
ARTICLE TEMPLATE

The Traveling Salesman Problem with Time Windows in Postal

Services

Alexis Bretina,b,c,Guy Desaulniers a,c and Louis-Martin Rousseaua,b

aÉcole Polytechnique de Montréal, Montréal, CANADA; bCIRRELT, Montréal,
CANADA;cGERAD, Montréal, CANADA

ARTICLE HISTORY

Compiled September 25, 2019

ABSTRACT
This paper focuses on a variant of the traveling salesman problem with time windows
(TSPTW) that arises in postal services and parcel deliveries. It differs from the clas-
sical TSPTW as follows. First, route duration is a significant concern, as human costs
largely exceed vehicle costs, emphasizing the importance of reducing waiting time.
Second, customers are divided in two categories: commercial ones with time win-
dows and private customers without time window restrictions, making the NP-hard
TSPTW even harder to solve. To support the first statement, we present a multi-
objective approach based on a constraint programming formulation of the problem
which allows to balance the optimization of both human and material resources.
To address the issue of large-scale sparsely time-constrained instances and reduce
the size of the large real-world instances, we also introduce a cluster/solve/sequence
approach that relies on a mathematical programming formulation to sequence the
customer visits in the final step. This decomposition technique allows to produce
high-quality solutions (with an average optimality gap of 1.31%) for industrial prob-
lems in less than one minute of computation time.

KEYWORDS
Traveling salesman problem with Time windows; Postal services; Route duration;
Bi-objective; Low time-window density; Clustering heuristic.

1. Introduction

In postal services, letters and parcels are not handled in the same way. Although each
delivery employee is assigned to a predefined territory, the routes are not managed
identically. For letters which are increasingly being replaced by email, the employee
must still visit both sides of every street in the assigned area. For parcel deliveries,
only a few residents and businesses must be visited. We position our work in the
context of a parcel-delivery problem with time windows (TWs) which can be seen as
a variant of the vehicle routing problem with TWs (VRPTW). The TWs are designed
to synchronize deliveries and recipients. For large-scale instances involving 10 to 20
territories and up to almost 500 deliveries in a territory, this problem can be solved via
a greedy cluster-first route-second (CFRS) procedure. The clustering phase determines

Alexis Bretin. Email: alexis.bretin@polymtl.ca

Guy Desaulniers. Email: guy.desaulniers@gerad.ca

Louis-Martin Rousseau. Email: louis-martin.rousseau@cirrelt.net

well-designed territories according to the specific characteristics of the instance, and
the routing phase designs the routes. The two phases are carried out alternately in
the following greedy fashion. First, a cluster containing a number of service points
(customers) whose total demand does not exceed the capacity of a vehicle is proposed.
Second, a route is determined for this cluster. If it is too long or too short compared to
a usual employee working shift, the set of points proposed for this territory is adjusted
and a new route is computed. This process repeats until obtaining a satisfactory route
for this territory. When this is accomplished, the algorithm moves on to the next
territory. The overall objective is to find a good solution in a limited time, generally
at most one minute per territory.

In this paper, we focus on the routing phase of this CFRS procedure, which solves a
variant of the traveling salesman problem with TWs (TSPTW). The classical TSPTW
consists of finding a route that starts and ends at a depot, visits every customer once
within a pre-specified time interval called a TW, and minimizes the total routing cost.
As discussed below, the postal services variant of the TSPTW differs from the classical
one by considering a bi-objective cost function and no TW for a large proportion of
the customers.

In most studies on the TSPTW, the routing cost is proportional to the total distance
traveled along the route or the closely related travel time (TT), i.e., the time spent
driving along the route, but waiting before the opening of a customer TW is usually
not penalized. In postal services, focusing on TT may be costly because the optimal
solution may have considerable waiting time, and drivers must be paid when they
are waiting, i.e., when they arrive at a service point before the TW opens. Therefore,
beside minimizing TT, the objective function also considers minimizing the route
duration (RD), i.e., the difference between the end time and the start time of the
route or, equivalently, the sum of the TT, the service time and the waiting time. Note
that RD can be assimilated to the makespan, which is defined in scheduling problems
as the span of time necessary to complete all the tasks. However, it differs from the
completion time of the final task (return to the depot) because, when there are TWs,
starting the route at time 0 may not be optimal.

Two observations support the consideration of RD in the objective function. First,
in a CFRS approach to the VRPTW, minimizing the RD may make it possible to visit
more customers on a route, thus reducing the number of territories. Routes that are
more compact allow a better knowledge of the neighbourhood, enabling the drivers to
make better decisions in the event of unexpected congestion or construction. Note that
reducing the RD may also be relevant in other applications. For instance, in armoured-
truck routing, the less time a vehicle spends on the road, the safer the operation, and
in fresh-food delivery, the less time the goods spend in the vehicle, the better their
condition on arrival.

