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Abstract

In this paper we formulate an integer programming model for the Location
and Routing Problem with Pickup and Delivery. We propose a column gen-
eration scheme and implement, for the subproblem, a label-setting algorithm
for the shortest path with pickup and delivery and time windows problem.
We also propose a set of heuristics to speed up this process. To validate the
model, we implement the column generation scheme and test it on differ-
ent instances developed in this paper. We also provide an analysis of how
the costs of opening depots and the fixed cost of routes affect the optimal
solution.

Keywords: Routing, Location, Pickup and delivery, Branch and price

∗Corresponding author.
Email addresses: thomas.capelle@inria.fr (Thomas Capelle),

ccortes@ing.uchile.cl (Cristián E. Cortés), michel.gendreau@cirrelt.net (Michel
Gendreau), prey@utem.cl (Pablo A. Rey ), louis-martin.rousseau@cirrelt.net
(Louis-Martin Rousseau)

Preprint submitted to European Journal of Operational Research May 25, 2018



1. Introduction

Distribution costs make up a large fraction of the total cost of supply
chains. Because of that, the design of logistics systems has received very
significant attention in recent years (Ghiani et al., 2013). A good logistic
design has to efficiently provide solutions at multiple levels of decision making
for the following two primary issues: the location of facilities (depots), which
act as bases for vehicles, and the assignment and routing of vehicles.

Several authors in the past have considered solving simultaneously facility
location and routing problems in so-called location-routing problems (LRPs),
because solving independently depot location and routing problems leads to
suboptimal solutions.

Most of the LRP literature deals with a routing scheme that involves
only deliveries at customer locations or pickups at such locations, but not
both. In the present paper, we consider the case where each service request
involves picking up some items from a given origin and delivering them to a
specified destination. This problem can be defined as an LRP with pickup
and delivery (LRP-PDP).

The main objective of this paper is to formulate a model that integrates
the PDP and optimum depot location (LRP-PDP). In addition, an efficient
solution method is proposed based on a column generation scheme within a
B&P framework. Our approach is based on the work of Berger et al. (2007),
but the pricing subproblem is modified to incorporate the specifics of the
PDP.

One embedded difficulty of this integrated methodology is the exact al-
gorithm required to solve the PDP-TW specified at the subproblem level, in
which precedence constraints are very difficult to handle efficiently, consid-
ering, in addition, that in the present application we are solving the PDP in
the context of a LRP. An important contribution of this paper is therefore to
propose for the first time an exact formulation for the LRP-PDP, in which the
PDP is defined in the way that Savelsbergh and Sol (1995b) do, considering
explicitly the precedence constraints on related pickups and deliveries.

The B&P includes an important preprocessing stage, a proper pricing
implementation, and a dedicated branching strategy. These branching rules
allow the proposed B&P to tackle instances of realistic size, as shown through
our computational experiments.

The structure of this article is as follows. Section 2 presents related
literature, while Section 3 discusses the column generation scheme for the
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LRP-PDP, presenting both the master problem and the subproblem; it also
provides details on the preprocessing step and the branching strategy. Section
4 presents the label-setting algorithm for the pricing subproblem. Section 5
discusses the computational results of the proposed approach. Section 6
concludes the paper.

2. Related Work

To the best of our knowledge, Webb (1968) and Christofides and Eilon
(1969) were the first authors that considered explicitly the routing costs in the
context of location problems. The usual practice at that time was to consider
the cost of delivery as a weighted sum of the radial distances to destinations,
as would be the result of direct routes from depot to customers. Webb (1968)
showed that the optimum location considering the total distances in a set of
routes serving several customers can differ greatly from the optimum location
when delivery cost is estimated by radial distances from depot to customers.
Christofides and Eilon (1969) studied more closely the relationship between
the total distances traveled on routes to serve a set of customers and the
simplification based on the radial distances.

2.1. Location Routing Problems

The LRP takes its origin in the roundtrip location problem that considers
vehicles that deliver goods directly from one customer to another, although
each vehicle is limited to a single pickup and a single delivery only (Chan and
Hearn, 1977; Drezner and Wesolowsky, 1982; Kolen, 1985). Several authors
have followed up. Laporte et al. (1988) provide a survey of the early literature
on the topic, while Prodhon and Prins (2014) and Drexl and Schneider (2015)
review the LRP literature up to 2014.

Few authors have developed exact methods to deal with LRP as the
combination of location and routing decisions is challenging. Some recent
works have proposed lower bounds and exact methods for such problems.
Barreto (2004) proposed a lower bound based on a cutting plane approach
for the CLRP. Berger et al. (2007) formulated a set-partitioning model of
an uncapacitated LRP with distance constraints that was solved through a
branch-and-price (B&P) algorithm. This algorithm yielded optimal solutions
with reasonable computational time for problems with 10 candidate facili-
ties and 100 customers with different distance constraints. Belenguer et al.
(2011) developed a branch-and-cut algorithm based on several families of
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valid inequalities for the LRP with capacity constraints on both the depots
and the vehicles. Their method is able to solve optimally instances with up
to 40 or 50 customers. Baldacci et al. (2011b) proposed a branch-and-cut-
and-price algorithm to solve a capacitated LRP based on set partitioning,
decomposing the problem into a limited set of multi-depot vehicle routing
problems (MDVRP). Contardo et al. (2013) developed a branch-and-cut-and
price algorithm to solve an LRP formulation, with instances of about 50 cus-
tomers and 5-10 depots. These are the paper that are the most related to
our approach.

As expected, most of the LRP literature has focused on the development
of approximate algorithms, including constructive heuristics (Manzour-al Aj-
dad et al., 2012; Boudahri et al., 2013) and metaheuristics (Derbel et al.,
2010, 2012; Hemmelmayr et al., 2012; Contardo et al., 2014).

