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Abstract

The multi-activity shift scheduling problem involves assigning a sequence of activities to a set of

employees. In this paper, we consider the variant where the employees have di�erent quali�cations and

each activity must be performed in a speci�ed time window; i.e., we specify the earliest start period and

the latest �nish period. We propose a matheuristic in which Lagrangian relaxation is used to identify

a subset of promising shifts, and a restricted set covering problem is solved to �nd a feasible solution.

Each shift is represented by a context-free grammar. Computational tests are carried out on two sets of

instances from the literature. For the �rst set, the matheuristic �nds a solution with an optimality gap

less than 0.01% for 70% of the instances and improves the best-known solution for 16% of them; for the

second set, the matheuristic reaches the best-known solutions for 55% of the instances and �nds better

solutions for 37.5% of them.

Keywords: Scheduling, Shift Scheduling Problem, Context-Free Grammar, Lagrangian Relaxation,
Matheuristic

1 Introduction

For many companies, designing a schedule for their employees is complex. An e�cient schedule impacts
directly on the quality of customer service, the human resource management, and the employee satisfaction.
The constraints involved in the assignment of shifts to employees include employee availability, quali�cations,
and preferences; company policies; the number of activities; and collective agreements. Additionally, the
assignment of the activities depends on the forecast demand over the planning horizon. A shortage of em-
ployees for a particular activity may result in customer losses, and an excess number of employees performing
the same activity may lead to inactivity.

In this context, we design a matheuristic to e�ciently solve the multi-activity shift scheduling problem
(MASSP), also known in the literature as the personalized multi-activity shift scheduling problem, which
involves assigning a sequence of activities to each employee. The goal is to minimize the total cost of
undercovering or overcovering activities in each period of the planning horizon. Each activity has a di�erent
demand in each period; the same activity can be assigned to multiple employees and it must be performed in
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a speci�ed time window. Other side constraints such as employee availability, preferences, and quali�cations
are taken into account.

To the best of our knowledge, few researchers have addressed this problem. Demassey et al. [12] solve a
set covering problem (SCP) and use a column generation approach, where the subproblems are modeled using
automatas and constraint programming. Lequy et al. [15] consider the case where the shifts are built a priori.
They propose three integer programming models, a branch and bound method for small instances, and a
rolling-horizon heuristic for large instances. Quimper & Rousseau [17] use formal languages and context-free
grammars to model the constraints of each shift; they design two operators within a large-neighborhood
search. Dahmen & Rekik [11] propose a hybrid method based on tabu search: a branch and bound algorithm
is used in the improvement, intensi�cation, and diversi�cation phases of the procedure. Côté et al. [8, 9, 10]
present two grammar-based models and a column generation embedded into a branch-and-price approach.
Computational tests of [10] with the instances of Demassey et al. [12] and Lequy et al. [15] show that their
approach improves the solutions reported in the literature. The branch-and-price algorithm is able to solve
instances with up to 100 employees and 10 activities over a planning horizon of 7 days, however in the worst
case it takes more than two hours to obtain a solution with a relative gap of 1%. Finally, Restrepo et al.
[18] present a column generation algorithm coupled with an auxiliary shortest path problem with resource
constraints for an application in Bogota, Colombia, where employees must be assigned to car parks.

Elahipanah et al. [13] present a two-phase heuristic for a variant of the MASSP in which multiple tasks
are considered. The �rst phase solves a mixed integer linear model to generate partial shifts by assigning the
tasks, and the second uses a rolling-horizon procedure to assign the activities. Lequy et al. [16] propose a
two-stage heuristic for the multi-task variant. The �rst phase assigns the tasks using a mixed integer linear
model, and the second assigns activities and reassigns the tasks using a column generation heuristic. Boyer
et al. [4] present an extension of the branch-and-price algorithm of Côté et al. [10] for the MASSP with
multiple tasks. The authors compare two formulations for the precedence constraints on the tasks and three
branching strategies.

Lagrangian relaxation has been extensively used to solve the SCP; the derived reduced costs are often
used to discard variables. Balas and Ho [2] design a branch and bound for the SCP based on the Lagrangian
relaxation of the problem. Balas and Carrera [1] use the same approach to derive a heuristic: at each iteration
of the branch and bound algorithm, variables are heuristically �xed to reduce the problem size. Ceria et al.
[7] and Caprara et al. [5] also investigate di�erent diving strategies built on the solution of the Lagrangian
relaxation.

Umetani and Yagiura [20] solve the SCP using a variant of column generation, called the shifting method
(Bixby et al. [3]). This approach uses a greedy algorithm to produce feasible solutions and the Lagrangian
multipliers to �x variables. Caserta [6] proposes a tabu search algorithm that uses Lagrangian relaxation in
the intensi�cation phase to �x variables.

We propose a matheuristic based on context-free grammars and Lagrangian relaxation, where the set of
shifts explored by the subgradient method is integrated into the SCP to �nd a high-quality solution. We
perform computational experiments on a large set of instances from Demassey et al. [12] and Lequy et al. [15].
The results are compared to the best-known solutions in the literature which, to the best of our knowledge,
are due to Côté et al. [10]. Our approach also provides dual bounds that can be used to measure the quality
of the solutions. Furthermore, the proposed procedure is able to �nd good quality solutions in a shorter
processing time than the one reported by Côté et al. [10].