Second, the average wage for a Canada Post delivery driver is around $20/h (see
Indeed)1. For a vehicle such as a Ford Transit, the fuel consumption is around
12 L/100km (see Ford)2. If the average speed is between 30 and 50 km/h the ap-
proximate cost of one hour of driving is 40 ˆ 12{100 ˆ 1.2 “ $5.76 where 1.2 is the
average price of a liter of gasoline in Canada (see Natural Resources Canada)3. This
may be increased to $8 to take into account the depreciation of the vehicle and the fact
that the fuel consumption is generally slightly higher than the manufacturer’s nominal
value. Therefore, it is profitable to extend the TT by 2 minutes to save 1 minute of

1https://emplois.ca.indeed.com/cmp/Canada-Post/salaries
2http://www.ford.ca/commercial-trucks/transit-connect-cargo-van/2017/features/capability
3http://www2.nrcan.gc.ca/eneene/sources/pripri/price map e.cfm

2

https://emplois.ca.indeed.com/cmp/Canada-Post/salaries
http://www.ford.ca/commercial-trucks/transit-connect-cargo-van/2017/features/capability
http://www2.nrcan.gc.ca/eneene/sources/pripri/price_map_e.cfm

RD, and the idle time is reduced by 3 minutes. The ratio may vary, but the analysis
suggests that one unit of RD is more valuable than one unit of TT. Reducing RD may
also reduce idle time, and so improve driver satisfaction. In summary, the TT relates
to the vehicle cost whereas the RD to the human cost of the route. In the following,
we denote by γTT and γRD, the costs per time unit when the vehicle is moving and
when the driver is working, respectively.

To further illustrate why minimizing RD can be interesting, consider the example
presented in Figure 1, where D represents the depot, and Cl, l P t1, . . . , 6u, the cus-
tomers. The intervals near the customer nodes are their TWs, whereas the numbers
on the arcs are the arc TTs. The service times are assumed to be all equal to 0.
The blue (dashed) path is the optimal route when only minimizing the TT. Its TT
is zTT “ 15, but its RD is zRD “ 19 because the driver cannot leave the depot later
than time 2 and return to it before time 21. This path induces a minimal waiting of 4
time units at C2. The red (solid) path is the optimal solution when only minimizing
the RD. This route also leaves depot D at time 2 but instead of visiting C2 right after
C1 and waiting 4 time units, it visits C3 between C1 and C2. This detour generates
a longer TT but decreases the RD by 2. Its TT and RD are equal to z1TT “ 17 and
z1RD “ 17, respectively. Consequently, the red path allows the replacement of 4 time
units of waiting by 2 extra time units of traveling. Using weights equal to the above
cost estimations (γTT “ 8 and γRD “ 20), these two solutions can be compared with
respect to the bi-objective cost function γTT ˆ TT ` γRD ˆ RD. The TT-optimal
solution has a value of 15 ˆ 8 ` 19 ˆ 20 “ 500, whereas the RD-optimal solution a
value of 17ˆ 8` 17ˆ 20 “ 476, which yields a saving of 4.8%.

D C1

r0, 3s

C2

r9, 12s

C3

r5, 15s

C4 r10, 17sC5

r12, 18s

C6r18, 20s

1 2

3

3

3

2

1

1

3 3

4

3

2

1

Figure 1. Two different solutions: the blue (dashed) route minimizes TT, the red (solid) one minimizes RD

Note, however, that focusing only on RD is not ideal in some cases because extra
TT may be incurred when waiting is unavoidable. To see this, let us consider again
the example of Figure 1 but assuming that the TW at C6 is r20, 22s instead of r18, 20s.
In this case, the red path will have to wait 2 time units at C6, increasing its RD to
z1RD “ 19 and keeping z1TT “ 17. Given that the statistics for the blue path do not
change (zRD “ 19 and zTT “ 15), the blue path becomes as good as the red path
with respect to RD but remains better with respect to TT and should, therefore, be
selected to reduce vehicle costs. This example justifies why the two criteria needs to
be considered in the objective function.

TWs are particularly useful for companies, where there are dedicated employees

3

to receive and process deliveries. Furthermore, they often receive express deliveries
that have tight delivery deadlines, inducing TWs for the postal companies. On the
other hand, because of the rise in online shopping, a growing number of individual
customers receive parcel deliveries. Some delivery companies assign TWs to only the
largest customers (e.g., stores or industries) and not to individuals. This gives rise to
instances in which less than 10% (perhaps just 2% or 3%) of the service points have
TWs. This percentage is called TW density and, when it is not high enough, it makes
the NP-hard TSPTW even harder to solve, as less preprocessing can be done to reduce
the solution space.

The classical TSPTW has been extensively studied. Savelsbergh (1985) showed
that even only finding a feasible solution to it is NP-hard. From branch-and-bound
algorithm using a state-space-relaxation approach to compute the lower bounds
(Christofides, Mingozzi, & Toth, 1981), to dynamically generated time-expanded net-
works (Boland, Hewitt, Vu, & Savelsbergh, 2017), many exact solution algorithms for
the TSPTW have been developed. To the best of our knowledge, the most efficient one
is that of Baldacci, Mingozzi, and Roberti (2012). They combine column generation
to compute lower bounds with dynamic programming to find feasible solutions based
on the last bound found, given a certain tolerance.