Some extensions of traditional LRPs are classified in Drexl and Schneider
(2015), the most relevant being the Generalized LRP, the Prize-Collecting
LRP, the Split delivery LRP (Archetti and Speranza, 2008), Stochastic LRPs
(Ahmadi-Javid and Seddighi, 2013), and the LRP with simultaneous pickup
and delivery LRP-SPD (Karaoglan et al., 2011, 2012), which is briefly dis-
cussed at the end of the next subsection in the context of pickup and delivery
models.

Many-to-many location-routing problem (MMLRP) investigates locating
hubs to facilitate transshipment from several customers to several customers.
Routing aspects are involved, but in general goods do not travel from a
customer straight to another customer. Papers on this topic include, among
others, Nagy and Salhi (2007); Wasner and Zäpfel (2004); Çetiner et al.
(2010). A recent reference for many-to-many location routing problems is
the paper by Rieck et al. (2014). In that work, and others on MMLRP, the
location of hubs is considered in a multi-echelon network. There is actually
the possibility of direct shipping between nodes other than hubs, but here
hubs (the nodes that should be located) act more like consolidation nodes or
transfer points than depots as in the model developed in this paper.

2.2. Pickup and Delivery Problems

We aim to investigate LRP models where vehicle routes follow a pickup
and delivery organization and satisfy time window constraints (PDP-TW).
Formally, the formulated PDP is a generic problem for companies that trans-
port passengers or freight and have a fixed fleet of m vehicles that each have
fixed capacity Q (Savelsbergh and Sol, 1995a). In the PDP, each customer
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request i has an origin location i+ and a destination location i−. The objec-
tive of the PDP is to find a feasible set of minimum cost routes serving all
customer requests.

In general, PDP problems are classified into three groups according to
origin-destination relation: many-to-many, one-to-many-to-one and one-to-
one (Berbeglia et al., 2007). PDP-TW problems are also divided into two
categories: 1-PDPTW (single-vehicle) and m-PDPTW (multi-vehicle), as
pointed out by Dridi et al. (2011). PDPs can also be classified depending on
their level of dynamism (Berbeglia et al., 2010): in static approaches, all re-
quests are known in advance, typically one day before the service; in dynamic
approaches, not all information is available in advance, but is revealed during
the execution of the planned operations, noting that vehicle prepositioning
decisions can be made in anticipation of future arrivals (Chou et al., 2014),
in order to generate high-quality solutions (Vonolfen and Affenzeller, 2016).

Examples of PDP-type services include special buses for elderly and hand-
icapped individuals in which passengers are picked up and assisted during
their trip. These services are known in the literature as Paratransit or Dial-
a-Ride (Cordeau and Laporte, 2003, 2007). Another well-known example of
PDP is the delivery of express courier (Mitrović-Minić and Laporte, 2004).
The literature on PDPs is extensive (Parragh et al., 2008).

There are diverse PDP variants, including time window constraints at
the origin or destination. Desrosiers et al. (1986) solved the single-vehicle
problem using dynamic programming. Later, Dumas et al. (1991) solved
the multiple-vehicle problem by proposing an exact algorithm through a col-
umn generation scheme. More recently, Ropke and Cordeau (2009) pro-
posed a Branch-and-cut-and-price algorithm that considers two subproblems
(whether the routes are elementary or not) for the column generation al-
gorithm. Lower bounds are dynamically added, which improves the perfor-
mance of the column generation scheme. Baldacci et al. (2011a) presented
an algorithm based on a set partitioning formulation, which, with effective
bounds, can be used to solve real size instances under a branch-and-cut-and-
price framework.

As far as we know, the LRP problem with PDP routing has not yet been
formulated or solved under an integrated scheme using an exact solution
algorithm. However, Karaoglan et al. (2011) and Karaoglan et al. (2012) in-
troduce the simultaneous pickup and delivery (LRP-SPD) problem, which at
a certain level integrates location decisions with pickups and deliveries. How-
ever, in the LRP-SPD, depot location decisions are made together with the
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routing of simultaneous pickups and deliveries that have no correspondence,
i.e., all deliveries originate from the depots and pickups must be brought
back to a depot. While this last problem could look somehow connected to
ours, it is in fact substantially different, because in LRP-SPD pickups and
deliveries are not linked together.

3. Model and Solution Approach

This section presents a mathematical formulation of the LRP-PDP as
well as a B&P algorithm that can address it. We also further discuss the
branching strategy deployed as well as some implementation details.

3.1. Formulation of the LRP-PDP

The LRP-PDP is an extension of the LRP, and our approach is based on
the formulation introduced by Berger et al. (2007). This formulation aims
at selecting a set of depots and building routes associated with these depots
such that the total cost incurred, which includes both fixed costs for opening
depots and routing costs for serving customers, is minimized. In the PDP
case, customer request i refers to picking up quantity qi at pickup location
i+ and dropping this quantity off at delivery location i−. It should be noted
that the pickup and the delivery have to be performed by the same vehicle
(i.e., we do not allow transfers between vehicles).

The master problem for the LRP, which is based on Berger et al. (2007,
Sec. 1) is formulated as follows:
Formulation LRPPD

min α
∑
j∈J

fjXj +
∑
j∈J

∑
k∈Pj

cjkYjk (1)

s.t. :
∑
j∈J

∑
k∈Pj

aijkYjk = 1 ∀i ∈ I (2)

Xj −
∑
k∈Pj

aijkYjk ≥ 0 ∀i ∈ I, ∀j ∈ J (3)

Xj ∈ {0, 1} ∀j ∈ J (4)

Yjk ∈ {0, 1} ∀j ∈ J,∀k ∈ Pj (5)

where J is the set of potential depot locations; fj, j ∈ J , is the fixed
cost of opening depot j; Xj, j ∈ J , is a binary decision variable indicating
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whether or not depot j is open; Pj is the set of feasible routes associated with
depot j; cjk, j ∈ J, k ∈ Pj, is the cost of route k of depot j ; Yjk, j ∈ J, k ∈ Pj

is a binary decision variable indicating whether or not route k from depot
j is selected; I is the set of customer requests; aijk, i ∈ I, j ∈ J, k ∈ Pj ,
takes value one if route k from depot j serves request i; and α is a weight
parameter for the fixed cost portion of the objective.

