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Abstract. The Patient Transportation Problem (PTP) aims to bring
patients to health centers and to take them back home once the care has
been delivered. All the requests are known beforehand and a schedule
is built the day before its use. It is a variant of the well-known Dial-a-
Ride Problem (DARP) but it has nevertheless some characteristics that
complicate the decision process. Three levels of decisions are considered:
selecting which requests to service, assigning vehicles to requests and
routing properly the vehicles. In this paper, we propose a Constraint
Programming approach to solve the Patient Transportation Problem.
The model is designed to be flexible enough to accommodate new con-
straints and objective functions. Furthermore, we introduce a generic
search strategy to maximize efficiently the number of selected requests.
Our results show that the model can solve real life instances and outper-
forms greedy strategies typically performed by human schedulers.

1 Introduction

Over the years, there is an increasing demand for transports by disabled and
invalid people requiring health care but that do not have the ability to go to
hospitals by themselves. In this context, organizations managing the transporta-
tion of patients from their home to health centers are present in many cities.
Their goal is to provide a door-to-door transportation service to a set of patients
on a daily basis. Most of them are non-profit organizations that often have lim-
ited resources. Besides, they often do not have an expertise on decision support
tools in order to assist them in their operations. This leads to sub-optimal deci-
sions in most cases which has a direct negative impact on the patients and also
leads to financial losses. Therefore, minimizing the operational costs while main-
taining a sufficient quality of service is highly desirable and both aspects must
be properly balanced.
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The problem considered in this paper has been proposed by a non-profit
organization operating at Liège (Belgium) which provides a range of home help
services. One of them is transportation of people for medical appointments. We
refer to it as the Patient Transportation Problem, which is a specific case of
the well-known Dial-a-Ride Problem (DARP) [1]. The goal of this last problem
consists in designing routes and schedules for a set of users who specify pickup
and delivery requests between origins and destinations. It is especially present
for the transportation services in the medical domain [2–4].

However, a tremendous amount of variants are possible and have been exten-
sively studied in the literature: the fleet can be composed of several vehicles [5]
that can be heterogeneous [6], users can have different characteristics [7], avail-
ability of vehicles can be constrained [8], patients can require a return trip [9],
several depots can be present [10], etc. A large scope of objective functions can
also be considered such as minimizing the waiting time of users or maximizing the
number of accepted requests. Multi-objective approaches have also been intro-
duced [11]. Besides, the problem can either be solved offline [12] or online [13]. In
the former case, all the requests are known in advance whereas they appear grad-
ually in real-time in the latter. Aforementioned references are only few examples
of the broad literature dedicated to DARPs. A good summary of the different
variants and methods was nevertheless proposed by Cordeau and Laporte [1].
As a first observation, we can see that most of the approaches are based either
on Mixed Integer Programming, Local Search or Dynamic Programming. Con-
versely, solutions based on Constraint Programming (CP) seem to have been less
studied even if some recent works exist [14–18]. However, thanks to its flexibility,
we believe that CP can play an important role for solving practical DARPs.

The contribution of this paper is a flexible and efficient approach based on
CP for modeling and solving the static Patient Transportation Problem, which is
a specific case of the DARP. A general model is first proposed. Several extensions
that can be easily integrated to the model are then detailed. A generic search
strategy for maximizing the number of selected requests is also proposed. It
avoids branching on variables related to a request whenever it is not selected.
From a practical point of view, we provide a solution to a problem issued by a
non-profit organization, handling the transportation logistic of people requiring
health care. The solution we propose is usable in practice, thanks to its efficiency
and flexibility to accommodate new situations. Performances of the approach are
corroborated by both synthetic and real instances.

This paper is organized as follows. Next section describes the nature of the
problem we are considering. Section 3 presents some recent developments related
to the problem studied. A core model with its different components is firstly
detailed in Sect. 4. Additional features that can be easily integrated in the model
are then presented in Sect. 5. Finally, experiments on synthetic and real instances
are carried out in Sect. 6.
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2 Problem Description

The Patient Transportation Problem (PTP) is a static optimization problem
aiming to bring patients to health centers and to take them back home once the
care has been delivered. To do so, a fleet of vehicles is available. The fleet is
heterogeneous and is mainly composed of ambulances and private drivers oper-
ating as volunteers. Each patient has a set of characteristics and is represented
by a request. The objective is to satisfy as many requests as possible within a
fixed horizon, which is typically bounded by the working hours. Three aspects
of decision are considered in the PTP: (1) selecting which requests to service,
(2) assigning vehicles to requests and (3) routing and scheduling appropriately
the vehicles. An illustration of the PTP on a toy example with two patients
(A and B) and a single vehicle is shown in Fig. 1. A possible solution consists
in the following sequence: taking A (S1), bringing A to the hospital (S2), taking
B (S3), taking back A (S4), dropping A to its home (S5), bringing B to the
hospital (S6), waiting for B (S7) and dropping B to its home (S8). Some specific
characteristics must also be considered in the PTP. Here are some of them:

– Patients can have several constraints such as a maximum travel time or a
maximum waiting time at the hospital. The time to embark and disembark a
patient must sometimes be considered.