Some heuristics have also been developed to solve the TSPTW. Gendreau, Hertz,
Laporte, and Stan (1998) proposed an insertion heuristic, which is an adaptation of
the GENIUS heuristic introduced by Gendreau, Hertz, and Laporte (1992) for the
case without TWs. Calvo (2000) developed a heuristic that combines the solution of
an assignment problem, a greedy insertion procedure and local search. Later, Ohlmann
and Thomas (2007) designed a compressed-annealing heuristic, a simulated annealing
variant, López-Ibáñez and Blum (2010) combined ant colony optimization with beam
search, a heuristic that approximates a branch-and-bound method originally developed
for scheduling problems, and Ferreira da Silva and Urrutia (2010) introduced a variable
neighborhood search heuristic.

These papers deal with minimizing TT. Savelsbergh (1992) was the first to address
RD minimization in the TSPTW, by extending the local search heuristic based on edge
exchanges that he developed a few years before (Savelsbergh, 1990). Also he did not fix
the departure time from the depot, and introduced the concept of forward slack time to
help reducing waiting time. According to López-Ibáñez, Blum, Ohlmann, and Thomas
(2013) who minimize the completion time of the route, i.e., with a fixed departure time
from the depot, this variant of the problem can generally be solved more quickly than
minimizing TT. This is confirmed by the computational results obtained by Kara and
Derya (2015) using mixed-integer programming (MIP) formulations. In these solution
approaches, the focus is only on minimizing RD or the completion time, and the TT
is let aside.

Note that the benchmark instances used to evaluate these solution methods have
generally 100% TW density, enabling efficient preprocessing to reduce the TWs’ width,
especially when they are relatively narrow initially. This preprocessing relies mainly on
some efficient techniques proposed by Desrochers, Desrosiers, and Solomon (1992) and
on advanced arc elimination criteria introduced by Langevin, Desrochers, Desrosiers,
Gélinas, and Soumis (1993).

To the best of our knowledge, there are no works in the literature that address the
TSPTW variant introduced in this paper. Therefore, the contribution of this paper is
to devise an effective solution algorithm to tackle large-scale, bi-objective TSPTW in-
stances with low TW density that arise in the postal services. This clustering heuristic
exploits the strength of constraint programming (CP) for minimizing the RD and of

4

MIP for minimizing the TT. To enable the solution of large instances within a tight
computational budget, it proceeds in steps: it builds a clustered problem, solves it, and
disaggregates the clustered solution. To our knowledge, we are the first to handle the
combined TT and RD objective function. Therefore, to highlight the possible trade-
offs between RD and TT in the solutions computed for different objective functions
(minimizing TT only, RD only, or a linear combination of both), we first report com-
putational results obtained on small and medium-sized TSPTW instances taken from
the literature and for which all customers have a TW. Finally, to assess the perfor-
mance of the proposed clustering heuristic, we present computational results obtained
on real industrial instances provided by our research partner.

The rest of this paper is structured as follows. In Section 2, we introduce a CP model
for the TSPTW where the objective function can be easily adapted to minimize RD
or TT or a combination of both. We also summarize a MIP model (fully described in
the Appendix A) previously introduced in the literature. In Section 3, we describe our
clustering heuristic. Computational results on the benchmark instances are reported in
Section 4 and those on the industrial instances in Section 5. Finally, a short conclusion
is drawn in Section 6.

2. Problem formulations

Consider a directed graph G “ pV,Aq where V contains the nodes, including p and
q representing the depot at the beginning and the end of the tour respectively, and
A contains the arcs. The TSPTW consists of finding a single tour that visits each
node i P V exactly once while minimizing the routing cost. Some nodes i P V must be
visited within a TW rRi, Dis, where Ri is the release time and Di the deadline of node
i. For the others, we assume that they must also be visited within an unconstraining
TW rRi, Dis, where Ri “ 0 and Di is equal to a very large value. A service time si may
be associated with each i P V . A TW defines the period in which the service to this
node must occur. For node i, si ą 0 indicates that the service could end after Di but
must begin before. Early arrival at node i is allowed, but the driver must wait until
Ri. Because of the TWs, set A does not contain all the couples pi, jq P V 2 but only a
subset. Indeed, arc pi, jq exists only if Ri`si` tij ď Dj , where tij is the traveling time
along pi, jq. Furthermore, some preprocessing can be applied to reduce the solution
space, and thus the combinatorial nature of the problem. TWs may be tightened and
node precedence lists built (Ascheuer, Fischetti, & Grötschel, 2001). For each node
i P V , the precedence list V `piq “ tj P V ztiu | j ă iu gathers all the nodes j that have
to be visited before i. Some arcs may be deleted based on the reduced TWs and the
precedence relationships (Dash, Gunluk, Lodi, & Tramontani, 2012).

We first present a CP formulation before explaining the use of bi-objective pro-
gramming to minimize TT and RD. Then, we summarize a MIP formulation called
the time-bucket formulation (TBF).

2.1. Constraint programming model

CP is known to be efficient for machine scheduling problems. Since the TSPTW is
equivalent to a one-machine scheduling problem with sequence-dependent setup times
and TW constraints, a simple but reliable CP formulation is available. We introduce
the variable Pl,@l P t1, . . . , |V |u, which models the lth service point visited, and TPl ,
the time of the visit to this node.