Unlike the formulation of Berger et al. (2007), the routes associated with
depots in our formulation satisfy the constraints of the PDP-TW, although
this is not directly reflected in the formulation of the LRP-PDP master prob-
lem but rather in the construction of the routes themselves. For each route
k ∈ Pj, the following conditions are satisfied:

• Route k starts and ends at depot j.

• If request i is served by route k, then the precedence is respected: i+

(pickup) appears before i− (delivery) on the route.

• If request i is served by route k, then its time windows at i+ and i−

are respected.

• The total vehicle load anywhere along the route is always lower or equal
to its capacity (Q).

Let us consider P = {i+ : i ∈ I} as the set of pickups and D = {i− : i ∈ I}
as the set of deliveries. For each node l ∈ P ∪D, its time window is denoted
as [al, bl] and the transportation demand in each node is denoted as ql, with
qi+ = qi, qi− = −qi. The travel time from vertex l to vertex m is denoted tlm.

It should be noted that the set of constraints 3 can be replaced by

Xj − Yjk ≥ 0,∀j ∈ J, k ∈ Pj. (3′)

However, Berger remark that the aggregate form of the constraints (3) yields
a tighter relaxation than the disaggregate form (3′).

The LRP-PDP formulation contains an exponential number of variables
(Yjk). Therefore, a complete enumeration of routes is not possible for most
instances of practical size. In the following section, we describe a B&P frame-
work to solve this type of problem.
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3.2. B&P Algorithm for the LRP-PDP

The proposed B&P algorithm is based on the formulation of the master
problem presented in the previous section and an adaptation of the subprob-
lem in Ropke and Cordeau (2009).

Thus, the master problem is defined by (1-5), and the linear relaxation
of this master problem is denoted LPM. The set of routes Pj for each depot
is not known, and in the B&P scheme, a restriction of LPM is solved with a
set P ′j ⊂ Pj for each depot j. Each of the sets P ′j is generated independently.

The LPM restriction will be referred to as RPM, where only a subset
of the route variables is considered. Let us remember that all the location
variables Xj are always considered in the RPM. The updating of route sets
P ′j is performed by solving the so-called pricing subproblem.

3.3. Formulation of the Pricing subproblem

For the B&P scheme, it is necessary to identify the subproblems associ-
ated with the master problem LRP-PDP presented in (1-5). In this case, for
each depot j ∈ J , we solve an independent subproblem. Each of these prob-
lems aims at identifying routes that should be added to the set P ′j . Each of
these subproblems is a PDP-TW with capacity constraints, which are similar
to the problem presented in Dumas et al. (1991).

To formulate the pricing problem, duality theory for linear programming
is used to obtain the reduced cost of a route k associated with depot j as
follows:

ĉjk := cjk −
∑
i∈I

aijk(πi − µij) (6)

where π is the vector of dual variables associated with constraints (2) and
the dual variables µij are associated with constraints (3).

The subproblem used to determine routes that depart from depot j is then
formulated as an Elementary Shortest Path with Pickup and Delivery and
Time Windows Constraints (ESPPDTWC; see Ropke and Cordeau, 2009).
For each depot j, we build a graph Dj = (Vj, Aj) that contains depot j itself
and all the customer locations. Assuming that |P | = |D| = N , the set of
vertices Vj = P ∪ D ∪ {0, 2N + 1} where node 0 represents depot j as the
starting point, and node 2N+1 also represents depot j as the arrival point of
each route. The set of arcs Aj = [{0}×P ]∪[(P∪D)×(P∪D)]∪[D∪{2N+1}].
In the following, we use the convention that the pickup node of request i is
denoted i (instead of i+) and its delivery nodeN+i (instead of i−). Therefore,
P = {1, . . . , N} and D = {N + 1, . . . , 2N}.
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It is necessary to transfer the information of the dual variables to the arcs
such that the cost of a path in this auxiliary network represents the reduced
cost (6) of the corresponding route.

Thus, we define the cost of an arc (l,m) in the subproblem network as
follows:

d̂lm :=

{
dl,m − πm + µm,j if l ∈ Vj,m ∈ P
dl,m if l ∈ Vj,m ∈ D ∪ {2N + 1} (7)

Since the subproblems are independent, an auxiliary network is built for each
depot j. Each subproblem is solved as a resource constrained shortest-path
problem by a label-setting algorithm, which is described in section 3.

3.3.1. Preprocessing

In the literature, a variety of preprocessing rules have been suggested for
the subproblem network. The present work considers the rules corresponding
to extensions of the heuristics proposed in Dumas et al. (1991) and Desrochers
et al. (1992).

The first step consists in adjusting the time windows using the partial
paths 0→ i→ N + i and i→ N + i→ 2N + 1 so that they are feasible for
all of the values Ti ∈ [ai, bi] and TN+i ∈ [aN+i, bN+i]. The time windows are
successively redefined as follows (see Dumas et al. (1991, Sec. 2.4)):

bN+i = min{bN+i, b2N+1 − ti,2N+1}
bi = min{bi, bN+i − ti,N+i}
ai = max{ai, a0 + t0,i}

aN+i = max{aN+i, ai + ti,N+i}

Subsequently, rules number 2 and 3 from Desrochers et al. (1992, Sec. 6.1)
are applied for each k ∈ {1, . . . , 2N}:

ak = max

{
ak,min

{
bk, min

(k,j)∈E
{aj − tk,j}

}}
bk = min

{
bk,max

{
ak, max

(i,k)∈E
{bi + ti,k}

}}
Because of the time windows and precedence constraints, several arcs can

be removed since they cannot belong to a feasible solution to the problem.
Following Dumas et al. (1991), the constraints of the problem are used to
remove the following arcs:
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• [Precedence] The following arcs are removed because they cannot
belong to any feasible solution: (0, N + i); (N + i, i); (2N + 1, 0);
(2N + 1, i); (i, 2N + 1); and (2N + 1, N + i) for i = 1, . . . , N .

