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C.P.6079, Succ. Centre-ville, Montreal (Quebec), Canada H3C 3A7

Sebastián Souyris

McCombs School of Business, University of Texas at Austin

2110 Speedway Stop B6500, Austin, TX 78712, USA

Andrés Weintraub

Industrial Engineering Department, Universidad de Chile
Republica 701, Santiago, Chile

Abstract

We consider a real problem faced by a large company providing repair services of office
machinesXerox in Santiago, Chile. In a typical day about twenty technicians visit seventy
customers in a predefined service area in Santiago. We design optimal routes for technicians
by considering travel times, soft time windows for technician arrival times at client locations,
and fixed repair times. A branch-and-price algorithm was developed, using a constraint
branching strategy proposed by Ryan and Foster along with constraint programming in the
column generation phase. The column generation takes advantage of the fact that each
technician can satisfy no more than five to six service requests per day. Different instances
of the problem were solved to optimality in a reasonable computational time, and the results
obtained compare favorably with the current practice.

Keywords: Branch-and-price, Constraint programming, Routing, Technician dispatch

problem

∗Corresponding Author, phone: 562 29784380, fax: 562 26894206
Email addresses: ccortes@ing.uchile.cl (Cristián E. Cortés ), michel.gendreau@cirrelt.ca

(Michel Gendreau), louis-martin.rousseau@polymtl.ca (Louis Martin Rousseau),
sebastian.souyris@utexas.edu (Sebastián Souyris), aweintra@dii.uchile.cl (Andrés Weintraub)

Preprint submitted to European Journal of Operational Research February 1, 2014



List of changes

Replaced: a large company providi . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Replaced: a large company . . . . . . . . . . . . . . . . . . . . . . . . 2

Replaced: that provides repair ser . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Added: that occur . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Replaced: The company offers . . . . . . . . . . . . . . . . . . . . . . . . 2

Replaced: building a . . . . . . . . . . . . . . . . . . . . . . . . 2

Replaced: meta-heuristic . . . . . . . . . . . . . . . . . . . . . . . . 3

Deleted: s . . . . . . . . . . . . . . . . . . . . . . . . . 3

Added: Liberatore et al. (2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Deleted: The main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Deleted: for crew scheduling pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Added: The main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Replaced: approach, . . . . . . . . . . . . . . . . . . . . . . . . 6

Added: at . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Replaced: C × P . . . . . . . . . . . . . . . . . . . . . . . . 12

Added: Note that the model can . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Replaced: the firm . . . . . . . . . . . . . . . . . . . . . . . . 22

Replaced: a large company . . . . . . . . . . . . . . . . . . . . . . . . 32

Added: In addition, the authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1. Introduction

This research was motivated by a real problem, which is the dispatch of technicians

from a large companyXerox Chile that provides repair services for their machines to overcome

to repair machines failures that occur over a typical working day. The company offersXerox

Corporation is an international company that offers color and black-and-white digital print-

ers, digital presses, multifunction devices, and digital copiers. Of the services that the firm

provides to its clients, the maintenance of its machines distributed over Santiago is probably

one of the most important for building a maintaining the positive image of the company in
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terms of level and quality of service over time. It is therefore critical to carefully route the

available technicians to satisfy the client requirements occurring in certain service areas on

a typical working day. In this research, we propose a formulation and solution for this prob-

lem, satisfying the typical routing constraints as well as soft time-window constraints. The

latter constraints arise from the fact that service requests come from clients with different

priorities. The company defines different promised service times (denoted hereinafter target

service times) according to the importance of each customer. These promises of technician

arrival can be violated, so these conditions can be added as penalties in the objective func-

tion. From this, we see that the proposed scheme is based on the classical formulation of

the vehicle routing problem with soft time windows (VRPSTW), which is formulated and

solved using constraint programming (CP)-based column generation (Section 3).

The vehicle routing problem (VRP) involves constructing routes for a set of vehicles

to serve a set of customers, given a number of requirements. There are many classes of the

VRP, depending on the requirements and constraints.

One of the best-known versions is the vehicle routing problem with time windows

(VRPTW), which has the characteristic that each of the clients must be served within a

predefined time interval. VRPTW has been one of the most intensively studied NP-hard

problems in the last decades. Exact methods are still restricted to solve a limited number of

real instances, and their performance strongly depend on the time-window characteristics.

Heuristic and meta-heuristic approaches have been developed for many cases and potential

applications of VRPTW. A complete review of the models and methods to solve the VRPTW

can be found in Cordeau et al. (2002). Later on, Bräysy and Gendreau (2005a,b) performed

deep reviews of VRPTW solution methods, focused on the description of heuristic route

constructions methods, local search algorithms and meta-heuristicmetaheurstic methods for

solving capacitated problems of different size and time-windows configurations. Nowadays,

state of the art results are currently offered by the hybrid genetic algorithm due to Nagata

et al. (2010). Their method combines powerful route minimization procedures, proposing

an effective edge assembly crossover along with very efficient local search algorithm. In

the same line of research, Ibaraki et al. (2008) and Pisinger and Ropke (2007) developed

two simple, efficient and flexible methods able to address various VRP variants, namely the
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Iterated Local Search (ILS) method and the Adaptive Large Neighbourhood Search (ALNS),

respectively. Recently, Vidal et al. (2013) proposed an efficient Hybrid Genetic Search with

Advanced Diversity Control for a large class of time-constrained vehicle routing problems,

adding to the method new features to properly handle the temporal dimension.

The most successful exact methods are based on column generation for linear pro-

grams with decomposable structures; this was originally introduced in Dantzig and Wolfe

(1960). The first application of this approach to the VRP was developed by Desrochers

et al. (1992) (see also Desrosiers et al., 1995). The basic idea is to decompose the problem

into sets of customers visited by the same vehicle (routes) and to select the optimal set of

routes among all possible routes. The decomposition is based on two structures: a master

problem and a subproblem. The former optimizes the global route objective function and

includes the constraint that each customer must be covered exactly once, resulting in a set

partitioning formulation. The latter creates new routes that improve the solution, using

dynamic programming to solve a shortest path problem with time windows. More recently

column generation methods have been extended to include cuts, heuristic pricing and relaxed

elementarity constraints (Desaulniers et al., 2008) to produce better lower bounds for the

master problem and to speed up the generation of columns. Exact solution approaches using

column generation without requiring Branch and Price have been proposed by Baldacci et al.

(2012).

With regard to vehicle routing schemes for technician dispatch problems, it is worth

mentioning a real application of technicians dispatch for emergency calls of an important

electricity company in Chile (Weintraub et al., 1999). Blakeley et al. (2003) also develop and

implement a technician dispatch system for a big elevator company using heuristics and GIS

data. Recent publications related to service technician routing and scheduling are not many.

We can mention the work by Cordeau et al. (2010), who address a service technician schedul-

ing problem arising in large telecommunications companies, focusing on team configurations

and assignment of tasks respecting specific skills, priorities and precedence constraints for

the tasks assigned, with the objective of minimizing a weighted function related to the

makespan. Xu and Chiu (2001) also perform task scheduling for a telecommunication com-

pany with the objective of maximizing the realized orders. Tang et al. (2007) implement a

4



tabu search heuristic for a real world maintenance dispatch system which is formulated as

a Multiple Tour Maximum Collection Problem with Time-Dependent rewards. Liberatore

et al. (2011) present an exact solution procedure for the VRPSTW. The proposed algorithm

is a column generation scheme, with ad-hoc heuristics based on dynamic programming to

generate new columns. We use CP for that purpose instead. Liberatore et al. (2011) model

explicitly the time window violation for early and late arrivals. By contrast, in our work

we just penalize for late arrivals due to the nature of the real application we are trying to

solve; nevertheless, in our model and solution algorithm it is straightforward to incorporate

penalization for early arrivals as explained later in section 3.2. Kovacs et al. (2012) formulate

a service technician routing and scheduling problem motivated by a real problem faced by

infrastructure service and maintenance providers. The objective is to minimize the sum of

total routing and outsourcing costs, considering hard time windows for reaching customers

sites. They solve the problem through an Adaptive Large Neighborhood Search algorithm,

tested on both artificial and real-world instances. Pillac et al. (2013) adapt the large neigh-

borhood search algorithm (Shaw, 1998) for the VRPTW with resource constraints. Finally,

Souyris et al. (2013) formulate a robust optimization version of a column generation scheme

for a technician dispatch problem, putting the focus on properly handling the uncertainty

associated with service time in such kind of real applications.