The paper is organized as follows. We describe the MASSP in Section 2 and discuss the context-free
grammar model used to represent the feasible shifts. Section 3 presents the solution method, and Section 4
shows the experimental results. Section 5 provides concluding remarks.

2 Multi-Activity Shift Scheduling Problem

The MASSP assigns shifts s ∈ Ωe to employees e ∈ E, where Ωe represents the set of feasible shifts for
employee e. The objective is to cover at minimum cost the demand bia for each activity a ∈ A in period
i ∈ I. We assume that the employees have di�ering availabilities and quali�cations (these determine the set of
activities that the employee is able to perform). The set of feasible shifts is determined by the characteristics
of each employee and the company policies. Shift s for employee e is feasible if e performs only activities
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for which he/she is quali�ed and s satis�es the duration constraints and includes the required rest periods.
Moreover, each activity in s must be performed in a given time window.

The planning horizon I is discretized into periods of equal length. Shift s is represented by the sequence of
activities that the employee performs; this sequence can include lunch periods or breaks. We associate a cost
ces ≥ 0 with each s ∈ Ωe. This includes the cost of transitions between activities during a shift. Furthermore,
we allow undercovering and overcovering of the activities, with associated penalties denoted by cuia and coia,
respectively. Parameter δeias ∈ {0, 1} indicates whether or not activity a is in shift s in period i for employee
e.

Côté et al. [10] propose the following SCP:

(SCM) Min z =
∑
e∈E

∑
s∈Ωe

cesx
e
s +

∑
i∈I

∑
a∈A

(cuiauia + coiaoia) (1)

subject to∑
e∈E

∑
s∈Ωe

δeiasx
e
s + uia − oia = bia ∀i ∈ I, a ∈ A (2)∑

s∈Ωe

xes = 1 ∀e ∈ E (3)

xes ∈ {0, 1} ∀e ∈ E, s ∈ Ωe (4)
uia ≥ 0 ∀i ∈ I, a ∈ A (5)
oia ≥ 0 ∀i ∈ I, a ∈ A (6)

Where:

• xes = 1 if shift s is assigned to employee e, and 0 otherwise.

• uia represents the undercovering of activity a in period i.

• oia represents the overcovering of activity a in period i.

The objective (1) minimizes the cost of assigning a shift to an employee and the costs of overcovering and
undercovering. Constraints (2) ensure that the demand for each activity a in each period i is satis�ed.
Constraints (3) ensure that a shift is assigned to each employee.

To model the set of feasible shifts Ωe, we use a context-free grammar, as suggested by Côté et al. [10].
We summarize the model below; for further details, see [14]. Note that the context-free grammar is used to
represent the set Ωe, and this set is not explicitly generated.

A context-free grammar G is de�ned by the tuple (Σ, N, P, S) where

• Σ is an alphabet of symbols, called terminals;

• N is a set of nonterminal symbols;

• P is a set of productions of the form X → α, where X ∈ N and α is a sequence of terminal and
nonterminal symbols;

• S is the starting nonterminal symbol.

The context-free grammar generates a set of sequences called language, where these sequences are named
words and are conformed only by terminal symbols. A production rule is a relationship between the nonter-
minals symbols and a sequence of terminal/nonterminal symbols. In this context, the set P de�nes whether
a word belongs to the language or not, by checking if it can be derived from S using these production rules.
The nonterminal symbols can be seen as transition symbols given that, depending on the productions, these
symbols produce a subsequence of terminal and/or nonterminal symbols.

A shift can be represented as a sequence of terminal symbols giving the activities to be performed by the
employee. The position of the symbol in the sequence corresponds to the period in which the corresponding
activity is performed. Consequently, starting from the initial symbol S, the set of productions allows us to
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derive a set of sequences of symbols corresponding to the feasible shifts of an employee. Côté et al. [10] use
a directed acyclic graph (DAG) to represent a context-free grammar.

For example, consider an employee who can perform two activities (a1 and a2) and a shift with 4 periods
of 1 hour. The �rst activity is a1, and no activity can be assigned for less than 2 hours. The feasible shifts
for this employee can be modeled by the following context-free grammar G:

• Σ = {a1, a2};

• N = {J1, J2, A1, A2};

• P is de�ned by:
S →[4,4] J1J1|J1J2

J1 → A1A1 J2 → A2A2

A1 → A1a1|a1 A2 → A2a2|a2.

Where the symbol �|� is the logical OR operator and �→[l,r]� indicates that the subsequences of terminals
derived from this production must have a length between l and r. For instance, S →[4,4] J1J1|J1J2 means
that from S we can produce the sequence J1J1 or the sequence J1J2, and all sequences that can be derived
from S with these production rules should yield to a sequence of exactly four terminals.

