP-based large neighborhood approach

We use the CPmodel introduced in Sect. 4 as the main build-
ing block of a CP-based large neighborhood search (CPLNS)
approach.

This method is based on the large neighborhood search
metaheuristic (LNS) originally proposed by Shaw (1998) for
a vehicle routing problem. In the LNS, the current solution
is successively partially destroyed and repaired in order to

123

Author's personal copy

J Sched

improve its quality. Our implementation randomly selects
the operators with equal probability as suggested in Pisinger
and Ropke (2010).4

Algorithm 1 outlines the general structure of the method.
To compute the initial solution, we use the CP model and
we stop its execution as soon as we find a feasible solution.
The algorithm then enters an iterative process. In every iter-
ation, it randomly selects a destroy operator o1 and a repair
operator o2. First, it partially destroys the current solution
using o1 (see Sect. 5.1). Then, it builds a potential alternative
solution sol

′
using o2 (see Sect. 5.2). In the case where sol

′

meets the acceptance criterion (see Sect. 5.3), the solution
sol

′
replaces the current solution sol for the next iteration.

If appropriate, the algorithm updates the best solution sol∗
found so far. Then, the search moves to the next iteration.
The whole procedure is repeated until it reaches a time limit.
The optimization returns solution sol∗.

Algorithm 1: Script of the CPLNS algorithm

1 sol ← initial solution
2 sol∗ ← sol
3 repeat
4 Select a destroy operator o1 and a repair operator o2 from the

operators pool
5 sol

′ ← repair (o2, destroy (o1, s) , sol)

6 if sol
′
is accepted then

7 sol ← sol
′

8 end
9 if f (sol

′
) > f (sol∗) then

10 sol∗ ← sol
′

11 end
12 until the time limit is reached;
13 return sol∗

5.1 Destroy operators

At each iteration, the algorithm selects Γ tasks to remove
from the current solution. The value ofΓ is randomly fixed in
the interval

[

max
(

n−, n × p−) ;min
(

n+, n × p+)]

, where
n− and n+ denote the minimal and maximal number of
tasks that are allowed to be removed during an iteration;
similarly, p− and p+ denote the minimal and maximal pro-
portion of tasks that could be removed. The parameters
p− and p+ allow the algorithm to adapt to all instances
independently of their size. We use the following settings:

4 We also implemented the adaptive layer as proposed in Ropke and
Pisinger (2006), but after some preliminary experimentation we con-
cluded that the contribution of this component to the accuracy of the
method did not payoff the loss of simplicity and the effort needed to
fine tune the additional parameters. We therefore limit the discussion in
the paper to the basic LNS version.

(

n−, n+, p−, p+) = (5, 20, 0.1, 0.4). We also always con-
sider postponed tasks in the current solution as tasks to be
removed. However, we do not count them among the Γ tasks
to remove.

After setting Γ , the algorithm selects the tasks using one
of the following six removal operators:

– Operator A: random removal
This operator randomly removesΓ tasks from the current
solution. The intention behind this operator is to diversify
the search.

– Operator B: worst removal
This operator removes the tasks which penalize the most
the objective function of the current solution. Let f be
the current value of the objective function, f−i its value
if task i is removed, and Δ f (i) = f − f−i . The Γ tasks
with the greatest values of Δ f (i) are removed from the
current solution in order to insert them at better positions.

– Operator C: technicians duties removal
This operator is based on the following procedure. First,
it randomly selects a skill s∗. Second, as long as the num-
ber of removed tasks is lower than Γ , it randomly selects
a technician mastering s∗ and remove from the current
solution those tasks in which the selected technician uses
skill s∗. The operator then switches to another skill if
it has not removed Γ tasks yet. Freeing up a pool of
technicians along the whole time horizon may allow the
reinsertion of possibly misplaced tasks during more con-
venient time periods (i.e, periodswhere they penalize less
the revenue).

– Operator D: similar tasks removal
This operator removes similar tasks. More specifically,
the operator aims to remove non-overlapping tasks (or
tasks that overlap as little as possible) having similar
duration and skill requirements. The similarity between
two tasks i, j ∈ I in a solution sol is formally defined
as: φ(i, j, sol) = α1 × |d̄i − d̄ j | + α2 × 15

(si 	=s j)
+

α3×ov(i, j, sol), where d̄i is the average duration of task

i (i.e., d̄i = 1

|Mi \ {m0
i }|

∑

m∈Mi\{m0
i } dim) and symbol

1(si 	=s j) is equal to 1 if si 	= s j , 0 otherwise. Func-
tion ov(i, j, sol) computes the number of overlapping
time periods between i and j in the current solution sol.
Coefficients α1, α2 and α3 weight the three components
of the similarity function, namely task duration, skill
requirements and task overlapping. In our experiments,
(α1, α2, α3) = (1, 3, 5). To select the tasks to remove, the
operator first initializes a set˜I with a random task.While
|˜I| ≤ Γ , the procedure randomly selects a task i∗ from˜I,
and it then adds to˜I the task j ∈ I \˜I with the minimal
value of φ(i∗, j, sol). The intuition behind this opera-

123

Author's personal copy

J Sched

tor is that removing and reinserting similar tasks that are
scheduled in non-overlapping time periods increases the
likelihood of a solution improvement.

– Operator E: task maximal regret
This operator removes the tasks having the largest differ-
ence between the loss of revenue they currently generate
and the minimal loss of revenue they can induce (we
called this difference regret). Let Wi denote the set of
turbines shut down by the execution of a task i (clearly,
Wi = {w ∈ W|bwi = 1 ∨ ˜bwi = 1}). The loss induced
by task i is equal to the sum over all the turbines in Wi

of the revenue directly lost due to its scheduling. Notice
that if multiple tasks impact a turbine during a specific
time period, the loss is set proportionally to the num-
ber of these tasks. Prior to the optimization, the operator
computes for each task i a metric called lossbesti equal to
the smallest loss of revenue that can be achieved when
one only considers the scheduling of this task. Then,
during the optimization, the operator first computes the
loss of revenue losssoli generated by task i in the cur-
rent solution sol. Afterward, the operator computes the
regret Δloss(i) = losssoli − lossbesti for each scheduled
task i . The operator then removes from the current solu-
tion sol the Γ tasks associated with the largest value of
Δloss(i). Removing tasks that currently generate consid-
erably more loss of revenue than they could may allow
the algorithm to schedule those tasks in better positions in
the next iterations. It is then plausible to assume that this
operator increases the probability of fining better quality
solutions.

– Operator F: turbine maximal regret
This operator works almost in the same way as operator
E. Instead of reasoning by task, we focus on each tur-
bine. Prior to the optimization, the procedure computes
for each turbine w ∈ W a metric called lossbestw , esti-
mating the smallest loss of revenue that can be achieved
when one only considers the set Iw of tasks that pre-
vent turbine w to produce electricity when scheduled
(i.e., Iw = {i ∈ I|bwi = 1 ∨ ˜bwi = 1}). The value of
lossbestw is computed by running the CP formulation pre-
sented in Sect. 4 on an instance containing only the tasks
belonging to Iw. The solution time is most of the time
insignificant, but nevertheless we impose a time limit of
1 s. It is noteworthy that, if we find a smaller loss of rev-
enue during the execution of the CPLNS, we update the
value of lossbestw . Our tests, however, suggest that this is
a very rare event. During the optimization, the procedure
starts by computing the lost revenue losssolw generated
by the tasks in Iw if they are executed as scheduled
in the current solution. Notice that the penalties related
to postponed tasks are included in the computation of
lossbestw and losssolw . Afterward, the operator initializes a

set ˜W with all the turbines inW and compute the regret
Δloss(w) = losssolw − lossbestw associated with each tur-
bine w ∈ ˜W . While ˜W is not empty and Γ tasks are
not removed, the operator removes from ˜W the turbine
w∗ associated with the largest value of Δloss(w) and
removes from the current solution sol all the scheduled
tasks belonging to Iw∗ .

We work with randomized versions of operators B, D,
E and F to explore the search space more broadly. Indeed,
an operator can destroy different parts of the same solution
each time it is applied to it. This can then lead to building
different solutions. Although the randomization strategy we
use is relatively simple, we explain it here for the sake of
completeness. The strategy is based on the one proposed
in Cordeau et al. (2010). Let
o denote the randomization
factor of operator o. When selecting tasks for removal, the
operator first sorts a list L containing all the tasks using its
selection criterion (i.e., largest penalization for operator B,
largest similarity with a specified task for operator D, largest
regret for operators E and F). The first positions of L contains
the tasks that the destroy operator has to target first according
to its criterion. Then the operator draws a randomnumber y ∈
[0; 1) and it selects for removal task i in position �y
o ×|L|�
in L (positions in L are indexed from 0). A randomization
factor
o = 1 makes the operator completely random, while
higher values of
o make the operators more deterministic.
In our experiments we set ρB = ρD = ρE = ρF = 3 and
we use only the randomized versions of these four operators.

Although it is very simple, Algorithm 2 presents the gen-
eral structure of a destroy operator used as a subroutine in
Algorithm 1.

Algorithm 2: Destroy(o,sol)
Data: a solution sol
a destroy operator o
Result: a set of tasks to remove from sol

1 F ← ∅
2 F ←Apply destroy operator o to sol
3 return F

5.2 Repair operators

We use the CP formulation introduced in Sect. 4 to repair
partially destroyed solutions. More specifically, ifF denotes
the set of tasks that have been removed, we fix for each task
i ∈ I \F the value of the variables Mi , Si , and (yri)r∈Ri

to
their value in the current solution, and we solve the resulting
model.