The CP-based column generation (CG) framework was introduced by Junker et al.

(1999b) and Yunes et al. (2000) for two different crew rostering problems. Their work was

motivated by the difficulties that arose in standard column generation approaches when

modeling complex rules from legislation and union agreements. To overcome these difficul-

ties, they proposed solving the pricing subproblem using CP models of resource-constrained

shortest paths on acyclic graphs. The most attractive feature of CP, compared with dynamic

programming, was the expressiveness of its modeling languages. Rousseau et al. (2004) and

then Chabrier (2006) extended this framework to cyclic graphs, thus allowing VRPTW

problems to be solved. In the last decade, the CP-CG framework has been used in several

applications that are discussed in a recent survey by Gualandi and Malucelli (2009).

In this paper we use a CP-based pricing model similar to that proposed by Yunes

et al. (2000, 2005) in the context of bus driver scheduling, which allows for a flexible and
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simple modeling of the technician-route requirements. This straightforward model, which

takes advantage of the fact that each technician visits only a small fraction of the overall

daily clients, has significantly fewer variables than the graph-inspired models normally used

for routing problems (Rousseau et al., 2004). Although it may be somewhat less efficient,

this model does not require the implementation of complex shortest-path constraints such

as those proposed for airline crew rostering problems (Junker et al., 1999b). To obtain

optimal solutions for different service request distributions, we implement a branch-and-

price approach based on the efficient branching strategy of Ryan and Foster (1981), again

taking advantage of CP flexibility when we include these branching constraints.

The main contributions of this paper are the following: (i) we provide what we

believe is the first exact solution procedure for the VRPSTW; (ii) it is also the first to

show that the approach proposed by Yunes et al. (2000, 2005) for crew scheduling problems

can be applied to problems whose underlying structure is a cyclic graph, and to integrate

it into a branch-and-price framework; (iii) as stated above, the approach that we propose

has some advantages over the alternatives; it can thus prove attractive for similar practical

applications.

The main contributions of this paper are three-fold: (i) we provide an efficient exact

solution procedure for the VRPSTW using CP; (ii) it is the first to show that the approach

proposed by Yunes et al. (2000, 2005) for crew scheduling problems can be applied to prob-

lems whose underlying structure is a cyclic graph, and to integrate it into a branch-and-price

framework; (ii) as stated above, the approach that we propose has some advantages over the

alternatives; it can thus prove attractive for similar practical applications.

The remainder of this paper is organized as follows. In the next section we state the

problem formally and provide a mathematical formulation. Section 3 presents the column

generation approach,for both the master and the pricing problem, while the branch-and-price

methodology is described in Section 4. Experiments on a real-case scenario are reported in

Section 5.
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2. Problem Statement and Mathematical Model

The strategic objective of the firm is based on client satisfaction. Within this context,

the maintenance of their machines is one of the most important activities of the company

in Chile. As explained in Section 1, service requests have different priorities, and there are

different target response times for service requests at different priority levels. Strictly, the

target response time is defined as the maximum allowable time for a technician to reach the

service location, measured from the time of the service request. If the technician reaches

the location after the target response time, a penalty will be incurred by the system; this is

considered in the formulation.

To consider this effect, we use a compound objective function for assigning technicians

and jobs. The function minimizes two components: the sum of the differences between the

target response times of requests and the effective service times provided by the firm, plus

the travel times. This objective function seems to meet the needs of the company since it

takes into account both service quality and the effective use of technicians.

The approach considers expected travel and service times, which are estimated from

historical company data. In further developments, we will include uncertainty in the service

times to make the model more robust and realistic. Travel times are less important than

service times in the results, and therefore the assumption of deterministic travel behavior is

reasonable in this case.

The set of service requests assigned during a given day come from the previous days,

usually the day before, since the company attempts to enforce a 24-hour service policy. It

is assumed that the dispatcher in charge of service selects which requests should be handled

during the coming day. Furthermore, the dispatcher will choose a set of high-priority requests

to be served first. A technician will begin his working day at one of these high-priority

customer locations, under the reasonable assumption that the number of service requests is

larger than the number of available technicians. In some cases, a technician can start the

working day at the depot because he was not assigned to a specific client. In addition, all

the tasks assigned to each technician must be completed during the day.

The modeling scheme was adapted from the classical formulation of the VRPSTW
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(Cordeau et al., 2002) with the following adjustments:

• For this problem, only the upper bound of the soft time window (related to the target

response time of each service request) is considered, since the objective is to serve each

requirement as soon as possible.

• Service times are quantitatively longer and are known less accurately than travel times;

therefore, the former will play a more important role than the latter in the proposed

decision rules.

• Although the VRPSTW considers soft time windows by penalizing the objective func-

tion, we add the hard constraint that all tasks scheduled for a specific day must be

completed during that day. To ensure feasibility, we modified the classical formulation

slightly to be able to decide which service requests can be handled during the day by

the available technicians; any remaining requests are then postponed to the next day

and given a very high priority.

Let K = {1, . . . , K} be the set of technicians available to work during the day. As

mentioned earlier, the technicians must start the day at the location of a service request

with a very high priority or at the depot. Let I1 = {1, . . . , K} be the set of these locations;

and I2 = {K + 1, . . . , C} be the set of locations of the service requests that remain to be

scheduled, where C is the cardinality of I1∪ I2. We set C+ 1 as a dummy depot to which all

technicians must be sent after their schedule is finished. To simplify the notation, we define

the arc set A = {(i, j) | i ∈ I1 ∪ I2, j ∈ I2 ∪ {C + 1}, i 6= j} to represent all feasible trips

between locations. Additionally, let bi be the time-window upper bound of service request

i, and si the expected repair time for service request i, i ∈ I1 ∪ I2. Let tij be the travel time

from service request i to service request j, (i, j) ∈ A. We assume that travel times satisfy

the triangular inequality. The end of the working day is set at instant F , which represents

the latest time a technician can start the last job of the day. β ∈ [0, 1] is a multiobjective

parameter.

We next formulate a mixed integer model, including both {0-1} (binary) and contin-

uous variables. Specifically, we define flow variable xkij, which is equal to 1 if technician k

attends service request i and service request j sequentially, and 0 otherwise, (i, j) ∈ A, k ∈ K.
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Two continuous variables are also included: wik is the time that technician k arrives at the

location of service request i, i ∈ I1 ∪ I2 ∪ {C + 1}, k ∈ K; and δik represents the amount of

time by which technician k violates the soft time window of service request i, i ∈ I2, k ∈ K.

Finally, we define the binary variable vi, which allows the model to handle the demand

not served during the day with the available fleet by scheduling those service requests for

the beginning of the next day, i ∈ I2. In the model, such requests are assigned to virtual

paths at a high penalty P . Thus, vi is equal to 1 if i is sent through a virtual path, 0

otherwise. To simplify the notation we define the sets O(i) and D(i) associated with node

i: O(i) = {j | (i, j) ∈ A}, i ∈ I1 ∪ I2, and D(i) = {j | (j, i) ∈ A}, i ∈ I2 ∪ {C + 1}. The

formulation is as follows:

min
x,w,v,δ

β
∑
k∈K

∑
i∈I2

δik + (1− β)
∑
k∈K

∑
(i,j)∈A

tijx
k
ij +

∑
i∈I2

Pvi (1)

s.t.
∑
k∈K

∑
j∈O(i)

xkij = 1 i ∈ I1 (2)

∑
k∈K

∑
j∈O(i)

xkij = 1− vi i ∈ I2 (3)

∑
j∈O(i)

xkij −
∑
j∈D(i)

xkji =


1 i = k

−1 i = C + 1

0 otherwise.

i ∈ I1 ∪ I2 ∪ {C + 1}, k ∈ K (4)

wik + si + tij − wjk ≤ (1− xkij)F (i, j) ∈ A, k ∈ K (5)

wik ≤ F
∑
j∈D(i)

xkji i ∈ I2, k ∈ K (6)

wik − δik ≤ bi i ∈ I2, k ∈ K (7)

xkij ∈ {0, 1} (i, j) ∈ A, k ∈ K (8)

vi ∈ {0, 1} i ∈ I2 (9)

wik, δik ≥ 0 i ∈ I2, k ∈ K. (10)