– The set of requests is heterogeneous. Some patients only require to go from
their home to a health center, while some of them also need a return trip once
the care has been delivered. In the latter case, they must be taken back home,
or to another place if requested. It is also possible to have patients requiring
only a return trip. Besides, requests can involve more than one passenger at
once. For instance, a child can be accompanied by his parents.

– The vehicle fleet is heterogeneous. Vehicles can differ by their capacity, their
initial/final location (typically a depot) and their availability. Some patients
can only be taken by particular vehicles. For instance, patients in wheelchairs
can only be transported by specific vehicles.

– Availability of vehicles can be non continuous. For instance, they can be avail-
able from 9am to 1pm and from 3pm to 6pm.

Fig. 1. Illustration of the PTP with one vehicle and two patients.
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Let us finally notice that this version of PTP is static: the whole set of
requests is known beforehand and no new request is added in real time. it is
used by the organization for designing the first daily schedule given the pool of
requests received the previous days.

3 Related Work

To the best of our knowledge, the approach of Liu et al. [18] is the closest and
most recent work related to our problem. The authors model and solve the Senior
Transportation Problem (STP) using different approaches: CP, MIP and Logic
Based Benders Decomposition. The objective is also to maximize the sum of
the (weighted) served requests. Their results show that the CP model has the
best performances. The STP shares many similarities with our problem but has
nevertheless some differences:

– Requests are one-way only and there is no return trip.
– The problem is a transportation problem where the selection of each request
is constrained only by the vehicles availability and a maximum travel time,
there are no constraints related to the appointment for care.

– There are no constraints linking patients to specific vehicles.

While some constraints are straightforward to add in the STP model, the
integration of others would require more modifications. For instance, by properly
defining the time windows to make sure the patients arrive on time for their
care, appointment constraints for the care can be handled by the STP. However,
additional constraints would be necessary to link forward with backward trips
and preserve the consistency of the tour. Ensuring that vehicles are the same or
can be different for both trips also requires some modifications.

Besides, the modeling and solving parts are also different. In the approach of
Liu et al. [18], each decision variable is linked to a location and auxiliary variables
are introduced to express that a location is visited by a particular vehicle. In
our model, the decision variables are linked to trips instead of visited locations.
We express capacity constraints with the standard cumulative constraint [19]
and can take advantage of efficient propagators [20–24]. Conversely, Liu et al.
[18] enforce the capacity constraints of vehicles through renewable resources and
cumul functions using the StepAtStart functions from CP Optimizer. Those
abstractions are less standard in CP solvers and modeling languages such as
Minizinc or XCSP3 (renewable resources can be modeled with cumulative con-
straints [25]). Finally we use a custom search strategy combined with a Large
Neighborhood Search while Liu et al. rather uses the CP Optimizer default
search.

4 Modeling

This section presents a CP model for the PTP, flexible to easily handle different
variants of the problem, and efficient enough to solve real instances. The PTP
is modeled as a constrained based scheduling problem.
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Parameters. Let R be the set of requests and V the set of vehicles. Each
request is linked to a patient. The related parameters are depicted in Table 1.
Some of them correspond to a location (starti, desti and reti) and are used for
computing a travel time matrix (Ti,j) from location i to j. A request consists in
two trips: a forward trip from a start location to a destination (starti to desti)
and a backward trip from the previous destination to a return location (desti
to reti).

Table 1. Parameters used in the model.

Entity Parameter Meaning

Request starti Starting place of the patient linked to request i

desti Place where the care is delivered for the patient of request i

reti Return place of the patient linked to request i

li Number of places taken by the patient of request i

ui Time at which the health care service begins for request i

di Time needed to deliver the care for the patient of request i

pi Maximum travel time of the patient linked to request i

ci Category of patient of request i (wheelchair, without, etc.)

Vehicle kj Capacity of vehicle j (i.e. the number of places available)

Cj Set of patient categories that vehicle j can take

Decision Variables. The problem is to choose which requests will be selected,
the vehicles assigned to the requests, the route of the vehicles and their timetable.
We model it as a scheduling problem with conditional activities using the formal-
ism proposed by Laborie et al. [26–28]. In the standard form, each conditional
activity Ai is modeled with four variables, a start date s(Ai), a duration d(Ai),
an end date e(Ai) and a binary execution status x(Ai). If the activity is executed,
it behaves as a classical activity that is executed on its time interval, otherwise
it is not considered by any constraint. In our case, we also define v(Ai) as the
vehicle that has been assigned to an activity Ai. Each request (i) is attached to
a forward activity (AF

i ) defining the time slot when the patient is brought from
its home to the health center (from starti to desti) and to a backward activity
(AB

i ) for the time interval of the return trip (from desti to reti). Furthermore,
Ai denotes any activity, either forward or backward, AF the set of forward activ-
ities and AB the set of backward activities. Equation 1 defines Ao

i and Ad
i as the

origin and the destination locations of the activities linked to a request i.

