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Aurélien Froger1 Michel Gendreau2,3 Jorge E. Mendoza4 Eric Pinson1

Louis-Martin Rousseau2,3
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Abstract

In this paper we deal with a maintenance scheduling problem arising in the onshore wind power industry.

We consider a short-term horizon and a multi-skilled workforce. The goal is to schedule maintenance

operations to maximize electricity production while taking into account forecast wind-speed values, multiple

task execution modes, and daily restrictions on the routes of the technicians. We first introduce two integer

linear programming formulations of the problem. Then, building on one of our models, we propose a

branch-and-check (B&C) approach that uses both generic Benders cuts and cuts specially crafted for our

problem. We report experiments on a 160-instance testbed. For 80% of the instances, our exact approach

finds an optimal solution in a reasonable computational time. The remaining instances reach the three-hour

time limit, and our B&C gives solutions with average gaps of 1.7% with respect to the upper bounds. The

results suggest that our method significantly outperforms commercial solvers running our integer linear

programming models.

Introduction

The energy sector is being challenged to produce low-carbon electricity, and so the share of renewables has

significantly increased in recent years. Boosted by the need to mitigate climate change and adaptation support

(e.g., tax incentives, the Paris climate change agreement) as well as the constantly decreasing cost of turbines,

wind energy is currently the world’s fastest-growing source of electricity (63 GW of new capacity in 2015). It

accounts for around 3.3% of world electricity production1.

Although the availability factor of wind turbines exceeds 95%2, their capacity factor3 is usually around 30–

40% as a result of the variability of wind and of design decisions (for a fixed wind speed, the larger the blades

the more electricity the turbine can produce). The impact of operational decisions is also non-negligible. As

the wind industry grows, the reliability and profitability of wind farms naturally becomes one of the priorities

of the sector. In this context, the efficient scheduling of wind turbine maintenance operations is essential to

prevent unnecessary downtime and excessive operational costs.

Maintenance planning and scheduling has been widely studied in the electricity industry, particularly for

thermal power plants; see Froger et al. (2016) for a comprehensive review. Many of the existing methods

1The Global Wind Energy Council - Global wind report annual market update 2015 - http://www.gwec.net/wp-

content/uploads/vip/GWEC-Global-Wind-2015-Report April-2016 22 04.pdf, last accessed: 2017-03-22
2percentage of time that the wind turbine is available to provide energy to the grid (downtime results from unexpected

breakdowns and maintenance)
3ratio of the net electricity generated to the energy that could have been generated at continuous full-power operation during

the given time period
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are not applicable to the wind power industry, where the impact of shutting down equipment depends on an

uncontrollable factor: the weather. Studies of maintenance optimization in the wind energy sector primarily

focus on reliability-centered maintenance (RCM). RCM is a methodology incorporating reactive, preventive,

and condition-based maintenance decisions. These decisions, essentially taken under financial considerations,

are mostly based on monitoring and on the use of failure prediction models. Studies usually focus on a single

turbine or a single wind farm and explore why failures happen, what should be done when they occur, and how

they can be predicted or prevented. See Ding et al. (2013) for a survey. The results of these studies can help

to define the preventive maintenance operations that need to be performed in the short term. However, they

may provide only rough estimates of turbine downtime and lost production. Indeed, it is difficult to produce a

maintenance plan in which all the maintenance operations are scheduled during periods where the wind speed is

below 3.5 m.s�1, which is too low to produce electricity. This is because human resources is a major bottleneck.

To the best of our knowledge, only a few studies have addressed turbine maintenance scheduling considering

fine-grained resource management. Kovács et al. (2011) scheduled maintenance for onshore wind turbines over

a one-day horizon. They aimed to minimize lost production due to maintenance and failures. They solved

an integer linear programming (ILP) formulation of the problem with a commercial solver. For offshore wind

farms, Irawan et al. (2017) solved a maintenance routing and scheduling problem minimizing labor, travel, and

penalty costs. They proposed a method based on Dantzig–Wolfe decomposition in which the feasible routes

for each vessel are generated a priori.

We consider the wind turbine maintenance scheduling problem, focusing on onshore wind farms, introduced

by Froger et al. (2017). The problem is to provide a maintenance plan over a short-term horizon that maxi-

mizes wind electricity production while taking into account fine-grained resource management involving task

assignments to a multi-skilled workforce. Froger et al. (2017) introduced several models based on ILP and

constraint programming (CP). They found that the computational time grows prohibitively with problem size,

and they therefore proposed a CP-based large neighborhood search (CPLNS) approach.

The primary contribution of this paper is an efficient exact approach for the wind turbine maintenance

scheduling problem. We decompose the problem into a task scheduling subproblem and a technician-to-task

assignment (TTA) subproblem, and we solve it using a branch-and-check (B&C) approach. While solving

the task scheduling subproblem, we discard, via cuts throughout the branch-and-bound tree, maintenance

plans that cannot be performed by the technicians. In addition to the generic Benders cuts, we introduce

problem-specific cuts and demonstrate they are key to speeding up the convergence of the approach.

The remainder of this paper is organized as follows. In Section 1 we describe the problem. In Section 2 we

introduce new ILP formulations, and in Section 3 we present a B&C approach as an exact solution method.

In Section 4 we discuss experiments with the 160-instance testbed proposed by Froger et al. (2017). Finally, in

Section 5, we present our conclusions and discuss future research.

1 Problem statement

The goal is to schedule a set I of maintenance tasks over a discrete and finite planning horizon T while

maximizing the revenue from the electricity production of a set W of wind turbines. The turbines are spread

across a set of locations L (consisting of wind farms and possibly home depots). Let lw P L be the location of

turbine w PW and li the location where task i P I is performed.

The time horizon is a totally ordered set partitioned into |T | periods of identical length. T spans several

days from a set D. Let Td be the time periods of day d P D. Moreover, since the execution of a task can

impact production during non-working hours, we introduce a special time period (a rest period) between two

consecutive days to represent a night or weekend. The maintenance tasks are non-preemptive, but they are

interrupted during the rest periods if they cover different days (e.g., a technician can start a task at the end of
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one day and complete it at the beginning of the next).

Although we do not include rest periods in T , in the objective function we consider the loss of production

generated by tasks covering these periods. In more detail, we use two parameters to define the impact of the

tasks on the availability of the turbines. Binary parameter bwi is 1 if and only if task i P I shuts down turbine

w P W when technicians are working on the task. Binary parameter rbwi is 1 if and only if task i shuts down

turbine w during the rest periods it covers. Parameters bwi and rbwi are 0 if turbine w is not located where the

task i is performed (i.e., if li � lw). A maintenance task can shut down more than one turbine, but this is rare

in practice.

We have a finite set R of maintenance technicians. Each technician has one or more skills from a set S,

and we introduce a binary vector λr over S such that λrs � 1 if and only if technician r has skill s P S. We

assume that a technician cannot perform more than one task during a given period. Each task i P I requires

technicians with a specific skill si P S. For convenience, we define Ri to be the set of technicians that can

perform task i (i.e., Ri � tr P R | λrsi � 1u).

To avoid expensive travel time, technicians must spend each day on tasks at compatible locations. Com-

patible locations are those that can be reached from each other in travel times that are negligible with respect

to the duration of a time period. Let tmax be the maximum travel time between two locations that we can

consider to be “negligible.” The top of Figure 1 shows the locations that are compatible with l1 (i.e., l2 and l3).

To model these daily location-based incompatibilities (DLBIs), we introduce the binary parameter σll1 taking

the value 1 if and only if locations l and l1 are compatible (naturally σll1 � σl1l). The bottom of Figure 1 shows

the four sets of compatible locations in our example. During a single day, a technician can execute tasks at l1

and l2 or l3 but not both. The maintenance tasks usually take hours (or days), and therefore the technicians

travel between only a few locations during a single day.

(a) Compatible locations with l1

(b) Sets of compatible locations

Figure 1: Illustration of daily location-based incompatibilities.

Each technician r P R has an individual availability schedule expressed by a binary vector πr, with πtr � 1

if and only if r is available during period t P T . The availability schedule takes into account training days,

vacations, and assignments to tasks that are not part of the optimization4. When technician r is not available

4tasks that have been already started before the beginning of the planning horizon or that are performed along with external

companies
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during period t, his or her location is fixed to ltr P L. For vacations and training days, this parameter is set to

a dummy location l� such that @l P L, σl�l � 1. We assume that all the technicians work the same shift, which

is common practice in this industry.

Each task i P I has a set Mi of execution modes. For each mode m P Mi, there is an associated task

duration dim and a number qim of required technicians. It is forbidden to switch modes after starting a task.

Moreover, the technician assigned to a task must complete it, even if the task covers one or more rest periods.

The tasks must be executed during specific periods. These take into account the availability of spare parts

and the external restrictions imposed by the operator. For safety, no task can be executed when the forecast

wind speed is too strong. To model these restrictions, we introduce the binary parameter γti that is 1 if and

only if task i P I can be performed during period t P T . We also impose nonoverlapping constraints on each

subset of tasks that belongs to the set ov pIq.
The objective is to determine a schedule that maximizes the revenue generated by electricity production

while satisfying the constraints described above. Let gtw be the revenue generated by turbine w if it can

produce electricity during period t P T . Similarly, let rgdw be the revenue generated by turbine w if it can

produce electricity during the rest period following day d P D. These revenues are estimated based on forecast

wind speed.

It is possible to postpone some tasks into the next planning horizon. When task i is postponed, there

is penalty of oi ¥ 0. The value of the penalty includes an estimate of the loss of revenue induced by the

postponement and the future planning of the task and may include outsourcing costs (the decision-maker will

decide if the task should be outsourced rather than postponed). It also depends on the priority of the task

(the higher the priority, the higher the penalty). The priority is based on reliability considerations (the longer

a delay, the higher the probability of failure) and contract commitments. If the penalty is sufficiently high, a

task will be postponed only if there is no available technician. In short, the objective function corresponds to

the difference between the revenue and the penalties. We summarize the notation used in A.

We now analyze the complexity of this wind turbine maintenance scheduling problem (WTMSP). Let us

first define the decision problem WTMSPdec associated with WTMSP. In this problem, a parameter G P R is

given as a lower bound on the value of the objective function. WTMSPdec involves determining if there exists

a task schedule such that the objective value is greater than or equal to G. By polynomially reducing the

cumulative scheduling problem5, which is known to be NP-complete in the strong sense (Baptiste et al., 1999),

to WTMSPdec, we easily prove that WTMSP is strongly NP-hard. In some special cases, WTMSP is trivial.

For instance, if the penalties are all 0, it is optimal to delay all the tasks. A similar observation is that each

task with a penalty of 0 can be set to delayed a priori, without affecting the value of the optimal solution.

2 Integer linear programming formulations

In this section, we propose an ILP model that will serve as a baseline for the exact approach. This formulation

is broadly inspired by the model introduced by Froger et al. (2017). We then propose an alternative formulation

of the problem that provides a better basis for comparison.

2.1 Baseline formulation

The baseline formulation relies on the a priori generation for each task of all possible combinations of start

period and execution mode. Such a combination is called a plan6; see Table 4 in C for examples of plans.

5A instance of the cumulative scheduling problem consists of a single resource with a given capacity C and a set J of n jobs

where each job j P J has a release date rj , a deadline dj , a processing time pj , and a capacity resource requirement aj . The

problem is to determine if there exists a schedule of all the jobs satisfying the timing and resource capacity constraints.
6A plan associated with task i defines a feasible schedule for i by setting an execution mode m P Mi (and, by induction, a

duration dim and a technician requirement qim) and a consistent start date t such that i can be executed during every period t1
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Since the number of periods is limited and there are only a few execution modes, the total number of plans is

reasonable. Let P be the set of plans, ip the task involved in plan p P P, and Pi the set of all plans involving

task i (i.e., Pi � tp P P|ip � iu). For each task i, we also create a plan p0
i P Pi representing the postponement

of the task. For a plan p, the execution periods of ip are expressed by a binary vector ap over T such that

atp � 1 if and only if ip is executed during period t P T . Let Sp and Cp be the start and finish periods of plan

p (i.e., Sp � mintPT a
t
pt and Cp � maxtPT a

t
pt). Similarly, we introduce a binary vector rap over D such thatradp � 1 if and only if ip covers the rest period following day d P D. Let Dp be the set of days covered by plan

p. For convenience and with a slight abuse of notation, we introduce the parameters sp, lp, bwp, and rbwp equal

to sip , lip , bwip , and rbwip . Moreover, we denote by Rp the set of technicians that can be assigned to plan p.

Specifically, Rp contains the technicians r P Rip such that for every period t we have πtr ¥ atp and for every

day d P Dp and every period t P Td, we have πtr � 1 or both πtr � 0 and σlpltr � 1. Let qp be the number of

technicians required for plan p. Finally, parameter op is the penalty incurred if plan p is selected (note that

@i P I,@p P Piztp0
i u, op � 0 and op0

i
� oi).