The objective function (1) accounts for the total cost, computed as a convex combination of

the sum of soft time-window violations and the total travel time. An additional term is added

to penalize the unsatisfied demand. Constraints (2) and (3) restrict the assignment of each
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service request scheduled during the day to exactly one technician; if the request is postponed

to the next day, the condition vi = 1 together with constraint (3) ensure that no technician

attends it on the current day. Next, constraints (4) ensure flow conservation, considering

the dummy node where each path must end. Constraints (5) guarantee schedule feasibility

with respect to precedence-time consistency (i.e., if technician k travels from customer i to

customer j, then the arrival time at node j will be greater than or equal to the arrival time

at node i plus the service time there). If xkij = 1, then k goes from i to j, and we can start

serving j no earlier than the start of service at i, plus the time spent in i, plus the travel

time from i to j. If xkij = 0, technician k does not go from i to j and constraint (5) becomes

inactive. Note that, for a given k, constraints (6) force wik = 0 if service request i is not

met by technician k and require k to reach i before time F if service is going to be provided

(i.e., vi = 0). Constraints (7) define δik, the violation of the soft time window. Finally, (8),

(9), and (10) impose binary conditions on the flow variables and state the nonnegativity

restriction on the time-arrival variables.

The VRP problem with soft time windows is hard to solve as mentioned in Taillard

et al. (1997). We propose to solve this problem using column generation, as described in the

next section.

3. Column Generation Approach

By working with actual company data, we realized that most real instances were not

solvable using the arc-based formulation presented in the previous section, because the num-

ber of variables was too large to handle. Therefore, we looked for an alternative formulation

and solution approach.

Column generation approaches have provided promising results for various types of

VRPs (see for example Desrochers et al., 1992). Moreover, column generation approaches

are very flexible in the sense that the problem under consideration can be split into two

parts: a main model, the master problem, which chooses the routes with the minimum total

cost from a pool of feasible routes; and a secondary model, the subproblem, which generates

feasible routes that could potentially reduce the total cost.
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In the literature, the subproblem is usually solved via dynamic programming (DP).

We decided to use CP instead, for several reasons. First, it seems that CP works well when

the length of each route is relatively small, which is the case for this application. Second,

the CP model we implement is simple and easy to code. Third, under a CP approach, any

additional constraint can be incorporated directly into the code without a special model-

ing technique. This is crucial when we use the branch-and-price algorithm (see Section 4)

improved by the branching strategy proposed by Ryan and Foster (1981). Imposing some

constraints on routes turned out to be straightforward with CP. For example, the proposed

branching strategy forces two specific service requests to appear in a specific route, which can

be included easily under CP, whereas in a DP implementation incorporating such constraints

could become cumbersome. In Sections 3.2 and 4 we describe these features in detail.

3.1. Master Problem

The master problem can be formulated as a set partitioning model assuming that it

is possible to choose routes for each technician from an existing set of routes R. We use the

result presented in Barnhart et al. (1998), which shows that the set covering relaxation is

numerically far more stable and thus easier to solve than the set partitioning version. Also

the authors argue that it is easy to construct a feasible integer solution from a solution of

the set covering relaxation.

Each route r ∈ R is characterized by a technician who initiates the route r at a specific

service location i1 ∈ I1, and then follows a sequence of service requests {i2, . . . , ie} ⊆ I2,

where i2 is the second one and ie is the service request at the end of route r. For each

service request in position l ∈ {2, . . . , e} of the route, the technician’s arrival time is wil =

wil−1
+ sil−1

+ til−1il , and thus the time-window violation becomes dil = max{0, wil − bil}.
Additionally, wi1 = di1 = 0. Hence, the total cost of the route is cr = β

∑e
l=2 dil + (1 −

β)
∑e−1

l=1 til,il+1
. In this formulation, the binary variable θr indicates whether or not route

r ∈ R is chosen. air is a binary parameter that indicates whether or not route r contains

service request i, and the binary variable vi is equal to 1 if service request i is not included
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in any route, incurring a high penalty P . Then the master problem is the following:

(MP) min
θ,v

∑
r∈R

crθr +
∑

i∈I1∪I2

Pvi (11)

s.t.
∑
r∈R

airθr + vi ≥ 1 i ∈ I1 ∪ I2 (12)

θr ∈ {0, 1} r ∈ R (13)

vi ∈ {0, 1} i ∈ I1 ∪ I2. (14)

Note that in the MP formulation, the pool R of routes can be empty, and there still exists a

feasible solution: vi = 1, i ∈ I1∪ I2, with cost C×PCṖ , where C is the cardinality of I1∪ I2

as defined before.

To generate new columns, we replace the integrality constraints (13) and (14) by

θr ∈ [0, 1], r ∈ R, and vi ∈ [0, 1], i ∈ I1 ∪ I2, respectively. Thus, for a given pool of routes

R, the optimal solution of MP provides the dual values of constraint (12) to the subproblem

that generates new routes. This procedure is described below.

3.2. Subproblem

Given a pool R of columns and the associated optimal solution of the LP relaxation

of problem (11) to (14), it is well known from linear programming theory that a new column

r, not in R, has the potential to improve the objective function only if it has a negative

reduced cost. The reduced cost of a column is defined as the cost of the route, cr, minus the

sum of the dual variables of the service requests that belong to that route, which come from

constraint (12).

At each iteration, the subproblem identifies a route of minimum reduced cost. We

solve the master problem over the current set of columns using the simplex method and

obtain the dual variables. Let αi be the dual variables associated with constraint (12). The

subproblem generates the optimal route by minimizing the real cost cr (the sum of the time-

window violations and travel times) minus the sum of the dual variables of the service requests

included in the route, subject to the constraints that ensure that the route is feasible. By

this process, a route with minimum reduced cost is generated. If the resulting reduced cost
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is negative, this new column can be included in the basis to improve the objective function

of the master problem.

Constraint programming models have been used to solve pricing subproblems within

hybrid column generation for almost a decade (Gualandi and Malucelli, 2009). There are

essentially three families of models in the literature that specifically address routing and

scheduling problems. One of the first models, proposed by Yunes et al. (2000, 2005), is

based on an array of finite-domain variables Xp ∈ T, p ∈ P, that identify which task in T

is to be performed by a bus driver in position p ∈ P . Junker et al. (1999a,b) and Fahle

et al. (2002) proposed using a single set variable S ⊆ T to identify the subset of tasks in

T to be covered by a crew pairing. In order for their model to be valid and efficient, they

introduced a new shortest path constraint, as well as a negative-reduced-cost constraint on

S. Finally, in the context of vehicle routing with time windows, Rousseau et al. (2001,

2004) based their model on successor variables Nt ∈ T, t ∈ T, that identify the task to be

performed immediately after t. This approach also required the use of specially designed

global constraints and a search strategy based on dynamic programming.

In this paper, we adapt the simple model proposed by Yunes et al. (2000) for the

following reasons. First of all, it is straightforward, is flexible, and works without the ad-

dition of dedicated global constraints. In constraint programming, a global constraint is a

relationship among decision variables for which an efficient algorithm is available that can

find the set of all infeasible values for each of the included decision variables. For example,

the global constraint alldifferent(x1, x2, x3) ensures that the three variables x1, x2, and x3 are

all different. Modern constraint programming packages offer a set of global constraints, and

associated algorithms, that can model a generous number of relationships. The algorithms

to find feasible sets are based on the principles of constraint propagation and domain re-

duction. When it is not possible to model a particular relationship with the existing global

constraints, it is necessary to design a dedicated global constraint and an associated algo-

rithm. A detailed explanation of these concepts is found in the exhaustive survey by Régin

(2011).

Second, in contrast with the model of Rousseau et al. (2004), which defines one

variable for every node or task in the problem, Yunes et al. (2000) introduce only a number
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of variables equivalent to the number of tasks that can be performed by one technician.

Since in our context this number is small (from three to six), this model seems particularly

appropriate. Moreover in both these models the size of domains of the main decision variables

are equal as they correspond to the number of nodes in the graph.

