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Abstract Home health care comes as a potential solution to increasing stress on
health-care systems, as well as concerns for medical patients comfort. However,
additional distance from the care workers to the patients lead to more challenges,
some of which can be addressed with machine learning (ML) and operations re-
search (OR) algorithms. In this paper, we focus on automating a risk assessment of
remote patients. Namely, we describe a risk prediction framework for home tele-
monitoring patients and show that learning a risk from weak signals in the patient’s
data outperforms simple risk threshold proposed by care workers to automate the
task. We combine recurrent neural networks with a ranking objective from survival
analysis to evaluate the risk of patient’s adverse events. Training and testing of our
methodology is achieved on a retrospective dataset gathered by an Ontario home
health care agency during the course of a multi-year pilot home telemonitoring pro-
gram. Results are benchmarked against alerts that were manually engineered by
registered nurses, and against a simple linear baseline. This is an additional step in
the application of machine learning in health care for patient-centered personalized
treatments.

Antoine Prouvost
Canada Excellence Research Chair
Ecole Polytechnique de Montréal, e-mail: antoine.prouvost@polymtl.ca

Andrea Lodi
Canada Excellence Research Chair
Ecole Polytechnique de Montréal, e-mail: andrea.lodi@polymtl.ca

Louis-Martin Rousseau
Ecole Polytechnique de Montréal, e-mail: louis—-martin.rousseau@polymtl.ca

Jonathan Vallee
AlayaCAre, e-mail: jonathan.vallee@Qalayacare.com



2 A. Prouvost, A. Lodi, L.-M. Rousseau, and J. Vallee

1 Introduction

Population ageing comes with increased care needs since 85% of elderly will de-
velop chronic conditions [Ward et al., 2014]. From 6.9% in 2000 to an estimated
proportion of 19.3% of the global population in 2050 [Gavrilov and Heuveline,
2003], the elderly account for a growing proportion of the health care costs.

Keeping elderly healthy and at home longer is thus a critical endeavour. Home
Health Care (HHC) is starting to be widely adopted since it is seen as a cost effective
alternative to traditional care and because patients often prefer it.

Home telemonitoring (HT), a specialized form of HHC is a potential alternative
that empowers patients to take charge of their health, generates reliable data that can
be leveraged to better assess the patients’ states and that may improve the patient’s
medical condition [Paré et al., 2007].

Given the growing demand for HHC and HT, data is accumulating at an extreme
velocity, in a great volume and in a variety of forms. The advancements in monitor-
ing devices is also contributing to the velocity and volume of data generated by HT
programs. Valuable information lies in this data. There is thus a pressing need for
improved decision systems that can use the information.

When a patient is admitted to a home care agency, she generally gets visited by
a registered nurse who will perform an initial needs assessment [Rasmussen et al.,
2012]. If the agency offers a HT program, patients can be admitted to it. While on a
HT program, the patient answers a periodic questionnaire during which she will be
asked to take some vital signs readings. This information is then transmitted to the
HHC agency where a nurse monitors a HT case load. Based on the patient diagnosed
conditions and initial assessment, the care workers create alerts based on acceptable
range of each of the measured vital signs as shown in [Suh et al., 2010]. Sometimes,
with more advanced systems, complex rules can be developed to get alerted based
on combinations of suspect readings.

In all cases, care workers bear the weight of setting up patients with the right
set of alerts based on their conditions. The manually engineered rules then need to
evolve with the patient’s condition in order to remain reliable. When a vital sign
reading is out of the acceptable range, the monitoring nurse can perform one or
two of the following actions: (1) call the patient to determine next steps, and/or (2)
schedule an in-person visit. The challenge is to prevent costly hospital readmissions
and emergency room visits, but there is also a cost to each intervention. To add
complexity, most of the alarms are false positives, not leading to adverse events.