To generate sequences of length four, we must apply the production rules starting from S until the
sequence contains only terminal symbols. Table 1 shows the derivations of the shifts of length four; the
columns P and Result give the production rule and the result of the application of the rule, respectively. For
example, as shown in Table 1a, from the symbol S, the sequence J1J1 is produced from the production rule
S →[4,4] J1J1; then the production J1 → A1A1 is applied twice in order to generate the sequence A1A1A1A1;
and �nally each non-terminal A1 gives a terminal a1 by executing successively the rule A1 → a1, which results
in the sequence a1a1a1a1.

Furthermore, the production rules used to generate a sequence can be represented by a parse tree. The
parse trees of the shifts a1a1a1a1 and a1a1a2a2 from Table 1 are given in Figure 1.

P Result

- S
S → J1J1 J1J1

J1 → A1A1 A1A1J1

J1 → A1A1 A1A1A1A1

A1 → a1 a1A1A1A1

A1 → a1 a1a1A1A1

A1 → a1 a1a1a1A1

A1 → a1 a1a1a1a1

(a)

P Result

- S
S → J1J2 J1J2

J1 → A1A1 A1A1J2

J2 → A2A2 A1A1A2A2

A1 → a1 a1A1A2A2

A1 → a1 a1a1A2A2

A2 → a2 a1a1a2A2

A2 → a2 a1a1a2a2

(b)

Table 1 � Derivations of the shifts a1a1a1a1 (a) and a1a1a2a2 (b).

Finally, all the parse trees of a grammar can be embedded in a DAG, denoted Γ. Figure 2 gives the DAG
Γ for G; it is an AND/OR graph where the A nodes are AND-nodes and the O nodes are OR-nodes. The
node Ap,n

ij is an AND-node that uses the production rule p to generate the n − th sequence starting from
the position i with length j, note that any node Ap,n

ij has as many children as the number of symbols of the
subsequence generated by the production rule p. Besides, the node OX

ij is an OR-node corresponding to the
terminal/nonterminal symbol X, which produces a sequence starting at position i with length j. The inner
nodes represent production rules and nonterminal symbols, whilst the leaves of the tree correspond to the
terminal symbols at each position of the produced word. In an AND/OR graph, one should start from the
root and select only one outgoing arc of an OR-node, and all the outgoing arcs of an AND-node to �nd a
path from the root node to the leaves. In the example from Figure 2, the sequences a1a1a1a1 and a1a1a2a2

can be derived by choosing one of the outcoming arcs of the root OS
14.
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S

J1 J1

A1 A1 A1 A1

a1 a1 a1 a1

(a)

S

J1 J2

A1 A1 A2 A2

a1 a1 a2 a2

(b)

Figure 1 � Parse trees of the shifts a1a1a1a1 (a) and a1a1a2a2 (b).

OS
14

AS→J1J1,1
14 AS→J1J2,2

14

OJ2
32OJ1

12 OJ1
32

AJ1→A1A1,1
12 AJ1→A1A1,1

32 AJ2→A2A2,1
32

OA1
11 OA1

21 OA1
31 OA1

41 OA2
31 OA2

41

AA1→a1,1
11 AA1→a1,1

21 AA1→a1,1
31 AA1→a1,1

41 AA2→a2,1
31 AA2→a2,1

41

Oa1
11 Oa1

21 Oa1
31 Oa1

41 Oa2
31 Oa2

41

Figure 2 � DAG Γ.

3 Solution Method

In this section, we present our matheuristic (MH) based on Lagrangian relaxation and the SCP. We use the
Lagrangian relaxation of SCM to identify promising shifts for the employees, and then we obtain the best
combination of these shifts by solving a restricted SCP. This restricted SCP contains only a subset of the
feasible shifts for an employee and hence has fewer variables than SCM .

3.1 Lagrangian Relaxation

The Lagrangian relaxation of the SCM (called RSCM) is as follows:

(RSCM) Min z =
∑
e∈E

∑
s∈Ωe

cesx
e
s +

∑
i∈I

∑
a∈A

(cuiauia + coiaoia)

+
∑
i∈I

∑
a∈A

λia

(∑
e∈E

∑
s∈Ωe

δeiasx
e
s + uia − oia − bia

)

subject to ∑
s∈Ωe

xes = 1 ∀e ∈ E

xes ∈ {0, 1} ∀e ∈ E, s ∈ Ωe

uia ≥ 0 ∀i ∈ I, a ∈ A
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oia ≥ 0 ∀i ∈ I, a ∈ A
λia ∈ R

where λia are the Lagrangian multipliers that can take any real value because of the nature of the relaxed
constraints.

We can simplify RSCM to the following model:

Min z =
∑
i∈I

∑
a∈A

((cuia + λia)uia + (coia − λia) oia)

+
∑
e∈E

∑
s∈Ωe

(
ces +

∑
i∈I

∑
a∈A

λiaδ
e
ias

)
xes

−
∑
i∈I

∑
a∈A

λiabia

subject to ∑
s∈Ωe

xes = 1 ∀e ∈ E

xes ∈ {0, 1} ∀e ∈ E, s ∈ Ωe

uia ≥ 0 ∀i ∈ I, a ∈ A
oia ≥ 0 ∀i ∈ I, a ∈ A
λia ∈ R

We solve this model using the classical subgradient method. When the Lagrangian multipliers λia are �xed,
the relaxed model can be decomposed into two subproblems. The �rst (SubP1) determines the overcovering
and undercovering of each activity in each period; the second (SubP2) assigns a shift to each employee.