∀i ∈ R :

⎧
⎪⎪⎨

⎪⎪⎩

Ao
i =

{
starti if Ai ∈ AF

desti if Ai ∈ AB

Ad
i =

{
desti if Ai ∈ AF

reti if Ai ∈ AB

(1)



A Constraint Programming Approach 495

Temporal relations between activities are illustrated in Fig. 2a for an arbi-
trary example. The focus is on activity AF

i . There are four specific transition
times (Tx,y) with any other activity (AF

j on this example), they correspond to
the time to go from Ao

i to Ao
j , from Ao

i to Ad
j , from Ad

i to Ao
j and from Ad

i to Ad
j .

Activity AF
i must also be completed before the appointment of the request (ui),

and the related backward activity cannot begin before the end of the appoint-
ment (ui + di). Finally, each activity is executed on a resource, representing the
vehicle assigned to the activity. At any moment, the load of the vehicle cannot
exceed its capacity. It is illustrated in Fig. 2b by a load profile for an arbitrary
set of 4 activities executed on the same vehicle.

Fig. 2. Illustration of the parameters of Table 1.

Decision variables related to the selection of requests are depicted in Eq. 2.
They are boolean variables defining whether the request is selected or not.

∀i ∈ R : Si ∈ {0, 1} (2)

Variables related to the conditional activities are shown in Eq. 3. Patients
cannot arrive at the health center after the time at which the appointment begins
(forward activity) and cannot leave it before the end of the care (backward
activity). Symbol H denotes the time horizon considered. The domain of the
vehicle selection variables (v) contains only the vehicles that are compatible
with the patient category of the request. Note that the duration variable (d)
is not a decision variable as its value depends on the start (s) and the end
(e) of the activity. Domains for forward activities implicitly handle the deadline
satisfaction for the care for each request. It ensures that the patients arrive to the
health center ahead of schedule for their care (e(AF

i ) ≤ ui). Similarly, domains
for backward activities ensure that patients cannot leave the center before the
time at which the care has been delivered (s(AB

i ) ≥ ui + di).

∀i ∈ R :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s(AF
i ) ∈ [0, ui]

e(AF
i ) ∈ [0, ui]

d(AF
i ) = e(AF

i ) − s(AF
i )

x(AF
i ) ∈ {0, 1}

v(AF
i ) ∈

{
j | j ∈ V ∧ci ∈ Cj

}

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s(AB
i ) ∈ [ui + di, H]

e(AB
i ) ∈ [ui + di, H]

d(AB
i ) = e(AB

i ) − s(AB
i )

x(AB
i ) ∈ {0, 1}

v(AB
i ) ∈

{
j | j ∈ V ∧ci ∈ Cj

}
(3)
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Constraints

Binding Requests to Activities. A request is selected if and only if the forward
and backward activities are both completed (Eq. 4).

∀i ∈ R :
(
Si = 1

)
≡

(
x(AF

i ) = 1 ∧x(AB
i ) = 1

)
(4)

Forward and Backward Selection. A forward and backward activity linked to
the same request must have the same execution status (Eq. 5). This constraint
is redundant with Eq. 4 but can nevertheless be used for a better pruning.

∀i ∈ R : x(AF
i ) = x(AB

i ) (5)

Inter-Activity Time Travel Consistency. The start/end of an activity cannot
overlap with the start/end of other activities when they are processed by the
same vehicle. The time interval between any two locations visited by a same
vehicle is at least the time required to travel between these two locations (Eq. 6).
It is also referred as setup time. It is illustrated in Fig. 2a. The ∨ relation is used
to consider situations where activity Ai occurs before or after Aj .

∀i, j ∈ R | i ̸= j :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
v(Ai) = v(Aj)

)
→

(
(s(Aj) −s(Ai) ≥TAo

i ,Ao
j
) ∨ (s(Ai) −s(Aj) ≥TAo

j ,Ao
i
)
)

(
v(Ai) = v(Aj)

)
→

(
(s(Aj) −e(Ai) ≥T

Ao
i ,Ad

j
) ∨ (s(Ai) −e(Aj) ≥T

Ao
j ,Ad

i
)
)

(
v(Ai) = v(Aj)

)
→

(
(e(Aj) −s(Ai) ≥T

Ad
i ,Ao

j
) ∨ (e(Ai) −s(Aj) ≥T

Ad
j ,Ao

i
)
)

(
v(Ai) = v(Aj)

)
→

(
(e(Aj) −e(Ai) ≥T

Ad
i ,Ad

j
) ∨ (e(Ai) −e(Aj) ≥T

Ad
j ,Ad

i
)
)

(6)

An alternative way to enforce the travel times is to use a NoOverlap with
transition time constraint imposed on activities created at each location [18]. In
particular, the propagator proposed by Dejemeppe et al. [29] could possibly be
extended to handle optional activities. But the decomposition approach relying
on reification and binary constraints is arguably the most portable formulation
for other solvers and modeling languages.