Early detection of these events serves the purpose of the triple aim of improving
outcomes: (1) quality of health services, (2) improving health of populations and (3)
reducing costs [Berwick et al., 2008].

The contribution of this paper is to propose a patient ranking approach to adverse
events prediction and to show that it performs well on a retrospective patient cohort.

The remainder of the paper is organized as follows: In Section 2, we review the
body of work related to adverse events predictions. In Section 3, we review the
technical background required for our proposed solution to adverse events predic-
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tion. Section 4 details our proposed framework and Section 5 reports our results. We
conclude the paper with a discussion and perspectives in Section 6.

2 Adverse Event Prediction Related Work

Since about 20% of Medicare patients are readmitted within 30 days of discharge
[Jencks et al., 2009] and since [Huntington et al., 2011] established financial penal-
ties to hospital with the highest readmission rates 30 days after discharge, prediction
of adverse events such as hospital readmissions has been extensively done in health
care research.

Linear models such as multivariate logistic regression and Cox Proportional Haz-
ard [Ross et al., 2008, Hansen et al., 2011, Wallace et al., 2014, Kansagara et al.,
2011] are often used because of their understandable nature. Indeed, most of the
work so far has been interested in understanding the significant factors that lead to
adverse events. Conversely, neural networks have not been used as much because
they are seen as hard to interpret black-boxes [Zhu et al., 2014] despite their success
in many industries, from computer vision to market finance.

In health care, some examples of neural network use are as diagnostic tool such
as in [Baxt et al., 2002], as prediction tools in [Harrison and Kennedy, 2005, Luck
et al., 2017], in emergency states detectors [Swiercz et al., 1998], and in psychol-
ogy [Price et al., 2000]. In particular, [Baxt et al., 2002] hypothesizes that neural
networks could outperform linear models because of their capacity to capture re-
lationships between input variables that are not seen by simpler models. More re-
cently, additional work has been done using neural networks to anticipate patient
outcome (mortality, readmission, extended stay, etc.) from their electronic health
records [Rajkomar et al., 2018, Avati et al., 2018], including using recurrent neural
networks [Esteban et al., 2016].

3 Technical background

Neural networks are parametric functions approximators built by composition. The
network is built by alternatively composing matrix multiplications and a non lin-
ear (element-wise) function, called activation function (such as the Rectified Linear
Units (ReLU), x — max(x,0)). This type of architecture is that of a multi-layer
perceptron. Finding the coefficients of the matrices building the network is an op-
timization problem, also called “learning” or “fitting” the model. The loss function
of this problem depends on the input data. In supervised learning, neural networks
are optimized on a training set to minimize a loss function between their prediction
and an observed target. The nature of the loss function depends on the task. Usually,
mean square error is used for regression and cross-entropy for classification. To min-
imize the training error, neural networks are designed differentiable, and optimized
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using Stochastic Gradient Descent (SGD), a gradient descent approach where the
loss is approximated over a subset of the training examples (called a “mini-batch”).
Optimizing on a training set eventually leads to degrading performances on unscen
examples (this is known as over-fitting). To curtail this, the performance of the neu-
ral network is monitored on a dataset of unseen examples, known as the validation
set, and optimization is stopped once the validation metrics worsen. This is done
in combination with regularization techniques: any method that empirically reduces
the test error, at the expense of the training error.

Recurrent neural networks, reuse their internal parameters sequentially to be
able to process and learn over time series data of arbitrary length. At every step,
they combine information coming from the current time step with past informa-
tion condensed by the neural network into a hidden state vector. Popular models
include the long short term memory (LSTM) [Hochreiter and Schmidhuber, 1997]
and Gated Recurrent Units (GRUs) [Cho et al., 2014]. When time series are long,
recurrent neural networks can be trained with truncated back propagation through
time [Williams and Peng, 1990]. Namely, the gradients are approximated, and opti-
mization steps are taken, over consecutive subsets of data along the time dimension.
Data global to a time series can be combined with the neural network, for instance
through the initial hidden vector. The reader is referred to [Goodfellow et al., 2016]
for an extensive textbook on deep learning.