• [Capacity] The vehicle capacity can never be exceeded; thus, if qi +
qj > Q, i, j ∈ {1, ..., N}, i 6= j the following arcs are removed: (i, j);
(j, i); (i, N + j); (j,N + i); (N + i, N + j); and (N + j,N + i).

• [Time windows] Each node must be reachable within its respective
time window; thus, if ai + tij > bj, i, j ∈ {1, . . . , 2N}, then arc (i, j) is
removed.

• [Time windows together with precedence] : If travel times satisfy
the triangular inequality, arcs can be removed if they cannot be part
of any path that includes both the pickup as well as the delivery for
some customers:

– Arc (i, N + j) is removed if path j → i → N + j → N + i is not
feasible for tj = aj.

– Arc (N + i, j) is removed if path i → N + i → j → N + j is not
feasible for ti = ai.

– Arc (i, j) is removed if path i→ j → N+ i→ N+j is not feasible
for ti = ai.

– Arc (N+ i, N+j) is removed if paths i→ j → N+ i→ N+j and
j → i → N + i → N + j are not feasible for ti = ai and tj = aj,
respectively.

3.4. Branching strategy

An optimum LPM solution can contain variables with non-integer values.
It is important to create an adequate branching strategy that is compatible
with the pricing problem. For this, Berger et al. (2007) used a strategy
where the shortest route structure is maintained in the pricing problem. The
fundamental strategy consists of four branching rules for the two types of
variables.

First, branching is performed on the location variables Xj. For these
variables, the conventional dichotomous branching is adequate. Fixing Xj =
1 enforces the use of depot j and solving the pricing problem for depot j.
Fixing Xj = 0 is achieved by imposing a value of Yjk = 0 for all of the routes
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k ∈ P ′j in the RPM and no longer solving the pricing subproblem for depot
j.

Second, we follow Ropke and Cordeau (2009) and branch on the total
number of vehicles used in the solution, if this number is fractional. In one
branch, we force the fleet size to be larger than the rounded up value and in
the other one, we limit the fleet size to the rounded down value. Note that
using this branching rule involves adding two constraints on the size of the
fleet in the master program. Dual variables for these constraints thus need
to be added to the reduced cost of routes generated by the subproblem to
ensure a proper stopping criterion.

Third, in a similar manner, we branch on the number of vehicles leaving a
depot. We select the depot for which the fractional part of the total outflow
is closest to 0.5.

Finally, we branch on variables related to specific routing decisions. We
formalize the strategy proposed by Dumas et al. (1991). Order variables Oij

are defined for i, j ∈ P ∪ {0, 2N + 1}:

Oij = 1 indicates that if i and j are on the route, the first pickup node
visited after i is j.

Oij = 0 indicates that the first pickup node visited after i cannot be j.

For a route k that serves nk customer requests, let (i0 = 0, i1, i2, . . . , ink
, ink+1 =

2N + 1) be its sequence of pickup and depot nodes. Then, (nk + 2) branch-
and-bound nodes Bl, l = 0, . . . , nk + 1, are created. Node Bl, l = 0, . . . , nk is
defined by the constraints(

l−1∧
m=0

Oimim+1 = 1

)∧(
Oilil+1

= 0
)
. (8)

The final node Bnk+1 corresponds to the constraints
nk∧

m=0

Oimim+1 = 1.

Example 3.1 (from Dumas et al., 1991). If there is a route variable Yr that
is not integer-valued, with the corresponding route given by 0 → 1 → 2 →
N + 2→ N + 1→ 2N + 1. The four branches created are the following:

B0: O01 = 0;

B1: O01 = 1, O12 = 0;
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B2: O01 = O12 = 1, O2,2N+1 = 0;

B3: O01 = O12 = O2,2N+1 = 1.

The branching constraints can be transferred to subproblems by adding
an additional component in the labels that represents the last visited pickup
node. In the case of several fractional routes, we select one route among the
shortest ones.

3.5. Implementation

The enumeration tree is explored according to a depth-first search (DFS)
strategy, and the list of open problems is implemented as a stack.

As previously mentioned, if the solution at a node is not integer-valued
and the node is not pruned, branching is performed to create new problems. If
there is a fractional location variable, branching is performed on the variable
with the value closest to 0.5. The next problem considers the branch of zero
value, in which the corresponding depot is not present.

When all of the location variables have integer values, if the total number
of vehicles is fractional, branching is performed on this quantity. If the total
number of vehicles is integer, but the number of routes departing from any
of the depots is fractional, branching is performed on this number for one of
the depots where this quantity is closest to 0.5. In both of these cases, the
next subproblem to be solved corresponds to the rounding up branch.

When neither of the previous branching rules applies, one of the shortest
routes with fractional value is chosen. Then, branching as explained above
is performed for this route. The problems created are added to the stack in
the order Bnk+1 to B0.

The B&P procedure is stopped when the gap between the bounds is below
0.5%.

4. Label-setting Algorithm for the Pricing Subproblems

Shortest path problems are common in column generation schemes for
VRPs. In general, these problems are solved through modified versions of
the classical algorithms, such as those of Dijkstra or Bellman (Bellman, 1958;
Dijkstra, 1959). The general principle involves associating a label to each par-
tial route and extending the label to indicate the feasibility of the resources
(time, freight on the vehicle, etc.) until the best possible path has been
found. Dominance rules are used to compare the partial routes that arrive

12



to the same node and exclude certain routes. For each node of the graph,
a significant amount of labels must be maintained because each comparison
considers the consumed resources.