Intra-Activity Time Travel Consistency. The duration of each activity cannot
be lesser than the time required to go from the origin to the destination (Eq. 7).

∀i ∈ R : d(Ai) ≥ TAo
i ,A

d
i

(7)

Maximum Travel Time. It is also suitable to constraint the maximal travel time
of patients. It prevents situations where a patient stays too long in a vehicle. To
do so, the duration of each activity is constrained (Eq. 8).

∀i ∈ R : d(Ai) ≤ pi (8)
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Cumulative Resource. At any moment, the number of places occupied by patients
in a same vehicle j cannot exceed its capacity kj (Eq. 9). This behaviour is
illustrated in the arbitrary example of Fig. 2b. This constraint is referred in the
literature as the cumulative resource global constraint [19]. In our case, each
activity Ai consumes li resources. We use the filtering algorithm of Gay et al.
[20]. The vehicle of a non-executed activity is not considered by the constraint.

∀j ∈ V : cumulative
({

(Ai, li) | i ∈ R ∧v(Ai) = j
}
, kj

)
(9)

Objective Function. The first criterion considered for the objective function is
the satisfaction of requests. We want to maximize the number of served requests
(Eq. 10). Other objective functions can be considered. For instance, we could be
interested in minimizing the accumulated travel time for all the patients (Eq. 11).
The travel time of a request corresponds to the duration of its activities. It is also
possible to minimize the maximum travel time (Eq. 12). To do so, the maximal
duration of the whole set of activities has to be minimized. Other objective
functions are also proposed by Cordeau and Laporte [1]. They can be used
together inside the same model using either a lexicographic ordering or a Pareto
multi objective criterion [30].

max
( ∑

i∈R

Si

)
(10)

min
( ∑

i∈R

d(Ai)
)

(11)

min
(
max
i∈R

d(Ai)
)

(12)

Search Phase. The search tree is explored using a standard branch and bound
depth first search. The decision variables are divided into two categories: the
request variables (Eq. 2) and the activity variables (Eq. 3). Given the main objec-
tive of the problem (maximizing the number of served patients), our primal
heuristic is to select patients on the left branches (Si = 1) and discard them on
the right branches (Si = 0). Whenever a patient has been selected in a search
node, all its related activity variables are subsequently assigned (start time,
duration and end time and vehicle) before considering again the next patient
selection variable. On the contrary, whenever a patient is not selected (Si = 0
on the right branch), there is no need to consider the other decision variables
related to this patient. The idea is to branch on the activity variables only if
the related request variable has been selected (Si = 1). Otherwise, no search is
performed on the activity variables. We denote this search strategy as the Max-
imum Selection Search. The main asset of this search is that activity variables
are branched on only when they are relevant to a solution. It drastically reduces
the size of the search tree. An example of search tree is illustrated in Fig. 3.
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This meta-search strategy for optional activities can be combined with any
existing variable-value heuristic or used for similar applications such as packing
as most rectangles as possible. As a variable heuristic on the request variables
we use a Conflict Ordering Search heuristic (COS) [31]. A conflict is recorded
on a request only when it is impossible to assign in the sub-tree all its other
activity variables. The fallback heuristic combined with COS is to select the next
requests with the highest minimum slack, defined as the sum of the minimum
duration multiplied by the patient load for its forward and backward activities.
The subsearch on the other activity variables follows a min-domain first fail
strategy for the variable selection and a custom greedy value heuristic based on
the type of the corresponding variable which can be a time-related decision or
a vehicle choice. In the former case, the heuristic selects the closest time to the
corresponding appointment. In the latter case, the vehicle that has the most
remaining places is selected.

Fig. 3. Canonical shape of the search tree for two request variables (S0 and S1).

Large Neighborhood Search. In order to boost the performances on large
instances, a Large Neighborhood Search (LNS) [32] is also used. At each itera-
tion, a set of request variables is chosen randomly and then relaxed. The other
variables are fixed to their value in the last solution. For the request variables
that are selected (Si = 1), the corresponding activity variables are also fixed
based on the current solution. The remaining unbound variables form a smaller
search space which is explored using the search defined earlier. A new iteration
is started when the reduced search space is completely explored or once a fixed
number of backtracks is reached.