The ILP formulation has several types of decision variables. Binary variable xp is 1 if and only if plan p P P
is selected. Binary variable f tw is 1 if and only if turbine w P W can produce energy during period t P T , and

binary variable rfdw is 1 if and only if turbine w can produce energy during the rest period following day d P D.

The fundamental difference between our model and that of Froger et al. (2017) is that our model does not

assign technicians to plans. Clearly, it does not matter which specific technicians we assign to plans with the

same start and finish periods, the same location, and the same skill. These parameters define what we call a

pattern. Let H be the set of all patterns. For convenience, for pattern h P H, we introduce sh, lh, and Rh that

respectively define its required skill, its location, and the set of technicians that can be assigned. Conversely,

let Hl � th P H | lh � lu be the set of patterns associated with location l P L. The active periods for pattern h

are represented by a binary vector ah over T such that ath � 1 if and only if h is active during period t P T (Sh

and Ch are used to represent the start and finish periods of the pattern). Let Ph be the set of plans sharing the

same parameters as pattern h. For each pattern h P H and each technician r P Rh, we introduce the binary

variable yrh that is 1 if and only if technician r is assigned to pattern h. Assigning technicians to patterns

reduces the number of assignment variables. Lastly, we define the binary variable vtrl that is 1 if and only if

technician r is at location l during period t.

The following ILP gives the baseline formulation, rP1s:

rP1s max
¸
wPW

�¸
tPT

gtwf
t
w �

¸
dPD

rgdw rfdw
�
�
¸
pPP

opxp (1)

subject to:¸
pPPi

xp � 1 @i P I, (2)

¸
iPB

¸
pPPi

atpxp ¤ 1 @B P ov pIq ,@t P T , (3)

f tw �
¸
pPPi

bwpa
t
pxp ¤ 1 @w PW,@i P I,@t P T , (4)

rfdw � ¸
pPPi

rbwpradpxp ¤ 1 @w PW,@i P I,@d P D, (5)

¸
iPI|siPS̄

¸
pPPi

atpqpxp ¤ |RtS̄ | @t P T ,@S̄ � S, (6)

¸
rPRh

yrh �
¸
pPPh

qpxp @h P H, (7)

such that t ¤ t1   t� dim (i.e., γt
1

i � 1).
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¸
hPHl

athyrh ¤ πtrv
t
rl @r P R,@l P L,@t P T , (8)

¸
lPL

vtrl � 1 @r P R,@t P T , (9)

vtrltr � 1 @r P R,@t P T s.t.πtr � 0, (10)

vtrl �
¸

l1PL|σll1�0

vt
1

rl1 ¤ 1 @r P R,@d P D,@pt, t1q P Td � Td, t � t1,@l P L, (11)

xp P t0, 1u @p P P, (12)

f tw P t0, 1u @w PW,@t P T , (13)rfdw P t0, 1u @w PW,@d P D, (14)

yrh P t0, 1u @h P H,@r P Rh, (15)

vtrl P t0, 1u @r P R,@l P L,@t P T (16)

The objective in (1) is the difference between the revenue generated by the turbines and the postponement

penalties. Constraints (2) ensure that at least one plan involving each task is selected (i.e., each task is

either executed or postponed). Constraints (3) are the nonoverlapping constraints. Constraints (4) and (5)

compute the impact of the tasks on the availability of the turbines during the periods of T and the rest

periods. Constraints (7) ensure that the technician requirements are fulfilled: the number of technicians

assigned to every pattern h must be equal to the number of technicians required by the selected plans associated

with h. Constraints (8) couple the locations of the technicians to the tasks they perform. Constraints (9)

prevent technicians from performing multiple tasks during the same period. When technicians are not available,

constraints (10) ensure compliance with their known locations. Constraints (11) define the DLBIs. Finally,

constraints (12)–(16) are the binary restrictions.

Sometimes commercial solvers can more easily solve models with redundant constraints (because of their

different structure). With this in mind, we include the cumulative scheduling constraints (6) in rP1s although

they can be deduced from constraints (7) and (8). To build these constraints, we introduce for each period

t P T the bipartite graph Gt � ppS,Rtq ,U tq in which, with a slight abuse of notation, vertices from S represent

skills, vertices from Rt indicate the technicians available during period t (i.e., Rt � tr P R|πtr � 1u), and

edges from U t are defined as follows: @s P S,@r P Rt ps, rq P U t if and only if λrs � 1. Via a generalization

of the König–Hall theorem, constraints (6) then correspond to a necessary and sufficient condition for the

existence of a maximum cardinality b-matching (MCbM) from S to Rt. Here the function b is defined by

bpsq �
°
iPI|si�s

°
pPPi a

t
pqpxp for every vertex s in S, and by bprq � 1 for every vertex r in Rt. To express

these constraints, let RtS̄ � tr P R|Ds P S̄, λrs � 1^ πtr � 1qu be the set of technicians available during period

t with at least one skill in subset S̄ � S. The number of these constraints is exponential:
�
2|S| � 1

�
� |T |). In

our experiments, however, the number tends to be small; we therefore add them all to our model.

2.2 Alternative formulation

A potential improvement to the model concerns the space-time tracking of the technicians. Observing that the

number of constraints (11) is usually large, we develop an alternative technician management strategy. This

strategy is based on the daily assignment of each technician to a set of compatible locations. To compute

these sets, we compute all the maximal cliques (cliques that cannot be enlarged) in a graph where each vertex

represents a location, and there is an edge between two vertices if the underlying locations l and l1 can be

visited during the same day by the same technician (i.e., σll1 � 1). Figure 2 illustrates the construction of the

graph and highlights the maximal cliques. We use the algorithm of Bron and Kerbosch (1973) to find these

cliques.

Let K be the set of all maximal cliques in the graph. We define Kdr to be the set of cliques to which technician
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Figure 2: Construction of the graph used to compute the maximal cliques on an example.

r can be assigned during day d, i.e., tk P K | @t P Td, πtr � 1 _ pπtr � 0^ ltr P kqu. We then introduce binary

variable udrk that is 1 if and only if during day d P D technician r P R can perform tasks only at locations

included in clique k P Kdr . Let dt be the day to which period t belongs. We can track the location of the

technicians with the following constraints:¸
kPKdr

udrk � 1 @r P R,@d P D, (17)

¸
hPH|rPRh

athyrh ¤ πtr @r P R,@t P T , (18)

¸
hPHl

athyrh ¤
¸

kPKdtr |lPk

udtrk @r P R,@l P L,@t P T , (19)

udrk P t0, 1u @r P R,@d P D,@k P Kdr (20)

Constraints (17) state that a technician is assigned to only one clique on each day. This ensures compliance

with the DLBIs. Constraints (18) prevent a technician from being assigned to multiple tasks during a given

period. Constraints (19) couple the assignment and space-time tracking variables, ensuring that a technician

can be assigned to location l during period t only if he or she is assigned to a clique containing l during the

day associated with t.

The model resulting from replacing constraints (8), (9), (10), (11), and (16) by (17), (18), (19), and (20) in

the baseline formulation rP1s is called rP2s.

3 Exact solution approach

3.1 Problem decomposition

The exact approach presented in this section takes advantage of the intrinsic decomposition of the problem

into a task scheduling subproblem and a TTA subproblem. The scheduling problem selects a plan for each

task to maximize the difference between the revenue from the electricity production and the postponement

penalties. In this problem, technician considerations are partially eliminated. Given a fixed selection of plans,

the TTA subproblem determines if the technician requests can be satisfied while imposing the DLBIs and the

individual resource availabilities. We aim to coordinate these two problems. Note that an optimal solution to

the scheduling problem leading to a feasible TTA is optimal for the overall problem.

We first introduce the scheduling problem. An initial formulation rShP1s is:

rShP1s max
¸
wPW

�¸
tPT

gtwf
t
w �

¸
dPD

rgdw rfdw
�
�
¸
pPP

opxp (21)

subject to:

(2), (3), (4), (5), (6), (12), (13), (14)
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The cumulative scheduling constraints (6) in rShP1s help to speed up the convergence of a coordination

procedure between the two problems. Solving the task scheduling problem without any information on the

availability of the technicians would result in a selection of plans that would be unlikely to lead to a feasible

TTA.

We now assume that we have a solution to rShP1s, which is a fixed selection px̄pqpPP of plans (hereafter

referred to simply as x̄). An ILP formulation rSP2px̄qs of the TTA subproblem is:

rSP2px̄qs min
¸
hPH

θh (22)

subject to:¸
rPRh

yrh � θh �
¸
pPPh

qpx̄p @h P H, (23)

¸
hPH

s.t. rPRh

yrh ¤ 1 @r P R,@H P Cmax pGq , (24)

θh ¥ 0 @h P H, (25)

yrh P t0, 1u @h P H,@r P Rh (26)

We introduce slack variables pθhqhPH for the technician requirement constraints (23). The unavailability periods

of each technician are respected by the definition of the set Rh. The clique constraints (24) ensure that the

TTAs comply with the DLBIs. Specifically, set Cmax pGq contains all the maximal cliques in graph G where

each vertex represents a pattern in H, and there is an edge between two vertices if the underlying patterns h

and h1 cannot be visited by the same technician. This edge exists if the following clause holds:

pSh1 ¤ Ch ^ Sh ¤ Ch1q

_
�
pDd P D, Td X tSh, Sh � 1, ..., Chu � H^ Td X tSh1 , Sh1 � 1, ..., Ch1u � Hq ^ σlhlh1 � 0

�
(27)

One can visualize G as an extended version of an interval graph. To define the TTA subproblem for a

given solution x̄ (and therefore to compute all the maximal cliques), we need only to consider the patterns of

Hpx̄q � th P H |
°
pPPh

qpx̄p ¡ 0u. This significantly reduces the number of variables in rSP2px̄qs and the

number of clique constraints (24) since we consider a subgraph of G.

The TTA subproblem is NP-complete; this follows from its equivalence to a L-coloring problem. Nonetheless,

under certain assumptions, it is solvable in polynomial time. We omit the details here; see B for a discussion

of the complexity of the TTA subproblem.

We observe that rSP2px̄qs always has a feasible solution because of the slack variables pθhqhPH. However,

the TTA subproblem is feasible only if the value of the optimal solution is zero.

When the value of the optimal solution to rSP2px̄qs is strictly positive (i.e., the TTA subproblem is in-

feasible), one can use a combinatorial Benders (CB) cut (Codato and Fischetti, 2006) to discard the current

solution x̄ in rShP1s. This cut is similar to those defined for logic-based Benders decomposition (Hooker and

Ottosson, 2003) and have some similarities with the integer optimality cuts for the integer L-shaped method

(Laporte and Louveaux, 1993). It is also known as a no-good cut. Observing that a solution always contains |I|
nonzero variables xp since exactly one plan must be selected per task, and using the binary variables pxpqpPP ,

we can define a CB cut as follows (with Ppx̄q � tp P P|x̄p � 1u):¸
pPPpx̄q

xp ¤ |I| � 1 (28)

Clearly, this cover inequality requires at least one of the variables in x̄ to change its value.
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Since the feasible region of our problem is bounded, the number of integer points satisfying all the constraints

of rShP1s is finite, and thus the same holds for the number of CB cuts. Let F̄ be the set of all solutions x̄ to

rShP1s that lead to an infeasible TTA subproblem. The overall maintenance scheduling problem can therefore

be reformulated as the following master problem rP s:

rP s max
¸
wPW

�¸
tPT

gtwf
t
w �

¸
dPD

rgdw rfdw
�
�
¸
pPP

opxp

subject to:

(2), (3), (4), (5), (6), (12), (13), (14)¸
pPPpx̄q

xp ¤ |I| � 1 @x̄ P F̄ (28)

We denote by rRMP s a restricted master problem (RMP) of problem rP s that contains at most a small

subset of constraints (28). To efficiently solve the problem while exploiting this Benders-like decomposition, we

adopt a B&C approach. The B&C framework was introduced by Thorsteinsson (2001); it is primarily designed

for LP and CP hybridization. Cuts are generated on the fly during the solution of the initial RMP. At each in-

teger node of the branch-and-bound tree, the corresponding solution is sent to the TTA subproblem. Benders

and/or problem-specific cuts are generated to discard solutions leading to an infeasible TTA. Thorsteins-

son (2001) applied B&C to a planning and scheduling problem, while Sadykov (2008) used it for a complex

scheduling problem on a single machine. See Beck (2010) for a survey. This approach is also referred to as a

Benders-based branch-and-cut algorithm (Naoum-Sawaya and Elhedhli, 2010) and as a branch-and-Benders-cut

method (Gendron et al., 2014). It has been used to solve several types of problems: hub location (De Camargo

et al., 2011), production routing under demand uncertainty (Adulyasak et al., 2015), location-design (Gendron

et al., 2014), facility location and network design (Naoum-Sawaya and Elhedhli, 2010), and hop-constrained

survivable network design (Botton et al., 2013). Botton et al. (2013) reported a significant improvement using

this approach instead of the classical implementation of Benders decomposition, while Gendron et al. (2014)

outlined the benefits in terms of solution quality, scalability, and robustness.