A solution to theCPmodel is found as soon as the decision
variables Mi , Si , and (yri)r∈Ri

are instantiated for every task

123

Author's personal copy

J Sched

i ∈ I. Therefore, the branching strategy should focus only
on these variables. It is worth noting that a CP solver can
make meaningful deductions for a task when the domain of
the variable related to its executing mode not longer contains
the postponement mode. Moreover, fixing the starting time
period of a task before knowing its execution mode leads to
a weak propagation on the bound of the revenue variable and
on the possible starting time periods and execution modes of
other tasks. Furthermore, since variables yri have an impact
only on the feasibility of a solution but not on its quality, fix-
ing last these variables (i.e., after having fixed the variables
Mi and Si for each task i ∈ I) implies that the solver has
to explore a large subtree before reconsidering a bad deci-
sion. Based on these observations, we adopt a task-by-task
scheduling strategy in which the technicians assignment is
made after having chosen an execution mode and a starting
time period for the current task.

It is well known that quickly reaching a good quality solu-
tion increases the efficiency of the search. It is, however, not
clear whether fixing the execution mode of a task i ∈ I (i.e.,
Mi) to a specific execution mode and then exploring all its
potential starting time periods before setting Mi to another
value is the best searching strategy. This observation suggests
that simultaneously setting variables Mi and Si may lead to
achieve a greater flexibility during the search. We therefore
choose to reuse the notion of plans introduced in Sect. 3.2.
For each task i ∈ I, we introduce variable Xi ∈ Pi that
defines the plan selected for task i . We add the constraints
(53)–(54) to couple these variables to the variables Mi and
Si .

Mi = modeXi ∀i ∈ I, (53)

Si = startXi ∀i ∈ I (54)

For a plan p ∈ P , modep is the selected execution mode
for the task i p and startp = min

t∈T |atp=1
t represents the start-

ing time of i p. In summary, task by task, we first define its
executionmode alongwith its starting time by fixing variable
Xi , and we finally assign the required technicians by fixing
the variables (yri)r∈Ri

.
To reach feasible solutions faster, we maintain arc con-

sistency on constraints (53) and (54). We also designed
customized propagators to try to keep, during the search,
the domain of Xi consistent with the availability of the
technicians. More specifically, these propagators rely on a
comparison between the task requirements and the number
of technicians available during each time period of the plan-
ning horizon considering the required skills and the daily
location-based incompatibilities. They also take into account
that technicians have to work on a task from its beginning
to its end. For instance, if during a time period t∗ no more
than 2 technicians mastering a specific skill s∗ are available,

then for each task i such that si = s∗ we can remove from
the domain of Xi all the plans overlapping t∗ and requiring
more than 2 technicians.

The most critical part of the procedure is the selection of
the next task to be considered by the branching strategy. We
select the next task to schedule using a look-ahead regret
heuristic that operates as follows. Let I0 denote the set of
tasks which have not yet been processed at the current node
of the search. We denote Δ f ki the k-th smallest value of the
loss of revenue that task i can generate when scheduled using
one of its possible plans. The procedure regret-q chooses
task i∗ = arg max

i∈I0

∑k=q
k=2

(

Δ f ki − Δ f 1i
)

to be considered for

scheduling. The algorithm computes Δ f ki according to the
values ofΨ (i, p), a function representing the loss of revenue
if task i uses plan p ∈ Pi (i.e., the task is performed in mode
modep and starts at the beginning of time period startp).
Function Ψ (i, p) is computed using functions Ψ day(i, p)
and Ψ rest (i, p) which represent, if task i uses plan p ∈ Pi ,
the loss of revenue during the time periods from T and during
the rest time periods. These functions are defined as follows:

Ψ (i, p) = Ψ day(i, p) + Ψ rest (i, p),

Ψ day(i, p) =

⎧

⎪

⎨

⎪

⎩

op if p = p0i ,

∑

w∈W|bwi=1

t<startp+dimodep
∑

t=startp
g(w, t) otherwise.

,

Ψ rest (i, p) =
⎧

⎨

⎩

0 if p = p0i ,
∑

w∈W|˜bwi=1

∑

d∈Dp

g̃(w, d) otherwise. ,

where Dp is the set of days that task i p of plan p ∈ P
overlaps. Functions g(w, t) and g̃(w, d) are defined as:

∀w ∈ W, ∀t ∈ T , g(w, t) =
{

gtw if t ∈ Env(Fday
w),

0 otherwise.
,

∀w ∈ W, ∀d ∈ D, g̃(w, d) =
{

g̃dw if d ∈ Env(Frest
w),

0 otherwise.
,

where Env(Z) denotes the set of elements that may belong
to the set variable Z in a solution at the current node of the
search tree.

Let Dom(z) denote the domain of variable z (i.e., all
the possible values that z can take). We have Δ f 1i =

min
p∈Dom(Xi)

Ψ (i, p). More generally, Δ f ki is the k-th small-

est value of Ψ (i, p). Once task i∗ has been selected, it is
scheduled using plan p∗ = arg min

p∈Dom(Xi∗)

Ψ (i∗, p).

During our preliminary experiments, we observed that
sometimes our regret-q heuristic is unable to lead the search
to good solutions. It is indeed possible that a taskwith a small

123

Author's personal copy

J Sched

regret at a given point of the search is not chosen to be sched-
uled, but that this decision leads to a large loss of revenue
later when exploring the associated subtree. To overcome
this potential issue, we designed another branching strat-

egy that selects the task i∗ = arg max
i∈I0

(

min
p∈Dom(Xi)

Ψ (i, p)

)

for which the minimal loss of revenue is maximal. Again,
once task i∗ has been selected, it is scheduled using plan
p∗ = arg min

p∈Dom(Xi∗)

Ψ (i∗, p). We refer to this branching strat-

egy as MinMaxLoss.
The resources assignment is then done technician by tech-

nician as long as the request is not fulfilled. We choose with
priority the compatible technician which is already work-
ing during the days that belong to Dp∗ . Since the daily
location-based incompatibilities are very restrictive, it should
be preferable to use technicians that are already working at
the same location or at compatible locations. Otherwise, the
number of technicians that will be available for other tasks,
especially those at incompatible locations,may be drastically
restricted. If during the days d ∈ Dp∗ multiple technicians
work the same number of time periods, we choose first
the technician that could perform the least number of tasks
among those remaining. If several technicians can still be
selected, we select one randomly.

Exploring the whole neighborhood of a solution is time-
consuming; therefore, we only allow a certain number
max

of backtracks (we set
max = 200 in our experiments). Thus,
different solutions can be obtained using different branching
strategies. Different repair operators are therefore defined
using different branching strategies. In our experiments, we
use regret-2 and regret-3 branching strategies, as well as a
randomized version ofMaxMinLoss, where the probability
of selecting a task is inversely proportional to the minimal
loss of revenue it generates at this point of the search.

Algorithm3 presents the general structure of a repair oper-
ator used as a subroutine in Algorithm 1.

Algorithm 3: Repair(o,F ,s)
Data: a solution sol
a set F of tasks
a repair operator o (branching strategy)
Result: a new solution sol ′

1 foreach i ∈ I \ F do
2 Fix the values of Mi , Si , (yri)r∈Ri

as in solution sol in the
CP model

3 end
4 Solve the CP model applying repair operator o, yelding sol ′
5 return sol ′

5.3 Acceptance criteria

The original version of LNS proposed by Shaw (1998),
uses an elitist strategy to accept solutions (i.e., it accepts

only improving solutions). On the other hand, the ALNS by
Pisinger and Ropke (2007) uses the Metropolis criterion to
accept solutions. According to this criterion, solutions are
accepted with a given probability. If the newly found solu-
tion sol ′ improves the current solution sol the probability
equals to one. Otherwise, the probability is computed using
theBoltzmann expression: e−(f (sol)− f (sol ′))/Υ . ParameterΥ
is commonly known as the temperature. It is updated after
each iteration using what is commonly known as the geo-
metric cooling schedule: Υ = Υ × c̄, where c̄ ∈ [0, 1).
Then, the probability of accepting non-improving solutions
decreases over the iterations. We tested the two approaches
in our experiments.

We also tested a mix of them: We apply an elitist strat-
egy during the first k iterations, and then, we activate the
Metropolis criterion. We based our choice in two obser-
vations. First, using the elitist strategy, the search is often
trapped in local optima after a certain amount of iterations,
and then, it struggles to improve the solution. Second, as we
do not ensure that our algorithm starts from a good quality
solution, reaching a good solution can be time-consuming.

In our experiments, k is set to 300 and c̄ to 0.9975. The

initial temperature is fixed to − 0.25

ln0.5
f (sol0) where f (sol0)

is the value of the objective function of the initial solution
sol0. Therefore, in the first iteration our approach accepts
solutions that are 2.5% worse than the current solution with
a probability of 0.5.

6 Computational experiments

6.1 Instances

Since our problem is new to themaintenance scheduling liter-
ature, no publicly available benchmarks exists. We therefore
took advantage of our close collaboration with companies
specializing on wind predictions, wind turbine maintenance
and maintenance scheduling software, to get inside knowl-
edge on how real data for the problem look like. Based on
this knowledge,we built an instance generator thatwe believe
captures reality with a good degree of accuracy.