(SubP1(Λ)) Min z1 =
∑
i∈I

∑
a∈A

(cuia + λia)uia +
∑
i∈I

∑
a∈A

(coia − λia) oia

−
∑
i∈I

∑
a∈A

λiabia

subject to
uia ≥ 0 ∀i ∈ I, a ∈ A
oia ≥ 0 ∀i ∈ I, a ∈ A

(SubP2(Λ)) Min z2 =
∑
e∈E

∑
s∈Ωe

(
ces +

∑
i∈I

∑
a∈A

λiaδ
e
ias

)
xes

subject to ∑
s∈Ωe

xes = 1 ∀e ∈ E

xes ∈ {0, 1} ∀e ∈ E, s ∈ Ωe

At each step of the subgradient method, we solve SubP1 and SubP2 and compute the new Lagrangian
multipliers λia. The subgradient method iterates until we reach a maximum number of iterations or the gap
is below a given threshold. Note that we can easily derive a feasible solution for the original problem SCM
from the solution of RSCM, obtained at each step of the algorithm, by using the shift assignment returned by
SubP2 and recalculating the corresponding under and over covering of each activity as stated in constraints
2.
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3.1.1 Solving the Subproblems

SubP1 can easily be solved because the undercovering and overcovering of each activity in each period
are bounded by the problem structure. Maximum undercovering of activity a in period i occurs when no
employees perform activity a in period i. Maximum overcovering occurs when all the available employees
perform activity a in period i. Algorithm 1 gives the solution procedure for SubP1.

Algorithm 1 Solution method for SubP1.
Input: Matrix Λ.
Output: Solution [U,O].
1: for all i ∈ I do
2: for all a ∈ A do
3: if (cuia + λia) < 0 then
4: uia ← bia
5: else
6: uia ← 0
7: end if
8: if (coia − λia) < 0 then
9: oia ← |E| − bia
10: else
11: oia ← 0
12: end if
13: end for
14: end for
15: return [U,O]

To solve SubP2, we use the DAG Γ model for the shifts and apply the dynamic programming algorithm
used by Côté et al. [10] for their pricing subproblems. The algorithm starts by labeling each leaf Oa

i1,
representing the activity a at period i, to its corresponding Lagrangian multiplier λia. Indeed, the Lagrangian
multiplier λia represents the cost of performing activity a in period i. The costs are then backtracked in the
tree: an OR-node is labeled with the minimum cost of its children, and an AND-node is labeled with the
sum of the costs of its children. When the root is labeled, we obtain the path that generates the sequence of
activities with minimum cost. The whole procedure is presented in Algorithm 2.

For instance, consider the DAG Γ from Figure 2 with the following values of the Lagrangian multipliers
for two activities and four positions:

Λ =


1 0
−2 0
0 1
1 −1


Figure 3 shows the cost propagation in the DAG Γ; notice that the best path is highlighted in bold. In

this case, the leaf Oa1
11 is labeled with λ1a1

= 1, Oa1
21 with λ2a1

= −2, and so on. In particular, during the
backtracking, the AND-node AJ1→A1A1,1

12 takes the label -1 since it is the sum of the costs of its two incident
OR-nodes OA1

11 and OA1
21 ; and the OR-node OS

14 (i.e. the root node) takes the label -1 since it is the minimum
value of the costs of its incident AND-nodes AS→J1J1,1

14 and AS→J1J1,2
14 .

Once the root OS
14 is reached, we can then identify the propagation that leads to the solution and then the

sequence with minimum cost, that is to say a1a1a2a2. Note that, when transition costs are considered, i.e.
the cost for an employee to shift from one activity to another, they are associated with any AND-node leading
to a transition (e.g., node AS→J1J2,2

14 in Figure 3) and added to the associated label during the propagation
procedure.

This procedure gives the shift with the lowest cost for each employee according to the Lagrangian mul-
tipliers. Constraints (3) are satis�ed trivially since we choose one shift for each employee. This approach
solves the SubP2 exactly.
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Algorithm 2 Dynamic Programming Algorithm
Input: DAG Γ and Matrix Λ.
Output: A shift s with the smallest cost.
1: N ← ∅
2: for all node k in Γ do
3: if k = Oa

i1, i ∈ I, a ∈ A then
4: ck ← λia
5: N ← N ∪ {k}
6: else
7: ck ← +∞
8: end if
9: end for
10: while N 6= ∅ do
11: Get a node k ∈ N
12: N ← N \ {k}
13: Let C be the set of children of node k in Γ
14: if k is a OR-Node then
15: ck ← min{cj | j ∈ C}
16: else
17: ck ←

∑
j∈C

cj

18: end if
19: Add to N all the parents of node k in Γ
20: end while
21: Let r be the root node of Γ
22: Get the path P in Γ that yields to the cost cr
23: Build the shift s from the leaves in P
24: return s