5 Extensions of the Model

One of the main asset of this model is its flexibility to easily accommodate new
constraints depending on the situation. This section presents some variants of
the problem and how they can be integrated in the core model.
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Mandatory Requests. It is possible to enforce the selection of some requests
(Eq. 13). Parameter mj is a boolean value indicating if a request j is mandatory.

∀i ∈
{
j | j ∈ R ∧mj = 1

}
: Si = 1 (13)

Maximum Waiting Time. The time that a patient has to wait at the health
center, either before or after his care, is often constrained. Parameter wi indicates
the maximum amount of time that a patient can wait. It is handled by adapting
the definition of domains in Eq. 3. It avoids situations where patients are dropped
to the health center too early or taken back too late (Eq. 14).

∀i ∈ R :

⎧
⎨

⎩

s(AF
i ) ∈ [0, ui − wi ]

e(AF
i ) ∈ [0, ui − wi ]

(...)

⎧
⎨

⎩

s(AB
i ) ∈ [ui + di +wi ,H]

e(AB
i ) ∈ [ui + di +wi ,H]

(...)
(14)

Integrating Service Time. Most often, the time required to embark or disembark
a patient is negligible. However in some cases, it could be more representative
to consider it. For instance, embarking a patient with a wheelchair can take a
significant amount of time. Such a dependency can be integrated in the inter-
activity time travel consistency constraints defined in Eq. 6.

Vehicles Availability. Vehicles can also have constraints on their availability.
They are available during a period and cannot leave their initial position (i.e.
a depot) before the period. Similarly, they have to go back to the depot before
the end of the period. Let us introduce startj the starting location of a vehicle
j, destj its return destination and [bj , rj ] its availability window. The travel
time matrix (T ) defined previously is extended in order to take into account
these new locations. We define Do

i = startv(Ai) and Dd
i = destv(Ai) as the

origin/destination location of the vehicle linked to activity Ai as defined in Eq. 3.
Constraints on vehicle availability are expressed in Eq. 15. It states that an
activity cannot begin before the availability of its vehicle plus the time required
to go from the initial depot to the patient place. Similarly, the vehicles must
have enough time to return to their depot in order to stay in the availability
window.

∀i ∈ R :
{
s(Ai) ≥ bv(Ai) + TDo

i ,A
o
i

e(Ai) ≤ rv(Ai) − TAd
i ,D

d
i

(15)

Finally, some vehicles can have non continuous availability. For instance, they
can be available from 9am to 1pm and from 3pm to 6pm. We handle this speci-
ficity by duplicating the vehicles for each continuous interval. The availability
of each vehicle is then composed by a unique interval. In practice, vehicles are
duplicated at most once (morning and afternoon shift).
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Same Vehicle Forward/Backward. The forward and the backward trips can be
constrained in order to be handled by the same vehicle (Eq. 16). Parameter qj
is a boolean value indicating if the forward and the backward trip of request j
must be handled by the same vehicle.

∀i ∈
{
j | j ∈ R ∧qj = 1

}
: v(AF

i ) = v(AB
i ) (16)

Empty Locations. Some patients only require to go from their home to a health
center without return trip. It is also possible to have patients needing only a
trip from the health center to their home. A location can then be empty. When
the start location is empty the request has no forward trip. Similarly, there is
no backward trip when the return location is empty. This variant is handled by
extending the notion of requests. A request has no forward activity when the start
location is empty and no backward activity when the return location is empty. In
such cases, some constraints of the previous are simplified or removed in order
to consider only situations involving a forward or a backward activity. More
specifically, Eq. 4 is adapted as follows (Eq. 17, ∨ instead of ∧) and constraint in
Eq. 5 does not hold anymore.

∀i ∈ R :
(
Si = 1

)
≡

(
x(AF

i ) = 1 ∨ x(AB
i ) = 1

)
(17)

6 Experimental Results

This section evaluates the performance of the model on synthetic and real
instances. The model tested is referred as the Scheduling with Maximal Selection
Search (SCHED+MSS) approach. It corresponds to the core model described in
Sect. 4 with the following extensions: maximum waiting time, integrating service
time, vehicles availability and empty locations. No constraints on the maximum
travel time were asked by the partner organization. Finally, the objective con-
sidered is to maximize the number of requests satisfied (Eq. 10).

Approaches Considered. Our model is compared with four other approaches:
a greedy search, the same CP model without the maximal selection search, a
similar scheduling model implemented in CP Optimizer and a successor model,
more standard for solving routing problems with CP.