5

min z “ Tq ´ Tp (1)

subject to: P1 “ p (2)

P|V | “ q (3)

Pl P V, @l P t1, . . . , |V |u (4)

alldifferentpP q (5)

TPl ` sPl ` tPlPl`1
ď TPl`1

@l P t1, . . . , |V | ´ 1u (6)

TPl P rRPl , DPls, @l P t1, . . . , |V |u (7)

Tj ď Ti, @i P V, j P V `piq. (8)

The goal of minimizing the RD corresponds to min z “ TP|V | ´ TP1
, but since we

constrain the route to begin and end at the depot via constraints (2) and (3), we may
write the objective function as shown in (1). Constraint (5) is the well-known global
constraint alldifferent, extensively detailed in van Hoeve (2001), which indicates
that the service points visited for l P t1, . . . , |V |u must be pairwise different (i.e.,
Pl ‰ Pk,@pl, kq P t1, . . . , |V |u

2 such that l ‰ k). Combined with constraints (4),
this ensures that every service point is visited exactly once. Constraints (6) impose
sufficient time between two consecutive service point visits (Pl and Pl`1) to perform
service at Pl and travel from Pl to Pl`1. Constraints (7) ensure that the TWs are
respected, whereas constraints (8) enforce the precedence constraints identified by the
preprocessing.

As mentioned in the introduction, we distinguish our notion of RD from the
makespan or the completion time, as used in machine scheduling. We define the RD to
be the difference between the departure time from and the return time to the depot.

The model can be adapted for the TT problem by replacing (1) by

min z “

|V |´1
ÿ

l“1

tPlPl`1
. (9)

2.2. Multiobjective model: Weighted objective function

For postal services, where the TSPTW is solved many times in a CFRS procedure,
we wish to process as many customers as possible within the duration of the driver’s
shift. However, preliminary results have shown a significant reduction in the quality of
the TT when it does not appear in the objective function. It sometimes causes a slight
increase in the cost of the final solution. Here we are referring to the cost in dollars,
calculated via the parameters γTT and γRD. The reduction in the RD does not always
compensate for the substantial increase in the TT. This led us to explore how to make
the solution more profitable while trying to get the RD as low as possible.

There are many algorithms for multiobjective optimization problems; see Deb
(2014). A simple approach is to use a weighted objective function (WOF) that com-
bines the various objectives into a single function. The challenge is to appropriately
weight each objective. We decided to use the costs γTT and γRD as the weights. The

6

CP model remains the same except that the objective function becomes

min γTT

˜

|V |´1
ÿ

l“1

tPlPl`1

¸

` γRDpTq ´ Tpq. (10)

The main drawbacks of this model are the sensitivity to the costs γTT and γRD and
the lack of control of the RD objective function. Moreover, the TT part of this WOF
makes optimality harder to reach with this CP-model (as illustrated in Table B1 of
Appendix B).

2.3. A time-bucket formulation

The TBF introduced by Dash et al. (2012) is a MIP model that partitions the TW
associated with each node into time buckets and uses arc flow variables indexed by the
time bucket containing the start traveling time along the arc. These time buckets pro-
vide an approximate modeling of the TWs that is a relaxation of these constraints and
whose accuracy depends on the width of the buckets. Subtour elimination constraints
(SECs) and infeasible path cuts (IPCs) are, thus, required to eliminate solutions that
do not meet the TW restrictions and are not filtered out by the time bucket modeling.
Compared to a time-indexed model, the main advantage of the TBF is a significant
reduction in the number of variables when the buckets are sufficiently large. On the
other hand, to get a good relaxation of the TW restrictions and avoid generating many
SECs and IPCs, they should not be too large. Details on the TBF can be found in the
Appendix A.

Dash et al. (2012) showed that the TSPTW can be efficiently solved by a branch-
and-cut algorithm applied to the TBF when the objective aims at minimizing TT. As
discussed in the Appendix A, it is more difficult to use the TBF to solve the TSPTW
when the objective function consists of minimizing RD. Indeed, it might require a
complete discretization of the TWs at the depot nodes p and q.

3. Solution algorithm for real-world instances

The CP models presented in Sections 2.1 and 2.2 can be solved using a commer-
cial CP solver. Furthermore, the TBF discussed in Section 2.3 can be solved using a
commercial-based branch-and-cut algorithm as described in the Appendix A. Prelim-
inary computational tests have shown that the CP algorithm is efficient at finding,
in short computational times, high-quality solutions for small and medium-sized in-
stances when minimizing the RD (see Figure B1 in Appendix B). On the other hand,
it struggles for large instances or for minimizing the TT. At the opposite, the TBF-
based algorithm is much better at minimizing the TT than the RD. Its efficiency
is, however, highly dependent on the tightness of the TWs. Finally, as for the CP
algorithm, the TBF-based algorithm cannot solve large instances in relatively short
computational times. Therefore, both algorithms cannot be used successfully to solve
large-scale TSPTW instances with a bi-objective function and very few TWs. Com-
putational results supporting these statements are presented in Appendix B.

As discussed in the introduction, priority is given to minimizing the RD over the TT,
but minimizing the TT must not be neglected. In a context without TWs, minimizing
the RD is equivalent to minimizing the TT because waiting is always avoidable. When

7

there are few TWs, minimizing the RD also helps to reduce the TT: the idle time
in the solution is sparse, so every improvement in the RD is generally obtained by
reducing the TT. On the other hand, minimizing the TT does not necessarily yield a
solution with a low RD because waiting is not penalized at all. This led us to develop,
for large-scale postal services’ TSPTW instances, a solution approach that does not
consider directly a weighted sum of the two objective functions, but rather combines
CP, which is really efficient to minimize the RD, with MIP, more likely to close the
optimality gap while minimizing TT.