4 Adverse Events Prediction

Because predicting adverse events, either as a regression (for the time to the next ad-
verse event), or as a very in-balanced classification (classifying if an adverse event
will occur in the next k days), is hard, we chose to model the problem as a sur-
vival task. Namely, we predict a latent patient risk of experiencing an adverse event.
It is important to understand that this risk is interpreted only relative to other pa-
tient risks, that is a patient risk is higher than another if the former is more likely
to experience an adverse event than the latter. In other words, this risk is only in-
troduced to output a ranking of patients. Given a predicted ranking, and the true
ranking (computed from the times to the next adverse event), we can compute a
score metric called concordance index (C-index) [Harrell et al., 1982]. This mea-
sure is not differentiable and therefore cannot be optimized through gradient based
methods (as it is done for neural networks). Hence, we use a surrogate loss derived
from the maximum likelihood of the Cox proportional hazard model for survival
analysis [Cox, 1972]. This likelihood loss function is used to compute gradients for
the neural network, but model selection and final scores are expressed in terms of
C-index. The detail of these loss function can be burdensome and we deliberately
omit it here. In short, the C-index is a measure counting the percentage of pairs
(of patients here) properly ranked. The Cox model makes more assumptions on the
mathematical form of the risk function in order to derive a likelihood. Both are able
to deal with censored data, i.e. patients exiting the program (or the program end-
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ing). The interested reader is referred to the aforementioned literature, as well as the
adaptation for neural networks introduced in [Katzman et al., 2018]. Unlike in Cox
proportional hazard model, the problem contains a strong time component as we
wish to predict a risk for every patient on every day (with new information coming
in). The metrics are therefore evaluated on a daily basis across all patients. Modeling
the problem as a ranking problem is in line with the application pursued here. In-
deed, on every day, it is sufficient for the care giver to be able to rank the patients by
risk, in order to provide an intuition on where to prioritize, as care workers cannot
visit all patients on a daily basis.

As depicted in Figure 1, we use a recurrent neural network to process patient
data, both static (patient information and diagnoses) and time distributed (vital signs
measured on a daily basis). The network outputs a risk for every patient, on every
day. We use the Cox log-likelihood as a loss function to train the network, as was
previously done by [Katzman et al., 2018], and report the C-index as well.

Static patient data contain medical diagnoses codes from the International Sta-
tistical Classification of Diseases and Related Health Problems (ICD9, ICD10) [Or-
ganization, 2004], which are not very informative on their own. To tackle this issue
[Choi et al., 2016] uses an unsupervised deep learning approach to embed these
codes into a more meaningful vector space, using additional information from the
disease, as well as other types of codes. The embedded codes show desirable prop-
erties such as diseases with similar symptoms or prescriptions are close together
in Euclidian distance. We used their pre-trained embeddings to represent this part
of our data. Because patients have a variable number of diseases, we need to use
another (small) recurrent neural network (hidden inside the orange parallelogram in
Figure 1) to process these diseases before passing them on to the main (larger) recur-
rent neural network. Alternatively, we also try not to include that information, and
simply pass a null vector (as usually done), with the intuition that learning should
be easier.

We face more challenges as we have some missing data in the vital signs ob-
served on a daily basis. Although more complex solutions exist to model this (e.g.,
[Che et al., 2018]), we chose the simple approach of modelling missing data with
additional binary variables representing if the data is missing.

The data is split into training (60%), validation (20%) and test (20%) sets. We
made sure that no information from the future could be used to make prediction and
hence computed the splits as dates: from the beginning to the first split date would
constitute the training set efc. Past events (previous targets) however can be used as
input after their occurring date. Some patients appear in multiple sets, while other
are new in every one. This is because of the nature of the application as we want to
keep assessing the risk of patients throughout their participation in the program and
not just once.