It is common to avoid calculating the set of optimal routes and to pre-
maturely end the solution procedure when a set of columns with negative
reduced costs is determined. Finding the minimum cost path is only neces-
sary in the last iteration of the algorithm to verify that there are no routes
with negative reduced cost.

In this work, we have implemented an elementary resource-constrained
shortest path algorithm, which is quite close to the elementary shortest path
algorithm described in Ropke and Cordeau (2009). We refer the reader to this
paper for a detailed description of this procedure. In the following, we will
focus on the modifications that we had to make to implement the branching
strategy described in section 2.4.

The first modification is the addition to the labels of an extra component,
which indicates the last pickup node of the current partial route (as men-
tioned in Section 2). The addition of this label component forces a change in
the label extension rules. To extend a label L to a node j, the last pickup,
say i, performed by label L must be checked. If j ∈ D, meaning that j is
a delivery, then the extension is performed normally. If j ∈ P ∪ {2N + 1},
then all of the branching rules ending in j must be verified, including the
following three cases:

• If Oij = 1 is included in the branching constraints, the label can be
extended and the last pickup node is now j.

• If Omj = 1 for some m 6= i, verify if m has already been visited in the
route. If it does, the label cannot be extended; otherwise, extend the
label.

• If Oij = 0, then the extension to j is not allowed.

Furthermore, if there are no rules ending in j that prevents label exten-
sion, then the extension should be performed.

The subproblems do not have to be solved to optimality because we only
need to identify some routes with negative reduced costs at each iteration
of the column generation scheme. In general, the label-setting algorithm
finds routes with negative reduced cost before finishing the comparison of
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all routes. The heuristics presented in the following paragraphs truncate the
label-setting algorithm in different ways.

H1 Restricting the label-setting algorithm to a reduced-size network is a
common practice. Constructing networks with 30% or 50% of the nodes
according to the best arcs with respect to cost was proposed in Dumas
et al. (1991). A variant of this restriction consists of defining a network,
where each node is connected to a subset of its neighbors. For our
problem, we build for each depot an auxiliary network Dm, in which
we keep only the m best arcs with respect to dij out of each node i.
Once this has been applied to each node of the graph, the set of arcs
is completed with arcs (0, i), (i, i+N), and (N + i, 2N + 1). Based on
the results presented in Ropke and Cordeau (2009), we consider m = 5
and m = 10. If it is not possible to determine negative reduced cost
routes in D5, the process is continued with D10.

H2 We limit the number of unprocessed labels throughout the label setting
heuristic. We consider different values for the maximum number of
these labels λ. At first λ is set to 500; this value increases to 1000 and
1500 in later stages of the algorithm. If this limit is not reached, the
subproblem has been solved exactly. These values of λ were shown to
work well on a variety of instances by Baldacci et al. (2011a), as well
as by Ropke and Cordeau (2009).

At each pricing stage, we solve a subproblem for each depot. We first
apply H1 and if no negative reduced cost column is found, then we apply H2
limiting the total number of labels to λ = 500. If no route is found, then λ is
increased, as indicated above, and H2 is run again for each depot subproblem.
If not route is found this way, we then solve the exact subproblem.

5. Computational Experiments

5.1. Instances Description

The instances that were used for our computational experiments were
created in a manner similar to the one used for the instances proposed by
Ropke and Cordeau (2009) for the pickup and delivery problem, which were,
in turn, based on a modification of the generator of Savelsbergh and Sol
(1995a).
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The nodes of the network, including depots and customers, are located
at the vertices of a 50× 50 square grid. The demands are uniformly chosen
integers in the interval [5, Q], where Q is the vehicle capacity. In our case,
Q = 15 for all instances.

The complete planning horizon has T = 1000 time units. The time
window for pickup i is randomly generated with ai ∼ U(0, 450) and bi =
ai + W , with W fixed for all customers to 30 units. For the delivery i + N ,
the time window is defined by ai+N ∼ ai +U(20, 380) and bi+N = ai+N +W .

For all instances, seven potential locations are defined for the depots, with
one of these in the center of the square and the others randomly generated
in the square according to uniform distributions. The same seven locations
are used for all instances.

To determine the locations for customer requests, we arbitrarily defined
three non-overlapping rectangles over the square grid. A third of the cus-
tomer requests was assigned to each rectangle and the coordinates for both
the pickup and the delivery points were randomly generated according to
uniform distributions within the rectangle. By proceeding in this fashion, we
were thus able to create six instances with clustered demands. Among the
generated instances, we retained one, which seemed the most challenging, to
become the base instance.

From this base instance, we built other instances by contracting and
expanding distances within each cluster. More precisely, the distance to the
center of the corresponding rectangle was multiplied by an inflation factor β
for all customer locations.

The following values of β were used: 1.2, 1 (base), 0.87, 0.77, 0.7, 0.55. We
tried to generate configurations with larger inflation factors, but we realized
that, because of the boundaries of the problem area, those became distorted
and did not yield any interesting computational result.

Figure 1 shows instance 1, which corresponds to the least clustered case
(instance 1, factor 1.2); base case (instance 2); and the most clustered case
(instance 6; factor 0.55).