In this section, we present the proposed clustering heuristic for solving large-scale,
real-world, postal services’ TSPTW instances. This heuristic proceeds in three steps.
First, it clusters some service points, among the ones without a TW, to reduce the size
of the instance, yielding a so-called clustered problem that approximates the original
one. Second, it solves this clustered problem. Finally, given the sequence of the service
points in the computed tour, the clusters are disaggregated to derive a solution to the
original instance. These steps are described in the following subsections.

3.1. Clustering

Traditional models use the TWs to reduce the solution space; we instead cluster some
service points for real-world postal services’ instances, as the TW density is sparse.
Starting from the original network G, we create a clustered network, i.e., a network
which contains fewer nodes and arcs. Each node in the clustered network represents
one or several nodes in V . The depot nodes p and q and the customer nodes with TWs
are never clustered with other nodes. The proposed clustering algorithm is iterative.
At each iteration, it clusters a pair of nodes without TWs (which may represent several
original nodes) to create a new node associated with the location of one of the nodes it
represents. The traveling time matrix is then updated after computing a Hamiltonian
path passing through all the nodes represented by the new node.

A pseudo-code of the clustering algorithm is given in Algorithm 1. The following
notation is used. First, we number the nodes in V from 0 to |V | ´ 1 and associate
nodes p and q to numbers 0 and |V |´1. Thus, the customer nodes are numbered from
1 to |V |´2. Let J “ t1, . . . , |V |´2u and J̃ Ă J be the nodes of the customers without
a TW. At each iteration i of the algorithm, the clustered problem is represented by
the following vectors and matrix.

Ni: Vector of dimension |V | ´ 2 of subsets of customer nodes. For all j P J , Nipjq
is the (possibly empty) subset of customers that are represented by customer
j. This vector has the following properties: all customers with a TW is rep-
resented by itself (Nipjq “ tju,@j P JzJ̃); all customers must belong to one
subset (

Ť

jPJ Nipjq “ J); and a customer cannot belong to two different subsets

(Nipj1q XNipj2q “ H, @pj1, j2q P J
2 such that j1 ‰ j2).

Si: Vector of dimension |V |´2 of total service times. For all j P J , Sipjq “
ř

vPNipjq
sv

if Nipjq ‰ H. Otherwise, the value of Sipjq is irrelevant.
ITTi: Vector of dimension |V | ´ 2 of the node internal traveling times. For all j P J ,

ITTipjq “ 0 if |Nipjq| ď 1. Otherwise, ITTipjq approximates the minimal travel
time required to visit all customers in Nipjq.

Mi: Matrix of dimension |V |´2ˆ|V |´2 of the arc traveling times. For all pj1, j2q P J
2,

Mipj1, j2q “ ∆ if j1 “ j2, Nipj1q “ H or Nipj2q “ H, where ∆ is a constant
larger than the maximum distance between two nodes. Otherwise, Mipj1, j2q
approximates the traveling time from j1 to j2, including the internal traveling

8

Algorithm 1 Pseudo-code of the clustering phase

1: Initialize N0, S0, ITT0, and M0

2: pk1, l1q Ð argmin
pk,lqPJ̃2 M0pk, lq

3: d1 ÐM0pk1, l1q
4: iÐ 1
5: while di ď dmax do
6: Ci Ð Ni´1pkiq YNi´1pliq
7: Ni Ð Ni´1, Si Ð Si´1, ITTi Ð ITTi´1, and Mi ÐMi´1

8: if di “ 0 then
9: Nipkiq Ð Ci and Nipliq Ð H

10: Sipkiq Ð Sipkiq ` Sipliq
11: Mipj, liq “Mipli, jq “ ∆, @j P J
12: else
13: p1i Ð argminvPV zCi

ř

jPCi tvj and q1i Ð argminvPV zpCiYtp1iuq
ř

jPCi tvj
14: if Dq1i ă Rp1i then
15: pp1i, q

1
iq Ð pq1i, p

1
iq

16: Compute a shortest Hamiltonian path pp1i, v
1
i , . . . , v

|Ci|
i , q1iq between p1i and q1i

and passing through all nodes v1
i , . . . , v

|Ci|
i in Ci

17: Nipv
1
i q Ð Ci and Nipjq Ð H, @j P Ciztv1

i u

18: Sipv
1
i q Ð Sipkiq ` Sipliq

19: ITTipv
1
i q Ð

ř|Ci|´1
j“1 tvji v

j`1
i

and ITTipjq Ð 0, @j P Ciztv1
i u

20: if ki ‰ v1
i then

21: Mipj, kiq “Mipki, jq “ ∆, @j P J
22: if li ‰ v1

i then
23: Mipj, liq “Mipli, jq “ ∆, @j P J
24: for j P V zCi such that Vipjq ‰ H do
25: Mipv

1
i , jq Ð ITTipv

1
i q ` tv|Ci|i ,j

26: Mipj, v
1
i q Ð ITTipjq ` tj,v1i

27: iÐ i` 1
28: pki, liq Ð argmin

pk,lqPJ̃2 Mi´1pk, lq

29: di ÐMi´1pki, liq

time at j1.