Greedy Search (GREEDY). It mimics the manual decision process used by the non-
profit organization. It consists in selecting first the requests having the smallest
starting time and choosing for them the closest compatible vehicle. The idea is
to minimize the time between the trips of each vehicle across the requests. Each
trip is inserted at the earliest possible time such that later trips can be inserted
with more flexibility. If a trip cannot be inserted, the request is discarded.
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Successor Model (SUCC). As an alternative to our approach, a successor model
was considered. Similar models were used for solving DARPs using CP [15,17].
Each trip is represented by two stops which correspond to the place where the
patient is loaded and the place where they are unloaded. Each request has then
two or four stops depending on whether it is a single trip or a double trip.
The successor and the predecessor of each stop are both modeled by a variable
indicating the next and the previous stop. As in [17], ride time and vehicle
capacity constraints are modeled via auxiliary variables representing the load,
serving vehicle, and serving time for each requests. A circuit constraint [33]
ensures that the successor and predecessor variables form a circuit without sub-
tours for each vehicle. The requests that are not serviced are assigned to a same
dummy vehicle with infinite capacity. Finally, a maximum selection heuristic
wrapped under LNS and a COS variable heuristic are also used for the search.

CP Optimizer implementation (CPO). The scheduling model has been imple-
mented in IBM CP Optimizer in order to compare our search with the default
search proposed by this solver. This search combines LNS with a failure directed
search (FDS) strategy [34]. In order to accommodate the solver, the capacity
constraints of vehicles are modeled using cumul functions in the same way as in
the model of Liu et al. [18].

Scheduling Model with Simple Search (SCHED). It corresponds to the model pre-
sented in the previous section without the maximal selection search heuristic.
Additional reified constraints assign the activity variables to a default value when
a request is not served. It is used to avoid wasting time searching on activity
variables when the corresponding request is not selected.

Datasets Used. The experiments are based on two datasets, a synthetic and
a real one. The synthetic dataset has been randomly generated based on the
characteristics of the problem. Synthetic instances are classified according to
their size (number of patients, vehicles and health centers) and their difficulty
which is related to the amount of constraints and the availability of vehicles. The
real dataset has been provided by the non-profit organization. It corresponds to
one month of exploitation with one instance per day. Each of them contains the
requests received for the day, the vehicles available.

Experimental Protocol. Experiments have been carried out on an AMD
Opteron 6176 processor (2300 MHz). Execution time for a run is limited to
1800 s and memory consumption to 6 GB. The greedy search has been imple-
mented in Scala and the OscaR solver [35] is used for the other models except
for the CPO model that has been modeled and solved with the academic version
of IBM ILOG CPLEX CP Optimizer V12.8. For the reproducibility of results,
the models, the synthetic dataset and the random generator are available online
on CSPLib [36].
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The backtrack limit and relaxation size of the LNS are adaptive parameters
initially fixed to respectively 1000 failures and 10 requests. The backtrack limit
is increased by 20% when 100 consecutive iterations have failed to find a new
solution and to completely explore the search. The relaxation size is increased
by 20% when the relaxed search space is completely explored for 50 consecu-
tive iterations. Search parameters are set to their defaults for CPO. The greedy
solution is considered as the first solution of the LNS for each method.

Given the random nature of approaches based on LNS (SUCC, CPO, SCHED and
SCHED+MSS), 5 runs for each instance with a different seed have been performed
and the best solution obtained is recorded. The greedy search (GREEDY) is ran
only once due to its deterministic nature. The models are also compared using
the improvement ratio (ρm) of a method (m) defined as the relative improvement
of the solution obtained with the method (xm) compared to the solution found
using the greedy search (xGREEDY): ρm = xm−xGREEDY

xGREEDY
.

Results. Results for both synthetic and real instances are reported in Table 2.
Instances are ordered by their difficulty and the number of patients (|R|). The
best solution obtained for each instance is also reported. The number of patients
serviced is considered as the objective value. As the relaxation size is adaptive,
it can eventually grow to 100%. In this case, if the search space is completely
explored, the solution is proven optimal. Besides, if all the patients are serviced,
the upper bound is reached and the solution is also proven optimal. The domi-
nating model is highlighted for each instance.

Let us first focus on synthetic instances. As we can see, the scheduling model
with the maximal selection search (SCHED+MSS) obtains the best solution for
almost all the tests, even when the optimum is not reached. The improvement
ratio is up to 130% compared to the greedy solution. Interestingly, performance of
scheduling models is correlated with the difficulty of instances: the improvement
gap increases when the instances are getting harder. The greedy search (GREEDY)
gives poor solutions when the problem is strongly constrained. Results regarding
the scheduling model with the simple search (SCHED) shows the interest of the
custom search.

The successor model (SUCC) is outperformed by the scheduling approaches.
This is expected as the successor model has a larger search space due to the
additional decisions variables compared to the scheduling model. Furthermore,
the successor approach makes the insertion of new stops in routes more difficult
as it requires to change the value of the successor variables forming the routes
in addition to the vehicle variable. This limits the effectiveness of the LNS.