We used our generator to build a 160-instance testbed
(hereafter referred to simply as G1). For each instance, we
consider time horizons of different lengths (10, 20 or 40),
different number of time periods per day (2 or 4), different
number of tasks (20, 40 or 80), and different number of skills
(1 or 3). Each task can be executed in several modes (1 to
3). Note that |S| = 1 simply means that no skills are consid-
ered. For each combination of parameters, we generate two
categories of instances: 5 instances with a tight technician-
to-work ratio (i.e., technicians can perform the majority of
the tasks during the planning horizon, but they are not guar-

123

Author's personal copy

J Sched

anteed to be enough to perform all the tasks) and 5 instances
with a regular technician-to-work ratio (i.e., technicians can
performall the tasks during the planning horizon).We refer to
the former as TypeA and to the latter as Type B.We also refer
to each family of instancewith symbol “a_b_c_d_e”where a,
b, c, d, and e refer to the number of time periods in the plan-
ning horizon, time periods within a day, skills, tasks, and
to the technician-to-work ratio, respectively. For a thorough
discussion on the instance generation process the reader is
referred to “Appendix 3”.Notice that in all our instances post-
poning a task is always non-profitable and therefore heavily
penalized.

6.2 Results

We implemented our algorithmsusing Java 8 (JVM1.8.0.25).
We rely on Gurobi 6.5.1 for solving the ILP models [P1]
and [P2] and Choco 3.3.1 for solving the CP formulation
(see Prud’homme et al. 2014). We ran our experiments on
a Linux 64-bit machine, with an Intel(R) Xeon(R) X5675
(3.07Ghz) and 12GB of RAM.

Unless another formula is given (as for the results
described in Tables 11, 13), all gaps reported in the article are
computed as: gap = (zU B − z)/|z|, where z is the objective
function of the computed solution and zU B is the objective
function of the optimal solution or the minimal upper bound
computed by Gurobi after 3h of branch-and-bound when
solving the two ILP formulations.

6.2.1 ILP formulations

First, we observe that the compact formulation [P2] contains
on average 1.5 timesmore variables (50 vs. 86k) than the nat-
ural formulation [P1], but 5 times less constraints (126 vs.
25k). As shown below, this significantly impacts the perfor-
mance of the solver. For reference, we point out that the set
P contains 2400 plans on average.

Table 1 reports the average, over all the instances belong-
ing to the same family, of: the gap (Gap), the solution
time (Time), and the percentage of tasks scheduled (i.e., not
posponed) in the best solution (%S). The table also reports
the number of optimal solutions found within the 3-h time
limit (#Opt). In order to have a meaningful comparison, the
average solution time only takes into account those instances
for which an optimal solution has been found within the time
limit. Similarly, the average gap and percentage of sched-
uled tasks takes into account only the instances which are
not optimally solved. This allows a better understanding of
the results. Indeed, since in our instances postponing a task
is heavily penalized, a large gap is often related to a low per-
centage of tasks scheduled during the time horizon. Notice
that on average 99% of the tasks are scheduled in the optimal
or best-known solutions for our testbed. To provide the reader

with a different perspective, Table 2 presents the same results
grouped by instance characteristic rather than by family of
instances.

At a first glance, we observe that the compact formulation
[P2] outperforms the natural formulation [P1] for small and
medium-sized instances. For the large-sized instances, the
two formulations struggle reaching optimal solutions, but
the compact formulation performs worst than the natural one
([P2] fails more often than [P1] to schedule a large propor-
tion of the tasks). We believe these results can be explained
as follows. The compact formulation contains far less con-
straints than the natural formulation, and the value of the LP
relaxation is around 2% smaller on average, which leads to
tighter upper bounds computed by the ILP solver. We also
observe that, at least in our 3-h time limit, optimality is only
reached for small-sized instances and that whenever optimal-
ity is reached the CPU time is rather long (around 30min on
average). It is not very surprising as the formulations only
involve binary variables and their size is quite large. We
therefore reach the following conclusion: Solving the ILP
formulations using a commercial solver does not yield suit-
able exact approaches for the problem.

Our results suggests that the number of skills does not
have a significant impact on the difficulty of the instances
(although we observe that instances with 3 skills appear to
be easier to solve). This may be a result of less symme-
tries among technicians and a shorter number of feasible
configurations to schedule the tasks. On the other hand, the
number of tasks seems to have an impact on the difficulty
of the instances when the technician-to-work ratio is tight.
This can be explained by the higher difficulty of finding a
maintenance plan when considering more tasks. It is also
worth observing that the ILP formulations perform better on
instances with 2 time periods per day; the solution time is
shorter and the number of optimal solutions is larger than in
those with 4 time periods per day. A plausible explanation
is that the daily location-based incompatibilities are more
binding on instances with more time periods per day. Indeed,
a larger number of periods provides a wider choice of task
starting times and thereforemore opportunities tomove tech-
nicians between locations during a single day. Instances with
4 time periods per day also have a larger number of plans and
patterns; this may also explain their higher difficulty. In con-
clusion, according to our experiments, the difficulty of an
instance increases with the number of time periods per day
and the tightness of the technician-to-work ratio.

6.2.2 CP formulation

Table 3 summarizes the aggregated results found solving the
CP model. In this experiment, we tested the resolution of
the model with two branching strategies: regret-2 (R) and
a randomized version of regret-2 coupled to a geometrical

123

Author's personal copy

J Sched

Table 1 Computational results
when solving the two ILP
models (testbed G1—3-h time
limit)

Family [P1] [P2]

Gap (%) %S #Opt Time (s) Gap (%) %S #Opt Time (s)

10_2_1_20_A 1.4 97 0/5 – 1.8 95 4/5 1979

10_2_1_20_B 0.01 100 4/5 744 – – 5/5 46

10_2_1_40_A 7.1 95 0/5 – 0.2 100 1/5 395

10_2_1_40_B 0.00 100 3/5 6015 – – 5/5 343

10_2_3_20_A 2.0 96 1/5 326 0.9 100 4/5 1845

10_2_3_20_B 0.02 100 3/5 305 – – 5/5 58

10_2_3_40_A 9.6 96 0/5 – 0.01 100 4/5 6477

10_2_3_40_B 0.00 100 4/5 2857 – – 5/5 159

20_2_1_40_A 42 76 0/5 – 1.8 99 0/5 –

20_2_1_40_B 1.6 99 0/5 – 0.01 100 3/5 2888

20_2_1_80_A 28 87 0/5 – 436 0 0/5 –

20_2_1_80_B 6.2 96 0/5 – 67 67 2/5 4087

20_2_3_40_A 6.2 93 0/5 – 1.2 99 1/5 8149

20_2_3_40_B 0.02 100 2/5 2561 – – 5/5 1213

20_2_3_80_A 23 89 0/5 – 48 79 0/5 –

20_2_3_80_B 4.3 97 0/5 – 196 50 3/5 2082

20_4_1_20_A 5.3 93 0/5 – 1.6 95 0/5 –

20_4_1_20_B 0.2 100 3/5 6264 – – 5/5 666

20_4_1_40_A 161 46 0/5 – 264 0 0/5 –

20_4_1_40_B 12.8 91 0/5 – 131 50 1/5 1428

20_4_3_20_A 7.9 92 0/5 – 2.6 96 0/5 –

20_4_3_20_B 1.2 98 2/5 2152 – – 5/5 1276

20_4_3_40_A 416 33 0/5 – 514 39 0/5 –

20_4_3_40_B 204 56 0/5 – 162 50 3/5 5877

40_4_1_40_A 147 54 0/5 – 309 18 0/5 –

40_4_1_40_B 157 73 0/5 – 430 40 0/5 –

40_4_1_80_A 49 80 0/5 – 4948 0 0/5 –

40_4_1_80_B 39 83 0/5 – 331 0 0/5 –

40_4_3_40_A 170 43 0/5 – 924 39 0/5 –

40_4_3_40_B 13 88 0/5 – 87 78 0/5 –

40_4_3_80_A 48 77 0/5 – 2813 0 0/5 –

40_4_3_80_B 24 84 0/5 – 3899 0 0/5 –

Table 2 Aggregated
computational results when
solving the two ILP models
(testbed G1—3-h time limit)

Characteristic [P1] [P2]

Gap (%) %S #Opt Time (s) Gap (%) %S #Opt Time (s)

|S| 1 47 83 10/80 3981 636 44 26/80 1225

3 68 81 12/80 1841 937 54 35/80 2252
|T |
|D| 2 10 94 17/80 2283 92 75 27/80 1743

4 97 73 5/80 4619 1113 35 14/80 2055

Type A 71 78 1/80 326 777 52 14/80 3553

B 39 88 21/80 2932 763 42 47/80 1297

All 57 82 22/160 2814 773 48 61/160 1815

123

Author's personal copy

J Sched

Table 3 Aggregated computational results when solving the CP model
(testbed G1—average over 3 runs–5-min time limit)

Characteristic R R+restart

Gap (%) %S Gap (%) %S

|S| 1 9.2 94 2.7 98

3 7.7 95 2.4 98
|T |
|D| 2 5.5 97 1.2 99

4 11.4 93 4.0 97

Type A 13.3 92 4.4 96

B 3.6 98 0.8 100

All 8.4 95 2.6 98

restart policy (we restart the search from the root node) based
on the number of backtracks (R+restart). The columns of the
table report the relative average mean gap5 (Gap) and the
mean percentage of tasks scheduled in the solution6 (%S)
with 5min of CPU time limit.

The results show that coupling our branching strategywith
the restart policy gives the best results: The average gap is
improved approximately by 6%. Jointly using a randomized
branching strategy with a restart policy allows us to explore
different parts of the search tree which increases the likeli-
hood of finding better solutions. Table 4 reports additional
results obtained solving the CP model with the R+restart
configuration. We find good quality solutions for instances
with 2 time periods per day and near-optimal solutions for
Type B instances; the gap is larger for the other instances.We
observe that the solutions obtained after a few iterations are
little improved during the search. It seems that the CP model
is facing some symmetry issues, especially on the technicians
assignment. This drawback is not overcome with our restart
policy. Nonetheless, we can notice that solving the CP for-
mulation gives better overall results on the largest instances
than solving the ILP formulations. Since the quality of the
results are barely improved when increasing the time limit
from 1 to 5min, we did not consider necessary to test the
model with a 3-h time limit as for the ILP formulations.