Because they were interested in keeping the number of routes to a min-
imum, Ropke and Cordeau (2009) set a relatively high fixed cost of 10,000
for each route (the routing costs were about 10 times lower than this value).
Since, unlike the aforementioned authors, we are interested in the interaction
between location costs and routing costs, the fixed costs cannot be arbitrarily
high. We considered five different values for the fixed cost for routes: 1, 10,
50, 100, and 200. Similarly, six different values for the depot fixed cost fj
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Figure 1: Location of depots (black nodes) and pickup (light grey) and delivery (dark
grey) nodes for configurations 1, 2 (base) and 6.

were tested: 0.1, 1, 10, 50, 100, and 200. For each of the six configurations,
30 instances were created by taking all combinations of route and depot fixed
costs, thus yielding a total of 180 instances. In the remainder of the paper,
we refer to instances by indicating the configuration and the fixed costs as
follows: “configuration number-route cost-depot cost”. For instance, “3-100-
50” is the instance that combines configuration 3 with fixed route cost of 100
and depot cost of 50.

The instances described in the previous subsection cover a wide scope of
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situations, from instances with highly clustered demand (e.g., instances 5-XX
and 6-XX) to other instances with sparse demand (e.g., instances 1-XX).

We also constructed some examples based on the smallest instances de-
scribed in Ropke and Cordeau (2009). Specifically, we use the location and
demands of the instances of classes AA, BB, CC, and DD with 30, 35, and
40 requests and added the same set of depots constructed for our instances.
We reduced the original time windows from 60 to 30 units by increasing the
lower limits of all time windows by 30 units.

5.2. Computational Results

The branch-and-price algorithm was implemented in Python 2.7 by using
IBM ILOG CPLEX 12.5. The pricing procedures were implemented in C++
and integrated with the main algorithm as a built-in module of Python. The
C/C++ implementation of these components utilizes an interface constructed
in C, interacting by means of a wrapper. This wrapper encapsulates the
C++ objects that perform the different pricing procedures. All experiments
were performed on an Intel i7-5930K computer (3.5 GHz) with 16 GB RAM
running Ubuntu 14.04.

Computational results are reported in three parts. First, we provide
detailed results for 24 selected instances. Aggregated results regarding the
performance of the algorithm on the 180 generated instances are reported
following that. All generated instances were solved within a gap of 0.6% in
a maximum time of 1 hour. Additional results are reported in section 5.3.

Tables 1, 2, 3 and 4 report the detailed results for instances with depot
fixed cost equal to 10 and route fixed cost equal to 1, 10, 50, and 200. In
addition, in Table 5 we show statistics for some cases with depot cost equal
to 200 and route cost equal to 100 (both high), because the algorithm gener-
ates columns beyond the root node for all maps, even in the most clustered
instances. Usually, such instances seem to be easier for the algorithm, as we
can see in the results for other cost combinations. In these tables, the first
column indicates the configuration of the instances. Columns “zIP”, “LB”
and “gap” indicate, respectively, the values of the best integer solution, best
lower bound and relative gap between these values. Column “Nodes B&P”
displays the number of nodes that were created during the branch-and-price
process in addition to the root node corresponding to the initial linear relax-
ation. The two next columns report the execution times (in seconds) for the
root node (“Root time”) and the complete algorithm (“Total time”). The
following four columns describe the total number of route variables added to
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the master problem (“Columns”), the number of variables that were added
to solve the initial linear relaxation (“Cols. Root”), the number of vari-
ables in the initial restricted master problem and the number of additional
routes generated after branching (“Cols. tree”). The last two columns report
the number of open depots (“Depots‘”) and the number of selected routes
(“Routes”) in the optimal solutions.
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Configuration zIP LB gap (%) Nodes B&P Root time Total time Columns Cols. Root Cols. Tree Depots Routes

1 1019.29 1017.43 0.184 1160 18 2276 4052 2811 1241 4 20
2 910.39 910.39 0.000 0 17 17 2832 2832 0 4 20
3 828.90 828.90 0.000 0 18 19 2864 2864 0 4 20
4 785.98 783.96 0.257 1255 32 1787 3684 2898 786 3 20
5 737.43 737.43 0.000 0 27 27 2907 2907 0 3 19
6 662.28 662.28 0.000 0 25 25 2910 2910 0 3 19

Table 1: Features of instances with depot cost fj = 10 and fixed route cost r = 1.

Configuration zIP LB gap (%) Nodes B&P Root time Total time Columns Cols. Root Cols. Tree Depots Routes

1 1199.55 1197.65 0.159 959 35 2369 4292 2839 1453 4 19
2 1083.51 1080.93 0.238 367 28 637 3213 2855 358 4 19
3 1002.51 1001.57 0.093 950 52 2016 3123 2867 256 4 19
4 963.40 958.17 0.545 1035 39 2305 5220 2914 2306 3 19
5 841.15 837.20 0.472 4 288 532 4144 4132 12 4 15
6 831.28 831.28 0.000 0 33 33 2914 2914 0 3 18

Table 2: Features of instances with depot cost fj = 10 and fixed route cost r = 10.
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Configuration zIP LB gap (%) Nodes B&P Root time Total time Columns Cols. Root Cols. Tree Depots Routes

1 1928.58 1900.73 1.465 763 82 2004 4232 2885 1347 4 16
2 1807.58 1789.03 1.037 1389 84 2798 4330 2937 1393 3 16
3 1709.16 1688.61 1.217 697 75 905 2989 2931 58 4 16
4 1654.19 1632.36 1.337 850 67 1563 3519 2965 554 3 16
5 1576.18 1576.18 0.000 0 71 71 2993 2993 0 3 16
6 1502.00 1502.00 0.000 0 87 87 2976 2976 0 3 16

Table 3: Features of instances with depot cost fj = 10 and fixed route cost r = 50.

Configuration zIP LB gap (%) Nodes B&P Root time Total time Columns Cols. Root Cols. Tree Depots Routes

1 4325.72 4287.92 0.882 1250 89 3034 4815 2943 1872 4 16
2 4204.46 4187.46 0.406 754 89 2011 4546 2948 1598 4 16
3 4106.49 4088.61 0.437 845 83 1180 3242 2982 260 4 16
4 4054.19 4032.36 0.541 665 98 1613 3910 3019 891 3 16
5 3924.25 3924.25 0.000 0 111 111 3066 3066 0 3 15
6 3852.04 3852.04 0.000 0 136 136 3044 3044 0 3 15

Table 4: Features of instances with depot cost fj = 10 and fixed route cost r = 200.