In the subsequent model (15) to (25), the new route to be generated is represented by

the array of variables sc[l], l = 1, . . . , L, where L is the maximum number of service requests

that a technician can satisfy in one day. The lth element of sc is the service request scheduled

in position l of the route. The route must start at an initial location of a technician (which

could be either a high-priority service request or the depot, in case there are more available

technicians than high-priority requests), that is a location from I1. The route must contain

at least one service request that remains to be scheduled, that is a service request from

set I2. Any position of the route that is not used by a service request must be utilized by

fictitious nodes that are added for CP modeling purposes. Hence, the maximum number of

fictitious nodes that a route can contain is L− 2. Let us define the set of fictitious nodes to

be I3 = {C + 1, . . . , C + L− 2}, where, as before, C is the cardinality of I1 ∪ I2. Therefore,

the domain of the sc[l] variables, l = 1, . . . , L, is set to I1 ∪ I2 ∪ I3. The distinction between

the fictitious nodes in I3 is necessary in order to impose the global constraint alldifferent(sc),

which will be discussed after the presentation of the model. The travel time between a service

request in I2 and any fictitious node in I3 is set to 0, as is the travel time between any pair

of nodes in I3. Figure 1 shows an example of a route that starts servicing request 3, then

proceeds to requests 5, 10, and 14, and finishes with the fictitious nodes C + 1 and C + 2.

Variables w[l] and d[l] define the start time of service and the time-window violation

respectively for the service request in position l = 1, . . . , L. Variable a[i], i ∈ I1 ∪ I2 ∪ I3

takes the value 1 if request i is served by the route, and 0 otherwise, l = 1, . . . , L. These

definitions are useful for the control of the branch-and-price method as described in Section
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I1 I2

I3

sc[1] sc[2] sc[3] sc[4] sc[5]

3

5

10

14

3 5 10 14

C + 1

C + 2

C + 3

C + 4

C + 1 C + 2

Fictitious nodes

sc[6]

Figure 1: Shortest path model implemented with CP

4. The constraint programming model for the subproblem is thus the following:

(SP) min β
L∑
l=1

d[l] + (1− β)
L∑
l=1

tsc[l−1],sc[l] −
L∑
l=1

αsc[l] (15)

s.t. w[1] = 0 (16)

w[l] = w[l − 1] + ssc[l−1] + tsc[l−1],sc[l] l = 2, . . . , L (17)

d[l] = max(0, w[l]− bsc[l]) l = 1, . . . , L (18)

alldifferent(sc) (19)

sc[l] ∈ I1 l = 1 (20)

sc[l] ∈ I2 l = 2 (21)

sc[l] ∈ I2 ∪ I3 l = 3, . . . , L (22)

sc[l] = i, i ∈ I3 ⇒ sc[l + 1] = i+ 1 l = 3, . . . , L (23)

a[sc[l]] = 1 l = 1, . . . , L (24)∑
i∈I1∪I2∪I3

a[i] = L (25)

The objective function (15) minimizes the convex combination of time-window violation and
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travel cost, which is the real cost of the route minus the sum of the dual values, α, associated

with the service requests in the route. For i ∈ I3, which is not in constraint (12) of MP,

we set αi equal to 0. Constraint (16) ensures that the start time of the path is associated

with the start time of the day, and (17) sets the starting time of next service requests that

are visited by the route. CP constraint (18) sets the late time-window violations. Note that

the model can also include early time window violations; for adding that feature, we just

have to change the right hand side of constraint (18) by max(fsc[l]−w[l], w[l]− bsc[l]), where

fi corresponds to the time window lower bound associated with service request i. Thus,

the CP algorithm presented next can be easily adapted to incorporate this modification.

Constraint (19), alldifferent(sc), is a global constraint that ensures that all of the variables

sc are different, so any request is served by the path no more than once (for an explanation of

this global constraint see, for example, Régin (2011)). Constraint (20) ensures that the first

request served by the route is assigned to a location where a technician is initially positioned,

(21) ensures that the second position of the route is a service request without a technician

initially allocated, and (22) restricts the other positions along the path to be either service

requests or fictitious nodes. (23) ensures that, if position l is used by a fictitious node,

the next service request in the route must be the next fictitious node (proceeding to any

other service request is not allowed in order to reduce the search space as much as possible).

Variable a is useful to impose new constraints for the service requests that can belong to a

specific route, which are needed to implement the search procedure in the branch-and-price

methodology, as explained below and detailed in Section 4. Finally, constraints (24) and

(25) impose logical restrictions between the different variables in sc and a.

CG frameworks depend heavily on marginal costs to guide the search at the subprob-

lem level. In some cases it is possible that, during the first iterations, the marginal cost

associated with each customer is not accurately estimated by the dual values. For instance,

in some routes some service requests pick up most of the total dual values. This undesirable

behavior is illustrated by the example in Fig. 2. A path that visits each of overweighted

service requests (2 and 3’s dual values are exactly twice 1 and 4’s dual values) will be con-

sidered a good route (with a reduced cost of -5), but it is not (it is unlikely to be selected in

an optimal IP solution). With a more realistic distribution of the dual values, all the nodes
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would have been given a value of 15 and no more reduced-cost paths would have been found,

thus removing the need for a last iteration.

Depot

1

2 3

4

= 20Dual value Dual value = 20

Dual value = 10 Dual value = 1010

10
10 10

10

10

15

Figure 2: Path Depot− 2− 3−Depot has a negative reduced cost of -5.

In this example, described in Rousseau et al. (2007), such undesirable behavior may

occur because the master problem is degenerate, and thus its dual has an infinite number

of optimal solutions. The bases of the primal solutions all exhibit a common set of strictly

positive variables, but different sets of null variables. A different dual solution is associated

with each of these equivalent primal optimal solutions.

The standard function that returns dual values in the LP codes returns an extreme

point of the dual polyhedron. Extreme solutions are characterized by large values for some

marginal costs while others are at zero. Therefore, the subproblem tends to build routes that

have very low reduced costs but potentially large travel times and time-window violations. To

avoid this, we instead optimize over the real objective function (cr). Negativity of the reduced

cost can then be enforced through a constraint, since the necessary condition imposed by

the CG framework to ensure convergence is that we add, at each iteration, a set of negative-

reduced-cost routes or prove that none exists. The objective function (15) thus becomes (26)

and constraint (27) is added to the subproblem model:

min β

L∑
l=1

d[l] + (1− β)
L∑
l=1

tsc[l−1],sc[l] (26)

β

L∑
l=1

d[l] + (1− β)
L∑
l=1

tsc[l−1],sc[l] −
L∑
l=1

αsc[l] < 0 (27)
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After experimenting with our CP implementation, we decided to split the subproblem into

a two-step procedure (SP1 and SP2); we found a considerable reduction in the running time

when many interesting columns are generated at each iteration of the pricing problem. SP1

attempts to select service requests such that the reduced cost is negative (i.e., constraint

(27) is satisfied), but the order of the service requests in the route is not necessarily the

best. Thus, SP1 is not an optimization problem but a CP feasibility problem with feasible

region (17) to (27). SP2 then optimizes the sequence to find the lowest real cost given by

(26) subject to (17) to (25). SP1 passes the selected service request to SP2 by fixing the

variables a in constraint (24). Figure 3 shows an example of the process. First, SP1 chooses

service requests 0, 2, 3, 5, 8, and 10, and then SP2 rebuilds the route with only these service

requests. Notice that the reduced cost of the resequenced route can only be lower than the

original route or equal in case the sequence does not change, because the real cost of the

re-sequenced route decreases and the sum of the dual variables remains the same.

I1

I2

0

1

2

3 5 8 10

11

12

13

I1

I2

0

1

2

3 5 8 10

11

12

13

a[0] = a[2] = a[3] = a[5] = a[8] = a[10] = 1;

a[4] = a[7] = a[9] = a[11] = a[12] = a[13] = 0;
) Reconstruct the path

with the nodes.

sc[1] = 0; sc[2] = 2;

sc[3] = 3; sc[4] = 5;

sc[5] = 8; sc[6] = 10;

sc[1] = 0; sc[2] = 3;

sc[3] = 8; sc[4] = 5;

sc[5] = 2; sc[6] = 10;

Figure 3: Construction of a new route procedure.

Empirically, we found a considerable improvement in terms of the number of columns

generated using this procedure, which reduces the computational time by about 30%.