6.2.3 CPLNS

Our first experiment aimed to select the best acceptance
criterion for our CPLNS. To achieve our goal, we ran our
algorithm with three different solution acceptance criteria:
elitism (El), Metropolis (MT), and both (El+MT) and three
different time limits: 1, 3, and 5min. Since the neighbor-
hoods are partially randomized, we launched the algorithm

5 Average of the mean gap found for each instance over 3 runs.
6 Average of the mean percentage of tasks scheduled in the solution
found for each instance over 3 runs.

Table 4 Detailed computational results when solving the CP model
(testbed G1—R+restart configuration—average over 3 runs)

Family 1min 3min 5min

Gap (%) %S Gap (%) %S Gap (%) %S

10_2_1_20_A 1.3 98 1.3 98 1.3 98

10_2_1_20_B 0.4 100 0.4 100 0.4 100

10_2_1_40_A 2.4 99 2.4 99 2.4 99

10_2_1_40_B 0.4 100 0.4 100 0.4 100

10_2_3_20_A 2.0 97 2.0 97 2.0 97

10_2_3_20_B 0.3 100 0.3 100 0.3 100

10_2_3_40_A 2.4 99 2.3 99 1.9 99

10_2_3_40_B 0.8 100 0.8 100 0.8 100

20_2_1_40_A 2.5 99 2.5 99 2.5 99

20_2_1_40_B 0.3 100 0.3 100 0.3 100

20_2_1_80_A 3.2 99 3.2 99 3.2 99

20_2_1_80_B 0.2 100 0.2 100 0.2 100

20_2_3_40_A 1.6 99 1.6 99 1.6 99

20_2_3_40_B 0.2 100 0.2 100 0.2 100

20_2_3_80_A 1.2 100 1.2 100 1.1 100

20_2_3_80_B 0.3 100 0.2 100 0.2 100

20_4_1_20_A 2.4 95 2.2 95 2.1 95

20_4_1_20_B 1.0 100 0.9 100 0.9 100

20_4_1_40_A 9.9 93 9.6 93 9.5 93

20_4_1_40_B 2.9 99 2.9 99 2.9 99

20_4_3_20_A 6.3 94 5.7 94 5.7 94

20_4_3_20_B 1.7 99 1.7 99 1.7 99

20_4_3_40_A 6.9 94 6.9 94 6.9 94

20_4_3_40_B 1.9 99 1.8 99 1.8 99

40_4_1_40_A 7.8 94 7.8 94 7.8 94

40_4_1_40_B 0.8 100 0.7 100 0.5 100

40_4_1_80_A 9.7 94 8.8 95 8.8 95

40_4_1_80_B 0.5 100 0.5 100 0.5 100

40_4_3_40_A 5.5 96 5.5 96 5.4 96

40_4_3_40_B 0.6 100 0.6 100 0.6 100

40_4_3_80_A 8.0 95 7.9 95 7.9 95

40_4_3_80_B 0.5 100 0.4 100 0.4 100

All 2.7 98 2.6 98 2.6 98

Table 5 Average computational results according to the solution accep-
tance criterion (testbed G1—average over 10 runs)

Time limit Average gap

1min (%) 3min (%) 5min (%)

El 1.54 1.33 1.26

MT 1.58 1.34 1.25

El + MT 1.54 1.30 1.21

10 times for each instance. Table 5 shows that coupling an
elitist strategy with theMetropolis acceptance criterion leads
to the best results independently of the time limit. We there-

123

Author's personal copy

J Sched

Table 6 Computational results for the CPLNS (testbed G1—average
over 10 runs)

Family 1min 3min 5min

Gap (%) %S Gap (%) %S Gap (%) %S

10_2_1_20_A 0.8 98 0.8 98 0.8 98

10_2_1_20_B 0.0 100 0.0 100 0.0 100

10_2_1_40_A 1.0 100 0.5 100 0.4 100

10_2_1_40_B 0.0 100 0.0 100 0.0 100

10_2_3_20_A 0.8 99 0.7 99 0.6 99

10_2_3_20_B 0.0 100 0.0 100 0.0 100

10_2_3_40_A 1.5 99 1.1 99 1.0 99

10_2_3_40_B 0.1 100 0.1 100 0.0 100

20_2_1_40_A 1.4 99 1.0 99 0.9 99

20_2_1_40_B 0.1 100 0.0 100 0.0 100

20_2_1_80_A 3.1 98 2.5 99 2.2 99

20_2_1_80_B 0.1 100 0.1 100 0.1 100

20_2_3_40_A 0.9 99 0.6 100 0.6 100

20_2_3_40_B 0.0 100 0.0 100 0.0 100

20_2_3_80_A 0.5 100 0.4 100 0.3 100

20_2_3_80_B 0.1 100 0.1 100 0.1 100

20_4_1_20_A 1.1 95 1.1 95 1.0 95

20_4_1_20_B 0.1 100 0.1 100 0.1 100

20_4_1_40_A 6.2 94 5.4 94 5.3 94

20_4_1_40_B 1.2 99 0.5 100 0.2 100

20_4_3_20_A 3.1 95 2.6 96 2.0 96

20_4_3_20_B 0.3 100 0.2 100 0.2 100

20_4_3_40_A 4.7 95 4.0 95 3.9 95

20_4_3_40_B 0.8 100 0.6 100 0.5 100

40_4_1_40_A 4.7 96 4.5 96 4.4 96

40_4_1_40_B 0.2 100 0.2 100 0.1 100

40_4_1_80_A 5.8 96 5.4 96 5.4 96

40_4_1_80_B 0.3 100 0.2 100 0.2 100

40_4_3_40_A 3.8 97 3.1 98 2.8 98

40_4_3_40_B 0.2 100 0.2 100 0.1 100

40_4_3_80_A 6.3 95 5.9 95 5.6 96

40_4_3_80_B 0.2 100 0.2 100 0.2 100

fore used this acceptance criterion in the remainder of our
experiments.

We now discuss more thoroughly the performance of the
CPLNS algorithm. Table 6 reports the results delivered by
our CPLNS for each family of instances. The columns in the
table report the relative average mean gap7 (Gap) and the
mean percentage of tasks scheduled in the solution8 (%S)
running with a 1, 3, and 5min of CPU time limit. These
experiments aim to enable a decision maker to define a CPU

7 Average of the mean gap found for each instance over 10 runs.
8 Average of the mean percentage of tasks scheduled in the solution
found for each instance over 10 runs.

Table 7 Aggregated computational results for the CPLNS (testbed
G1—average over 10 runs)

Characteristic 1 min 3 min 5 min

Gap (%) %S Gap (%) %S Gap (%) %S

|S| 1 1.6 98 1.4 99 1.3 99

3 1.5 99 1.2 99 1.1 99
|T |
|D| 2 0.7 99 0.5 100 0.4 100

4 2.4 98 2.1 98 2.0 98

Type A 2.9 97 2.5 97 2.3 97

B 0.2 100 0.2 100 0.1 100

All 1.5 99 1.3 99 1.2 99

time limit according to the trade-off between resolution time
and quality of the results he or she is interested in. To provide
the reader with a different perspective, Table 7 presents the
same results grouped by instance characteristic rather than
by family of instances.

Since the gap is computed with respect to upper bounds
for the largest instances, assessing the intrinsic quality of
the CPLNS using only the gap is sometimes not conclusive
enough. However, the overall average gaps of 1.2% after
5min show the effectiveness of our approach. We might
expect to be closer to the optimal solutions for the largest
instances. The algorithm provides near-optimal solutions for
all the Type B instances and all the instances where the num-
ber of time periods per day is equal to 2, but the performance
is slightly inferior on Type A instances in which the number
of time periods per day is equal to 4. This last observation
can be explained by the fact that the number of plans and thus
the model to be considered by the CP model when repairing
the solution is larger. Since we only allow a limited num-
ber of backtracks, the quality of the first decisions taken in
our branching strategies strongly impacts the capacity of the
algorithm to improve the current solutions. The algorithm
may then sometimes fail building better solutions with the
CP model (in the reparation stage), although it could be pos-
sible if it explored the whole search space.

Table 8 reports the relative average mean gap (Mean), the
average best gap9 (Best) and the average worst gap10 (Worst)
for the CPLNSwith 5min of CPU time limit (detailed results
are available in Table 10 in “Appendix 2”). The CPLNS
exhibits a stable behavior: on average the difference between
the best and the worst solution found over the 10 runs is a
reduced 0.68%.

9 Average of the best (minimal) gap found for each instance over 10
runs.
10 Average of the worst (maximal) gap found for each instance over 10
runs.

123

Author's personal copy

J Sched

Table 8 Behavior of the CPLNS on the 10 runs (testbed G1—5min
time limit)

Characteristic Mean (%) Best (%) Worst (%)

|S| 1 1.32 1.04 1.65

3 1.12 0.76 1.50
|T |
|D| 2 0.45 0.25 0.66

4 2.00 1.55 2.50

Type A 2.33 1.75 2.93

B 0.12 0.05 0.22

All 1.22 0.90 1.58

For each approach presented in the article to solve the
problem, we report in Table 11 of “Appendix 2” the gap to
the best solution (lower bound) that we were able to compute
in all the tests presented in this section. This gap is computed
as: gap = (zLB − z)/|z|, where z is the objective function
of the computed solution and zLB is the best solution (i.e.,
best lower bound) found throughout our tests. For small-sized
instances, the direct resolution of the ILP formulations gives
the best solutions. Nonetheless, for those instances, the solu-
tions obtained from the resolution of the CP model and from
the CPLNS are very close. For medium-sized and large-sized
instances, the CPLNS outperforms the other approaches.