OS
14

AS→J1J1,1
14 AS→J1J2,2

14

OJ2
32OJ1

12 OJ1
32

AJ1→A1A1,1
12 AJ1→A1A1,1

32 AJ2→A2A2,1
32

OA1
11 OA1

21 OA1
31 OA1

41 OA2
31 OA2

41

AA1→a1,1
11 AA1→a1,1

21 AA1→a1,1
31 AA1→a1,1

41 AA2→a2,1
31 AA2→a2,1

41

Oa1
11 Oa1

21 Oa1
31 Oa1

41 Oa2
31 Oa2

41

λ1a1
= 1 λ2a1

= −2 λ3a1
= 0 λ4a1

= 1 λ3a2
= 1 λ4a2

= −1

1 −2 0 1 1 −1

1 −2 0 1 1 −1

−1 1 0

−1 1 0

0 −1

−1

Figure 3 � Cost propagation for DAG Γ.

3.1.2 Updating the Lagrangian Multipliers

After both subproblems have been solved, we recompute the Lagrangian multipliers using the subgradient
method introduced by Shor [19]. We use the following equation to update the Lagrangian multipliers at the
kth iteration (λkia):

λkia = λiak−1 +

[
sk−1
ia · εk−1

(
fk−1 − f ′k−1

)
‖sk−1

ia ‖2

]
(7)
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Here εk−1 ∈ (0, 2], and fk−1 and f ′k−1 are the best bounds for SCM and RSCM , respectively, found by the

(k− 1)th iteration. If xe(k−1)
s , e ∈ E, s ∈ Ωe denotes the RSCM solution obtained at the (k− 1)th iteration,

then
sk−1
ia =

∑
e∈E

∑
s∈Ωe

δ
e(k−1)
ias xe(k−1)

s + uk−1
ia − ok−1

ia − bia.

The parameter ε1 is �xed to two, and we divide it by two after a given number K of iterations without
improvement of the relaxed bound value. The procedure stops at iteration k when εk < ε, where ε is small
enough that updating the Lagrangian multipliers does not lead to signi�cant changes in the solution.

The shifts generated at each step of the Lagrangian relaxation are also feasible for SCM . In our ex-
periments, the quality of this solution is poor, but it can be used to update the Lagrangian multipliers.
Furthermore, since the Lagrangian relaxation provides a lower bound for SCM , it can be used to compute
the optimality gap and provides information about the quality of the solution found by MH. The complete
procedure used to solve RSCM is summarized in Algorithm 3.

Algorithm 3 Subgradient Method.
Input: RSCM
Output: Set Ω
1: Ω← ∅
2: εR ← 2
3: LB ← −∞
4: Λ← 0|I|,|A| {All the dual variables are set to 0}
5: while εR > ε do
6: LB1← SubP1(Λ)
7: LB2← SubP2(Λ)
8: Let S be the set of shifts assigned to the employees in the solution of SubP2(Λ)
9: Ω← Ω ∪ S
10: LB ← max(LB,LB1 + LB2)
11: if LB has not changed in K iterations then
12: εR ← εR/2
13: end if
14: Update Λ
15: end while
16: return Ω

3.2 Matheuristic

We now present a general description of MH. We assume that the Lagrangian relaxation produces a set of
good-quality shifts. This allows us to consider only a restricted subset of the feasible shifts and to reduce the
complexity of �nding a good solution.

The model (SSCM(Ω)), which allows only a subset Ω of the feasible shifts, is as follows:

(SSCM(Ω)) Min z =
∑
e∈E

∑
s∈Ω′

e

cesx
e
s

+
∑
i∈I

∑
a∈A

(cuiauia + coiaoia)

subject to∑
e∈E

∑
s∈Ω′

e

δeiasx
e
s + uia − oia = bia ∀i ∈ I, a ∈ A∑

s∈Ω′
e

xes = 1 ∀e ∈ E
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xes ∈ {0, 1} ∀e ∈ E, s ∈ Ω′e
uia ≥ 0 ∀i ∈ I, a ∈ A
oia ≥ 0 ∀i ∈ I, a ∈ A

where Ω =
⋃
e∈E

Ω′e and Ω′e ⊂ Ωe is the set of feasible shifts for employee e, generated at each iteration of the

subgradient method.
It is easier to solve SSCM(Ω) than SCM. This is because the sets Ω′e are considerably smaller than the

sets Ωe. Hence, we propose to solve SSCM(Ω) exactly using a commercial solver such as CPLEX. A �owchart
of the complete procedure is presented in Figure 4.

Start

Ω ← ∅
εR ← 2

LB ← −∞
Λ ← 0|I|,|A|

LB1 ← SubP1(Λ) LB2 ← SubP2(Λ)

Add to Ω the shifts in the
solution of SubP2(Λ)

LB ← max (LB,LB1 + LB2)
Has LB changed
in K iterations?