To help SP1 find routes of good quality faster, we implement a simple but efficient

search consistent with our problem. It guides the local search logically, by exploring a

neighborhood matrix for each service request.

For a given set of dual values α, we define the neighborhood matrix N(α) to be a

square matrix of C rows and columns (recall that C = |I1 ∪ I2|). The element in row i and

18



column p, nip, is the pth closest service request to request i. We considered different distance

measures, and the one that performs the fastest in computational terms is the following. For

a new route that has been created and includes the service request i, we would like to have

the sequence (i, j) if two conditions hold: first, j’s time-window upper bound, bj, is close to

bi+ si+ tij (recall that si is the expected service time of i, and tij is the expected travel time

between i and j); and second, j has a large dual value. If j has a small dual value, then it

is already efficiently covered by a route belonging to pool R. Thus, for each pair (i, j) we

define the distance measure d(i, j) = γ((bj−(bi+si+tij))
+ +ρ(bi+si+tij−bj)+)+(1−γ) 1

αj
,

where (x)+ = max{0, x}, ρ > 1 and γ ∈ [0, 1]. The larger penalization when bi + si + tij > bj

is to avoid a time-window violation at j. The implemented search for SP1 that uses N(α) is

described in Algorithm 1.

Algorithm 1: SP1 constructs a new route with negative reduced cost, but not neces-
sarily in the optimal order

Input : Dual values α from the master problem. Neighborhood matrix N(α)
Output: A new route with negative reduced cost but not necessarily in optimal order

1 sc[1]← arg maxi∈I1{αi};
2 a[sc[1]]← 1;
3 for l← 2 to L do
4 i← sc[l − 1];
5 p← 1;
6 while sc[l] has no service request assigned to it do
7 if it is feasible by (17) to (27) to assign service request nip to sc[l] then
8 sc[l]← nip;
9 a[sc[l]]← 1;

10 else
11 p← p+ 1;

We also notice an additional improvement in the performance of the subproblem

when adding some redundant constraints that do not modify the solution set but improve

the constraint propagation. These constraints improve the tree pruning, filtering processes,

and domain reduction. We impose

sc[l] > first(I3)⇒ sc[l − 1] = sc[l]− 1 l = 3, . . . , L (28)

sc[l] ≤ first(I3)⇒ sc[l − 1] < first(I3) l = 3, . . . , L (29)
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where first(I3) represents the first fictitious service request; i.e., C + 1. Thus, constraints

(28) and (29) eliminate identical solutions from the domain, taking into account the fact

that all the fictitious nodes are the same, although their identification codes are different.

Without these constraints, the solver does not realize early in the search tree that a service

request cannot follow a fictitious node. In the CP literature, redundant constraints have

often been used to create a set of different links between variables and to generate new

potential for propagation.

In the implementation, instead of adding only one route per iteration of the column

generation, we generate a number of routes with negative reduced costs. To do this, we take

advantage of the CP search tree of SP1. Each final node of the search tree is a route solution

that has a negative reduced cost; therefore, each has the potential to improve the solution of

MP if it is added to the pool R. We add the first Q columns found. Between iterations, we

tune Q depending on the time that SP1 is taking to find solutions. For the first iterations

we set Q to a large number, and for the last iterations we set Q to 1.

We implemented a simple strategy to control the size of the pool of columns. At

every iteration of the CG process, columns with high positive reduced costs are eliminated

from the pool.

Finally, we implemented a branch-and-price method that guarantees finding the op-

timal solution. The method allows us to explore additional routes with negative reduced

costs in the branch-and-bound tree, by inspecting each node of the tree rather than only the

root node. The method performs significantly better when an ad-hoc branching strategy is

implemented, as explained below.

4. Branch-and-Price Implementation

Many successful implementations of branch-and-price schemes can be found in the

literature. Barnhart et al. (2000) presented a CG model that is solved with a branch-

and-price-and-cut algorithm for an origin-destination integer multicommodity flow problem.

Savelsbergh and Sol (1991) solved a dynamic vehicle routing problem with heuristic optimiza-

tion techniques based on dynamic programming, together with a sophisticated column man-
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agement scheme. Theoretical aspects of several versions of the branch-and-price algorithm

are discussed by Barnhart et al. (1998), Vanderbeck (2000, 2005, 2006), and Vanderbeck

and Savelsbergh (2006). Specifically, the authors concentrate on topics such as the formula-

tion of the decomposition, proper ways to perform the branching, and column-management

efficiency.

In this application, we use the branching strategy proposed by Ryan and Foster (1981)

for generic set partitioning problems. Barnhart et al. (1998) proved the following proposition:

Proposition: If A is a 0-1 matrix, and a basic solution of Aθ = 1 is fractional i.e., at

least one of the components of θ is fractional, then there exist two rows i and j in the master

problem such that:

0 <
∑

r:air=1,ajr=1

θr < 1 (30)

The pair i, j establishes the following pair of branching constraints:
∑

r:air=1,ajr=1

θr = 1 and∑
r:air=1,ajr=1

θr = 0, i.e., rows i and j must be covered by the same column on the first (left)

branch and by different columns on the second (right) branch. The CP model can incorporate

constraints of this type in an efficient way.

Thus, for the left branch, constraint (31) must be added to SP1 to restrict the columns

to those containing either both service requests i and j, or neither of them:

a[i] + a[j] 6= 1 (31)

Similarly, for the right branch, constraint (32) can be added to restrict the columns to those

containing at most one of the service requests, either i or j:

a[i] + a[j] ≤ 1 (32)

Many possible pairs of service requests (i, j) could be chosen. For efficiency, we use a rule

similar to that proposed by Vance et al. (1997) to choose a pair of service requests with

a large probability of being covered by the same route in a good feasible solution of the

IP. We compute for each pair (i, j) the scalar f(i, j) =
∑

r:air=1,ajr=1

θr. We choose the pair
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with the largest f(i, j) for branching, and the depth-first search strategy is applied along

the left branch, ensuring that the chosen pair of service requests will be on the same route.

As mentioned before, the structure of the proposed CP model allows us to implement the

branching strategy in a straightforward way.

Our branch-and-price procedure is terminated when either we find an acceptable gap

or the running time exceeds three hours. The gap is computed as the ratio of the integral

objective value minus the linear relaxation objective value, and the linear relaxation objective

value ((upper bound − lower bound)/ lower bound).

In the next section, we report some empirical results for different service-request sets,

using real data for a typical day.

5. Implementation and Empirical Results

The model was coded in Ilog Concert Technology and solved using CPLEX 9.0 (Ilog,

2003a) for the master problem and SOLVER 6.0 (Ilog, 2003b) for the subproblems. We test

our algorithms in an Intel Pentium M 1.5 GHz, with 2 GB of RAM. In this section, the

branch-and bound-method (B&B), the optimal branch-and-price scheme (B&P), and the

linear relaxation at the root node are run for several real instances of different sizes and

service-request configurations, all from real data provided by the firmXerox.

The consistency of the CG approach was empirically checked by observing the con-

vergence pattern toward the optimal solution in small problems. In fact, for small instances

the optimal solution was obtained directly by solving the IP corresponding to the original

arc-based formulation presented in Eqs. (1)–(10).

In our results, each technician was assigned to no more than six service requests per

day. For a larger number of requests, it was necessary to reschedule some for the next day,

since serving all the requests on the same day was not feasible.
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5.1. Description of the experiments with real data

We used a data set for the southern region of Santiago, Chile. Let us denote this

region AB, since it can be further split into two subregions, namely A and B. A normal day

was considered in terms of the number of service requests and the number of technicians

working. Thus, 41 calls were received in zone A with 10 technicians available, while 35 were

received in zone B with 9 technicians available. Note that the company presently schedules

service for the two subregions separately. In our tests, we consider three basic instances, one

for region A, another for region B, and one for the entire region AB. Figure 4 shows a map

of the city and the two zones.

Figure 4: Santiago city with zones A and B.

The travel times between service-request locations were estimated by dividing the

complete region AB into microzones. We decided to use the administrative divisions of

Santiago (the microzones then match what are denoted comunas by the Chilean authorities).