The algorithm starts by initializing these vectors and matrix (Step 1) as follows.
For all j P J , N0pjq “ j, S0pjq “ sj , and ITT0pjq “ 0, which means that every node
in N0 represents a single customer, with its own service time, and no internal travel
time, as no clustering has been applied yet. For all pj1, j2q P J

2, M0pj1, j2q “ ∆ if
j1 “ j2, to prevent the selection of pj, jq as a good candidate for clustering. Otherwise,
M0pj1, j2q “ tj1j2 . In Step 2, the algorithm identifies in matrix M0 the pair of nodes
pk1, l1q yielding the minimal traveling time, then stores it in d1 (Step 3). It then sets
the iteration counter i to 1 (Step 4). As long as di does not exceed a predetermined
maximum time dmax (Step 5), the selected nodes ki and li will be merged in iteration i,
resulting in a node containing the customer nodes in Ci, i.e., the ones already included
in Ni´1pkiq and Ni´1pliq (Step 6). It starts by making copies of the vectors and
matrix Ni´1, Si´1, ITTi´1 and Mi´1 (Step 7). These copies will be updated to define
the clustered problem at iteration i.

Two cases can occur. If di “ 0 (test at Step 8), a case that may happen when

9

several customers are located in the same building, all customers represented by ki
and li are arbitrarily assigned to ki and all information related to li become obsolete
(Steps 9 - 11). Note that, if di “ 0, the traveling time between any pair of nodes
in Ci is equal to 0 because in all previous iterations i1, di1 was also equal to 0. If
di ą 0, the merging process is more complex (Steps 12-26). Given that, in the current
clustered problem, the customers in Ci will be visited consecutively, we would like to
approximate the minimal traveling time ITT required to visit the customers in Ci. To
do so, we first select two nodes p1i and q1i not in Ci that might immediately precede
and succeed to the node representing Ci in the solution. We choose these nodes as the
two closest neighbours on average to all nodes in Ci (Step 13). If they have TWs and
are badly ordered, we switch them in Step 15. We then compute in Step 16 a shortest
Hamiltonian path that starts in p1i, ends in q1i and visits all nodes in Ci. ITT is then

set to the total traveling time between the first node v1
i after p1i and the last node v

|Ci|
i

before q1i in this path, i.e, ITT “
ř|Ci|´1
j“1 tvji v

j`1
i

. Given that |Ci| is relatively small (less

than 25 in our tests) and none of the customers in Ci has a TW, these shortest paths
can be computed rapidly with a general-purpose MIP solver. The customers in Ci are
then assigned to node v1

i in Step 17. Some entries of the traveling time matrix Mi are
updated in Steps 20 to 26. Note that, in this last step (Step 26), we could use tj1,v1i
instead of tj,v1i where j1 is the next-to-last node in a shortest Hamiltonian path going
through all nodes in Nipjq. But, given that j and j1 are typically very close to each
other when j1 P Nipjq, we have decided to use tj,v1i as a proxy for tj1,v1i . The current
iteration ends by increasing the iteration counter and selecting in Step 28 the next
pair of nodes to cluster.

Once the algorithm terminates, the clustered problem is obtained by creating one
node for each non-empty subset Ni´1pjq, j P J , using the corresponding service times
in vector Si´1 and the corresponding traveling times in matrix Mi´1. The vector
ITTi´1 is not required anymore as the internal traveling times are included in the
traveling times provided in matrix Mi´1.

Algorithm 1 stops when the traveling time di between the next pair of nodes pki, liq
to cluster exceeds a predetermined threshold as clustering these two nodes seems
riskier. Indeed, in preliminary tests, we observed that being too aggressive in the
clustering phase may have significant drawbacks as too many approximations are in-
troduced especially when updating the traveling time matrix. To avoid this, we also
tested two other criterion. The first is to stop clustering when the number of nodes in
the clustered problem reached a prefixed minimum number. The second is local and
forbids clustering too many original nodes into a single one, i.e., a maximal cardinality
nmax on each subset Nipjq, j P J , is imposed.

3.2. Solution of the clustered problem

After the clustering, we solve the clustered problem using our CP model (Section
2.1) with the goal of minimizing RD. Even if the clustered problem is smaller than the
original one, there are still some TWs, and the problem remains complex. Nevertheless,
for clustered problem instances with around 100 nodes or fewer, high-quality solutions
can be found in a reasonable time.

10

3.3. Disaggregation

After solving the clustered problem to find a clustered solution denoted by Seq, we
compute a solution to the original problem, respecting the sequence of Seq to a certain
extent. This solution is found by solving the original problem subject to additional
precedence constraints derived from Seq and presented below. Two algorithms, de-
scribed afterwards, can be used to compute this solution.