Configuration zIP LB gap (%) Nodes B&P Root time Total time Columns Cols. Root Cols. Tree Depots Routes

1 3114.26 3106.38 0.254 11 112 976 4594 3002 1592 1 16
2 2995.19 2978.23 0.569 428 119 2280 5252 3039 2213 1 16
3 2896.73 2883.38 0.463 304 119 828 4016 3068 948 1 16
4 2847.47 2837.31 0.358 163 118 445 3416 3109 307 1 16
5 2785.98 2777.53 0.304 2 141 209 3190 3134 56 1 15
6 2702.96 2690.92 0.447 2 160 203 3161 3141 20 1 15

Table 5: Features of instances with depot cost fj = 200 and fixed route cost r = 100.
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From these detailed results, we can can see that the algorithm is working
properly, generating in most cases columns in both phases, at the root node
first and beyond that as shown in the tables. Most of the instances with
low route cost (r = 1 as in Table 1) are solved at the root, since in such
cases routes tend to be short as they are cheap. Differently, when route
costs became higher (Tables 3 and 4) the B&P framework is intensely used,
generating many columns beyond the root, as appreciated mainly in more
dispersed configurations (maps 1 and 2). The cases presented in Table 5
are the hardest for the algorithm, generating columns beyond the root in
instances 5 and 6, which does not happen in any other case.

Regarding aggregated computational results, on average 3613 variables
were generated in total, from which 610 (on average) were generated after
the root node. Out of the 3613 routes, 740 were initially included in the set
of available routes. These correspond to feasible routes serving one or two
customer requests.

We first examine the total number of variables that were generated by
the B&P procedure in the tree (beyond the root node) to solve instances
depending on the fixed cost of depots and routes. Average values are reported
in table 6.

Route fixed cost

1 10 50 100 200 Average

D
ep

ot
fi

x
ed

co
st 0.1 124.17 512.00 614.83 821.17 1079.17 630.27

1 252.67 441.00 909.83 655.00 757.83 603.27
10 337.83 730.83 558.67 420.67 770.17 563.63
50 368.00 498.00 363.83 333.83 647.50 442.23

100 399.50 733.83 988.83 1087.17 829.50 807.77
200 241.00 643.00 566.83 856.00 775.50 616.47

Average 287.19 593.11 667.14 695.64 809.94 610.61

Table 6: Total number of columns generated after the root node. Averages computed
along the different configurations.

When examining more closely table 6, we cannot identify a consistent
pattern regarding the relationship between the number of variables after the
root and the fixed cost of depots. To the opposite, there is a clear relationship
between the number of variables and the fixed cost of routes; problems with

21



higher route fixed cost require significantly more variables after the root,
while in cases of low route cost (r = 1 for example), all the instances require
much less treatment after the root.

Turning to the relationship between the B&B nodes and fixed costs as
reported in table 7, we notice very significant variations in the number of
B&B nodes required to solve an instance and the fixed costs. Instances with
low route fixed cost are solved very quickly, although most of them perform
branching. The situation is quite different with problems with route fixed
cost equal to 50, 100 and 200, which require more around 500 B&B nodes on
average.

Route fixed cost

1 10 50 100 200 Average

D
ep

ot
fi

x
ed

co
st 0.1 305.00 610.67 566.50 647.67 633.33 552.63

1 339.00 550.33 667.00 661.17 604.83 564.47
10 402.50 552.50 616.50 515.00 585.67 534.43
50 528.00 574.00 489.33 410.50 599.33 520.23

100 124.17 308.33 694.33 386.33 389.50 380.53
200 144.17 174.67 183.83 151.67 133.00 157.47

Average 307.14 461.75 536.25 462.06 490.94 451.63

Table 7: Total number of nodes in the enumeration tree. Averages computed along the
different configurations.

As for the depot fixed cost, problems with larger fixed cost are much
easier to solve than those with low fixed cost. Indeed, the hardest instances
are in most cases the one with 0.1 and 1 fixed cost values.

With respect to the connection between the number of B&B nodes and
the total number of variables, it seems that in instances with high route fixed
cost, the number of columns generated per B&B node is significantly higher.
One reason of that is the fact that solutions of instances with high route fixed
cost should include long routes as they are expensive, and in those case, we
know that the B&P procedure becomes hard as the subproblem turns out to
be very complicated.

Examining overall solution times, which are reported in table 8, they vary
in a similar fashion as the number of B&B nodes. The higher the route cost
is, the more time is required to solve the B&P procedure. The pattern with
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Route fixed cost

1 10 50 100 200 Average

D
ep

ot
fi

x
ed

co
st 0.1 482.00 1269.00 1219.50 1468.17 1626.00 1212.93

1 578.17 1167.67 1482.67 1340.17 1428.83 1199.50
10 691.83 1315.33 1238.00 1021.67 1347.50 1122.87
50 865.50 1198.50 950.17 873.33 1333.00 1044.10

100 421.00 1102.17 1636.50 1272.67 1165.33 1119.53
200 402.67 946.83 598.33 823.50 761.67 706.60

Average 573.53 1166.58 1187.53 1133.25 1277.06 1067.59

Table 8: Total execution time in seconds. Averages computed along the different configu-
rations.