This allows us to use historical information for average travel times between each pair of

comunas and within each comuna. Microzones (comunas) are required because the travel

times between service requests are not available. The expected service time is computed

as the average service time reported by the technicians for each type of request over the

year. Finally, target response times (as defined in the first paragraph of Section 2) were

also provided by the company, depending on the priority assigned to each service request.
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In most cases, the observed travel times followed the triangular inequality. If they did not,

we perturbed them with the smallest possible amount necessary to satisfy the triangular

inequality. As mentioned earlier, travel times are much smaller than service times, therefore

this perturbation does not significantly change the solution.

We considered β = 0.3, 0.6, 0.9, which should cover the different priority levels a

modeler would assign to the two components of the objective function (travel times versus

time-window violations) according to the company’s goals. In this scheme, if it is infeasible

to insert a specific service request into any route, that request will be assigned for service at

the beginning of the next day, with a cost-function penalty of 500. Thus, the first columns

generated for each service request are conceptually similar to the virtual paths defined in

the original model through the variables vi to handle infeasibility. They are assigned a

high penalty to provide an initial feasible solution to the master problem. Under these

conditions, with the original IP model, Eqs. (1)–(10), we obtain the same optimal solution

as that obtained by B&P. Unfortunately, this result can be verified only for very small

instances, since the original arc-based formulation becomes intractable as the number of

requests increases.

Under these conditions, we run our model using the B&P algorithm separately for

each subregion (A and B), in order to compare our results with the manual dispatch used by

the company (company operation) for each subregion. Table 1 compares the objective values

of the results. Table 2 compares the results in terms of time-window violation and travel

time for the entire system. In Table 2, column ∆ reports the total time-window violation

observed for all service requests on all prescribed routes, and column T reports the sum of

the travel time over all vehicle routes.

Instance A Objective Function
β Manual B&P

0.3 813 613
0.6 854 578
0.9 896 491

Instance B Objective Function
β Manual B&P

0.3 1083 920
0.6 1214 761
0.9 1346 604

Table 1: Objective functions of company operation and B&P algorithm for different β values.

Table 1 shows that the model improved performance for all instances (with improve-

ments between 15% and 45%). We notice a more significant improvement for region A,
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Instance A Manual B&P
β ∆ T ∆ T

0.3 910 772 717 568
0.6 910 772 486 717
0.9 910 772 427 1065

Instance B Manual B&P
β ∆ T ∆ T

0.3 1390 952 1325 746
0.6 1390 952 594 1012
0.9 1390 952 544 1147

Table 2: Performance of the company operation compared with the B&P algorithm in terms of total time-
window violation and total travel time for different β values.

probably because access and routing are more complicated in this region. Moreover, as β

increases, the improvement provided by the model becomes more significant. This is not

surprising since larger values of β place more emphasis on time-window violations in the

objective function. Increasing β thus yields routes in which most technician arrival times

fall in a range quite close to the target response times.

Table 2 shows that in both cases (zones A and B), the results are sensitive to the

value of β. This is reflected in the ratio of time-window violations to travel times in each

case (namely SH = ∆
T

). Thus, in the case of zone A (B) SH goes from 1.8 to 0.5 (from 1.9 to

0.4) when β increases from 0.3 to 0.9. From the results obtained for this particular instance,

we can observe how important the selection of the parameter β could become in the final

performance of the model, both in terms of time-window violations and travel times.

We also carried out a sensitivity analysis with respect to two other parameters, to

test not only the quality of the solutions but also the performance of the B&P algorithm.

The parameters are the number of technicians (for the A instance ranging from 6 to 11 and

for the B instance from 5 to 10) and the upper bound for the time window assigned to each

service request with respect to the actual limit (denoted tw1). The idea is to run the model

under tighter time-window conditions. We do this by decreasing the upper bound by 15%

to 40%, thus generating new upper levels, tw2 = 0.85 · tw1 and tw3 = 0.6 · tw1. Table 3

gives the results of these tests for instance A with tw1, tw2, and tw3, while Table 4 gives

the results for instance B with tw1, tw2, and tw3.

When we integrate regions A and B, the problem has 76 service requests (instance

AB). This allows testing on a larger instance and also allows the dispatcher to consider more

flexible options than those provided by a zoning fixed a priori. Eventually, the zoning could

be defined by a more formal method than the traditional subdivision of the service area
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by the company. Zoning may no longer be necessary (the company could completely rely

on the optimization), or a clustering-type method could be used to define zones in a more

systematic way. Table 5 gives the results of these experiments for 11, 13, 15, 17, 19, and 21

technicians, considering also the sensitivity with respect to the time-window upper bounds

tw1, tw2, and tw3.

The columns of Tables 3, 4, and 5 represent the following: (tw) the upper bound

considered for time windows, (β) the objective weighting parameter, and (#Tec) the number

of technicians. For each instance generated by a combination of these parameters, we report

the objective function obtained by the linear relaxation at the root node, the integer solution

obtained using the default B&B implemented in CPLEX with only the columns found at the

root node, and the integer solution obtained with the proposed B&P procedure (columns

LR, BB, and BP respectively). We then report the gaps between (BB-LR) and (BP-LR),

the number of columns generated at the root node (BB), the number of columns generated

during the B&P (discounting the columns generated at the root node), the number of nodes

explored by the CPLEX B&B, and the number of nodes explored by the B&P algorithm.

Finally, the total running time to solve the master problem (MP) and the subproblem (SP)

for both steps, namely B&B and B&P, are reported in seconds.

When the gap between the B&B solution and the linear relaxation at the root-node

solution (column BB-LR) was lower than 3%, we did not run the B&P procedure. The tables

report “-” for these cases.
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Objective Gap [%] # Columns # Nodes Time [s]
tw β #Tec LR BB BP BB-LR BP-LR BB BP BB BP MP SP

6 467 468 - 0.2 - 955 - 10 - 130 6327
7 465 468 - 0.7 - 1771 - 79360 - 100 5203

0.3 8 463 468 - 1.0 - 1767 - 1939 - 15 7533
9 463 466 - 0.5 - 1908 - 34 - 30 9020
10 463 466 - 0.5 - 1932 - 1599 - 22 9227
11 463 466 - 0.5 - 1894 - 8594 - 633 8056
6 267 276 - 2.8 - 995 - 179 - 11 4403
7 266 277 276 3.0 3.0 1558 33 8587 3 45 4535

tw1 0.6 8 265 274 267 3.3 0.7 1464 73 36926 105 45 5510
9 265 274 265 3.3 0.2 1670 89 39410 81 53 6364
10 265 274 265 3.3 0.2 1685 71 37027 69 49 6057
11 265 278 - 2.2 - 1683 - 14706 - 87 6173
6 67 67 - 0.7 - 948 - 28 - 10 3480
7 66 67 - 1.2 - 1292 - 3566 - 15 2488

0.9 8 66 67 - 1.4 - 1230 - 3477 - 15 2739
9 66 67 - 1.4 - 1331 - 4761 - 15 2457
10 66 67 - 1.4 - 1334 - 7338 - 24 2237
11 66 67 - 1.4 - 1334 - 7338 - 17 2675
6 481 484 - 0.6 - 1134 - 83 - 9 3563
7 479 481 - 2.2 - 1784 - 20 - 13 3237

0.3 8 476 481 - 2.3 - 1564 - 341 - 13 3295
9 470 481 - 2.4 - 1846 - 760 - 14 3200
10 470 481 - 2.4 - 1842 - 3881 - 17 3342
11 467 467 - 0.0 - 1906 - 0 - 111 5203
6 279 292 282 4.8 1.0 1235 182 1444 89 13 3197
7 269 276 - 2.4 - 1566 - 46 - 12 1609

tw2 0.6 8 269 275 - 2.3 - 1382 - 205 - 11 1378
9 269 275 - 2.3 - 1645 - 643 - 13 2246
10 268 275 - 2.4 - 1577 - 660 - 13 2483
11 268 275 - 2.7 - 1637 - 4624 - 18 2894
6 71 80 71 12.4 0.4 1362 83 869 111 12 2246
7 67 69 - 2.4 - 1406 - 33 - 11 800

0.9 8 67 69 - 2.1 - 1199 - 57 - 10 804
9 67 69 - 2.2 - 1373 - 529 - 10 839
10 67 69 - 2.2 - 1345 - 485 - 10 921
11 67 69 - 3.0 - 1377 - 4737 - 14 1647
6 2028 2074 - 2.5 - 1097 - 7 - 5 900
7 687 730 730 7.1 7.1 2137 1612 3753 203 36 4649