3.3.1. Precedence constraints

Let us partition the nodes in Seq (except the depot nodes) in two subsets K and W .
Subset K “ tK1, . . . ,KnKu contains the nK nodes without a TW, hereafter called the
clustered nodes even if such a node corresponds to a single original node. Subset W “

tW1, . . . ,WnW u contains the nW nodes with a TW (they all remained unclustered).
Node Ki is the ith visited clustered node, but not necessarily the ith node of Seq if
some nodes of W are visited earlier. Let j´ (resp. j`) be the index i of the closest
clustered node Ki before (resp. after) Wj in Seq. We assume that i “ 0 if Wj is the
first node visited in Seq and that i “ nK ` 1 if Wj is the last one visited.

Let θ ě 1 be an integer flexibility parameter that indicates how many neighbor-
ing clustered nodes may be merged. The precedence constraints are divided into two
groups, depending on the types of nodes involved.

‚ For pairs of clustered nodes, the following constraints allow rearrangement of
the original nodes, respecting Seq with flexibility θ:

a ă b, @i P t1, . . . , nK ´ θu, @a P CKi , @b P CKi`θ (11)

where, as in Section 2, a ă b means that a must be visited before b. When θ “ 1,
the nodes within each clustered node can be rearranged but they must respect
their order with respect to the nodes in the preceding and succeeding clustered
nodes.

‚ The nodes with TWs are now allowed to merge with their θ closest clustered
neighbors:

b ă Wj , @Wj PW | j´ ´ θ ě 1, @b P CKpj´´θq (12)

a ą Wj , @Wj PW | j` ` θ ď nW , @a P CKpj``θq (13)

If θ “ 1, every node Wj can be reordered with the nodes in its immediate
predecessor and successor clustered node to allow a better positioning of this
time constrained node.

As an example, let Seq “ tp ´ Â ´ B̂ ´W1 ´ Ĉ ´W2 ´ D̂ ´ qu be the solution of

the clustered problem, where K “ tÂ, B̂, Ĉ, D̂u is the clustered node set and W1 and
W2 are nodes with TWs. Let θ “ 1.

The precedence constraints are:

a ă b, @a P CÂ, @b P CB̂ (14)

b ă c, @b P CB̂, @c P CĈ (15)

c ă d, @c P CĈ , @d P CD̂ (16)

11

for the clustered nodes, and

W1 ą a, @a P CÂ (17)

W1 ă d, @d P CD̂ (18)

W2 ą b, @b P CB̂ (19)

for the nodes with TWs.
For more flexibility, θ can be increased. In our example, with θ “ 2, (14)–(16) are

replaced by

a ă c, @a P CÂ, @c P CĈ (20)

b ă d, @b P CB̂, @d P CD̂ (21)

and (17)–(19) become

W2 ą a, @a P CÂ. (22)

These additional precedence constraints increase the precedence lists V `piq, i P V ,
defined in Section 2. They are, therefore, imposed in the CP model through con-
straints (8) and in the TBF by eliminating arcs in set A. Note that no precedence
constraints are imposed between two nodes in W , giving the opportunity to change
their order of visit if this change respects the TWs and the precedence relationships.

Taking into account the precedence constraints, the problem can be solved using
one of the two methods described in Sections 3.3.2 and 3.3.3.

3.3.2. Pure CP disaggregation algorithm

To compute a final disaggregated route, we can resort to a pure CP algorithm which
simply solves the CP-WOF model augmented with all precedence constraints stated
above. To speed up this algorithm, we tighten the TWs on the depot nodes p and q
using the upper bound on the optimal RD provided by the value z̄RD of the solution
found for the clustered problem. More precisely, the TW at node p can be replaced by
rmaxtRp, Rq ´ z̄RDu, Dps and that at node q by rRq,mintDp ` z̄RD, Dqus, where we
assume here that rRp, Dps and rRq, Dqs are the TWs resulting from the preprocessing
procedure mentioned in Section 2. Obviously, if one of these TWs is reduced in this
way, preprocessing can be applied again.

3.3.3. Mixed CP and TBF disaggregation algorithm

Given that the TBF-based branch-and-cut algorithm is not efficient at minimizing the
RD while the CP algorithm is, we propose an alternative disaggregation algorithm
that combines both algorithms. This algorithm is as follows.

Step Dis-1: Minimize RD via CP to obtain a good upper bound for Step Dis-2.
Step Dis-2: Minimize TT via the TBF after imposing this upper bound on the RD.
Step Dis-3: Minimize RD via CP subject to the sequence computed in Step Dis-3.

In Step Dis-1, the CP algorithm is ran for only 1 second to solve the CP-model with
the additional precedence constraints derived from the clustered solution found and
by setting θ “ 1. Indeed, preliminary experiments (see Appendix B) have shown that

12

this algorithm finds very rapidly a high-quality solution but struggles to improve it
afterwards or prove its optimality. Moreover, increasing the value of θ makes it difficult
to compute a good-quality solution very rapidly. In Step Dis-2, the TBF also includes
the precedence constraints arising from the clustered solution. However, the efficiency
of the TBF-based algorithm to minimize the TT when the number of precedence
constraints is sufficiently large allows to set θ to a slightly larger value (e.g., θ “ 2 or
3), providing more flexibility in this step. In fact, to increase its efficiency, an artificial
TW derived from the visiting times Ti of the clustered nodes Ki P K in the clustered
solution is created for every service point that was not originally time-constrained.
For node a P CKi , the artificial TW is rTi´θ, Ti`1`θs because a node in CKi should be
visited after the first node in CKi´θ and before the last one in CKi`θ . These artificial
TWs are only used to reduce the number of variables in the TBF; they are not taken
into consideration when identifying infeasible paths. Finally, Step Dis-3 simply ensures
that all avoidable idle time is removed from the computed route.