The efficiency of B&C is primarily based on the constraints we generate to cut off infeasible solutions to

rRMP s. In the following subsection, we describe our cut generation procedure.

3.2 Cut generation procedure

For every solution x̄ to rRMP s, we must check the feasibility of the TTA subproblem. We can solve rSP2px̄qs

to optimality using a commercial solver, but this approach has two major drawbacks. First, since rSP2px̄qs is

a pure ILP model, solving it may be too time-consuming. Second, if the optimal value of rSP2px̄qs is strictly

positive, the resulting CB cut (28) may be too weak because it discards only the current solution. To overcome

these drawbacks and to build stronger cuts, we propose three cut generation strategies based on different

approximations to the TTA subproblem.

3.2.1 Benders feasibility cuts

Let rSPLR2 px̄qs be the linear relaxation of rSP2px̄qs. Constraints (26) of rSP2px̄qs are replaced in rSPLR2 px̄qs

by the following constraints:

yrh ¤ 1 @h P H,@r P Rh, (29)

yrh ¥ 0 @h P H,@r P Rh (30)

We can generate cuts based on the solution to the linear relaxation rSPLR2 px̄qs of rSP2px̄qs. Since a solution

x̄ to rRMP s is feasible for the whole problem only if the optimum of rSPLR2 px̄qs is zero, x̄ is feasible for the
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whole problem only if the optimum of the dual rDSPLR2 px̄qs of rSPLR2 px̄qs is less than or equal to zero (by the

duality theorem). Let us associate the dual variables ιh, %Hr , and ϕrh with constraints (23), (24), and (29),

respectively. The objective function of rDSPLR2 px̄qs, denoted Θx̄pι, %, ϕq, is:

Θx̄pι, %, ϕq �
¸
hPH

� ¸
pPPh

qpx̄pιh �
¸
rPRh

ϕrh

�
�
¸
rPR

¸
HPCpHq

s.t. rP
�
hPH

Rh

%Hr (31)

Let D be the polyhedron defined by the constraints of the dual problem rDSPLR2 px̄qs. Since rSPLR2 px̄qs

always has a feasible solution, rDSPLR2 px̄qs is bounded and achieves its optimum at an extreme point of D.

Let η1, η2, ..., ηn (with ηk � pιk, %k, ϕkq) be the finite set of extreme points of D. By the weak duality theorem,

the following inequalities must hold to ensure the existence of a zero-valued solution to rSPLR2 pxqs:

Θxpι
k, %k, ϕkq ¤ 0 @k P t1, ..., nu (32)

Constraints (32) are the classical Benders feasibility (BF) cuts. Because the constraint matrix of rSPLR2 px̄qs

is not totally unimodular, relaxing the integrality constraints (26) may lead to a fractional solution. A cut

generation algorithm responsible for identifying violated constraints (32) will therefore not, in general, find a

feasible solution to rP s. Nevertheless, identifying violated BF cuts may help us to generate fewer CB cuts. The

advantages are: i) BF cuts can be computed by solving a continuous linear model, and ii) they may discard

more solutions than just the current solution to rRMP s. One drawback of BF cuts is that they are generic

and therefore likely to be weak.

Problem specific-cuts

For the efficient coordination of the task scheduling and the TTA subproblem, we must find reduced subsets

of plans causing the infeasibility of the latter. In the following subsections, we describe two problem-specific

procedures to find these reduced subsets, and we show how we build stronger problem-specific cuts.

First, we introduce the following TTA requirements:

[C1] Each task must be performed by technicians with the appropriate skill.

[C2] A technician cannot perform more than one task during a given period.

[C3] The technician assignments must not violate the DLBIs.

[C4] Each technician has an availability schedule that must be respected.

[C5] The technician assigned to a task must complete it, even if it covers some rest periods.

Obviously, the TTA subproblem is feasible if and only if [C1], [C2], [C3], [C4], and [C5] are satisfied.

Second, to simplify the discussion, we introduce the concept of jobs. A job refers to either a pattern or

a technician unavailability period. More precisely, a job j is defined by plj , Sj , Cj , sj ,Rj , qjq, where lj is the

location where j is executed, Sj its start period, Cj its finish period, Sj a set of skills such that the technician

performing j must have at least one of these skills, Rj the set of technicians who can perform j, and qj the

number of technicians required for job j. For every unavailability period of technician r P R occurring at period

t (t P T such that πtr � 1), we build an artificial job defined by pltr, t, t,Sr, tru, 1q where Sr � ts P S|λrs � 1u

is the set of skills of technician r. If a technician is unavailable during contiguous periods and if he or she is

assigned each time to the same location (with regard to ltr), we associate only one job with these unavailability

periods7. Let JR be the set of jobs associated with the technician unavailability periods. We also associate

7If for technician r there exists t1, t2 P T , t1   t2 and l P L such that for all t P T , t1 ¤ t ¤ t2, we have πtr � 0 and ltr � l, then

we create a single job pl, t1, t2,Sr, tru, 1q.
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with each solution x̄ to rRMP s a set J px̄q of jobs. We build this set in two steps. First, we add to J px̄q all

the jobs of JR. Then, for every pattern h P H such that qhpx̄q ¡ 0 (with qhpx̄q �
°
pPPh qpx̄p), we create a job

defined by plh, Sh, Ch, tshu,Rh, qhpx̄qq. Let JHpx̄q be the set of jobs associated with patterns. We also define

the parameter hj to be the pattern associated with job j P JHpx̄q.

3.2.2 Maximum cardinality b-matching cuts

In this section, we extend the idea used to generate constraints (6) by partially taking into account [C3] and [C5]

while fully taking into account [C1], [C2], and [C4]. More precisely, when building the potential assignments

of technicians to tasks, we jointly consider the unavailability periods of the technicians and the restriction of

not switching technicians during the execution of a task. We then show that the TTA subproblem can be

approximated by a series of MCbM problems (as many as the length of the time horizon).

First, for a fixed period t P T and a given solution x̄ to rRMP s, we introduce an undirected graph qGtpx̄q
composed of:

• A set of vertices qVt where qVt � qVtJ Y qVtR:

– qVtJ : for each job j P J px̄q such that Sj ¤ t ¤ Cj , we add a vertex in qVtJ . Parameter jν denotes the

job associated with ν P qVtJ . Conversely, νj denotes the vertex associated with job j.

– qVtR: a vertex of qVtR represents a technician r P R during period t. Let rv be the technician associated

with ν P qVtR.

• A set of edges qU t such that @ν1 P qVtJ ,@ν2 P qVtR: pν1, ν2q P qU t ô rν2
P Rjν1 .

We formally describe in Proposition 3.1 and Corollary 3.1 the link between the TTA subproblem and a

series of MCbM problems defined in the above graphs.

Proposition 3.1. Let x̄ be a solution to rRMP s and assume that [C3] and [C5] are not taken into account.

The TTA subproblem for x̄ is equivalent to a series of |T | MCbM problems in qGtpx̄q where for each period t P T
function b is defined by bν � qjν for ν P qVtJ and by bν � 1 for ν P qVtR.

Proof. Since [C3] and [C5] are not taken into account, the TTA subproblem can be independently solved for each period

of the planning horizon.

Assuming that during each period t we can find a MCbM in each of the graphs Gtpx̄q with a cardinality equal to°
jPJ px̄q 1rSj ,Cj sptqqj , we can immediately build a solution to the TTA subproblem from the selected edges by making

the underlying assignments.

Assume now that we have a feasible solution to the TTA subproblem. For each period t, we can build a b-matching

in qGtpx̄q from the working schedule of each technician during this specific period. If technician r P R is assigned to

pattern h P H during period t, we select the edge pν1, ν2q P U where jν1 � jh (jh denoting the job associated with

pattern h) and rν2 � r. This construction ensures the building of a b-matching. Moreover, since all the requirements

are fulfilled, this b-matching has maximum cardinality.

Corollary 3.1. If we assume that [C3] and [C5] are not taken into account, the TTA subproblem is feasible

for a solution x̄ to rRMP s if and only if the MCbM in qGtpx̄q for each period t P T contains
°

jPJ px̄q

1rSj ,Cjsptqqj

edges of qU t.
Proof. This is a direct consequence of Proposition 3.1.

Given a fixed period t, finding the MCbM in qGtpx̄q from qVtJ to qVtR is equivalent to solving a maximum flow

problem in a slightly modified version of this graph. We use this equivalence to derive new cuts. Let pGtpx̄q be

this new directed graph and pVt and pU t the new sets of vertices and arcs. We build pGtpx̄q as follows:
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1. We define pVt � qVt Y tωt, ωtu where ωt and ωt represent the source and sink vertices.

2. For every directed arc pν1, ν2q P pU t, let γmaxν1ν2
be its maximal capacity and fν1ν2

the flow on the arc. We

formally define pU t as follows:

• @ν1 P qVtJ ,@ν2 P qVtR: pν1, ν2q P pU t ô rν2 P Rjν1 and γmaxν1ν2
� �8

• @ν P qVtJ : pωt, νq P pU t and γmaxωtν � qjν

• @ν P qVtR: pν, ωtq P pU t and γmaxνωt � 1

Let f�pt, x̄q be the value of the maximum flow in pGtpx̄q. If f�pt, x̄q  
°
νPqVtJ qjν then the jobs of J px̄q

covering t cannot be fully scheduled during this period. We therefore have to discard the solution x̄. We

first compute the minimum flow cut in pGtpx̄q (see Figure 3). This cut can be described by two disjoint setspVtp�q and pVtp�q where the source ωt and sink ωt belong to pVtp�q and pVtp�q, respectively. For cut modeling

purposes, we also introduce the sets qVtJ p�q � qVtJ X pVtp�q, qVtJ p�q � qVtJ X pVtp�q, qVtRp�q � qVtR X pVtp�q, andqVtRp�q � qVtR X pVtp�q.

Figure 3: Minimum cut in graph pGtpx̄q.
Applying the max-flow/min-cut theorem to pGtpx̄q, we have

f�pt, x̄q �
¸

νPqVtJ p�q

γmaxωtv �
¸

vPqVtRp�q

γmaxvωt (33)

If we replace the capacity of each arc by its value, we obtain

f�pt, x̄q �
¸

νPqVtJ p�q

qjν � |qVtRp�q| (34)

The valid minimum flow cut (that invalidates x̄) is¸
νPqVtJ p�q

qjν � |qVtRp�q| ¥ ¸
νPqVtJ

qjν (35)

which we can reformulate as follows: ¸
νPqVtJ p�q

qjν ¤ |qVtRp�q| (36)

Inequality (36) leads to the following valid constraint (hereafter referred to as a MCbM cut) that eliminates

x̄ from the feasible region of rRMP s:¸
jPJHpx̄q

s.t. νjPqVtJ p�q

¸
pPPhj

qpxp ¤ |qVtRp�q| � ¸
jPJR

s.t. νjPqVtJ p�q

qj (37)
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It is possible to strengthen the MCbM cut by considering its composition. First, |qVtRp�q| � |R| because at

least one of constraints (6) would be unsatisfied otherwise. This also implies that |qVtRp�q| � 0. By definition of

the max-flow/min-cut, the technicians associated with qVtRp�q are either not connected to any other vertices or

they are assigned to j P J px̄q such that νj P qVtJ p�q, but they cannot be assigned to any j such that νj P qVtJ p�q.
Either these technicians do not have the required skills for those jobs or they have at least one unavailability

period that prevents the assignment. We deduce that inequality (36) is also valid for every potential job that

covers period t and cannot be performed by any of the technicians associated with a vertex of qVtRp�q. The

MCbM cut (37) can therefore be rewritten as¸
hPH

Ψph, t, qVtRp�qq ¸
pPPh

qpxp ¤ |qVtRp�q| � ¸
jPJR

s.t. νjPqVtJ p�q

qj (38)

where Ψph, t, qVtRp�qq is 1 if and only if pattern h covers period t and none of the technicians associated withqVtRp�q can be assigned to h.

We must solve the MCbM problem only for every period t where at least one technician cannot be assigned

to a job because of an unavailability period occurring at a period other than t. Otherwise, constraints (6) are

necessary and sufficient conditions for the existence of b-matchings with the desired cardinality.

3.2.3 Maximum-weight clique cuts

Another strategy to discard a solution x̄ to rRMP s that leads to an infeasible TTA relies on showing that it is

impossible to assign the technicians to the tasks without violating the DLBIs. Since the DLBIs are defined by

day, this search decomposes into |D| independent searches in which for each d P D we consider only the jobs

of J px̄q that cover d. During the search, it is also necessary to take into account the skills required to perform

the different jobs. For a fixed subset S̄ � S, we consider only the jobs j P J px̄q such that Sj X S̄ � H and

the technicians with at least one skill in this subset. This procedure increases the likelihood of finding violated

DLBIs if the current solution to the RMP does not lead to a feasible TTA subproblem. This is particularly true

when the ratio between the requirements and the number of available technicians varies widely across skills.