Concerning the CP Optimizer model (CPO), it is also outperformed by the
two other scheduling approaches. Such results are mainly due because of the
default search used in CPO model: it is generic and not designed for this specific
problem. However, it is important to point out that on harder instances, it
tends to perform better than the successor model. This could indicate that the
model used contributes more to the effectiveness of the approach than the search
method. Note that as the CPO approach is based on another solver, other factors
could also influence the performances.
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Table 2. Experimental results (|R|, |V | and |H| are the number of requests, vehicles
and hospitals ; ρ is the improvement ratio in percent, ⋆ indicates that the solution has
been proven optimal).

Instances GREEDY SUCC CPO SCHED SCHED+MSS

Difficulty Name |H| |V | |R| BestSol Sol Sol ρ Sol ρ Sol ρ Sol ρ

Easy

RAND-E-1 4 2 16 ⋆15 14 15 7.1 ⋆15 7.1 ⋆15 7.1 15 7.1
RAND-E-2 8 4 32 ⋆32 32 32 0.0 ⋆32 0.0 ⋆32 0.0 ⋆32 0.0
RAND-E-3 12 5 48 ⋆28 26 26 0.0 ⋆28 7.7 28 7.7 ⋆28 7.7
RAND-E-4 16 6 64 62 58 61 5.2 59 1.7 62 6.9 62 6.9
RAND-E-5 20 8 80 74 72 73 1.4 72 0.0 73 1.4 74 2.8
RAND-E-6 24 9 96 95 91 93 2.2 92 1.1 92 1.1 95 4.4
RAND-E-7 28 10 112 106 100 101 1.0 100 0.0 103 3.0 106 6.0
RAND-E-8 32 12 128 ⋆128 127 ⋆128 0.8 127 0.0 ⋆128 0.8 ⋆128 0.8
RAND-E-9 36 14 144 142 141 142 0.7 141 0.0 142 0.7 142 0.7
RAND-E-10 40 16 160 157 154 154 0.0 157 1.9 157 1.9 157 1.9

Medium

RAND-M-1 8 2 16 ⋆12 8 9 12.5 11 37.5 ⋆12 50.0 11 37.5
RAND-M-2 16 3 32 19 16 18 12.5 17 6.3 19 18.8 19 18.8
RAND-M-3 24 4 48 32 25 25 0.0 26 4.0 30 20.0 32 28.0
RAND-M-4 32 4 64 37 25 25 0.0 33 32.0 35 40.0 37 48.0
RAND-M-5 40 5 80 55 45 45 0.0 48 6.7 51 13.3 55 22.2
RAND-M-6 48 5 96 52 36 40 11.1 40 11.1 50 38.9 52 44.4
RAND-M-7 56 6 112 63 46 47 2.2 48 4.3 63 37.0 63 37.0
RAND-M-8 64 8 128 83 65 70 7.7 65 0.0 81 24.6 83 27.7
RAND-M-9 72 8 144 81 62 62 0.0 64 3.2 72 16.1 81 30.6
RAND-M-10 80 9 160 99 73 75 2.7 75 2.7 88 20.5 99 35.6

Hard

RAND-H-1 16 2 16 ⋆8 7 7 0.0 ⋆8 14.3 ⋆8 14.3 ⋆8 14.3
RAND-H-2 32 3 32 19 15 15 0.0 18 20.0 19 26.7 17 13.3
RAND-H-3 48 4 48 32 18 19 5.6 23 27.8 32 77.8 29 61.1
RAND-H-4 64 4 64 23 10 12 20.0 22 120.0 20 100.0 23 130.0
RAND-H-5 80 5 80 42 29 31 6.9 29 0.0 38 31.0 42 44.8
RAND-H-6 96 5 96 38 22 22 0.0 27 22.7 38 72.7 38 72.7
RAND-H-7 112 6 112 39 25 27 8.0 32 28.0 37 48.0 39 56.0
RAND-H-8 128 8 128 75 57 63 10.5 61 7.0 71 24.6 75 31.6
RAND-H-9 144 8 144 72 50 54 8.0 53 6.0 67 34.0 72 44.0
RAND-H-10 160 8 160 72 46 48 4.3 50 8.7 63 37.0 72 56.5