Neural networks and their optimization algorithms come with a a number of
so called “hyper-parameters”: parameters that cannot be optimized directly. In our
case, these hyper-parameters divide into two groups. The first group controls the
optimization algorithm itself: SGD, or the Adam variant [Kingma and Ba, 2014],
the gradient step size, the L, regularization multiplier, the number of examples in
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Fig. 1 A recurrent neural network is used to combine the patients a priori information with their
daily vital signs and output a risks.

a SGD mini-batch, the number of time steps considered in the truncated version of
back-propagation through time, and the use of dropout (a regularization technique)
[Kingma and Ba, 2014]. The second group controls architectural decisions: number
and size of hidden layers (the matrices involved in the neural network), the type of
recurrent layers (LSTM or GRU), and whether to use the patient static data as the
initial hidden vector or to simply omit it. A pragmatic way to select these hyper-
parameters is to generate randomly some configurations, train the networks for each
of them and finally keep the one performing best (in C-index) on the validation set.
Expanding on the evaluation of machine learning performance, we compared it
to manually engineered alerts (four levels of severity). We also compare to a sim-
ple linear survival baseline using the time distributed readings independently (time
dependencies are not taken into account) without using static patient data.

5 Results

The dataset we use has been gathered by an Ontario private HHC agency during the
course of a multi-year pilot HT program and is fully anonymized. The input data
include the patient static information (sex, age, and medical records through ICD
codes), and daily vital sign readings (blood glucose, systolic, diastolic, heart beat,
SpO; oximeter, and weight). The dataset also contains observed adverse events ex-
perienced by the patients and used to compute the losses (either Cox log-likelihood
or C-index). On any given day, past events are also added as input.! The 320 pa-
tients in our study were aged from 31 to 101 with an average age of 79. Women
represented 56.25% of the patient group. Moreover, 36.25% of patients experienced

! This is correct as no information from the future is added to the input.
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at least one hospital readmission or emergency room visit while on the HT program.
The average number of events per patient was 0.72 with a standard deviation of 1.30.
The average number of events for the 36.25% of patients that experienced at least
one was 1.98 with a standard deviation of 1.47. Finally, 91.56% of patients had co-
morbidities, hypertension being the more frequent at 55.31% followed by chronic
heath failure with 46.25%, diabetes with 39.69% and chronic obstructive pulmonary
disease at 38.13%. In total, we have access to 76,359 daily patient observations.

The training process of neural networks was highly stochastic, with results often
close to random, as there is a strong noise to signal ratio in the data. This made
it difficult to differentiate promising models from random luck. Therefore, hyper-
parameters configurations were manually selected from across all runs (over a hun-
dred), based not only on validation performance, but as well on stability (reduced
stochasticity during training) in addition to small gap between the training and vali-
dation scores.

These configurations were then retrained over twenty random seeds to average
the results. The training for the best performing set of hyper-parameters is depicted
in Figure 2. Important details of this configuration are: three gated recurrent unit
(GRU) layers with eight units each and dropout for the network architecture, an
SGD optimizer with a batch size of 64, and a truncation length for back-propagation
through time of 15 days for the training procedure. It it worth noting that the neu-
ral network presented in Figure 2 does not use static information about the patients
(this was a configurable hyper-parameter choice). That is among all the configura-
tions trained, the best performing model was one that did not make use of the static
information. This is, further discussed in Section 6.

We removed from these twenty models a few that did not perform well on the
training or validation set (three of them). Due to the stochasticity in the training
process, some trained networks can under-perform. We can legitimately filter them
out, as long as we do so on validation or training sets.> Then, we computed their
final score on the test set. The results are given in Figure 3. The box plot reports a
test concordance index of 58.8 +4.6%. We performed a Student T-test against the
value of 50% and rejected with p-value 3.7 x 10~ that our model is equivalent to a
random one.