7 Particular case: handling of corrective tasks

Up to this point, we have only considered preventive tasks.
Sometimes, however, the technicians may also have to per-
form corrective tasks. Our models and methods can be easily
adapted to deal with corrective tasks in a number of practi-
cal situations. We describe in this section those adaptations.
Needless to say, since our approaches are conceived to work
on a static case, we only focus on how to handle non-started
corrective tasks that are known with certitude prior to the
beginning of the planning horizon.

7.1 Extending models and methods

First, let us introduce new binary parameters. We denote
b̈wi = 1 if and only if task i is a corrective task that shuts
down turbinew until it is not entirely completed. Our models
require the following minor modifications.

We add constraints (55) and (56) to ILP formulation [P1].

f tw + 1 −
∑

t ′∈T s.t. t ′≤t

ct
′
i ≤ 1 ∀w ∈ W,

∀i ∈ I s.t. b̈wi = 1, ∀t ∈ T , (55)

˜f dw + 1 −
∑

t ′∈T s.t. t ′≤trestd +1

ct
′
i ≤ 2 ∀w ∈ W,

∀i ∈ I s.t. b̈wi = 1, ∀d ∈ D, (56)

Constraints (55) and (56) state that a turbine w is unavail-
able during a time period (or a rest time period) if there are
incomplete corrective tasks related to that turbine.

In a similar vein, we add constraints (57) and (58) to ILP
formulation [P2].

f tw +
∑

p∈Pi s.t. max
t ′∈T

at ′p <t

b̈wi x p ≤ 1

∀w ∈ W, ∀i ∈ I, ∀t ∈ T , (57)

˜f dw +
∑

p∈Pi s.t. max
t ′∈T

at ′p ≤trestd

b̈wi x p ≤ 1

∀w ∈ W,

∀i ∈ I s.t. b̈wi = 1, ∀d ∈ D, (58)

In the CP model, we replace constraints (48) and (50) by
the following constraints:

t ≤ Ci ⇒ t /∈Fday
w

∀w∈W, ∀i ∈I s.t. b̈wi =1, ∀t ∈T , (59)
⎛

⎝t /∈
⋃

i∈I|bwi=1

Ei

⎞

⎠ ∧
⎛

⎝

∧

i∈I|b̈wi=1

(t > Ci)

⎞

⎠ ⇒ t ∈ Fday
w

∀w ∈ W, ∀t ∈ T , (60)

(trestd + 1) ≤ Ci ⇒ d /∈ Frest
w ∀w ∈ W,

∀i ∈ I, s.t. b̈wi = 1, ∀d ∈ D, (61)
⎛

⎝

∧

i∈I|˜bwi=1

({trestd , trestd + 1} � Ei
)

⎞

⎠

∧
⎛

⎝

∧

i∈I|b̈wi=1

(

trestd + 1 > Ci
)

⎞

⎠ ⇒ d ∈ Frest
w

∀w ∈ W, ∀d ∈ D (62)

Constraints (59) and (61) state that a turbinew is unavailable
during a time period if there are incomplete corrective tasks
related to that turbine. Constraints (60) and (62) ensure that a
turbine is available to produce electricity during a time period
if and only if i) no preventive tasks requiring its shutdown are
scheduled during the time period and ii) if all the corrective
tasks are completed. Note that by adapting the CP model to
work with corrective tasks, the CPLNS is also automatically
adapted to this new scenario.

7.2 Practical applications

Our adapted models and CPLNS can be used to deal with
different practical situations. For illustration purposes, in the
remainder of this subsection we briefly discuss two of them.

123

Author's personal copy

J Sched

Table 9 Aggregated computational results for the four different approaches (testbed G2)

Characteristic [P1] [P2] CP CPLNS

3h 3h 5min 5min
Gap (%) %S #Opt Time (s) Gap (%) %S #Opt Time (s) Gap (%) %S Gap (%) %S

|S| 1 150 81 9/80 3976 200 62 31/80 1516 7.0 98 4.1 98

3 83 80 15/80 3351 92 58 38/80 1665 7.2 99 2.9 99
|T |
|D| 2 17 94 21/80 3757 29 88 52/80 1431 1.5 99 0.5 100

4 196 70 3/80 2382 205 48 17/80 2109 12.7 97 6.5 98

Type A 174 72 5/80 5572 181 59 17/80 1458 12.7 97 6.9 98

B 50 90 19/80 3062 82 64 52/80 1644 1.5 100 0.1 100

All 118 81 24/160 3585 150 60 69/160 1598 7.1 98 3.5 99

S1—corrective first, preventive second:Asmentioned ear-
lier, in the wind energy industry, more often than not, the
maintenance is performed by contractors rather than by the
wind farm owners. Therefore, it is difficult for maintenance
companies to delay the execution of corrective tasks without
generating a conflict with their customers (especially if the
breakdown impedes energy production). In these situations,
corrective tasks are simply scheduled first and, usually, as
soon as possible. Our approaches can easily deal with this
situation. The decision maker only needs to solve two inde-
pendent problems (one for the corrective tasks followed by
one for the preventive tasks), adjusting on the second the
parameters π t

r and ltr according to the pre-established crew
assignments. We can also decide to reconsider these assign-
ments when scheduling the preventive tasks. To this end, for
the second stage of the optimization, we add to set I the cor-
rective tasks along with the preventive tasks, but we enforce
the former to be scheduled as found during the first stage of
the optimization.
S2—corrective: + preventive: In some cases, scheduling
corrective tasks as early as possible tasks may lead to bad
overall decisions. Indeed, if the wind speed is too low to
produce electricity for many consecutive days, there is some
flexibility to schedule these tasks latter and use the resources
(i.e., technicians) to perform tasks that would be optimally
scheduled at the beginning of the planning horizon. For
instance, assume that a given corrective task has a duration
of 3 time periods and induces a very small loss of revenue
(or none at all) if we wait, say, two time periods to perform
it (the forecasted wind is very low from the beginning of the
time horizon until the sixth time period). Assume also that
there is a preventive maintenance task to perform at another
location where the revenue is very low for the two first time
periods but very large after this. If the two tasks cannot be
executed in parallel (e.g., lack of technicians), it is probably
more profitable to schedule first the preventive task and then
the corrective task. In this case, the decision maker may want
to combine corrective and preventive tasks and solve a unique

problem. This case can be tackled simply by adding both pre-
ventive and corrective tasks to set I and running our models
and/or CPLNS with the modifications introduced above.

7.3 Some results

To assess the impact of considering corrective tasks in the
performance (quality and speed) of our approaches, we
conducted experiments on a new set of instances mixing
preventive and corrective tasks. It is worth recalling that
the objective of our research is not to compare managerial
practices in maintenance scheduling; therefore, we limited
our experiments in this section to practical situation S2. We
believe this situation is the most general and difficult to solve
fromapurely computational performance perspective.More-
over, to a certain extent,we have already handled the practical
situation S1 in the experiments described in the previous sec-
tion. Our new testbed, denoted G2, is composed from the
same families than those in G1. In the instance generation
process, the probability of generating a corrective task was
set equal to 5%. Nonetheless, we ensured that each instance
in this testbed contains at least one corrective task. If a task
is corrective, it can prevent more than one turbine to pro-
duce electricity with a probability of 7.5%. Similarly than
for testbed G1, the penalty of postponement is set in such a
way that postponing a task is never profitable. Notice that the
penalty is larger than for testbed G1 as the maximal loss of
revenue than can be induced by the scheduling of a corrective
task is larger.

In general the results obtained in G2 confirm our find-
ings. Solving directly the ILP formulations is just suitable
for small-sized instances, while solving the CP formulation
gives solutions with a reduced gap. However, the CPLNS
remains the best overall approach. Table 9 summarizes the
results. Detailed results for each family of instances can be
found in Appendix “Testbed G2” section.

123

Author's personal copy

J Sched

8 Conclusions and research perspectives

In this study, we introduced a new and challenging mainte-
nance scheduling problem faced by the wind power industry.
Some of the special features of this problem are the existence
of alternative execution modes for each task and the indi-
vidual management of the technicians through a space–time
tracking. We also introduced an original objective function,
far from the classical scheduling concerns, linking the rev-
enue to the periods during which the maintenance operations
are performed.

We proposed three mathematical formulations based on
both constraint and integer linear programming. Computa-
tional results indicate that, generally, the models cannot be
directly used to solve realistic instances. ILP models are
unable to solve to optimality most of the instances after
3h and the gap is still very large for many families of
instances. Nevertheless, we showed that an ILP compact for-
mulation using the notion of plans outperforms the more
natural ILP formulation of the problem. Moreover, results
indicate that theCPmodel produces high quality solutions for
small-sized instances. However, it does not yield very good
results, in general, for the majority of medium and large-
sized instances. The performance of our CP model actually
seems to be affected by symmetry issues, especially on the
technicians assignment.

To provide an alternative solution approach, we devel-
oped aCP-based large neighborhood search.We successfully
adapted some destroy operators to this new problem and
proposed some new ones. Moreover, we designed several
branching strategies to effectively repair solutions solving a
CPmodelwith fixed variables. TheCPLNS shows an average
gap of 1.2% with respect to the optimal solutions if known,
or to the best-known upper bounds otherwise. It provides
near-optimal solutions when the technician-to-work ratio is
regular, whereas, when it is tight, the gap increases as the
problemsize (number of tasks andnumber of timeperiods per
day) grows. Nonetheless, the computational results demon-
strate the efficiency of the proposed method. We have also
showed how our method can also handle corrective tasks
known prior to the beginning of the planning horizon.