To look for violated DLBIs, we solve for each day d and each subset S̄ � S a maximum-weight clique

(MWC) problem in an undirected graph rGdS̄px̄q. The graph rGdS̄px̄q is composed of:

• A set of vertices rVdS̄ such that each vertex maps a job j of set J px̄q that i) covers day d (i.e., Td X
tSj , ..., Cju � H) and ii) requires at least one of the skills in S̄ (i.e., Sj X S̄ � H). Let jν be the job

associated with ν P rVdS̄ . We associate with every vertex ν a weight equal to the number of technicians

qjν required to perform job jν .

• A set of edges rUdS̄ where for ν1, ν2 P rVdS̄ :

pν1, ν2q P rUdS̄ ô ν1 � ν2 ^
��
Sjν2 ¤ Cjν1 ^ Sjν1 ¤ Cjν2

�
_ σljν1 ljν2 � 0

	
There is an edge between ν1 and ν2 in rGdS̄px̄q if and only if a technician cannot be assigned to both jobs

jν1 and jν2 with regard to [C2] and [C3].

Proposition 3.2 formally describes the link between the solution of the TTA subproblem and the solution

of MWC problems.

Proposition 3.2. The TTA subproblem is feasible for a solution x̄ to rRMP s if for each subset S̄ � S of skills

and each day d P D the maximum weight of a clique in rGdS̄px̄q is less than or equal to |RS̄ |.

Proof. For a fixed day d and a fixed subset of skills S̄, suppose for the sake of contradiction that the maximum weight

of a clique in rGdS̄px̄q is strictly greater than |RS̄ |. By construction of rGdS̄px̄q, a technician cannot perform more than one

job among the jobs whose vertices belong to that clique. Since we need more technicians than are available, the TTA

subproblem is infeasible.

13



Let us now assume a fixed day d P D and a fixed subset of skills S̄. Let CdS̄ px̄q be the set of vertices that

belong to the MWC of rGdS̄px̄q. If the total weight of the vertices in rGdS̄px̄q is strictly greater than |RS̄ |, the

constraint that eliminates x̄ is: ¸
νPCdS̄px̄q

qjν ¤ |RS̄ | (39)

The valid constraint (hereafter referred to as a MWC cut) that discards a solution x̄ to rRMP s is therefore¸
jPJHpx̄q

s.t. νjPCdS̄px̄q

¸
pPPhj

qpxp ¤ |RS̄ | �
¸
jPJR

s.t. νjPCdS̄px̄q

qj (40)

This cut simply states that the number of technicians required by the jobs associated with the vertices of the

clique must be less than the number of technicians with at least one skill in S̄. We have derived this cut not

only for the MWC but also for all the cliques that have a weight greater than |RS̄ |.

It is possible to tighten the MWC cut (40) by adding additional patterns on its left side. We proceed as

follows. First, we consider the subgraph Gsubpx̄q of G (G is used to derive the clique inequalities in rSP2px̄qs)

that includes a vertex for pattern h P H if i) h P HzHpx̄q (i.e., qhpx̄q � 0), ii) h covers day d, iii) sh P S̄, and

iv) if a technician is assigned to h, he or she cannot be assigned to any job involved in CdS̄ px̄q with regard to

[C2] and [C3]. We then solve a maximum clique problem in Gsubpx̄q. Let H
�
CdS̄ px̄q

�
be the set of patterns

associated with the vertices that are part of the maximum clique of Gsubpx̄q. Since a technician cannot be

assigned to more than one of the jobs in CdS̄ px̄q or one of the patterns of H
�
CdS̄ px̄q

�
, we can rewrite the MWC

cut (40) as follows: ¸
jPJHpx̄q

s.t. νjPCdS̄px̄q

¸
pPPhj

qpxp �
¸

hPHrCdS̄px̄qs

¸
pPPh

qpxp ¤ |RS̄ | �
¸
jPJR

s.t. νjPCdS̄px̄q

qj (41)

For efficiency, we reduce the size of Gsubpx̄q since it suffices to consider one vertex for all the patterns with

the same location and coverage of the same portion of the day. This remark also applies to rGdS̄px̄q.
Last but not least, to avoid overloading our algorithm, we solve the MWC problem only if i) the sum of the

weights of the vertices is greater than the number of available technicians, and ii) during a particular day there

are at least two jobs that do not overlap and are executed at incompatible locations. Otherwise, constraints (6)

ensure for each day and each subset of skills the nonexistence of a clique with a weight strictly greater than the

number of available technicians. We use the algorithms introduced by Österg̊ard (2001) and Österg̊ard (2002)

to solve the maximum clique and MWC problems.

Since the approximations to the TTA subproblem described in Sections 3.2.2 and 3.2.3 can be decomposed

into a series of small problems, we can potentially identify multiple subsets of plans that cause the infeasibility

of the TTA subproblem. This usually leads to the generation of multiple cuts, which is known to significantly

improve the efficiency of a cut generation process. We can also consider solving the small problems in parallel.

For clarity, we provide three examples in C to illustrate how we build up the different cuts. For the

approximations described in Sections 3.2.2 and 3.2.3, the first two examples show that neither the MCbM nor

MWC cuts strictly dominate the other. The third example illustrates a case where the two approximations do

not find any cuts although the TTA subproblem is infeasible.

3.3 General structure of algorithm

We now provide a full description of our two-stage B&C approach. Figure 4 outlines the general structure.

The two stages are as follows:
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Figure 4: Flow chart of our B&C approach.

N.B.: The steps with dashed outlines are performed by an ILP solver.
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• Stage 1 (solve a linear relaxation of rP s):

In the first stage we generate potentially useful MCbM and MWC cuts while working with a much easier

problem. We consider rShPLR1 s, the linear relaxation of rShP1s (“Initialization 1”). We solve the problem to

optimality with an LP solver (“Solve rShPLR1 s”). We then solve the approximations to the TTA subproblem

described in Section 3.2.2 (the MCbM becomes a fractional MCbM) and in Section 3.2.3 (at this stage,

we derive a cut only for the MWC) for the continuous solution x̄ of rShPLR1 s (“Solve MWC and MCbM

problems”). If we generate cuts, we add them to rShPLR1 s (“Add cuts to rShPLRs”) and reoptimize the

resulting problem. Otherwise, we terminate this first stage (“Cuts? No”).

To avoid wasting time generating cuts that may not be useful, we perform at most 100 iterations (“Stop

1”). Note that this stage could have been performed at the root-node of the search tree defined for

the second stage. However, our aim is to take advantage of the preprocessing techniques embedded in

commercial ILP solvers.

• Stage 2 (Solve the master problem rP s):

In the second stage, we solve the problem by a branch-and-check method implemented on top of a

commercial solver. We initialize rRMP s with all the cuts that have been generated during the first

stage (“Initialization 2”) and we solve it by a branch-and-bound algorithm. For every integer solution x̄ to

rRMP s obtained in the branch-and-bound tree (“Solution? integer”), we determine if x̄ is feasible for the

TTA subproblem. We start by solving the MCbM and MWC problems (“Solve MWC and MCbM problems”).

If this produces at least one cut, we discard the current solution x̄ by adding the generated cut(s) to

rRMP s (“Add cuts to rRMP s”). Otherwise, we solve the LP formulation rSPLR2 px̄qs (“Solve rSPLR2 px̄qs”).

If we identify a violated BF cut of type (32), we add it to rRMP s (“Add cuts to rRMP s”). Otherwise,

we cannot determine the feasibility of the TTA subproblem before solving the ILP formulation rSP2px̄qs

(“Solve rSP2px̄qs”). If its optimal value is strictly positive, we generate a CB cut of type (28) and add it to

rRMP s (“Add cuts to rRMP s”). Otherwise, we conclude that px̄, ȳq (with ȳ the solution of rSP2px̄qs) is a

new feasible solution (“New best solution”). Note that the branch-and-bound scheme ensures that px̄, ȳq is

strictly better than the best previous solution. We can therefore update the best solution so far, px�, y�q,

to px̄, ȳq. We terminate this phase (“Stop 2”) with the optimal solution to rP s or a feasible solution if the

time limit has been reached (if no solution is found within the time limit, one can always consider the

feasible solution in which all the tasks are postponed).

From an implementation point of view, we start this stage by simply forwarding an ILP formulation of

the RMP to the solver. The cut generation procedure is implemented inside a callback routine that is

invoked by the solver at every node of the branch-and-bound tree. The cuts computed during this stage

are provided to the solver as lazy constraints. After adding them at a particular node, the solver checks

the feasibility of the integer solutions in terms of these constraints. If the candidate solution at an integer

node is not feasible, the solver discards it and adds the violated lazy constraints to the active nodes of

the branch-and-bound tree.

4 Computational experiments

4.1 Instances

We report results for the 160-instance testbed proposed by Froger et al. (2017). These instances were randomly

generated based on insight into wind prediction and maintenance operations obtained from industrial partners.

Froger et al. (2017) considered time horizons of different lengths (5 and 10 days with 2 or 4 periods per day),

different numbers of tasks (20, 40, 80), and different numbers of skills (1 or 3). For each combination of

parameters, they generated two categories of instances: five “type A” instances with a tight technician-to-work

16



ratio (i.e., the technicians can perform most but not necessarily all of the tasks during the planning horizon),

and five “type B” instances with a regular technician-to-work ratio (i.e., the technicians can perform all the

tasks). The resulting 32 families of instances are as representative as possible of the situations that may occur.

The cost of postponement is set in such a way that postponing a task is nonprofitable. We refer to each

instance family via “a b c d e” where a, b, c, d, and e refer to the number of periods in the planning horizon,

the number of periods within a day, the number of skills, the number of tasks, and the technician-to-work ratio,

respectively. For a discussion of the instance generation process see Froger et al. (2017).

4.2 Results

We implemented our algorithms using Java 8 (JVM 1.8.0.25). We use Gurobi 6.5.1 to solve the LP and ILP

models. We ran our experiments on a Linux 64 bit-machine, with an Intel(R) Xeon(R) X5675 (3.07 Ghz) and

12 GB of RAM. We set a 3-hour time limit (the CPU times are reported in seconds and rounded to the nearest

integer). We implemented the cut generation procedure of our B&C approach using the callback provided by

Gurobi8. To assess our results, we compute the gap with respect to the optimal solution when it is known, or

to the best upper bound found by the solver over all the tests reported, i.e., gap � pzUB�zq{|z|, where z is the

objective of the computed solution and zUB is the objective of the optimal solution or the best upper bound

found by any of our methods.

We tested four exact approaches. We present the results for the direct solution of the two ILP formulations

of the problem (rP1s and rP2s). To quantify the impact of the problem-specific cuts of Section 3.2, we present

the results of the B&C approach presented in Section 3.3 without (B&C) and with (B&C) the MCbM and

MWC cuts. These approaches differ only in how we discard an infeasible solution x̄ to rRMP s. In Table 1, we

report the average, over all the instances belonging to the same family or sharing a common characteristic, of

the gap (Gap), the solution time (Time), and the percentage of tasks scheduled in the best solution (%S). We

also report the number of optimal solutions found within the time limit (#Opt). We use bold font to indicate

the best approach for the given family. See D for the detailed results for each instance. For a meaningful

comparison, the average solution time takes into account only those instances for which an optimal solution

is found within the time limit. Similarly, the average gap and the percentage of tasks scheduled (i.e., not

postponed) takes into account only the instances that are not optimally solved. Since postponement is heavily

penalized, a large gap often indicates a low percentage of scheduled tasks. This allows a better understanding

of the results. On average 99% of the tasks are scheduled in the optimal or best-known solutions.

We observe that rP2s seems to outperform rP1s. However, it is difficult to compare these formulations:

the best model in terms of gap and solution time if the problem is not optimally solved can vary within a

family, even if rP2s usually gives a tighter LP bound (see in Appendix D). We also observe that the average

gap is considerable for most of the families (the solver fails to schedule a large proportion of the tasks), and

the computational time is significant. This is because the formulations involve many binary variables and

constraints. We conclude that directly solving the ILP formulations with a commercial solver is not the best

approach.

The performance of the B&C approach is strongly correlated with the cuts generated from the approxima-

tions to the TTA subproblem. The problem-specific cuts allow us to find the optimal solution for 63 additional

instances. On the remaining instances, they significantly reduce the gap from around 4.0%. This highlights

the strength of the problem-specific cuts.

The B&C approach outperforms by far the direct solution of the ILP formulations for every family. It

solves to optimality 80% of the instances and reduces the computational time (by around 3 min on average).

Moreover, the overall average gap when optimality is not reached is relatively small (1.7%).

8A callback is a user function that is called periodically by Gurobi to allow the user to query or modify the state of the

optimization (Gurobi Optimizer Reference Manual: http://www.gurobi.com/documentation/6.5/refman.pdf)
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Table 1: Detailed computational results for the exact approaches.