εR ← εR/2

εR < ε Update ΛUB ←SSCM(Ω)

Return UB

Stop

no

yes

noyes

Figure 4 � Flowchart of the Matheuristic

4 Experimental results

We now present our results. We consider two instance sets from the literature: the Demassey instances [12]
and the Lequy instances [15]. In the former, the working periods of the employees are not �xed, and in the
latter, they are �xed a priori. In both set of instances, the planning horizon is divided into periods of 15
minutes. We compare our results with the ones reported by Côté et al. [10], which are the best solutions
of the literature for both benchmarks, and have been obtained from a Branch and Price algorithm (BP)
executed on an Intel Xeon 2.4 Ghz with 48 GB RAM and using CPLEX 11.2. When our approach reports
an equivalent or a better solution than the best-known in the literature, it is highlighted in bold font in the
tables.

In the Branch and Price of Côté et al. [10], the linear relaxation of the SCM is used as the restricted master
problem (RMP), where only a subset Ω̃e ⊂ Ωe of the feasible shifts for the employee e ∈ E is considered. The
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pricing subproblems are modeled with a DAG Γ for each employee, as detailed in Section 2. As described in
Section 3.1.1, the subproblems are solved through a dynamic programing algorithm where the terminals are
initialized with their corresponding reduced cost obtained from the dual variables of the RMP. The solution
of each subproblem corresponds to the shift with the smallest reduced cost for an employee e and it is added
to Ω̃e through a column generation approach. Their branching strategy consists in forbidding some activities
for an employee at a speci�c period based on the fractional values of the variables in the RMP solution. The
Branch and Price stops when the optimality gap is below 1% or when a time limit of two-hours is reached.

Additionally, we also compare our heuristic with a Column Generation Heuristic (CGH) where the La-
grangian relaxation in the MH is replaced by a column generation as proposed by Côté et al. [10]. The CGH
uses the last RMP returned by the column generation approach to build the SSCM(Ω). Then, SSCM(Ω) is
solved as in the MH.

The experiments were performed on an Intel Xeon E5-2687W 3.1GHz with 64 GB RAM. MH was coded
in C++, and SSCM(Ω) was solved using CPLEX 12.6. The Lagrangian relaxation starts with ε1 = 2, and we
set ε = 0.0001 for the stopping criterion. The Lagrangian multipliers are updated every 375 iterations on the
Demassey instances and every 75 iterations on the Lequy instances. We tuned these parameters to obtain
the best compromise between computational time and solution quality for each set of instances. CPLEX
stops when the optimality gap between the feasible solution and the best Lagrangian bound of SSCM(Ω) is
less than 1%, and we terminate the algorithm if 300 s passed with no improvement in the solution.

4.1 Problem Instances

4.1.1 Demassey Instances

We consider 100 instances introduced by Demassey et al. [12]. This set is divided into 10 subsets, each with
10 instances, based on the total number of activities (from 1 to 10). For each instance, the employees are
able to perform all the activities and their working periods are not �xed; i.e., they can start working in any
period of the planning horizon (one day) and they can perform a part-time or full-time shift. A part-time
shift has between 3 and 6 hours of work and includes a break of 30 minutes. A full-time shift has between 6
and 8 hours of work with 2 breaks of 30 minutes and a lunch break of 1 hour. A break (or lunch) is necessary
between two di�erent activities.

4.1.2 Lequy Instances

The 40 Lequy instances were introduced by Lequy et al. [15]. In these instances, the employees have quali-
�cations, the working periods are �xed a priori, the activities have time windows, and transitions between
activities during a shift have a �xed cost.

These instances are divided into 8 classes of 5 instances each. Table 2 provides the details of each class:
the �rst column gives the name of the class, the second gives the number of working days D, the third gives
the number of available employees E, and the fourth gives the number of activities A. Class 1 is the same size
as class 2, and class 4 is the same size as class 5. However, classes 1 and 4 have larger shifts and employees
with more quali�cations.

Set of Instances Days Employees Activities

Class 1 1 50 10
Class 2 1 50 10
Class 3 2 75 12
Class 4 7 20 5
Class 5 7 20 5
Class 6 7 50 7
Class 7 7 50 10
Class 8 7 100 15

Table 2 � Classi�cation of the Lequy instances.
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4.2 Matheuristic

4.2.1 Demassey Instances

Table 3 summarizes our solutions for the Demassey instances. The columns labeled BP give the results
obtained by the branch and price as reported by Côté et al [10]. The columns NbS(0.01%) and NbS(1%) give
the number of instances for which the optimality gap was less than or equal to 0.01% and 1%, respectively.
For MH, the optimality gap is computed via 100 ∗ (z − zl)/zl where z is the feasible bound and zl the
Lagrangian bound. The best average results for each class are in bold.

In 70 of the instances MH achieves a gap less than or equal to 0.01%, whereas the BP achieves this in
only 54 instances. However, the MH gap is computed with the lower bound obtained by the Lagrangian
relaxation, which can obtain better bounds than the linear relaxation. Furthermore, although the MH and
BP tests were performed on di�erent machines, the results show that MH has a substantially lower processing
time on average.

4.2.2 Lequy Instances

Table 4 shows the MH solutions for each set of instances, where the optimality gap is computed based on
the MH solution and the best bound found by the Lagrangian relaxation, and the BP solution is from Côté
et al. [10]. The instances where our algorithm reports better or equivalent solutions are in bold.