As a perspective, we could extend the definition of the
problem to handle the case of technicians working different
shifts. Two different approaches could be considered: either
one allows tasks to be initiated by some technicians and fin-
ished by other technicians (since tasks can last more than the
duration of a shift) or one restricts tasks to be performed by
technicians working the same shift. To our knowledge, the
former is not common in practice, so the latter may be more
relevant. The second proposition is compatible—with slight
adjustments—with the compact formulation [P2]. Indeed,
every plan would be associated with a single shift (we would
not create any plan that overlaps two different shifts) and we

would restrict technicians to be assigned to plans correspond-
ing to their shift. TheCPLNSwould require a broader change
as the duration of a task would depend on the number of days
it overlaps (the duration would become dependent on the
starting time in addition to the execution mode). Moreover,
we could consider the case of tasks requiring technicianswith
complementary skills.

Future works also include the development of efficient
exact approaches. One can observe an intrinsic decomposi-
tion of the problem into a scheduling problem on the one
hand and a resource management problem on the other hand.
This leads us to investigate a branch-and-check approach as
well as cut generation processes. Last but not least, we have
only addressed the deterministic problem, but, as a matter of
fact, the wind speed (and therefore the revenue) is stochastic
by nature.

Acknowledgements The authors would like to kindly thank two
anonymous reviewers for their comments and suggestions. This work
was supported by Angers Loire Métropole through its research grant
program; and by the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) through a grant that enabled the collaboration
with the Canadian company WPred, which we would like to thank for
their expertise.

Appendix 1: Notations

Time

T : time horizon
D: set of days
Td : set of time periods that belong to day d ∈ D
trestd : last time period t ∈ T before the rest time
period following day d ∈ D

Locations

L: set of locations (wind farms and technician home
depots)
δll ′ : binary parameter equal to 1 if and only if loca-
tions l and l ′ are compatible

Technicians

S: set of skills
R: set of technicians

λrs : binary parameter equal to 1 if and only if tech-
nician r ∈ R masters skill s ∈ S
π t
r : binary parameter equal to 1 if and only if techni-

cian r ∈ R is available during time period t ∈ T
ltr : location of technician r ∈ Rwhen he or she is not
available during time period t ∈ {t ′ ∈ T , π t ′

r = 1}
Tasks

I: set of tasks to be performed on the turbines
ov(I): set of subsets of non-overlapping tasks

123

Author's personal copy

J Sched

li : location where task i ∈ I has to be performed
Mi : set of execution modes for task i ∈ I
m0

i : execution mode related to the postponement of
task i ∈ I (m0

i ∈ Mi)
qim : number of technicians required during each time
period to perform task i ∈ I in mode m ∈ Mi

(qim0
i

= 0)
dim : duration of task i ∈ I if performed in mode
m ∈ Mi (dim0

i
= 0)

γ t
i : binary parameter equal to 1 if and only if task

i ∈ I can be executed during time period t ∈ T
si : skill required to perform task i ∈ I
oi : penalty if task i ∈ I is postponed.

Turbines

W: set of turbines

bwi : binary parameter equal to 1 if and only if the
execution of task i ∈ I shuts down turbine w ∈ W
when technicians are effectively working on i
˜bwi : binary parameter equal to 1 if and only if the
execution of task i ∈ I shuts down turbine w ∈ W
during the rest time periods it overlaps
gtw: revenue if turbinew ∈ W can produce electricity
during time period t ∈ T
g̃dw: revenue if turbinew ∈ W can produce electricity
during the rest time period following day d ∈ D

Plans

P: set of plans
Pi : set of plans involving task i ∈ I
i p: task involved in plan p ∈ P
atp: binary parameter equal to 1 if and only if task i p
is executed during time period t ∈ T
qp: number of required technicians if plan p ∈ P is
selected
Rp = Ri p
bwp = bwi p
˜bwp = ˜bwi p
op = oip

Appendix 2: Detailed computational results

Testbed G1

See Tables 10 and 11.

Testbed G2

Table 12 reports the results obtained when solving the ILP
and CP models and when running the CPLNS. To assess the
quality of the results, it is noteworthy that large values for the
gap are essentially associatedwithTypeA instances.Because

Table 10 Behavior of the CPLNS on the 10 runs (testbed G1—5min
time limit)

Family Mean (%) Best (%) Worst (%)

10_2_1_20_A 0.75 0.70 0.87

10_2_1_20_B 0.03 0.00 0.03

10_2_1_40_A 0.42 0.11 0.95

10_2_1_40_B 0.02 0.01 0.03

10_2_3_20_A 0.60 0.37 0.79

10_2_3_20_B 0.01 0.01 0.03

10_2_3_40_A 1.05 0.22 1.78

10_2_3_40_B 0.05 0.01 0.08

20_2_1_40_A 0.86 0.20 1.68

20_2_1_40_B 0.04 0.02 0.09

20_2_1_80_A 2.24 1.49 2.92

20_2_1_80_B 0.06 0.04 0.08

20_2_3_40_A 0.58 0.47 0.70

20_2_3_40_B 0.02 0.01 0.04

20_2_3_80_A 0.34 0.26 0.43

20_2_3_80_B 0.07 0.05 0.09

20_4_1_20_A 1.03 0.96 1.28

20_4_1_20_B 0.09 0.01 0.21

20_4_1_40_A 5.30 4.52 5.81

20_4_1_40_B 0.24 0.09 0.87

20_4_3_20_A 2.02 1.03 3.52

20_4_3_20_B 0.23 0.04 0.42

20_4_3_40_A 3.86 2.78 4.35

20_4_3_40_B 0.46 0.17 0.71

40_4_1_40_A 4.37 4.26 4.50

40_4_1_40_B 0.13 0.07 0.20

40_4_1_80_A 5.38 3.99 6.67

40_4_1_80_B 0.23 0.16 0.30

40_4_3_40_A 2.79 1.71 3.95

40_4_3_40_B 0.12 0.06 0.19

40_4_3_80_A 5.62 4.86 6.76

40_4_3_80_B 0.17 0.12 0.22

All 1.22 0.90 1.58

the technician-to-work ratio is tighter, it is more difficult to
schedule all the tasks. Scheduling one additional task would
drastically reduce this gap.

From the results, we do not see any significant impact of
adding corrective tasks on the difficulty to solve the instances.
It is not so surprising as corrective tasks usually need to be
scheduled at the beginning of the planning horizon in order
not to induce too much lost revenue. For our models, this
might implies less symmetry on the scheduling of the tasks.
Moreover, we can draw identical conclusions on the effi-
ciency of the approaches. Solving the ILP formulations does
not lead to an efficient exact approach as only the small-
sized instances can be optimally solved, whereas solving the
CP formulation yields good results for Type B instances.
The CPLNS gives the overall best results and near-optimal

123

Author's personal copy

J Sched

Table 11 Gap to the best lower bound according to the different
approaches (testbed G1)

Family [P1] [P2] CP CPLNS

3h (%) 3h (%) 5min (%) 5min (%)

10_2_1_20_A 1.1 0.0 0.9 0.4

10_2_1_20_B 0.0 0.0 0.4 0.0

10_2_1_40_A 7.0 0.1 2.4 0.4

10_2_1_40_B 0.0 0.0 0.4 0.0

10_2_3_20_A 1.4 0.0 1.8 0.4

10_2_3_20_B 0.0 0.0 0.3 0.0

10_2_3_40_A 9.6 0.0 1.8 1.0

10_2_3_40_B 0.0 0.0 0.8 0.0

20_2_1_40_A 40.9 1.0 1.6 0.1

20_2_1_40_B 1.6 0.0 0.3 0.0

20_2_1_80_A 24.9 432.2 1.0 0.0

20_2_1_80_B 6.2 40.0 0.2 0.0

20_2_3_40_A 5.7 0.4 1.1 0.1

20_2_3_40_B 0.0 0.0 0.2 0.0

20_2_3_80_A 22.4 47.5 0.7 0.0

20_2_3_80_B 4.2 78.4 0.2 0.0

20_4_1_20_A 4.3 0.5 1.1 0.0

20_4_1_20_B 0.1 0.0 0.9 0.1

20_4_1_40_A 152.2 256.4 4.0 0.0

20_4_1_40_B 12.6 104.7 2.6 0.0

20_4_3_20_A 6.2 0.9 4.0 0.4

20_4_3_20_B 0.7 0.0 1.7 0.2

20_4_3_40_A 403.6 497.5 3.1 0.2

20_4_3_40_B 204.1 64.7 1.8 0.4

40_4_1_40_A 138.0 295.7 3.3 0.0

40_4_1_40_B 157.0 429.8 0.4 0.0

40_4_1_80_A 40.6 4777.1 3.2 0.0

40_4_1_80_B 38.7 330.1 0.3 0.0

40_4_3_40_A 165.1 897.5 2.5 0.0

40_4_3_40_B 13.4 86.9 0.5 0.0

40_4_3_80_A 39.3 2731.3 2.1 0.0

40_4_3_80_B 23.8 3893.2 0.3 0.0

All 47.7 467.7 1.4 0.1

Bold values indicate the best approach for the given family of instances

solutions for small and medium-sized instances. Lastly, the
difficulty of the instances seems also to be related to the same
characteristic as for testbed G1.

For each approach, we also report in Table 13 the gap to
the best solution thatwewere able to compute in our tests.We
find similar results as for testbed G1. Globally, the CPLNS
outperforms the other approaches.