Family
rP1s rP2s B&C B&C

Gap %S #Opt Time Gap %S #Opt Time Gap %S #Opt Time Gap %S #Opt Time

10 2 1 20 A - - 5/5 598 - - 5/5 152 - - 5/5 2,272 - - 5/5 5

10 2 1 20 B - - 5/5 12 - - 5/5 37 - - 5/5 2 - - 5/5 1

10 2 1 40 A 0.01% 100% 2/5 1,813 0.01% 100% 1/5 7 0.70% 100% 2/5 3,379 - - 5/5 7

10 2 1 40 B - - 5/5 205 - - 5/5 121 - - 5/5 8 - - 5/5 1

10 2 3 20 A - - 5/5 2,635 - - 5/5 1,574 1.0% 97% 2/5 2,871 - - 5/5 162

10 2 3 20 B - - 5/5 31 - - 5/5 18 - - 5/5 94 - - 5/5 2

10 2 3 40 A - - 5/5 3,220 - - 5/5 3,996 2.2% 98% 2/5 4,040 - - 5/5 17

10 2 3 40 B - - 5/5 180 - - 5/5 295 - - 5/5 18 - - 5/5 1

20 2 1 40 A 2.4% 98% 2/5 8,074 1.4% 98% 2/5 2,858 6.4% 96% 1/5 7,301 - - 5/5 230

20 2 1 40 B 0.01% 100% 4/5 232 - - 5/5 2,078 - - 5/5 695 - - 5/5 4

20 2 1 80 A 436% 0% 0/5 - 334% 20% 0/5 - 8.2% 96% 0/5 - 0.02% 100% 4/5 300

20 2 1 80 B 318% 50% 3/5 1,485 229% 49% 3/5 3,823 0.13% 100% 4/5 580 - - 5/5 5

20 2 3 40 A 1.25% 99% 1/5 322 1.2% 99% 3/5 5,534 4.6% 95% 1/5 1,136 2.1% 98% 4/5 40

20 2 3 40 B - - 5/5 376 - - 5/5 155 - - 5/5 525 - - 5/5 3

20 2 3 80 A 257% 20% 0/5 - 156% 39% 0/5 - 3.3% 98% 0/5 - - - 5/5 51

20 2 3 80 B - - 5/5 3,415 196% 50% 3/5 2,456 0.02% 100% 4/5 163 - - 5/5 5

20 4 1 20 A 1.8% 96% 0/5 - 1.3% 97% 0/5 - 2.1% 95% 0/5 - 2.2% 95% 3/5 1,715

20 4 1 20 B - - 5/5 204 - - 5/5 405 - - 5/5 131 - - 5/5 2

20 4 1 40 A 264% 0% 0/5 - 61% 75% 0/5 - 8.6% 93% 0/5 - 1.2% 98% 2/5 1,586

20 4 1 40 B 174% 49% 1/5 5,208 107% 74% 1/5 1,968 0.3% 100% 4/5 630 - - 5/5 6

20 4 3 20 A 1.2% 98% 0/5 - 2.4% 95% 4/5 5,005 3.1% 95% 0/5 - 2.0% 95% 4/5 237

20 4 3 20 B 0.01% 100% 4/5 52 - - 5/5 113 3.1% 95% 4/5 134 - - 5/5 9

20 4 3 40 A 373% 20% 0/5 - 5.3% 95% 0/5 - 6.7% 94% 0/5 - 0.85% 98% 1/5 8,888

20 4 3 40 B 1.5% 99% 2/5 6,112 0.03% 100% 3/5 2,108 0.29% 100% 1/5 1,608 - - 5/5 11

40 4 1 40 A 352% 0% 0/5 - 106% 76% 0/5 - 15.7% 89% 0/5 - 2.1% 98% 0/5 -

40 4 1 40 B 1,594% 40% 0/5 - 3.0% 98% 0/5 - 0.7% 100% 0/5 - - - 5/5 31

40 4 1 80 A 4,948% 0% 0/5 - 4,948% 0% 0/5 - 16.1% 90% 0/5 - 1.5% 99% 0/5 -

40 4 1 80 B 331% 0% 0/5 - 331% 0% 0/5 - 1.8% 99% 0/5 - - - 5/5 89

40 4 3 40 A 1,087% 20% 0/5 - 4.6% 96% 0/5 - 14.6% 90% 0/5 - 1.5% 99% 0/5 -

40 4 3 40 B 477% 20% 0/5 - 0.84% 99% 2/5 2,118 0.3% 100% 0/5 - - - 5/5 36

40 4 3 80 A 2,813% 0% 0/5 - 2,727% 18% 0/5 - 14.3% 90% 0/5 - 2.3% 98% 0/5 -

40 4 3 80 B 3,899% 0% 0/5 - 3,899% 0% 0/5 - 0.96% 100% 0/5 - - - 5/5 86

Characteristics
rP1s rP2s B&C B&C

Gap %S #Opt Time Gap %S #Opt Time Gap %S #Opt Time Gap %S #Opt Time

|S|
1 854% 35% 32/80 1,108 621% 61% 34/80 1,035 6.7% 95% 36/80 957 1.6% 98% 64/80 179

3 1,036% 39% 37/80 1,677 982% 61% 43/80 1,896 4.9% 96% 29/80 722 1.7% 98% 64/80 186

|T |

|D|

2 179% 56% 57/80 1,383 144% 60% 57/80 1,461 3.9% 97% 51/80 982 1.0% 99% 78/80 49

4 1,197% 30% 12/80 1,555 1,014% 61% 20/80 1,757 6.5% 95% 14/80 380 1.7% 98% 50/80 390

Type
A 878% 38% 20/80 2,618 759% 65% 25/80 2,838 7.8% 94% 13/80 3,106 1.7% 98% 48/80 456

B 1,059% 35% 49/80 921 802% 53% 52/80 913 0.8% 100% 52/80 288 - - 80/80 18

All 940% 37% 69/160 1,413 773% 61% 77/160 1,538 5.7% 96% 65/160 852 1.7% 98% 128/160 182
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Our results suggest that the number of skills does not have a significant impact on the difficulty of the

instances (although instances with three skills appear to be easier to solve). This may be because there are

fewer symmetries among technicians and a smaller number of feasible configurations for the task scheduling.

On the other hand, the number of tasks seems to have an impact when the technician-to-work ratio is tight.

This can be explained by the greater difficulty of finding a maintenance plan when there are more tasks. For the

instances with a regular technician-to-work ratio, although the number of plans is larger when there are more

tasks, the number of patterns does not grow proportionally, which results in a moderately more complicated

TTA subproblem. Moreover, our exact approaches are more appropriate for two periods per day rather than

four, because the computational time is lower and the number of optimal solutions is larger. A plausible

explanation is that the DLBIs are tighter on instances with more periods per day. More periods provide a

wider choice of task start times and therefore more opportunities to move technicians between locations. There

is also a larger number of plans and patterns; this may contribute to the level of difficulty. In conclusion,

according to our experiments, the difficulty of an instance increases with the number of periods per day and

the tightness of the technician-to-work ratio.

Table 2 gives the average number of cuts generated during the execution of the B&C approach for each

group of tests. The overall average (#Cuts) is decomposed into CB, BF, MCbM, and MWC cuts. Detailed

results for each family of instances are available in D.

On average, 90% of the cuts are problem-specific and 10% are generic Benders cuts. These results indicate

that the approximations are not always able to identify the infeasibility of the TTA subproblem. However,

when |S| � 1, solving the MCbM and MWC problems almost always identifies the infeasibility. We generate

more cuts for instances with three skills, four periods per day, and a tight technician-to-work ratio. This

is because of the larger number of patterns in the first two cases and because there is less flexibility in the

scheduling of the tasks in the third case. We never generate CB cuts. The optimal solution to rSPLR2 px̄qs is

usually integer although the constraint matrix is not totally unimodular9. We generate only a few MCbM cuts

and many MWC cuts. This is because the RMP has no information about the DLBIs at the beginning of the

optimization. It is thus more likely that these constraints are not satisfied by the RMP solutions.

Table 2: Average number of cuts generated in B&C approach.

Characteristic #Cuts CB
Other cuts

BF MCbM MWC

|S|
1 102 0 0.3 3 98

3 224 0 28 10 186

|T |

|D|

2 56 0 9 3 44

4 270 0 19 10 241

Type
A 262 0 24 10 229

B 63 0 4 4 56

All 163 0 14 7 142

Furthermore, all the components of the B&C approach have a favorable trade-off between efficiency and

computational time. Since the relaxation of the problem considered in the first stage contains only continuous

variables and at most a few cuts, this stage requires on average just 1% of the time, and the limit on the

number of iterations is never reached in our experiments. The results also show that solving the RMP via the

B&C approach is the most time-consuming part of the second stage, requiring on average 99% of the time.

This compares with the negligible time to solve, given a solution x̄ to rRMP s, rSPLR2 px̄qs and rSP2px̄qs with

the commercial solver, or the approximations to the TTA subproblem.

9We found an instance—not part of our testbed—and a solution x̄ of rRMP s where the optimal value of rSPLR2 px̄qs is 0 whereas

the optimal value of rSP2px̄qs is 1.
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5 Conclusions and future research

We have proposed a B&C approach for a challenging maintenance scheduling problem arising in the onshore

wind industry. This exact method decomposes the problem into a task scheduling problem and a TTA sub-

problem. For each selection of plans, we determine the existence of an assignment of the technicians to the

scheduled tasks that adheres to the technician availability and the daily travel limitations. Since the ILP

formulation of the TTA subproblem does not have the integrality property, we use CB cuts to cut off infeasible

maintenance plans in the RMP, while trying to identify violated classical Benders cuts beforehand. However,

the key components of the algorithm are the approximations of the TTA subproblem as a series of MCbM

and MWC problems. Our results show that the resulting problem-specific cuts are effective in speeding up

the convergence of the B&C approach. The B&C method finds optimal solutions in reasonable computational

times and provides high-quality integer solutions when optimality is not reached. It significantly outperforms

the direct solution of the ILP models.

In future work, we will explore speeding up the solution of the problem (especially when integer solutions are

scarce) by checking the approximations of the TTA subproblem at non-integer nodes. This may produce cuts

that eliminate continuous infeasible solutions. However, adding too many such cuts to the RMP may decrease

the efficiency of the approach since it is likely to increase the time needed to solve the LP relaxation at each

node. In preliminary experiments, we tested two strategies for generating MWC and MCbM cuts at non-integer

nodes. First, we considered all the plans p P P such that xp ¡ 0 and arbitrarily added the cuts where the value

of the slack variable was greater than or equal to 0.5. We also stopped the search for a cut at a node as soon

as the first cut was found. Second, we considered all the plans p P P such that xp � 1. We did not observe a

significant improvement with either of these strategies. However, we could investigate more advanced strategies

for generating cuts at non-integer nodes. Another possibility to speed up the solution of the problem would be

to solve the LP relaxation of the RMP at each node using column generation. It would then be necessary to

express the cuts (generated when the TTA subproblem is infeasible) with alternative variables to simplify the

solution of the pricing problem. Last but not least, we have considered the deterministic version of the problem,

but there is an inherent uncertainty in wind-speed forecasts. Future research will focus on solving the resulting

stochastic optimization problem using stochastic programming and/or robust optimization techniques.
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A Notation

T time horizon (totally ordered set)

D set of days

Td set of time periods for day d P D
L set of locations

S set of skills

R set of technicians

Ri set of technicians that can be assigned to task i P I
W set of turbines

I set of tasks

P set of plans

Dp set of days covered by plan p

Pi set of plans involving task i P I
H set of patterns

Ph set of plans associated with pattern h P H
JHpx̄q set of jobs associated with patterns involved in selection of plans x̄

JR set of jobs associated with technician unavailability periods

J px̄q set of jobs associated with selection of plans x̄ (J px̄q � JHpx̄q Y JR)

dt day associated with time period t P T
lw, li location of turbine w PW and location where task i P I must be performed

ltr location of technician r P R when he or she is not available during period t

σll1 binary parameter equal to 1 if and only if locations l and l1 are compatible

ovpIq family of sets of tasks that cannot overlap

si skill required for task i P I
oi penalty if task i P I is postponed

bwi binary parameter equal to 1 if and only if execution of task i P I shuts down turbine w P W when

technicians are working on i

rbwi binary parameter equal to 1 if and only if execution of task i P I shuts down turbine w P W during

the rest periods it covers

gtw profit if turbine w PW can produce electricity during period t P T
rgdw profit if turbine w PW can produce electricity during rest period following day d P D

λrs binary parameter equal to 1 if and only if technician r P R has skill s P S
πtr binary parameter equal to 1 if and only if technician r P R is available during period t P T
ip task involved in plan p P P
atp binary parameter equal to 1 if and only if task ip is executed during period t P T
Sp,Cp start and finish period of plan p P P
qp number of required technicians if plan p P P is selected

hj pattern associated with job j

qj number of technicians required by job j

lj location of job j

Sj , Cj start and finish period of job j

Sj set of skills such that a technician requires at least one of these skills for job j

Rj set of technicians that can be assigned to job j

(sp, lp,Rp, bwp,rbwp, op) = (sip , lip ,Rip , bwip ,rbwip , oip)

(Sh,Ch,ath,sh,lh,Hl,Rh) = (Sp,Cp,a
t
p,sp,lp,Hlip

,Rp) with p P Ph
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B Complement: TTA subproblem and complexity

B.1 Equivalence to the L-coloring problem

To determine the complexity of the TTA subproblem, we prove its equivalence to the L-coloring problem. First,

we associate a color colorr with every technician r P R. For a given solution x̄ to rRMP s, we introduce the

undirected graph :Gpx̄q composed of:

• A set of vertices :V

– For each job j P J px̄q, we add qj vertices in :V. Parameter jν denotes the job associated with ν P :V
and :Vj the set of vertices associated with job j. Let Lν be the set of colors associated with vertex

ν: Lν � tcolorrurPRj .