0.3 8 589 590 - 0.3 - 1675 0 1 - 6 702
9 566 568 - 0.2 - 1550 0 1 - 6 561
10 562 569 - 0.3 - 1348 0 64 - 5 422
11 539 548 - 1.0 - 1402 0 120 - 6 556
6 1790 1981 1981 10.7 10.7 1524 1616 263 119 6 4226
7 647 710 697 9.9 7.8 2389 1398 392 163 11 4341

tw3 0.6 8 457 453 - 0.3 - 1951 - 0 - 8 747
9 387 387 - 0.0 - 1708 - 0 - 7 405
10 369 370 - 0.4 - 1427 - 49 - 7 329
11 333 333 - 0.0 - 1270 - 0 - 5 261
6 1697 1888 1888 11.2 11.2 1593 1659 823 57 72 3561
7 604 609 - 0.8 - 2511 - 4 - 10 795

0.9 8 313 316 - 0.7 - 2119 - 12 - 9 574
9 204 206 - 0.7 - 1779 - 4 - 8 353
10 167 167 - 0.1 - 1446 - 4 - 6 166
11 119 117 - 0.3 - 1386 - 4 - 6 142

Table 3: Results for instance A
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Objective Gap [%] # Columns # Nodes Time [s]
tw β #Tec LR BB BP BB-LR BP-LR BB BP BB BP MP SP

5 1928 1943 - 0.8 - 333 - 3 - 1.13 105.80
6 1418 1419 - 0.1 - 554 - 7 - 1.32 93.16

0.3 7 923 923 - 0.0 - 613 - 0 - 1.24 76.12
8 920 920 - 0.0 - 501 - 0 - 1.16 81.24
9 920 920 - 0.0 - 524 - 0 - 1.30 76.98
10 919 920 - 0.1 - 466 - 0 - 1.16 73.88
5 1312 1316 - 0.3 - 441 - 14 - 1.25 96.61
6 1260 1263 - 0.2 - 582 - 0 - 1.39 74.27

tw1 0.6 7 764 764 - 0.0 - 603 - 0 - 1.50 85.34
8 762 762 - 0.0 - 608 - 0 - 1.39 71.45
9 762 762 - 0.0 - 534 - 0 - 1.20 79.74
10 761 761 - 0.0 - 528 - 62 - 1.50 98.69
5 1118 1118 - 0.0 - 458 - 0 - 1.42 87.70
6 1099 1100 - 0.1 - 620 - 23 - 1.56 60.28

0.9 7 604 604 - 0.0 - 650 - 0 - 1.67 68.21
8 609 604 - 0.0 - 580 - 2 - 1.31 63.41
9 604 604 - 0.0 - 614 - 0 - 1.39 72.00
10 607 604 - 0.0 - 541 - 29 - 1.30 67.98
5 3102 3457 3454 11.5 11.4 224 53 2 7 1.20 164.87
6 1451 1452 - 0.1 - 533 - 4 - 1.33 78.83

0.3 7 950 954 - 0.4 - 525 - 7 - 1.39 61.75
8 942 945 - 0.4 - 544 - 10 - 1.22 57.75
9 942 945 - 0.3 - 476 - 12 - 1.25 64.73
10 940 945 - 0.3 - 478 - 9 - 1.12 53.50
5 2328 2422 2422 4.0 4.0 347 72 2 5 0.68 162.12
6 1283 1283 - 0.0 - 545 - 0 - 1.32 72.99

tw2 0.6 7 786 790 - 0.5 - 655 - 10 - 1.90 78.59
8 783 785 - 0.3 - 567 - 2 - 1.50 53.08
9 783 785 - 0.3 - 506 - 13 - 1.40 63.45
10 783 785 - 0.3 - 493 - 4 - 1.36 55.01
5 2201 2322 2321 5.5 5.5 432 164 12 7 0.73 166.63
6 1111 1111 - 0.0 - 620 - 1 - 1.59 56.86

0.9 7 620 621 - 0.1 - 648 - 9 - 1.75 58.23
8 619 620 - 0.1 - 621 - 9 - 1.92 55.86
9 619 620 - 0.1 - 532 - 19 - 1.51 48.30
10 619 620 - 0.1 - 531 - 0 - 1.47 57.11
5 12000 12000 - 0.0 - 34 - 0 - 0.03 0.22
6 2496 2521 - 1.0 - 368 - 2 - 0.61 47.02

0.3 7 1224 1530 1530 25.0 25.0 465 3018 201 549 2.53 302.30
8 1039 1040 - 0.1 - 405 - 2 - 0.66 35.14
9 1030 1032 - 0.1 - 379 - 0 - 0.50 24.53
10 1016 1017 - 0.1 - 367 - 2 - 0.60 29.61
5 9584 9584 - 0.0 - 36 - 0 - 0.03 0.38
6 2498 2838 2520 13.6 0.9 431 741 2445 193 2.81 507.39

tw3 0.6 7 1214 1438 1436 18.5 18.3 567 1070 222 245 1.66 726.06
8 905 917 - 0.7 - 523 - 2 - 0.79 40.66
9 879 879 - 0.0 - 435 - 0 - 0.97 48.94
10 857 860 - 0.3 - 408 - 3 - 0.64 25.37
5 9560 9560 - 0.0 - 43 - 0 - 0.14 0.47
6 2448 2736 2736 11.8 11.8 437 31 3283 23 4.01 46.57

0.9 7 1147 1328 1328 15.8 15.8 582 2386 114 409 1.55 154.74
8 758 769 - 1.5 - 544 - 15 - 0.77 34.28
9 704 708 - 0.5 - 490 - 3 - 1.06 32.64
10 670 671 - 0.1 - 449 - 1 - 0.68 17.68

Table 4: Results for instance B
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Objective Gap [%] # Columns # Nodes Time [s]
tw β #Tec LR BB BP BB-LR BP-LR BB BP BB BP MP SP

11 955 968 - 1.4 - 2790 - 104 - 39 3871
13 936 941 - 0.6 - 2022 - 2 - 64 10459

0.3 15 917 931 - 1.6 - 2208 - 284 - 16 10800
17 911 929 - 2.0 - 2103 - 284 - 12 10800
19 911 929 - 2.0 - 1928 - 316 - 11 9200
21 911 929 - 2.0 - 1137 - 455 - 23 10800
11 567 576 - 1.6 - 3354 - 1920 - 53 3246
13 528 534 - 1.1 - 3125 - 725 - 17 10800

tw1 0.6 15 528 528 - 0.1 - 1814 - 3583 - 19 6334
17 521 526 - 1.0 - 2072 - 586 - 47 9098
19 513 515 - 0.4 - 2149 - 87 - 13 10206
21 513 515 - 0.4 - 1731 - 2994 - 15 9001
11 194 198 - 1.9 - 3969 - 2071 - 44 8048
13 162 165 - 1.9 - 3394 - 4223 - 39 10800

0.9 15 152 155 - 2.0 - 2414 - 4880 - 27 10365
17 151 153 - 1.4 - 2123 - 4669 - 23 10301
19 150 153 - 1.5 - 1951 - 1485 - 15 10800
21 150 153 - 1.5 - 1800 - 2710 - 15 9728
11 4016 4165 3908 3.7 -2.7* 1875 215 831 11 28 8221
13 986 1019 980 3.3 -0.6* 2588 250 293 27 15 10617

0.3 15 952 959 - 0.7 - 2297 - 7096 - 29 10445
17 944 958 - 1.4 - 2204 - 7666 - 36 8445
19 943 957 - 1.5 - 2064 - 2882 - 34 8644
21 943 957 - 1.5 - 1910 - 278 - 6 7145
11 2682 2697 - 0.5 - 2380 - 32 - 23 3713
13 584 593 - 1.5 - 3341 - 2056 - 27 10800

tw2 0.6 15 570 575 - 1.0 - 2928 - 1178 - 17 7902
17 556 560 - 0.7 - 2426 - 81 - 7 7032
19 552 554 - 0.4 - 2076 - 18 - 33 7118
21 546 550 - 0.8 - 2063 - 50 - 18 9275
11 994 1128 1104 13.4 11.0 3419 89 1933 37 59 10694
13 189 190 - 0.4 - 3856 - 219 - 28 10800