Appendix 3: Instance generation

An instance of the problem is primarily characterized by:
– a finite time horizon (a finite number of time periods)

– a number of time periods per day (yielding the number
of days)

– a set of locations (wind farms + home depot)
– a set of wind turbines distributed over the wind farms
– a set of maintenance tasks to perform at the different
locations and that impact the availability of the turbines

– a set of technicians to perform the tasks
– wind speed for each time period and location
– postponing penalties

The generator is based on the following parameters:
– nT , nD, nI , nS (length of time horizon, number of days,

number of wind farms, number of tasks and number of
skills)

– DnL: probability distribution of the number of locations
– Dlxy : probability distribution of the coordinates associ-

ated with each location
– DnLW : probability distribution of the number of turbines
per location

– DnWI : probability distribution of the number of tasks per
turbine

– Δlmin : minimum distance between two locations
– Δrmax : maximum distance between two locations such
that they can be visited by the a technician during the
same day

– K : set of all types of preventive tasks that we consider
– p(k): probability of generating a task of type k ∈ K
– Diimpact (k): probability distribution of the impact of
each type of preventive task on the wind turbines

– Didur (k): probability distribution of the duration of each
type of preventive task

– Direq(k): probability distribution of the number of tech-
nicians that can perform each type of preventive task
during any time period

– Dr#skills : probability distribution of the number of skills
mastered by a technician

– DrP(unv): probability that a technician has some unavail-
ability time periods during the time horizon

– Dr#unv: probability distribution of the number of time
periods during which a technician is unavailable

– Drdunv : probability distribution of the duration of the
unavailability of a technician (in man-hours)

– Dwpower : probability distribution of the nominal power
(in kW) of each turbine

– ̂φ: average wind speed on each wind farm
– Υ

sa f ety
max : maximumwind speed allowed to perform a task

– Δlmax : maximum distances for the spatial correlation of
the wind speed

– δ: number of values used in the moving average for the
timewise dependency between the wind speeds

– α: correlation factor between wind speed

We generate an instance followingmultiple steps. First of all,
the length of time horizon, the number of days, the number

123

Author's personal copy

J Sched

Table 12 Computational results for the four different approaches (testbed G2)

Family [P1] [P2] CP CPLNS

3h 3h 5min 5min

Gap (%) %S #Opt Time (s) Gap (%) %S #Opt Time (s) Gap (%) %S Gap (%) %S

10_2_1_20_A 2.5 98 1/5 9877 4.9 100 4/5 991 3.0 98 1.8 99

10_2_1_20_B 0.01 100 4/5 2082 – – 5/5 110 1.2 100 0.01 100

10_2_1_40_A 17 95 0/5 0.2 100 1/5 315 2.9 99 1.2 99

10_2_1_40_B 2.6 98 2/5 6083 – – 5/5 970 1.8 99 0.04 100

10_2_3_20_A 0.01 100 4/5 4496 – – 5/5 82 0.7 100 0.2 100

10_2_3_20_B – – 5/5 3110 – – 5/5 25 1.2 100 0.02 100

10_2_3_40_A 48 79 0/5 0.01 100 4/5 4767 4.0 99 0.7 100

10_2_3_40_B 0.1 100 1/5 738 – – 5/5 2259 0.7 100 0.1 100

20_2_1_40_A 20 91 0/5 2.5 99 0/5 – 3.4 98 1.8 99

20_2_1_40_B 0.1 100 1/5 2929 – – 5/5 987 0.1 100 0.01 100

20_2_1_80_A 62 89 0/5 70 78 0/5 – 2.5 99 1.5 99

20_2_1_80_B 12 97 0/5 0.1 100 2/5 1598 0.4 100 0.1 100

20_2_3_40_A 6.8 98 0/5 1.2 99 1/5 353 0.6 100 0.1 100

20_2_3_40_B 0.04 100 3/5 3776 – – 5/5 732 0.8 100 0.03 100

20_2_3_80_A 24 89 0/5 87 59 0/5 – 1.4 99 0.8 100

20_2_3_80_B 7.4 97 0/5 – – 5/5 4337 0.1 100 0.03 100

20_4_1_20_A 5.0 94 0/5 1.6 96 0/5 – 3.9 95 2.1 95

20_4_1_20_B 0.5 99 0/5 – – 5/5 3166 2.9 98 0.1 99

20_4_1_40_A 185 18 0/5 74 56 0/5 – 14 94 7.0 95

20_4_1_40_B 8.4 96 1/5 2485 0.30 100 3/5 3680 1.8 99 0.1 100

20_4_3_20_A 3.3 96 0/5 3.5 95 2/5 334 6.9 96 2.2 97

20_4_3_20_B 2.2 100 2/5 2331 – – 5/5 183 3.5 100 0.7 99

20_4_3_40_A 444 48 0/5 94 20 0/5 – 69 95 29 96

20_4_3_40_B 47 75 0/5 0.7 99 1/5 5078 6.4 99 0.2 100

40_4_1_40_A 1308 30 0/5 1368 0 0/5 – 15 95 9.2 95

40_4_1_40_B 66 73 0/5 0.4 100 1/5 2325 1.0 100 0.1 100

40_4_1_80_A 91 73 0/5 268 0 0/5 – 58 94 41 95

40_4_1_80_B 355 84 0/5 176 0 0/5 – 0.5 100 0.2 100

40_4_3_40_A 249 16 0/5 53 77 0/5 – 6.3 97 2.9 98

40_4_3_40_B 55 77 0/5 1.5 99 0/5 – 1.0 100 0.1 100

40_4_3_80_A 139 76 0/5 256 0 0/5 – 11 95 9.1 96

40_4_3_80_B 60 88 0/5 283 0 0/5 – 0.9 100 0.1 100

All 118 81 24/160 3585 150 60 69/160 1598 7.1 98 3.5 99

of tasks and the number of skills are input values. This yields
directly the set T of time periods and the set D of days.

We then start the generation of an instance by building
the set L of locations whose cardinality is set by sampling
the DnL distribution. According to the distance Δlmin , we
then generate the coordinates of each location by sampling
the Dlxy distribution. Based on these coordinates and on
the distanceΔrmax , we compute the parameters (δll ′)(l,l ′)∈L2

that enable to define the daily location-based incompatibility
constraints.

Afterward, we built the set W of wind turbines. To this
end, according to the target number of tasks, we start by
generating a number of wind turbines per locations by sam-
pling the DnLW distribution. For each location where there
is at least one wind turbine (i.e., this location is a wind
farm), we then generate a nominal power by sampling the
Dwpower distribution andwe set the nominal power Pw equal
to this latter value for each wind turbine w ∈ W of the wind
farm.

After that, we call procedure genTasks() to create the set
I of tasks. Notice that for each task i ∈ I we build the set

123

Author's personal copy

J Sched

Table 13 Gap to the best lower bound according to the different
approaches (testbed G2)

Family [P1] [P2] CP CPLNS

3h (%) 3h (%) 5min (%) 5min (%)

10_2_1_20_A 1.0 0.0 2.0 0.8

10_2_1_20_B 0.0 0.0 1.1 0.0

10_2_1_40_A 16.8 0.0 2.7 1.0

10_2_1_40_B 1.6 0.0 1.8 0.0

10_2_3_20_A 0.0 0.0 0.7 0.2

10_2_3_20_B 0.0 0.0 1.2 0.0

10_2_3_40_A 47.7 0.0 4.0 0.7

10_2_3_40_B 0.1 0.0 0.7 0.1

20_2_1_40_A 18.0 0.7 1.5 0.0

20_2_1_40_B 0.0 0.0 0.1 0.0

20_2_1_80_A 60.0 68.7 0.9 0.0

20_2_1_80_B 11.8 0.0 0.3 0.0

20_2_3_40_A 6.8 0.9 0.6 0.0

20_2_3_40_B 0.0 0.0 0.8 0.0

20_2_3_80_A 23.2 86.0 0.6 0.0

20_2_3_80_B 7.4 0.0 0.1 0.0

20_4_1_20_A 3.5 0.1 2.4 0.6

20_4_1_20_B 0.5 0.0 2.9 0.1

20_4_1_40_A 178.6 68.3 6.9 0.0

20_4_1_40_B 6.7 0.1 1.7 0.0

20_4_3_20_A 1.2 0.0 4.7 0.1

20_4_3_20_B 1.3 0.0 3.5 0.7

20_4_3_40_A 380.8 90.2 28.2 0.0

20_4_3_40_B 47.2 0.5 6.4 0.1

40_4_1_40_A 1241.2 1321.5 4.5 0.0

40_4_1_40_B 65.6 0.3 1.0 0.0

40_4_1_80_A 74.6 255.6 8.6 0.0

40_4_1_80_B 353.6 175.7 0.3 0.0

40_4_3_40_A 243.9 49.3 3.3 0.0

40_4_3_40_B 55.2 1.5 1.0 0.0

40_4_3_80_A 115.2 244.3 1.8 0.0

40_4_3_80_B 60.1 282.4 0.7 0.0

All 94.5 82.7 3.0 0.1

Bold values indicate the best approach for the given family of instances

Mi of execution modes such that it meets the two following
requirements:

– ∀m,m′ ∈ Mi , qim 	= qim′ ,
– ∀m,m′ ∈ Mi , qim < qim′ → dim > dim′ .

Arbitrarily, we build ov(I) considering that overlapping
tasks are forbidden on the same turbine. Notice that, accord-
ing to some experts in the field, it is reasonably realistic
to only consider these subsets. After the generation of the
tasks, we generate the set R of technicians using procedure
genTechnicians().