• A set of edges :U defined such that @ν1 ν2 P :V:

pν1, ν2q P :U ô ν1 � ν2 ^
��
Sjν2 ¤ Cjν1 ^ Sjν1 ¤ Cjν2

�
_ σljν1 ljν2

� 0
	

(There is an edge between ν1 and ν2 in :Gpx̄q if and only if a technician cannot be assigned to both jobs

jν1 and jν2 with regard to [C2] and [C3].)

We prove in Proposition B.1 the equivalence between the TTA subproblem and the L-coloring problem in

:Gpx̄q.

Proposition B.1. Let x̄ be a solution to rRMP s. The TTA subproblem for x̄ is equivalent to the L-coloring

problem in :Gpx̄q.

Proof. Assume that we have a feasible solution to the TTA subproblem. This solution directly yields the list

Rassj of technicians assigned to every job j P J px̄q (in that solution). We can then build a solution to the

L-coloring problem by iterating through the vertices of :Gpx̄q. Specifically, for each vertex ν P :V, we pick a

technician r P Rassjν
(and remove it from this set) and color ν with colorr. By construction of the graph, for a

job j the set Rassj becomes empty only when every vertex of :Vj is colored. The graph is L-colorable since each

ν P :V acquires an admissible color in Lν .

Alternatively, assume that we have a solution c to the L-coloring problem in :Gpx̄q. This solution directly

yields the list Rassj of technicians assigned to every job j P J px̄q. Specifically, for each vertex ν P :V, we add to

Rassj the technician r P R such that colorr � cpνq. We then induce the underlying assignment of the technicians

to the plans selected in the solution to the RMP. By construction of :Gpx̄q, the assignments satisfy the DLBIs

and match the technician availability periods. This produces a feasible solution to the TTA subproblem.

Since the graph coloring problem is a special case of the L-coloring problem, the strong NP-completeness

of the former (Jensen and Toft, 2011) implies the strong NP-completeness of the latter. Therefore, the TTA

subproblem is NP-complete in the strong sense. Note that in the case of interval graphs, the L-coloring problem

remains NP-complete (Biro et al., 1992) although the graph coloring problem becomes polynomial.
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C Examples

C.1 Example 1

Our first example illustrates how we build the different cuts. We consider a fixed time horizon with 8 periods

of identical length (T � t1, 2, ..., 8u) partitioned into two days: T1 � t1, 2, 3, 4u and T2 � t5, 6, 7, 8u. We have

three locations: L � tl1, l2, l3u. Locations l2 and l3 cannot both be visited on the same day (i.e., σl2l3 � 0).

We do not define any other DLBIs. There are 4 tasks (I � tA,B,C,Du), 3 technicians (R � tr1, r2, r3u), and

3 skills (S � ts1, s2, s3u). The characteristics of the tasks and technicians are defined in Tables 3a and 3b. For

simplicity, we introduce only the parameters that are useful for the illustration of the cut generation process.

Table 4 shows a solution to rRMP s in which no cuts have been added. The table gives the start and finish

periods of each task as well as the number of technicians required. We refer to this solution as x̄. Note that x̄

satisfies constraints (6) of the RMP10.

Table 3: Data of Example 1.

I li si

A l1 s1

B l2 s1

C l1 s2

D l3 s3

(a) Characteristics of tasks.

R ts P S | λrs � 1u unavailability period

r1 ts1u at location l3 during period 8

r2 ts1, s2, s3u –

r3 ts1, s3u –

(b) Characteristics of technicians.

Table 4: Solution to restricted master problem for Example 1.

I Selected plan p Sp Cp qp Rp

A pA 2 5 1 tr1, r2, r3u

B pB 4 7 2 tr2, r3u

C pC 7 8 1 tr2u

D pD 1 3 2 tr2, r3u

Let ur1 be the job associated with the unavailability period of technician r1. Observing that ur1 and pB

both cover day 2 and are defined at the incompatible locations l2 and l3, we deduce that technician r1 cannot

be assigned to plan pB (although he or she has the required skill). In x̄ the selected plans are associated with

different patterns, and therefore we simply introduce one job for each plan. Job jA refers to plan pA, job jB

refers to plan pB , and so on. First, we consider the generation of MCbM cuts. Figure 5 shows qGtpx̄q for each

period of the planning horizon.

For period t � 7, the maximum flow in pG7px̄q is 2, and this is the maximum cardinality of a b-matching in

G7px̄q. Since qjB � qjC � 3, x̄ is an infeasible solution to the overall problem. We then compute the minimum

cut in pG7px̄q (see Figure 6).

From the general expression (37), we build the MCbM cut (42):

2xpB � 1xpC ¤ 2 (42)

Second, we consider the generation of MWC cuts. Figure 7 depicts rGdS̄px̄q for both days and every subset

S̄ � S of skills. It shows that the MWC has a weight strictly greater than the number of available technicians

in four cases. From the general expression (40), we build the MWC cuts (43) and (44):

1xpA � 2xpB � 1xpC ¤ 3 (43)

10For instance, at period 7 we have seven cumulative constraints. Plugging in the values of the variables, we obtain 2 ¤ 3, 1 ¤ 1,

0 ¤ 2, 3 ¤ 3, 2 ¤ 3, 1 ¤ 2, 3 ¤ 3 when S̄ is respectively equal to ts1u,ts2u,ts3u,ts1, s2u,ts1, s3u,ts2, s3u,ts1, s2, s3u.
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N.B.: Bold font indicates a solution to the MCbM problem. A dashed outline indicates that no b-matching with the desired

cardinality can be found.

Figure 5: Graphs qGtpx̄q for Example 1 and different values of t P T .

Figure 6: Minimum cut in pG7px̄q for Example 1.

N.B.: Bold font indicates a solution to the MWC problem. A dashed outline indicates that the weight of this clique is

strictly greater than the maximum allowed.

Figure 7: rGdS̄px̄q for Example 1.

2xpB � 1xpC ¤ 2 (44)

The cut (43) is built from the clique computed in either rG1
ts1,s2,s3u

px̄q or rG1
ts1,s3u

px̄q, and the cut (44) is built

from the clique computed in either rG2
ts1,s2,s3u

px̄q or rG2
ts1,s2u

px̄q.

Third, we solve rSPLR2 px̄qs with a commercial solver. Since its optimal value is strictly greater than zero
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(equal to 2), we identify the violated BF cut (45) using dual values obtained from the solver:

2xpB � xpC � 2xpD ¤ 3 (45)

Fourth, we directly solve the ILP formulation rSP2px̄qs. As for the linear relaxation, the optimal value is 2.

We then generate the CB cut (46):

xpA � xpB � xpC � xpD ¤ 3 (46)

Table 5 gives the infeasible selection of plans discarded by the MCbM, MWC, BF, and CB cuts. We denote

a selection of plans using a four dimensional vector where the first, second, third and fourth coordinates refer

to the plan selected for task A, task B, task C and task D, respectively. An ellipsis indicates that infeasibility

holds for any plan selected at the corresponding coordinate.

Table 5: Infeasible selections of plans discarded

Selections of plans CB BF MCbM MWC

ppA, pB , pC , pDq X X X X

ppA, pB , pC , ...q X X

ppA, pB , ..., pDq X X

p..., pB , pC , pDq X X X

p..., pB , pC , ...q X X

p..., pB , ..., pDq X X

For the cut (42), we can build a stronger MCbM cut of type (38) as described in Section 3.2.2. We add to

the left-hand side of the cut (42) all the patterns covering period 7 to which technician r1 cannot be assigned

(this is the only technician associated with a vertex of set qVtRp�q).
For the MWC cuts (43) and (44), we can build stronger MWC cuts of type (41) as described in Section

3.2.3. To strengthen MWC cut (43), we consider the subgraph Gsubpx̄q of G that includes the vertices linked to

i) patterns at location l1 covering periods 3 and 4, ii) patterns at location l2 covering period 4, and iii) patterns

at location l3 covering at least period 2, 3, or 4. A technician cannot be assigned to any of the previous patterns

if he or she is assigned to pattern pA, pB , or pD. We then solve a maximum clique problem in this subgraph,

and we add to the left-hand side of the MWC cut (43) all the plans associated with the patterns involved in

the maximum clique. We proceed in a similar way for cut (44) by considering the subgraph Gsubpx̄q of G that

includes the vertices linked to i) patterns at location l1 covering periods 7 and 8, ii) patterns at location l2

covering at least period 7 or 8, and iii) patterns at location l3 covering at least period 8. A technician cannot

be assigned to any of the previous patterns if he or she is assigned to pattern pB or pD or to the job ur1 . Again,

we solve a maximum clique problem in this subgraph, and we add to the left-hand side of the MWC cut (44)

all the plans associated with the patterns involved in the maximum clique. In this example, when building the

subgraph, we do not pay attention to the skill associated with the patterns because the MWC cuts (43) and

(44) have been computed with S̄ � S. Otherwise, only the patterns with their skill in S̄ can be added to the

left-hand side of the cuts (since the right-hand side of the cuts is based on the total number of technicians with

at least one skill of S̄).

For Example 1, the approximation of Section 3.2.3 dominates that of Section 3.2.2 (i.e., the MWC cuts are

stronger than the MCbM cuts).

C.2 Example 2

Our second example illustrates a case where the approximation of Section 3.2.2 dominates that of Section 3.2.3

(i.e., the MCbM cuts are stronger than the MWC cuts). We consider a fixed time horizon with 4 periods

(T � t1, 2, 3, 4u) partitioned into two days: T1 � t1, 2u and T2 � t3, 4u. We have 1 location (L � tlu), 2 tasks
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(I � tE,F u), 1 skill (S � tsu), and 2 technicians (R � tr4, r5u). Technician r2 is unavailable during periods

1 and 3. The characteristics of the tasks and technicians are summarized in Tables 6a and 6b. Let ur5 be the

jobs associated with the unavailability periods of technician r5.

Table 6: Data of Example 2.

(a) Characteristics of tasks.

I li si

E l s

F l s

(b) Characteristics of technicians.

R ts P S | λrs � 1u unavailability periods

r4 tsu –

r5 tsu at location l during periods 1 and 3

Table 7 shows a solution to rRMP s in which no cuts have been added. The table gives the start and finish

periods of each task as well as the number of technicians required. Note that x̄ satisfies constraints (6) of the

RMP.

Table 7: Solution to restricted master problem for Example 2.

I Selected plan p Sp Cp qp Rp

E pE 1 2 1 tr4u

F pF 2 4 1 tr4u

First, we consider the generation of MCbM cuts. Figure 8 shows qGtpx̄q for each period of the horizon.

N.B.: Bold font indicates a solution to the MCbM problem. A dashed outline indicates that no b-matching

with the desired cardinality can be found.

Figure 8: Graphs qGtpx̄q for Example 2 and different values of t P T .

Since technician r2 is unavailable for task B, the maximum cardinality of a b-matching at period 2 is 1,

whereas the tasks scheduled during this period require two technicians. The following MCbM cut is produced:

xpE � xpF ¤ 1 (47)

Second, we consider the generation of MWC cuts. Figure 9 depicts rGdSpx̄q for both days.

N.B.: Bold font indicates a solution to the MWC problem.

Figure 9: rGdSpx̄q for Example 2.

Solving the MWC problems does not produce a MWC cut. Therefore, for Example 2, the approximation

of Section 3.2.2 dominates that of Section 3.2.3.

27



C.3 Example 3

In our third example, the problem-specific approximations do not find a cut although the TTA subproblem

is infeasible. We consider a fixed time horizon with 8 periods (T � t1, ..., 8u) partitioned into two days:

T1 � t1, 2, 3, 4u and T2 � t5, 6, 7, 8u. We have 1 location (L � tlu), 4 tasks (I � tG,H, I, Ju), 3 skills

(S � ts6, s7, s8u), and 2 technicians (R � tr6, r7u). The characteristics of the tasks and technicians are

summarized in Tables 8a and 8b.

Table 8: Data of Example 3.

(a) Characteristics of tasks.

I li si

G l s6

H l s6

I l s7

J l s8

(b) Characteristics of technicians.