MH �nds better solutions for 15 of the 40 instances and obtains a worse solution for only 3 instances.
However, the di�erence between the MH solution and the best-known solution is the cost of one transition
(15). For the remaining instances, our method �nds the BP solutions.

Table 5 shows the average gap for each instance set: Gap (MH/LR) is the average gap between the MH
bound and the lower bound of the Lagrangian relaxation; Gap (BP/LR) is the average gap between the best
bound reported by Côté et al. [10] and the lower bound of the Lagrangian relaxation; Gap (BP/MH) is the
average gap between the best bound reported by Côté et al. [10] and the MH bound.

The overall Gap (MH/LR) is 1.56%, and the overall Gap (BP/LR) is 2.00%. This shows the quality of
the lower bounds provided by the Lagrangian relaxation. Also, on average, the MH solution is better than
the best known solution, with an optimality gap below 2%. This result is con�rmed by the value of the
overall Gap (BP/MH): −0.41%, which means that the MH is able to �nd better solutions than the BP.

4.3 Column Generation Heuristic

With the aim of having a thorough evaluation and assessing the performance of our proposed MH, we
have implemented a column generation heuristic (CGH) and compared the obtained solutions with the ones
reported by the MH. In this section, we present the analysis of this experiment.

Table 6 summarizes the comparison between the solutions reported by the MH and the CGH for the
Demmasey instances. The column Gap(CGH/CG) displays the optimality gap reported by CGH, notice
that this is the gap between the best found solution and the solution of the linear relaxation provided by the
column generation; Gap(MH/CGH) represents the gap between the best found solutions obtained by the
MH and the CGH; column NbS(MH ≤ CGH) shows the number of times the MH reported a better or an
equivalent solution than the CGH; and the last two columns report the average computation time required
by the MH and CGH, respectively. From this table one can notice that the MH is able to �nd better quality
solutions in a shorter computation time than the CGH. Only in two cases, corresponding to the smallest
instances, the CGH found better solutions than the MH. Besides, the MH achieves better or equal solutions
than CGH in 98 out of 100 cases, with an average gap of 1.8%.

The summary of the results obtained for the Lequy Instances is presented in Table 7. The MH �nds a
better or an equivalent solution than the CGH in 39 out of 40 instances, with an average gap of 3.73%. In
particular, CGH shows its worst performance when solving the largest class of instances (Class 8). Notice
that both heuristics report similar optimality gap in all instance classes except Class 8, even though the
column generation provides a better lower bound than the Lagrangian relaxation.
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5 Conclusions

We have presented a Lagrangian relaxation and a matheuristic for the MASSP. The Lagrangian relaxation
is based on the SCP, and we use a subgradient algorithm to solve this problem, taking advantage of the
context-free grammar representation of the feasible shifts. In the matheuristic, the shifts explored during the
solution of the Lagrangian relaxation are integrated into a restricted SCP to obtain a feasible solution.

Instead of solving the SCP for the MASSP directly, we identify promising shifts through a subgradient
process to reduce the number of variables and the complexity of the problem. The solutions for the Demassey
instances have an optimality gap of 0.01% for 70% of the instances with a relatively low processing time.
On the Lequy instances, MH achieves a gap below 2% with respect to the lower bound of the Lagrangian
relaxation. Furthermore, it �nds a better solution for 15 of the 40 instances than the one reported in the
literature. Besides, a comparison with the CGH (column generation heuristic) shows the e�ciency of MH,
particularly with the largest instances. For more than 97% of the instances the MH reports a better or an
equivalent solution than the CGH within a competitive computation time.

Future work includes the design of an e�cient heuristic for the restricted SCP. This would reduce the
overall processing time but may also reduce the quality of the bound. We also plan to extend this approach
to other classes of shift scheduling problems where, for instance, the shifts are not �xed a priori or a set of
tasks must be assigned. These cases have been successfully modeled using context-free grammars. Finally,
instances with over three days of planning horizon and �exible shifts generate DAGs containing an important
number of nodes that makes them intractable in practice. In order to tackle this class of instances, we look
forward to considering models based on constrained networks such as the one proposed by Restrepo et al.
[18].
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Matheuristic BP

Number
of Activi-
ties

NbS(0.01%) NbS(1%)
Average
Time (s)

NbS(0.01%) NbS(1%)
Average
Time* (s)

1 7 10 12.01 5 10 62.00
2 8 9 75.64 6 9 100.00
3 9 10 97.51 6 8 2074.00
4 6 7 180.35 5 9 2096.00
5 9 9 35.29 0 10 7200.00
6 7 7 95.91 9 10 915.00
7 7 9 131.64 5 9 2426.00
8 4 7 113.77 7 10 2163.00
9 7 10 54.61 5 7 1886.00
10 6 8 172.14 6 8 3754.00

Average: 7 8.60 96.89 5.40 9 2267.60

*Average processing times of the BP are those reported by Côté et al. [10]

Table 3 � Experimental results for the Demassey instances.

15



Instance (Id) MH solution Gap (%)
Time MH
(s)

BP
solution

Time BP
(s)

Class 1: 1 day, 50 employees, and 10 activities.