We compares against two baselines. The first ones are the manual alerts set by
the care workers. We have a history of four levels of urgency (none, low, medium,
high) for every patient and every day. As done with the latent risk modeled by the
neural network, these alerts yield a natural ranking that can be used to compute
a concordance index. These alerts achieve concordance indices of 48.7%, 50.7%,
and 51.1% on respectively the training, the validation, and the test sct. Note that
these alerts were not set based on training data, so these results could be aggregated.
However, we provide them separated so that the test error could be compared to
the neural network on the same data points. The second baseline is a linear survival
regression model, where data points are the vital signs for every patient and every
day, as if they were independent (no time dependencies are taken into account). This

2 The only difference is that the training procedure now includes a filtering phase.
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Fig. 3 A box plot of the test error of the most promising set hyper-parameters, over seventeen runs
(three dropped due to under-performance on training or validation set).

model achieves a training error (on training and validation sets combined) of 49.7%
and a test error of 48.0%. Even if these two baselines are simplistic, the fact that
they do not achieve better than a random draw shows the difficulty of the problem.

We implemented the neural network in PyTorch [Paszke et al., 2017], used Life-
lines [Davidson-Pilon et al., 2019] to compute the linear baseline and the C-index,
made use of Numpy [Van Der Walt et al., 2011], Scipy [Jones et al., 01 ], Pan-
das [McKinney, 2010], Scikit-Learn [Pedregosa et al., 2011], IPython [Perez and
Granger, 2007], and Jupyter [Kluyver et al., 2016] for pre-processing of the data
and post-processing of the results, and rendered the figures with Matplotlib [Hunter,
2007] and Seaborn [Waskom et al., 2018].

6 Discussion

The high stochasticity of the problem makes training hard and long, therefore mak-
ing comparison between different neural network architectures and training proce-
dures either expensive (through averaging) or unfair (some configuration randomly
performing abnormally well or poorly). As stated in the previous section, passing
the patient static information as the first hidden vector of the recurrent neural net-
work (as opposed to just passing a null vector), as proposed in Section 4, did not
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improve the performances and was therefore not selected through hyper-parameter
search. Further inquiring should be done to find out if a better model could be ob-
tained using the static patient information. Our hypothesis is that this data does have
predictive power for this task, but that the specific part of the neural network resposi-
ble for it failed to learn, due to optimization hardships. Indeed, not only this part of
the model adds more parameters (layers) to train, these parameters are also updated
less frequently in the truncated variant of back-propagation through time. Potential
directions could be to focus more on the training of this part of the model (for in-
stance through pertaining), or to include this data at every time-step (explicitly or
through an attention mechanism).

Our results do not show that a linear model could not perform as well as the
neural network, as less effort was given to this model. Improving the linear baseline
would however mean additional engineering of the data to include time dependen-
cies, patient static information, and perform feature selection.

These results suggest that combining, even weak, signals from remote monitoring
in the homecare context can outperform simple manual baselines which open the
door to better models.

Nonetheless, a self-fulfilling prophecy problem could occur with a better predic-
tion accuracy. Care workers using machine learning generated alerts would prevent
events from happening and reduce the observations labeled as events. A potential
alternative is to ask care workers if the prediction was useful or not, i.e., if they
want such prediction happening again in the future. While far from perfect, this
methodology has the advantage of enabling model retraining as the data is gathered.
More research is required to evaluate the risk of this problem and performance of
the proposed alternative.

In addition, further research is needed to better understand the factors that con-
tribute to higher risk days for home telemonitoring patients. Indeed, the black-box
nature of neural networks makes them difficult to implement in the health care in-
dustry since physicians and other care workers generally want to understand why
an adverse event probability is predicted. For example, what action should a care
worker take if manual alerts are triggered but neural networks say that nothing is
happening? The model performance suggests that no action should be taken, but
this is clearly a difficult call.
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