R ts P S | λrs � 1u unavailability periods

r6 ts6u –

r7 ts6, s7, s8u –

Table 9 shows a solution rRMP s in which no cuts have been added. The table gives the start and finish

periods of each task as well as the number of technicians required. Again, it is easy to verify that x̄ satisfies

constraints (6) of the RMP.

Table 9: Solution to restricted master problem for Example 3.

I Selected plan p Sp Cp qp Rp

G pG 2 5 1 tr6, r7u

H pH 4 7 1 tr6, r7u

I pI 7 8 1 tr7u

J pJ 1 3 1 tr7u

First, we consider the generation of MCbM cuts. Figure 10 shows qGtpx̄q for each period of the horizon. We

N.B.: Bold font indicates a solution to the MCbM problem.

Figure 10: Graphs qGtpx̄q for Example 3 and different values of t P T .

observe that solving the MCbM problems does not produce a MCbM cut.

Second, we consider the generation of MWC cuts. Figure 11 depicts rGdSpx̄q for both days. Similarly, no

MWC cuts are produced from this approximation.

However, it is easy to see that the TTA subproblem is infeasible. First, technician r7 must perform tasks I

and J. Second, tasks G and H cannot be performed by the same technician since they overlap. The same holds

for tasks G and J and for tasks H and I. The TTA subproblem is therefore infeasible since technician r7 cannot

perform either tasks G, I, and J, or tasks H, I and J.
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N.B.: Bold font indicates a solution to the MWC problem.

Figure 11: rGdSpx̄q for Example 3.

The solution of rSPLR2 px̄qs gives an optimal value strictly greater than zero (equal to 1). We then identify

the violated BF cut (48) (which has here the same expression as a CB cut):

xpG � xpH � xpI � xpJ ¤ 3 (48)

In this example no MCbM or MWC cuts are identified although the TTA subproblem is infeasible.
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D Detailed experimental results

Table 10: Average number of cuts generated in B&C approach.

Family All CB
Other cuts

BF MCbM MWC

10 2 1 20 A 21 0 0 2 19

10 2 1 20 B 10 0 0 1 9

10 2 1 40 A 36 0 0 0.8 35

10 2 1 40 B 12 0 0 0.6 12

10 2 3 20 A 153 0 94 9 50

10 2 3 20 B 28 0 7 6 15

10 2 3 40 A 66 0 16 9 41

10 2 3 40 B 17 0 0.2 2 15

20 2 1 40 A 67 0 0 1 66

20 2 1 40 B 28 0 0 1 27

20 2 1 80 A 105 0 0 3 101

20 2 1 80 B 18 0 0 1 17

20 2 3 40 A 144 0 17 7 120

20 2 3 40 B 40 0 5 2 32

20 2 3 80 A 118 0 6 5 107

20 2 3 80 B 31 0 0.6 0.8 30

20 4 1 20 A 94 0 0 5 90

20 4 1 20 B 26 0 0 3 23

20 4 1 40 A 202 0 5 12 185

20 4 1 40 B 57 0 0 3 54

20 4 3 20 A 314 0 34 16 263

20 4 3 20 B 84 0 21 13 50

20 4 3 40 A 392 0 38 26 329

20 4 3 40 B 96 0 20 10 66

40 4 1 40 A 229 0 0 3 226

40 4 1 40 B 91 0 0 2 88

40 4 1 80 A 480 0 0 5 476

40 4 1 80 B 151 0 0 4 146

40 4 3 40 A 672 0 65 19 588

40 4 3 40 B 144 0 9 6 129

40 4 3 80 A 1,106 0 102 33 971

40 4 3 80 B 184 0 5 5 174

We write “a b c d e f” where “a b c d e” indicates the family and “f” the instance number. The column

“Obj” gives the objective of the best solution computed by any of our methods; “Time” gives the computational

time (in seconds); “Relax” gives the value of the linear relaxations of rP1s and rP2s; “UB” gives the upper

bound used to compute the gap. For reference, the column “CPLNS” reports the best solution found by Froger

et al. (2017) with a CPLNS approach.
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Table 11: Detailed results for each instance

Instance
rP1s rP2s B&C

CPLNS UB
Time Obj Relax Time Obj Relax Time Obj

10 2 1 20 A 1 86 47923.7 48132.64 110 47923.7 48144.54 1 47923.7 47923.7 47923.7

10 2 1 20 A 2 2475 43231.5 44326.76 430 43231.5 44343.24 13 43231.5 42474.1 43231.5

10 2 1 20 A 3 67 58597.6 62152.91 92 58597.6 62183.79 1 58597.6 57673.5 58597.6

10 2 1 20 A 4 8 63014.9 63179.87 7 63014.9 63167.33 1 63014.9 62952.9 63014.9

10 2 1 20 A 5 354 42646.6 43157.29 120 42646.6 43142.64 10 42646.6 42646.6 42646.6

10 2 1 20 B 1 1 50153.2 50239.27 1 50153.2 50245.33 1 50153.2 50153.2 50153.2

10 2 1 20 B 2 34 66808.4 69890.75 177 66808.4 69890.75 1 66808.4 66808.4 66808.4

10 2 1 20 B 3 10 39222.6 39501.82 2 39222.6 39499.54 1 39222.6 39222.6 39222.6

10 2 1 20 B 4 14 66168.2 66630.57 5 66168.2 66554.25 2 66168.2 66168.2 66168.2

10 2 1 20 B 5 1 96760.9 96819.73 1 96760.9 96878.27 0 96760.9 96760.9 96760.9

10 2 1 40 A 1 24 120976.0 122507.30 7 120976.0 122507.30 2 120976.0 120900.9 120976.0

10 2 1 40 A 2 3602 140280.1 140724.40 10800 140280.1 140767.07 4 140280.1 140265.2 140280.1

10 2 1 40 A 3 10800 129716.8 130029.78 10800 129701.7 130043.32 15 129716.8 129671.4 129716.8

10 2 1 40 A 4 10800 117036.9 117461.17 10800 117040.9 117517.68 7 117058.6 116991.3 117058.6

10 2 1 40 A 5 10800 119352.6 120463.36 10800 119352.6 120463.36 4 119352.6 118932.1 119352.6

10 2 1 40 B 1 662 123614.6 123877.36 225 123614.6 123860.80 2 123614.6 123614.6 123614.6

10 2 1 40 B 2 149 145580.0 145976.50 11 145580.0 146025.68 2 145580.0 145580.0 145580.0

10 2 1 40 B 3 142 116211.1 116682.73 300 116211.1 116682.73 1 116211.1 116211.1 116211.1

10 2 1 40 B 4 64 133112.9 133606.82 3 133112.9 133624.16 1 133112.9 133092.9 133112.9

10 2 1 40 B 5 9 132110.9 132339.03 66 132110.9 132339.03 1 132110.9 132106.9 132110.9

10 2 3 20 A 1 9228 55731.1 59032.02 6668 55731.1 59057.12 696 55731.1 55077.7 55731.1

10 2 3 20 A 2 766 43172.7 44543.94 594 43172.7 44639.25 24 43172.7 43043.7 43172.7

10 2 3 20 A 3 817 34143.2 34901.19 348 34143.2 34939.55 13 34143.2 34035.5 34143.2

10 2 3 20 A 4 2358 82928.1 83613.29 256 82928.1 83591.71 77 82928.1 82919.3 82928.1

10 2 3 20 A 5 4 72423.5 73148.79 3 72423.5 73139.52 2 72423.5 72423.5 72423.5

10 2 3 20 B 1 16 76852.7 77041.72 11 76852.7 77101.17 2 76852.7 76852.7 76852.7

10 2 3 20 B 2 3 66410.9 66861.85 3 66410.9 66863.66 1 66410.9 66410.9 66410.9

10 2 3 20 B 3 14 51749.9 52105.77 17 51749.9 52105.77 2 51749.9 51749.9 51749.9

10 2 3 20 B 4 1 37576.4 37703.78 1 37576.4 37703.78 0 37576.4 37576.4 37576.4

10 2 3 20 B 5 123 69330.7 69648.50 56 69330.7 69648.50 5 69330.7 69306.3 69330.7

10 2 3 40 A 1 2152 91031.9 91460.86 10094 91031.9 91491.49 3 91031.9 90948.0 91031.9

10 2 3 40 A 2 5752 76895.1 77478.31 3064 76895.1 77538.06 10 76895.1 76485.6 76895.1

10 2 3 40 A 3 6370 107914.6 108588.55 3383 107914.6 108592.47 47 107914.6 107914.6 107914.6

10 2 3 40 A 4 268 95022.1 97279.62 217 95022.1 97279.62 5 95022.1 94948.4 95022.1

10 2 3 40 A 5 1560 118961.0 120371.75 3225 118961.0 120371.75 21 118961.0 118506.5 118961.0

10 2 3 40 B 1 18 79260.6 80307.68 53 79260.6 80307.68 1 79260.6 79260.6 79260.6

10 2 3 40 B 2 118 104039.9 104593.14 48 104039.9 104593.14 1 104039.9 104039.9 104039.9

10 2 3 40 B 3 17 96649.2 97001.79 26 96649.2 97001.99 2 96649.2 96617.2 96649.2

10 2 3 40 B 4 263 129859.7 130081.73 69 129859.7 130120.73 1 129859.7 129851.7 129859.7

10 2 3 40 B 5 484 127246.9 127679.46 1279 127246.9 127703.46 1 127246.9 127246.9 127246.9

20 2 1 40 A 1 8357 326654.6 327143.68 1927 326654.6 327178.62 18 326654.6 326357.8 326654.6

20 2 1 40 A 2 10800 282515.6 298001.39 10800 290902.7 298070.51 120 296421.1 294855.6 296421.1

20 2 1 40 A 3 10800 438999.1 450484.82 10800 439346.8 450537.67 899 449480.1 448793.2 449480.1

20 2 1 40 A 4 10800 308698.8 309571.25 10800 308717.2 309559.45 105 308726.8 308249.2 308726.8

20 2 1 40 A 5 7792 201315.3 202357.52 3789 201315.3 202384.96 10 201315.3 201217.3 201315.3

20 2 1 40 B 1 429 236502.3 237806.16 343 236502.3 237813.78 4 236502.3 236478.2 236502.3

20 2 1 40 B 2 47 309385.9 311197.70 25 309385.9 311225.39 2 309385.9 309384.5 309385.9

20 2 1 40 B 3 418 348011.8 348296.62 419 348011.8 348296.74 2 348011.8 347965.7 348011.8

20 2 1 40 B 4 32 317274.1 317570.09 22 317274.1 317614.07 3 317274.1 317223.4 317274.1

20 2 1 40 B 5 10800 283812.3 284821.72 9580 283812.3 284874.76 9 283812.3 283686.9 283812.3

20 2 1 80 A 1 10800 -120636.7 765303.50 10800 -120636.7 765335.54 294 764294.5 762965.0 764294.5

20 2 1 80 A 2 10800 -510542.4 526812.51 10800 -510542.4 526907.73 648 524862.7 521644.7 524862.7

20 2 1 80 A 3 10800 -139492.8 618782.86 10800 -139492.8 618818.27 65 617111.2 614963.3 617111.2

20 2 1 80 A 4 10800 -206213.4 851621.30 10800 838356.9 851665.51 195 851001.1 846333.1 851001.1

20 2 1 80 A 5 10800 -642506.8 564660.32 10800 -642506.8 564810.52 10800 562342.3 532015.6 562452.8

20 2 1 80 B 1 10800 -143552.3 769706.77 4124 769511.4 769727.29 6 769511.4 769316.7 769511.4

20 2 1 80 B 2 1182 706851.6 707266.37 5599 706851.6 707308.20 6 706851.6 706455.9 706851.6

20 2 1 80 B 3 3052 688801.4 689291.04 10800 -193415.9 689368.98 5 688801.4 688509.3 688801.4

20 2 1 80 B 4 220 699114.8 699272.01 1745 699114.8 699305.94 3 699114.8 699007.4 699114.8

20 2 1 80 B 5 10800 690793.0 692218.43 10800 673941.0 692205.58 4 690799.9 690626.2 690799.9

20 2 3 40 A 1 10800 282056.9 296812.75 10800 288845.4 296990.16 10800 289644.5 289408.5 295616.2

20 2 3 40 A 2 322 282694.9 283227.65 2133 282694.9 283241.57 3 282694.9 282629.9 282694.9

20 2 3 40 A 3 10800 347369.9 348060.75 9455 347369.9 348067.21 71 347369.9 347168.9 347369.9

20 2 3 40 A 4 10800 284474.9 285630.36 5012 284963.0 285658.56 68 284963.0 284626.5 284963.0
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20 2 3 40 A 5 10800 241699.2 242685.02 10800 241593.6 242695.90 20 241699.2 241698.8 241699.2