Route fixed cost

1 10 50 100 200 Average

C
on

fi
gu

ra
ti

on

1 1407.17 1445.33 1085.67 1107.33 1697.00 1348.50
2 27.17 683.50 2037.50 1826.17 2521.83 1419.23
3 24.50 2015.83 1630.33 1368.33 1175.67 1242.93
4 1903.00 1942.17 2185.17 2238.50 1992.33 2052.23
5 40.17 865.00 93.83 130.67 137.17 253.37
6 39.17 47.67 92.67 128.50 138.33 89.27

Average 573.53 1166.58 1187.53 1133.25 1277.06 1067.59

Table 9: Total execution time in seconds. Averages computed along the different depot
fixed costs.

respect to depot fixed cost is not as clear as the route fixed cost pattern. In
table 9, we report total execution times but now contrasting by fixed route
cost and the different maps, which allows us to identify a special feature of
map 4 that makes particularly difficult to solve.

Figure 2 clearly demonstrates the linear relationship between the solution
times of instances and the number of B&B nodes that they require. Figure 3
displays also a similar relationship between the total execution time and the
number of routes generated beyond the root.
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Figure 2: Scatter plot of the total time vs. the number of nodes in the enumeration tree.

Let us now turn to the analysis of the solutions obtained. In all of the
instances that we reported upon, the optimal number of open depots ranged
from 1 to 5, except one case in which 6 depots are opened. Figure 4 summa-
rizes the results for the various fixed costs and configurations. As could be
expected, solutions for instances in which the fixed costs are high use only 1
or 2 depots. To the opposite, solutions of most of the instances with depot
fixed cost equal to 10 or less use 4 or 5 depots. Regarding these instances,
it must be emphasized that the impact on the objective value of the depot
fixed cost is almost insignificant; this explains why in some cases one would
have 4 open depots while in others, there are 5 or 6 open depots. With
respect to the number of routes in the optimal solutions, it varies from 15 to
20. In general, the number of routes is sensitive to the fixed costs, however
the limit of 200 was set as results became not interesting beyond this value.
We performed additional experiments with higher fixed cost for both routes
and depots. In all cases, the solutions obtained were identical to the ones
obtained for a fixed cost of 200.

24



0 500 1000 1500 2000 2500 3000 3500
Routes

0

1000

2000

3000

4000

T
o
ta

l 
ti

m
e

Routes after root node vs. total time

Figure 3: Scatter plot of the total time vs. the number of routes generated in the tree.

5.3. Benchmark instances

As mentioned in the description of instances, we also modified some of
the instances proposed in Ropke and Cordeau (2009) (classes AA, BB, CC,
and DD with 30, 35, and 40 requests) by adding the same set of depots
constructed for our instances. In addition, we reduced the original time
windows from 60 to 30 units by increasing the lower limits of all time windows
by 30 units. We were able to solve a subset of such instances to optimality
in our integrated scheme (see table 10). In some cases, we were not able to
find a feasible solution, although the algorithm was able to explore the root
and tree generating many columns (see table 11). From these benchmarks,
we can determine that our method is working properly, generating many
columns and using all the power of the B&P in cases where we know that
the instances are difficult for the PDP itself.
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Figure 4: Number of open depot for instances with different fixed costs and configurations
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Instance Requests TW width zIP LB gap (%) Nodes B&P Root time Total time Columns Cols. Root Cols. Tree Depots Routes

AA30 30 30 1294.59 1289.77 0.37 22 200 274 26685 24476 2209 1 4
AA35 35 30 1489.36 1459.29 2.06 241 225 3840 61280 41269 20011 2 4
BB30 30 30 1770.59 1763.45 0.40 54 60 684 6106 5728 378 3 11
BB30 30 45 1818.37 1729.28 5.15 223 92 3834 41050 8479 32571 5 10
BB30 30 60 1707.57 1702.83 0.23 2 105 122 10196 10195 1 6 10

Table 10: Instances from Ropke-Cordeau solved to optimality.

Instance Requests TW width LB Nodes B&P Root time Total time Columns Cols. Root Cols. Tree

CC30 30 30 1241.72 70 1739 5430 164677 57616 107061
DD30 30 30 1555.13 259 212 3877 56610 30121 26489
AA40 40 30 1667.60 177 270 3885 83822 58942 24880
AA30 30 45 1295.70 370 152 3755 41546 33240 8306
AA35 35 60 1451.01 60 328 3958 88120 58871 29249

Table 11: Instances from Ropke-Cordeau with no feasible solution.
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6. Conclusions

In this paper, we have formulated an integer programming model that
integrates the PDP-TW and optimum depot location decisions (LRP-PDP).
We have also proposed an efficient solution method based on column gen-
eration within a B&P framework. The solution technique used to solve the
pricing subproblem that generates columns has been based on an elementary
shortest path procedure as in similar approaches proposed in the literature.
This procedure was, however, modified to accommodate the branching strat-
egy of Dumas et al. (1991). The use of this branching strategy in this context
is also a contribution of this paper. Computational results on a wide range of
instances with different fixed cost values and customer configurations confirm
the effectiveness of our proposed solution approach.

Solving much larger instances of the LRP-PDP would probably be diffi-
cult with an exact solution scheme, as the one proposed in this paper. To
handle such instances, one would have to contemplate defining solution ap-
proaches based on metaheuristics or matheuristics ideas.

An interesting extension of the LRP-PDP problem tackled in this paper
would involve considering stochastic information on key problem parameters:
location of customers, customer demands, fixed cost values, both for depots
and routes, and possibly travel times. Obviously, including one or the other
of those stochastic dimensions would make the problem much more difficult.
Defining a proper mathematical formulation and suitable solution methods
would certainly prove to be a significant challenge.

Future work should involve considering how stochastic information could
affect both the transportation cost and depot placement. In case of trans-
portation cost, the decisions are mostly operational; therefore, stochastic
issues could arise, for example, in the computation of travel costs from un-
certainty in traffic conditions, or from uncertainty in demand for pickup and
delivery loads. In case of depot placement, the investment decisions are
strategic, and therefore uncertainty should be analyzed at a different tempo-
ral framework, considering issues such as land cost, rent and accessibility.
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