Procedure genTasks

1 I ← ∅
2 for i ∈ {1, . . . , nI} do

; /* Creation of a new task i */
3 Associate randomly a wind turbine with task i by sampling

the DnWI distribution
4 Define the type k ∈ K of the task according to the

probabilities p(k)
5 Define the impact of the task on the wind turbines by

sampling the Diimpact (k) distribution
6 Draw randomly the skill si required by task i from the set S
7 Set the minimal (qMI N

i) and the maximal (qMAX
i) numbers

of technicians that can perform task i during any given time
period by sampling the Direq (k) DnWI

8 Generate a task duration di by sampling the Didur (k)
distribution

9 nMi ← qMAX
i − qMI N

i + 1
10 Mi ← ∅

; /* d prev
i : duration of the last executing

mode created for task i */
11 for m ∈ {1, . . . , nMi } do
12 Create executing mode m for which task i requires qM

i
technicians and lasts dM

i time periods with:
13 qM

i ← qMAX − m + 1
; /* We assume that the duration of a
working day is 8 h. */

14 dM
i = max(d prev

i + 1, � di |T |
8|D|qM

i

+ 0.5�
15 Add the created executing mode to Mi

16 d prev
i ← dM

i
17 end
18 Add the created task i to I
19 end

Procedure genTechnicians

1 Let dunv be the average number of time periods during which a
technician is not available according to Dr#unv and Drdunv .

2 R ← ∅
3 for s ∈ {1, . . . , nS} do

; /* compute the average total request of

the tasks RSavg
s */

4 RSavg
s = ∑

i∈I
si=s

1

|Mi |
∑

m∈Mi

qim

; /* ns minimum number of technicians
mastering skill s */

5 ns ← ε · RSavg
s

dunv

6 for r ∈ {1, . . . , ns} do
7 Create a technician mastering skills s and generate his or

her unavailability time periods by sampling the Dr#unv

and Drdunv distributions
8 Add this technician to R
9 end

10 end
11 for r ∈ |R| do
12 Sample the Dr#skills distribution to generate the number of

skills mastered by technician r
13 According to the previous value, generate additional skills for

technician r
14 end

123

Author's personal copy

J Sched

Table 14 Detail parameter setting used by the instance generator

∗ We consider that the turbine is stopped slightly longer than the duration of a task (that has an impact on its execution) because the turbine has
often to be stopped a bit earlier than the starting time of this task
NS No turbines are shut down during the execution of the task
ST The task impacts only the turbine on which it is executed. This turbine is stopped during the execution of the task (not during the rest time
periods the task overlaps)
BL The task impacts only the turbine on which it is executed. This turbine is stopped during the execution of the task and during the rest time
periods the task overlaps
Remark The model can also consider tasks that shut down multiple turbines in a wind farm (e.g., the maintenance of the wind farm substation), but
this is extremely rare in practice

The last part of the generator concerns the parameters
related to the objective function. For the sake of convenience,
we introduce the set T + of all time periods formed by the
union of set T and the set of rest time periods that occur
between each day. More specifically, we include a rest time

period after every
|T |
|D| consecutive time periods of T .

As it concerns the wind speed forecast at hub height, the
main purpose is to use realistic values. First, we generate
wind speed φ̄t

l for every location l ∈ L and every time period
t ∈ T + using a Rayleigh distribution with a scale parameter

equal to ̂φ

√

2

π
(so that the expected wind speed is ̂φ). Since

space correlation can be significant, we compute a corrected
wind speed ¯̄φt

l for every location l and every time period t as
follows:

¯̄φt
l =

∑

l ′∈L
s.t. Δll′<Δlmax

(Δlmax − Δll ′) φ̄t
l ′

∑

l ′∈L
s.t. Δll′<Δlmax

(Δlmax − Δll ′)
.

Wind speeds were generated independently from a time
period to another one. However, this timewise independence
assumption is unlikely to be verified in practice. To smooth
out the speed values, we use a δ-weighted moving average
that yields wind speedφt

l according to the following formula:

φt
l =

¯̄φt
l + ∑max(0,t−1)

t ′=max(0,t−δ)
αt−t ′φt ′

l

1 + ∑max(0,t−1)
t ′=max(0,t−δ)

αt−t ′
.

The resulting values are rounded to the nearest tenth. From
our perspective, they compare well to realistic data.

Afterward, for each task i ∈ I and every time period
t ∈ T , we compute the binary parameter ˜ϑ t

i equal to 1 if

and only if φt
l < Υ

sa f ety
max (i.e., the task i can be scheduled

during time period t according to safety concerns). Arbitrar-
ily, we set each parameter ϑ t

i equal to 1 for every task i and
every time period t . We point out here that this choice makes
the instances more complicated to solve as there is a wide

123

Author's personal copy

J Sched

flexibility to schedule the maintenance operations. This also
matches field observations.

The last step consists in computing the revenue value gtw
for every wind turbine w ∈ W during each time period t ∈
T +. We compute the revenue from the nominal power Pw of
the wind turbine and from the wind speed φt

lw
. We also use

an estimation hours(t) of the number of hours during every
time period t . More specifically, we compute the revenue gtw
generated by each turbine w ∈ W that is available during
time period t ∈ T as follows:

gtw = 0.08 · Pw · hours(t) · CF(φt
lw).

where

– 0.08: is an approximation to the selling price in euros of
1kWh of wind energy (this selling price is guaranteed
for the next 10years in France).

– hours(t): estimation of the number of hours during time
period t ∈ T +

– Pw: nominal power of wind turbine w ∈ W
– φt

lw
: wind speed forecast during time period t at the loca-

tion of turbine w ∈ W
– CF(φ): the ratio of the net electricity generated accord-
ing to a wind speed equal to φ to the energy that could
have been generated at full-power operation (this ratio is
given by a piecewise linear function estimated from real
data)

Finally, we compute a single postponing penalty across all
tasks. This penalty is equal to the maximum loss of revenue
that can be generated by the scheduling of a task ofI plus one.
With this definition, we almost always (if not always) ensure
that postponing a task is non-profitable.With this penalty, we
therefore almost ensure to schedule the maximum number
of tasks according to the total number of technicians and
their availability. This is quite in line with the practice in the
field.

Table 14 presents the detail parameter setting used in the
generation process.

References

Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-based
scheduling: Applying constraint programming to scheduling prob-
lems. Dordrecht: Kluwer.

Budai, G., Dekker, R., & Nicolai, R. (2008). Maintenance and produc-
tion: A review of planning models. Complex system maintenance
handbook, Springer series in reliability engineering (pp. 321–
324). London: Springer.

Cordeau, J.-F., Laporte, G., Pasin, F., & Ropke, S. (2010). Scheduling
technicians and tasks in a telecommunications company. Journal
of Scheduling, 13(4), 393–409.

De Reyck, B., Demeulemeester, E., & Herroelen, W. (1998). Local
search methods for the discrete time/resource trade-off problem
in project networks. Naval Research Logistics (NRL), 55(6), 553–
578.

Ding, F., Tian, Z., & Jin, T. (2013). Maintenance modeling and opti-
mization forwind turbine systems:A review. In 2013 International
conference on quality, reliability, risk, maintenance, and safety
engineering (QR2MSE), pp. 569–575.

Froger, A., Gendreau, M., Mendoza, J., Pinson, E., & Rousseau, L.-M.
(2016). Maintenance scheduling in the electricity industry: A liter-
ature review. European Journal of Operational Research, 251(3),
695–706.

Kovács, A., Erds, G., Viharos, Z., &Monostori, L. (2011). A system for
the detailed scheduling of wind farm maintenance. CIRP Annals -
Manufacturing Technology, 60(1), 497–501.

Malapert, A., Guéret, C., & Rousseau, L.-M. (2012). A constraint
programming approach for a batch processing problem with non-
identical job sizes. European Journal of Operational Research,
221(3), 533–545.

Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing
problems. Computers and Operations Research, 34(8), 2403–
2435.

Pisinger, D., & Ropke, S. (2010). Large Neighborhood Search. In M.
Gendreau & J.-Y. Potvin (Eds.),Handbook of metaheuristics (Vol.
146, pp. 399–419)., International series in operations research &
management science New York: Springer.

Prud’homme, C., Fages, J.-G., & Lorca, X. (2014).Choco3 documenta-
tion. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING
S.A.S.

Rodriguez, J. (2007). A constraint programming model for real-time
train scheduling at junctions. Transportation Research Part B:
Methodological, 41(2), 231–245.

Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood
search heuristic for the pickup and delivery problem with time
windows. Transportation Science, 40(4), 455–472.

Shaw, P. (1998). Using constraint programming and local search meth-
ods to solve vehicle routing problems. Principles and Practice of
Constraint Programming-CP, 1998, 417–431.

123

Author's personal copy

	Solving a wind turbine maintenance scheduling problem
	Abstract
	1 Introduction
	2 Problem statement
	3 Integer linear programming formulations
	3.1 Natural formulation
	3.2 Compact formulation

	4 Constraint programming formulation
	5 A CP-based large neighborhood approach
	5.1 Destroy operators
	5.2 Repair operators
	5.3 Acceptance criteria

	6 Computational experiments
	6.1 Instances
	6.2 Results
	6.2.1 ILP formulations
	6.2.2 CP formulation
	6.2.3 CPLNS

	7 Particular case: handling of corrective tasks
	7.1 Extending models and methods
	7.2 Practical applications
	7.3 Some results

	8 Conclusions and research perspectives
	Acknowledgements
	Appendix 1: Notations
	Appendix 2: Detailed computational results
	Testbed G1
	Testbed G2

	Appendix 3: Instance generation
	References