20 2 3 40 B 1 34 270164.6 270660.46 68 270164.6 270660.46 3 270164.6 270112.9 270164.6

20 2 3 40 B 2 1458 389120.4 389942.48 631 389120.4 389896.19 6 389120.4 389104.4 389120.4

20 2 3 40 B 3 377 288338.5 288574.50 51 288338.5 288572.71 2 288338.5 288298.0 288338.5

20 2 3 40 B 4 10 260249.9 260770.92 22 260249.9 260773.65 1 260249.9 260249.9 260249.9

20 2 3 40 B 5 3 294339.9 295485.41 4 294339.9 295493.55 2 294339.9 294339.9 294339.9

20 2 3 80 A 1 10800 -245333.7 670377.98 10800 -245333.7 670420.35 27 668400.8 666513.1 668400.8

20 2 3 80 A 2 10800 -646354.9 474659.12 10800 -646354.9 474669.09 45 472555.6 470761.3 472555.6

20 2 3 80 A 3 10800 -143037.0 582204.75 10800 564090.6 582236.38 31 581701.0 580640.9 581701.0

20 2 3 80 A 4 10800 -491302.5 644291.99 10800 -491302.5 644453.48 142 641505.5 639633.2 641505.5

20 2 3 80 A 5 10800 495464.5 506178.65 10800 495886.9 506204.91 11 504938.6 504337.1 504938.6

20 2 3 80 B 1 453 725872.5 725933.70 357 725872.5 725929.20 5 725872.5 725786.2 725872.5

20 2 3 80 B 2 4591 845843.3 846079.28 10800 845805.2 846123.70 5 845843.3 845613.7 845843.3

20 2 3 80 B 3 2512 767537.5 767750.22 2869 767537.5 767767.20 4 767537.5 767445.5 767537.5

20 2 3 80 B 4 9388 521195.4 523010.25 10800 -178275.7 523041.27 7 521195.4 520344.1 521195.4

20 2 3 80 B 5 132 726925.1 727061.95 4143 726925.1 727061.95 4 726925.1 726653.1 726925.1

20 4 1 20 A 1 10800 47987.0 52907.09 10800 48656.4 52960.85 10800 49461.9 49481.2 50913.9

20 4 1 20 A 2 10800 48781.9 51762.74 10800 48781.6 51990.00 10800 48781.9 48869.4 49568.5

20 4 1 20 A 3 10800 64055.4 66096.07 10800 64055.4 66030.63 1422 64055.4 63981.3 64055.4

20 4 1 20 A 4 10800 42344.5 45992.13 10800 42862.1 46035.08 2108 42862.1 42662.5 42862.1

20 4 1 20 A 5 10800 59136.2 61492.15 10800 58946.7 61632.24 1616 59246.5 59246.5 59246.5

20 4 1 20 B 1 460 44561.0 44905.19 287 44561.0 44905.19 2 44561.0 44561.0 44561.0

20 4 1 20 B 2 103 43918.7 44191.75 167 43918.7 44203.55 2 43918.7 43905.3 43918.7

20 4 1 20 B 3 260 51457.1 51899.49 1451 51457.1 51921.17 2 51457.1 51457.1 51457.1

20 4 1 20 B 4 70 53580.9 54000.58 112 53580.9 54000.58 1 53580.9 53580.9 53580.9

20 4 1 20 B 5 126 53333.8 53748.23 7 53333.8 53768.19 1 53333.8 53333.8 53333.8

20 4 1 40 A 1 10800 -109313.9 123878.41 10800 112850.5 124449.38 10800 118901.9 114794.0 121162.4

20 4 1 40 A 2 10800 -49260.5 85652.91 10800 -49260.5 85903.46 211 81619.7 77998.1 81619.7

20 4 1 40 A 3 10800 -100733.0 135769.89 10800 126266.4 135959.91 10800 131453.8 127332.7 133246.7

20 4 1 40 A 4 10800 -38989.6 118859.30 10800 101566.7 119052.40 2961 118136.0 113381.5 118136.0

20 4 1 40 A 5 10800 -76192.3 87310.73 10800 76808.3 87628.28 10800 83700.1 81028.2 84085.2

20 4 1 40 B 1 10800 118527.9 120195.16 10800 119715.0 120216.86 5 119759.5 119715.0 119759.5

20 4 1 40 B 2 10800 -64217.5 107685.17 10800 106829.8 107691.47 5 106892.4 106847.9 106892.4

20 4 1 40 B 3 10800 -27751.0 90510.51 10800 -27751.0 90537.91 5 90030.4 90005.8 90030.4

20 4 1 40 B 4 5208 110129.3 110272.20 1968 110129.3 110272.20 3 110129.3 110073.1 110129.3

20 4 1 40 B 5 10800 108772.9 112878.84 10800 107242.8 112898.95 14 112119.0 111797.8 112119.0

20 4 3 20 A 1 10800 44955.7 46845.73 6114 45634.2 46921.33 578 45634.2 44689.3 45634.2

20 4 3 20 A 2 10800 70061.6 70829.57 8884 70068.8 70809.22 46 70068.8 70063.3 70068.8

20 4 3 20 A 3 10800 37640.0 39612.86 3596 37731.3 39684.74 286 37731.3 37731.3 37731.3

20 4 3 20 A 4 10800 42641.5 46857.96 10800 43347.5 46876.91 10800 43495.1 43503.0 44405.9

20 4 3 20 A 5 10800 41443.8 42943.34 1428 41443.8 43006.56 39 41443.8 41053.8 41443.8

20 4 3 20 B 1 59 54871.0 55668.25 15 54871.0 55656.46 2 54871.0 54836.0 54871.0

20 4 3 20 B 2 10800 37999.8 39592.83 445 37999.8 39508.00 37 37999.8 37963.5 37999.8

20 4 3 20 B 3 11 64591.5 65116.48 7 64591.5 65132.93 1 64591.5 64591.5 64591.5

20 4 3 20 B 4 5 58536.6 59308.20 5 58536.6 59308.20 1 58536.6 58536.6 58536.6

20 4 3 20 B 5 135 57558.6 57825.86 92 57558.6 57820.35 4 57558.6 57558.6 57558.6

20 4 3 40 A 1 10800 -26612.6 106530.91 10800 102003.7 106577.25 10800 105890.8 102926.1 106024.7

20 4 3 40 A 2 10800 -10730.2 78648.48 10800 75425.5 78853.28 10800 77307.4 75767.5 78065.6

20 4 3 40 A 3 10800 -59316.7 118198.21 10800 110838.5 118238.76 10800 114914.3 111723.3 116578.8

20 4 3 40 A 4 10800 105180.7 107367.81 10800 105361.8 107454.78 10800 105674.4 105311.4 106650.4

20 4 3 40 A 5 10800 -83677.5 120197.35 10800 104767.0 120281.66 8888 118083.7 115428.8 118083.7

20 4 3 40 B 1 6654 81090.2 83105.04 2280 81090.2 83109.28 5 81090.2 80980.2 81090.2

20 4 3 40 B 2 10800 118287.3 118803.83 10800 118482.7 118812.21 37 118492.3 118279.6 118492.3

20 4 3 40 B 3 10800 91969.5 96630.34 10800 95878.3 96656.68 5 95923.1 95755.5 95923.1

20 4 3 40 B 4 5570 91978.7 92386.40 1451 91978.7 92354.62 3 91978.7 91836.3 91978.7

20 4 3 40 B 5 10800 133877.9 134318.43 2592 133891.9 134334.63 6 133891.9 133674.0 133891.9

40 4 1 40 A 1 10800 -223958.2 293282.94 10800 267024.8 293338.01 10800 291212.1 280389.9 292004.5

40 4 1 40 A 2 10800 -69237.6 274973.56 10800 -69237.6 275164.82 10800 266785.7 258794.0 273346.0

40 4 1 40 A 3 10800 109697.2 312651.05 10800 307513.4 313164.38 10800 307971.9 304556.6 311015.0

40 4 1 40 A 4 10800 -61805.7 317869.63 10800 307987.9 317971.74 10800 308696.3 300912.1 316997.4

40 4 1 40 A 5 10800 -219076.0 308390.29 10800 254487.8 308446.37 10800 294894.4 295229.3 307423.2

40 4 1 40 B 1 10800 4384.1 279164.07 10800 272357.6 279167.90 35 278713.3 278656.5 278713.3

40 4 1 40 B 2 10800 279973.2 281936.97 10800 280562.8 281971.63 51 280591.4 280151.4 280591.4

40 4 1 40 B 3 10800 -131151.4 248231.58 10800 228693.1 248268.37 20 246304.2 246187.1 246304.2

40 4 1 40 B 4 10800 283062.2 292438.80 10800 291760.5 292599.69 11 292013.3 291903.9 292013.3

40 4 1 40 B 5 10800 16422.8 251464.68 10800 238763.1 251496.11 36 250168.4 249950.5 250168.4

40 4 1 80 A 1 10800 -2183.9 474617.19 10800 -2183.9 474764.49 10800 466741.3 460047.6 472247.3

40 4 1 80 A 2 10800 -547760.9 461601.00 10800 -547760.9 461786.81 10800 447970.1 434460.7 459664.8

40 4 1 80 A 3 10800 -140332.6 532034.11 10800 -140332.6 532294.37 10800 521855.5 513605.5 529537.8
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40 4 1 80 A 4 10800 -26524.3 492236.90 10800 -26524.3 492348.37 10800 484061.0 471742.9 489296.1

40 4 1 80 A 5 10800 -188927.8 585715.26 10800 -188927.8 585823.96 10800 575893.2 557891.9 583819.6

40 4 1 80 B 1 10800 -345453.3 583672.22 10800 -345453.3 583778.56 48 582793.9 581935.8 582793.9

40 4 1 80 B 2 10800 -546013.4 576065.39 10800 -546013.4 576139.58 84 575497.3 574056.3 575497.3

40 4 1 80 B 3 10800 -275997.1 484446.76 10800 -275997.1 484506.84 95 483414.6 483186.7 483414.6

40 4 1 80 B 4 10800 -122460.7 473218.48 10800 -122460.7 473236.56 124 470190.2 469552.6 470190.2

40 4 1 80 B 5 10800 -151361.3 486516.39 10800 -151361.3 486617.21 94 483976.7 482951.6 483976.7

40 4 3 40 A 1 10800 -64605.8 310319.63 10800 291347.8 310569.51 10800 309526.8 301722.8 309611.4

40 4 3 40 A 2 10800 -33791.5 245342.77 10800 231878.4 245385.31 10800 238762.7 238643.5 244515.6

40 4 3 40 A 3 10800 -79668.2 226478.59 10800 210942.5 226498.79 10800 218268.9 223248.8 224635.4

40 4 3 40 A 4 10800 292882.9 306581.70 10800 305292.1 306655.94 10800 305446.3 304228.5 305647.5

40 4 3 40 A 5 10800 -7542.9 269197.24 10800 255191.8 269318.91 10800 261872.6 261210.8 267390.8

40 4 3 40 B 1 10800 43552.6 246844.73 10800 246127.9 246881.72 94 246324.8 246207.0 246324.8

40 4 3 40 B 2 10800 -34033.5 339296.32 10800 331008.1 339341.88 23 338883.1 338688.3 338883.1

40 4 3 40 B 3 10800 264600.3 266023.65 2940 264757.6 266027.49 24 264757.6 264620.8 264757.6

40 4 3 40 B 4 10800 -102894.4 309896.00 1297 309635.3 309937.39 12 309635.3 309527.6 309635.3

40 4 3 40 B 5 10800 67650.3 354114.17 10800 353456.3 354201.24 27 353594.3 353360.8 353594.3

40 4 3 80 A 1 10800 5373.3 673267.68 10800 5373.3 673286.83 10800 671568.0 656176.8 671822.6

40 4 3 80 A 2 10800 92998.3 501865.45 10800 453900.7 502000.59 10800 489859.7 484781.1 499156.2

40 4 3 80 A 3 10800 86907.5 640771.78 10800 86907.5 641024.83 10800 618669.5 620214.6 639179.3

40 4 3 80 A 4 10800 -554530.3 548796.60 10800 -554530.3 549279.37 10800 518208.5 492096.2 544052.3

40 4 3 80 A 5 10800 -275107.2 801164.54 10800 -275107.2 801352.10 10800 787909.8 758956.1 799603.4

40 4 3 80 B 1 10800 -282931.6 577234.98 10800 -282931.6 577252.25 76 576215.4 575695.0 576215.4

40 4 3 80 B 2 10800 -94904.2 521086.76 10800 -94904.2 521135.73 77 519412.8 518592.2 519412.8

40 4 3 80 B 3 10800 -93231.0 442772.02 10800 -93231.0 442779.38 155 440853.6 440313.5 440853.6

40 4 3 80 B 4 10800 3281.7 558883.69 10800 3281.7 558955.03 42 558032.0 557478.7 558032.0

40 4 3 80 B 5 10800 51078.3 595237.42 10800 51078.3 595284.73 78 594651.8 593991.5 594651.8

Note: Bold font indicates optimal solutions (i.e., the gap is below a threshold fixed to 10�6).
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