0.9 15 170 171 - 0.4 - 3037 - 32 - 21 9188
17 169 170 - 0.4 - 2412 - 113 - 15 8202
19 169 170 - 0.4 - 2332 - 200 - 8 9372
21 161 162 - 0.7 - 2292 - 1122 - 25 10201
11 10332 10444 - 1.1 - 880 - 14 - 4 7185
13 3126 3505 3072 12.1 -1.7* 2141 204 655 49 28 10578

0.3 15 1561 1661 1643 6.4 5.2 2338 138 457 55 141 9183
17 1105 1108 - 0.3 - 2361 - 12 - 9 4987
19 1101 1107 - 0.6 - 2094 - 474 - 7 8079
21 1076 1084 - 0.7 - 1973 - 838 - 7 3395
11 7887 8365 7935 6.1 0.6 1484 308 98373 7 106 9903
13 2854 2951 2790 3.4 -2.2* 2506 133 29733 19 117 9403

tw3 0.6 15 1159 1211 1140 4.5 -1.7* 2810 197 402 43 21 7522
17 804 813 - 1.2 - 2724 - 68 - 13 4863
19 764 769 - 0.6 - 2555 - 171 - 11 4488
21 719 721 - 0.2 - 2077 - 44 - 8 3418
11 6497 6839 6837 5.3 5.2 2069 404 142108 3 45 7660
13 2447 2696 2354 10.1 -3.8* 3065 227 38014 43 68 10798

0.9 15 959 961 - 0.3 - 3102 - 0 - 7 9515
17 440 444 - 0.7 - 3052 - 9 - 24 8530
19 397 398 - 0.2 - 2672 - 6 - 16 6062
21 345 346 - 0.2 - 2253 - 62 - 8 2824

Table 5: Results for instance AB.
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To assign the technicians manually, the dispatchers were forced to split the region into

zones A and B. Comparing the results for instances A and B in Tables 3 and 4 with those

for instance AB in Table 5, we can see that this division leads to solutions of significantly

lower quality in all cases. If, for example, we consider instance (tw1, β = 0.9) with 6

technicians in zone A and 5 in zone B (thus, a total of 11 for AB), we see that the objective-

function value obtained is 66 for case A and 1117 for case B, while that for case AB is 194.

This deterioration in the objective value is due to the loss of flexibility when each zone is

managed independently, since in zone B many customers need to be postponed to the next

day. One conclusion to draw from these results is the considerable advantage of having

an implementation of the B&P algorithm that can find an optimal solution for the larger

70-customer problem.

We allowed a maximum of 300 seconds to solve the subproblem at each iteration. We

mark with a * those instances where this limit was reached before an optimal solution was

found. It is clear that in these cases the bound obtained is not valid and the final solution

is not optimal. As noted earlier, after solving the MIP with the columns found at the root

node (B&B), if the gap between the linear relaxation at the root node and B&B was below

3%, we did not run the B&P. When used (28 of the 162 cases), the B&P algorithm reduced

the gap by 3.5% on average. And the gap was reduced for more than 0.1% in 17 of the 28

cases. Most of the computational time was spent on the subproblem phase. Instance A took

much longer than instance B (mainly because there are more service requests in instance A),

and instance AB took the longest. Except in five cases (all from instance B) when the B&P

procedure was used, fewer nodes were explored than those inspected by the B&B algorithm.

With regard to the number of columns generated, for B instances it suffices to generate

around 500 columns at the root node of the B&B to solve the linear relaxation to optimality.

In the larger AB instances around 2500 columns are required. When the B&P algorithm is

used, the number of columns required does not seem to follow a clear pattern. Note that

some values in column BP-LR (Table 5) are negative, reflecting the difference between the

B&P and the linear relaxation at the root node. These correspond to cases where the column

generation at the root-node LP was terminated before reaching optimality.
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Recall that we run the B&P algorithm only if the difference between LR and BB is

larger than 3%. This does not occur often, indicating that the observed gap between LR

and BB is generally small. However, the solution of the linear relaxation at the root node

in terms of θ is fractional in most cases.

To illustrate the behavior of the solutions, we consider two instances in Tables 6

and 7. The first case (instance 1: tw2, β = 0.9, #Tec = 6) shows a considerable BB-LR

gap (12.4%), justifying the application of the B&P procedure. In contrast, the second case

(instance 2: tw3, β = 0.3, #Tec = 8) yields a small BB-LR difference (0.3%), and the

B&B algorithm obtains a close-to-optimal solution without having to explore nodes other

than the root. In the tables, we show the columns considered in the linear relaxation at the

root-node solution in each case, with the corresponding θ > 0 value associated with each

column. Although both solutions are fractional, there are two aspects that could explain

Instance 1 cr θr cr · θr
r1 11.0 0.828 9.1
r2 12.5 0.237 3.0
r3 11.2 0.250 2.8
r4 12.5 0.113 1.4
r5 12.0 0.363 4.4
r6 11.2 0.250 2.8
r7 12.1 0.250 3.0
r8 12.4 0.207 2.6
r9 12.7 0.500 6.4
r10 12.0 0.137 1.6
r11 11.4 0.250 2.9
r12 11.6 0.650 7.5
r13 11.0 0.172 1.9
r14 12.5 0.150 1.9
r15 11.4 0.457 5.2
r16 11.4 0.293 3.3
r17 11.6 0.250 2.9
r18 11.4 0.250 2.9
r19 14.9 0.172 2.6

other
routes (∼ 30) 28.4 < 0.100 2.8

Obj. LR 70.9
Obj. BB 79.7

Gap [%] BB-LR 12.4

Table 6: Solution instance 1.

Instance 2 cr θr cr · θr
r1 73.3 0.250 18.3
r2 70.9 0.750 53.2
r3 56.0 0.500 28.0
r4 71.4 0.250 17.9
r5 70.2 0.750 52.7
r6 73.2 0.250 18.3
r7 76.3 0.250 19.1
r8 68.2 0.250 17.1
r9 63.4 0.250 15.9
r10 60.7 0.250 15.2
r11 56.2 0.250 14.1
r12 78.8 0.250 19.7
r13 80.1 0.250 20.0
r14 74.9 0.250 18.7
r15 94.7 0.750 71.0
r16 82.7 0.250 20.7
r17 79.7 0.750 59.8
r18 57.4 0.500 28.7
r19 56.7 0.250 14.2
r20 82.0 0.250 20.5
r21 84.7 0.250 21.2
r22 99.4 0.250 24.9

Obj. LR 588.8
Obj. BB 590.4

Gap [%] BB-LR 0.3

Table 7: Solution instance 2.

the difference in the BB-LR gap: the nature of the fractions (θ values) and the number of
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columns in the solution. The LR of instance 1 (large gap) results in a large range of θ values.

However, instance 2 has only three θ values (0.25, 0.5, 0.75) in all the chosen columns. This

occurred in most of the cases with a small BB-LR gap (see Tables 3, 4, and 5). Moreover,

the number of columns included in the linear relaxation at the root-node solution of instance

1 is much larger than the number for instance 2 (more than 50 compared with 22).

In summary, most of the solutions with a small BB-LR gap have a small number

of columns in the linear relaxation at the root-node solution and a limited number of θ

values (0.25, 0.5, 0.75). These examples show that when the BB-LR gap is large, the linear

relaxation at the root-node solution has a range of fractional values (see instance 1) shared

among a large number of columns.

6. Conclusions

In this paper, a technician dispatch problem is modeled as a vehicle routing problem

with soft time windows. We solved several real examples provided by the operation of a large

companyXerox Chile in different service areas of Santiago, reformulating the problem using a

set covering model and using constraint programming to solve the subproblems. Constraint

programming allowed the subproblems to be solved easily and effectively.

Our model allows us to optimize the dispatching of technicians in two actual instances

(areas A and B as shown in Fig. 4), showing the advantages of the proposed B&P algorithm

over the manual solutions implemented by the company. In addition, we were able to run

our model over the entire area AB (70 service requests), obtaining in some cases significant

performance improvements by not restricting the solution to the prespecified subregions A

and B.

Most instances had a small gap between the linear relaxation at the root node and

the B&B solution, so it was not necessary to use B&P to explore beyond the root node.

When B&P was used, it reduced the gap by 3.5% on average.
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