Real

REAL-1 1 9 2 ⋆2 2 ⋆2 0.0 ⋆2 0.0 ⋆2 0.0 ⋆2 0.0
REAL-2 1 9 2 ⋆2 2 ⋆2 0.0 ⋆2 0.0 ⋆2 0.0 ⋆2 0.0
REAL-3 3 9 3 ⋆1 1 ⋆1 0.0 ⋆1 0.0 ⋆1 0.0 ⋆1 0.0
REAL-4 2 9 4 ⋆4 4 ⋆4 0.0 ⋆4 0.0 ⋆4 0.0 ⋆4 0.0
REAL-5 5 9 21 ⋆21 21 ⋆21 0.0 ⋆21 0.0 ⋆21 0.0 ⋆21 0.0
REAL-6 5 9 22 ⋆22 22 ⋆22 0.0 ⋆22 0.0 ⋆22 0.0 ⋆22 0.0
REAL-7 5 9 23 ⋆23 23 ⋆23 0.0 ⋆23 0.0 ⋆23 0.0 ⋆23 0.0
REAL-8 7 9 24 ⋆24 24 ⋆24 0.0 ⋆24 0.0 ⋆24 0.0 ⋆24 0.0
REAL-9 15 9 45 ⋆44 44 44 0.0 ⋆44 0.0 ⋆44 0.0 ⋆44 0.0
REAL-10 26 9 99 ⋆98 98 98 0.0 ⋆98 0.0 ⋆98 0.0 ⋆98 0.0
REAL-11 22 9 100 91 87 89 2.3 87 0.0 90 3.4 91 4.6
REAL-12 32 9 101 ⋆100 97 98 1.0 97 0.0 ⋆100 3.1 99 2.1
REAL-13 37 9 110 103 97 98 1.0 97 0.0 100 3.1 103 6.2
REAL-14 28 9 111 ⋆102 99 99 0.0 100 1.0 100 1.0 ⋆102 3.0
REAL-15 35 9 122 110 94 97 3.2 94 0.0 102 8.5 110 17.0
REAL-16 36 9 123 108 107 107 0.0 108 0.9 108 0.9 108 0.9
REAL-17 42 9 128 114 103 103 0.0 105 1.9 105 1.9 114 10.7
REAL-18 31 9 130 121 112 115 2.7 113 0.9 115 2.7 121 8.0
REAL-19 34 9 131 114 103 107 3.9 103 0.0 108 4.9 114 10.7
REAL-20 34 9 134 118 106 107 0.9 106 0.0 108 1.9 118 11.3
REAL-21 39 9 136 119 108 112 3.7 108 0.0 114 5.6 119 10.2
REAL-22 31 9 138 121 113 117 3.5 113 0.0 117 3.5 121 7.1
REAL-23 31 9 139 121 113 113 0.0 113 0.0 115 1.8 121 7.1
REAL-24 37 9 139 110 103 103 0.0 104 1.0 106 2.9 110 6.8
REAL-25 39 9 139 125 118 118 0.0 121 2.5 121 2.5 125 5.9
REAL-26 38 9 140 119 107 107 0.0 109 1.9 115 7.5 119 11.2
REAL-27 35 9 147 129 120 121 0.8 120 0.0 126 5.0 129 7.5
REAL-28 34 9 151 131 115 116 0.9 115 0.0 121 5.2 131 13.9
REAL-29 39 9 155 127 117 119 1.7 117 0.0 123 5.1 127 8.5
REAL-30 41 9 159 131 115 115 0.0 119 3.5 121 5.2 131 13.9
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Similar results are observed for the real instances. The scheduling model with
the maximal selection search is dominating again. However, the improvement
ratio is now up to 17% only. It happens because such real instances are easier to
solve compared to the medium and difficult synthetic instances. It shows both
the pertinence of the scheduling model and the search framework we introduced.

Finally, we also considered the waiting time minimization (Eq. 11) as a
secondary objective using a lexicographical search. However, it yielded only
minor improvements regarding the solution obtained using the main objective.
It mainly occurs because the value heuristic used already ensures that solutions
minimizing the waiting time are tried first.

7 Conclusion and Perspective

In many countries, there is an increasing demand for disabled people requir-
ing health care. Providing a door-to-door transportation to patients minimizing
the operational costs while maintaining a sufficient quality of service is still a
challenge nowadays. In this context, we introduced the Patient Transportation
Problem, which is a specific case of the well-known Dial-a-Ride Problem. This
paper proposes a CP approach based on scheduling for solving Patient Trans-
portation Problems. The focus was to design a flexible approach that can easily
handle different variants of the problem while being efficient enough to solve
real instances. Experimental results have shown that the scheduling models out-
performs greedy strategies and successor models often used in classical Vehicles
Routing Problems. A generic search strategy maximizing the number of selected
requests is also proposed and improves the results.

In practice, Patient Transportation Problems also have a dynamic aspect:
new requests, or modification/cancellation of old ones can occur online and a
new solution must be found in real time. As future work, we plan to extend our
approach in order to deal with such aspects. To do so, we plan to use the CP
solution as an initial solution and local search for quickly adapting the solution
as modifications are received.

Having discovered recently the approach of Liu et al. [18] developed in par-
allel with our work, we also wish to investigate experimentally the differences
of performances with both models. We also plan to design more advanced LNS
relaxations, for instance based on partial order schedules [37]. Lazy clause gen-
eration approaches relying on explaining the cumulative constraint [24] may also
be worth trying on this problem.
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