1808 3225 4.90 71.46 3270 3600.00
5066 2440 2.43 36.69 2440 935.00
5135 2580 0.54 19.12 2580 8.00
5226 2725 0.34 20.72 2725 8.00
8854 2740 3.46 100.63 2800 3600.00

Class 2: 1 day, 50 employees, and 10 activities.

342 1875 1.60 8.02 1875 26.70
369 2315 0.66 12.48 2315 146.08
71 2050 0.00 4.83 2050 1.26
737 2065 2.82 9.73 2065 53.23
896 1890 3.88 10.20 1875 41.67

Class 3: 2 days, 75 employees, and 12 activities.

1855 5960 4.27 5314.58 6265 3600.00
2106 6540 5.99 2632.76 6525 3600.00

2435 5850 3.74 1740.24 6050 3600.00
4225 6150 5.19 1682.04 6255 3600.00
9863 5870 3.31 868.20 5870 3600.00

Class 4: 7 days, 20 employees, and 5 activities.

1024 7220 0.56 81.49 7220 11.00
1773 6345 0.01 86.14 6360 9.00
2732 7420 0.29 121.35 7420 19.00
4657 6400 1.34 78.36 6400 2003.00
5553 7535 0.16 106.70 7600 15.00

Class 5: 7 days, 20 employees, and 5 activities.

1024 2940 0.00 15.73 2940 0.80
1773 2770 0.00 13.24 2770 0.76
2732 3820 0.00 9.90 3820 0.54
4657 3210 0.00 14.22 3210 0.61
5553 3270 0.00 10.88 3270 0.59

Class 6: 7 days, 50 employees, and 7 activities.

5600 8440 0.64 200.03 8440 59.49
592 7345 0.27 235.63 7345 33.03
8597 7645 0.12 275.13 7645 31.58
9445 7900 0.06 169.51 7900 14.67
949 8155 0.33 275.07 8155 44.19

Class 7: 7 days, 50 employees, and 10 activities.

1007 14085 1.37 1157.05 14115 1321.00
156 13420 0.79 1139.32 13420 1793.00
237 13455 0.93 875.391 13610 3600.00
4369 13630 1.95 1703.35 13675 1536.00
5216 14770 1.15 1171.37 14800 1824.00

Class 8: 7 days, 100 employees, and 15 activities.

530 15155 1.48 2430.48 15200 5818.36
1024 15435 2.63 2790.49 15420 4602.99

2596 15765 1.76 2180.99 15855 10806.10
6384 15235 1.47 2100.24 15250 2064.81
7862 15880 1.98 2101.96 15940 1391.95

Table 4 � Solutions obtained by the matheuristic for the Lequy instances.
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Set of In-
stances

Gap(MH/LR) (%) Gap(BP/LR) (%) Gap(BP/MH) (%)
Time
MH (s)

Time
BP* (s)

Class 1 2.34 3.08 -0.70 49.72 1630.20
Class 2 1.79 1.63 0.16 9.06 53.78
Class 3 4.50 6.59 -1.92 2447.56 3600.00
Class 4 0.47 0.69 -0.21 94.81 411.40
Class 5 0.00 0.00 0.00 12.79 0.66
Class 6 0.28 0.28 0.00 231.07 36.59
Class 7 1.24 1.62 -0.37 1209.29 2014.80
Class 8 1.87 2.12 -0.24 2320.83 4936.84

Average: 1.56 2.00 -0.41 796.89 1585.53

*Average processing times of the BP are those reported by Côté et al. [10]

Table 5 � Average solution obtained with the matheuristic for the Lequy instances.

Number of
Activities

Gap(CGH/CG)
(%)

Gap(MH/CGH)
(%)

NbS
(MH ≤ CGH)

Time
MH(s)

Time
CGH(s)

1 2.06 -1.84 9 12.01 1.06
2 6.19 -4.32 9 75.64 5.83
3 2.24 -2.11 10 97.51 16.09
4 1.37 -1.15 10 180.35 131.55
5 0.76 -0.74 10 35.29 158.62
6 1.31 -1.17 10 95.91 617.7
7 1.94 -1.72 10 131.64 919.97
8 3.08 -2.32 10 113.77 1163.15
9 0.74 -0.73 10 54.61 827.03
10 2.25 -1.94 10 172.14 1369.66

Average: 2.19 -1.8 9.8 96.89 521.07

Table 6 � Comparison between MH and CGH for the Demassey instances.

Instances
Gap(CGH/CG)
(%)

Gap(MH/CGH)
(%)

NbS
(MH ≤ CGH)

Time
MH (s)

Time
CGH (s)

Class 1 2.99 -0.97 5 49.72 112.78
Class 2 1.83 -0.25 4 9.06 8.81
Class 3 4.11 -1.88 5 2447.56 1558.66
Class 4 0.47 -0.08 5 94.81 15.97
Class 5 0.00 0.00 5 12.79 2.78
Class 6 0.20 -0.07 5 231.07 50.06
Class 7 0.65 -0.34 5 1209.29 1055.64
Class 8 87.12 -26.26 5 2320.83 3018.39

Average: 12.17 -3.73 4.87 796.89 727.89

Table 7 � Comparison between MH and CGH for the Lequy instances.
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