4. Results on small and medium-sized benchmark instances

In this section, we consider small and medium-sized instances from the literature
with dense TWs to motivate the use of a bi-objective cost function in the TSPTW
considered. Given the size of these instances, we solved them only with the CP solver.
For our tests, we used only one set of well-known instances, namely, that of Gendreau
et al. (1998), hereafter called the GHLS instances. They are grouped in classes denoted
nXXwYY, where XX is the number of nodes (between 20 and 100) and YY indicates
the width of the TWs. There are 21 classes and 5 instances per class, for a total of 105
instances. Considering the size of these instances and the fact that all nodes have a
TW, no clustering is applied for these instances. Note that we also performed tests on
other instance sets, including that of Ascheuer et al. (2001) and Dumas, Desrosiers,
Gelinas, and Solomon (1995), and obtained similar results.

Our computational experiments were ran on an Intel(R) Xeon(R) X5675 at 3.07 GHz
using a single thread. The code was compiled in C++ and uses IBM CPLEX CP-
Optimizer 12.7.1.0. Since the TSPTW may be solved many times in a CFRS procedure,
we imposed a tight time limit of 60 seconds. For the WOF model, we used γTT “ 8
and γRD “ 20 except for the parameter sensitivity analysis. Furthermore, we define
zWOF , the WOF value of a solution, as zWOF “ 8zTT ` 20zRD, where zTT and zRD

are the TT and RD of this solution, respectively.

4.1. Comparative results

Figures 2 and 3 compare the solutions obtained by minimizing the WOF (first ap-
proach) versus those produced by minimizing TT or RD only (the reference approach),
respectively. The figures show, for each instance class, the average savings (in percent-
age and represented by the dots) on the WOF value obtained by the solutions of
the first approach over those of the reference one. A negative saving means that, on
average, the reference approach yields a solution with a lower WOF value. Further-
more, the histograms indicate, for each class, the average differences in TT and in
RD between these solutions. For example, in Figure 2, the bars represent the average
variations in TT (blue) and in RD (red) between the solutions obtained with the WOF
and when minimizing TT only.

13

From these results, we make the following observations. Compared to the TT solu-
tions (Figure 2), the WOF solutions yield savings for an instance class ranging from
-0.24% to 6.76%, and an average global saving of 2.53%. Figure 2 shows that the
increase in the TT is usually compensated for by the reduction in the RD, and so
the delivery companies could have routes with shorter durations while lowering their
routing costs. This is not the case for the instance group n100w80, where TT-optimal
solutions already have a good RD value, and the tight time limit does not allow the
solver to generate such good solutions for the WOF (even if the average cost increases
only by 0.24% for this group). Figure 3 shows that when there are many TWs, even
if they are relatively wide, it is too costly to minimize only the RD. Indeed, in most
cases, the WOF solutions exhibit a small increase in RD but a large decrease in TT
compared to the solutions obtained by minimizing only RD. This leads to savings
ranging from -0.09% to 4.63%, with a global average of 2.52%.

Both series of results clearly highlight that focusing on a single objective can produce
solutions that are significantly sub-optimal when both criteria play an important role
in the routing costs. Therefore, a bi-objective function should be considered during
optimization.

4.2. Sensitivity analysis on the weights of the WOF

Results for different ratios of the parameters γTT and γRD are presented in Table 1.
For each setting, we report average results computed over the solutions obtained for
all GHLS instances. In this table, the first column specifies the values of γTT and γRD

used in the WOF model. The next three columns provide the average TT and RD
values of the solutions, as well as the average computational time in seconds. Then,
the last two columns report the average zWOF savings in percentage with respect to
the solutions computed when minimizing TT only and RD only, respectively. In the
last two lines, we provide as references the average TT and RD values of the solutions
computed when minimizing TT only and RD only.

This table first shows that it is always relevant to consider a bi-objective function
because savings are always positive for the tested ratios. Furthermore, the lower the
ratio γTT {γRD is, the closer the RD is to optimality, which is not surprising as a
larger proportion of the cost is dedicated to minimizing RD, and the CP algorithm
performs well on this part of the objective function. Finally, we observe that the average
computational time increases as the ratio γTT {γRD converges to one, indicating that
it is difficult to obtain a perfect tradeoff between TT and RD.

Table 1. Comparing the WOF solutions with different param-

eter settings
zWOF savings (%)

γTT {γRD TT RD Time (s) vs TT-only vs RD-only
1/20 475.9 539.9 46.8 5.07% 0.34%
5/20 470.2 541.0 52.3 3.43% 1.69%
8/20 469.1 541.5 56.5 2.53% 2.52%
13/20 466.1 543.3 58.5 1.39% 3.64%
20/20 463.5 544.5 59.0 0.43% 4.96%

TT-Only 440.6 571.8
RD-Only 521.1 539.6

14

Figure 2. Savings and average TT and RD variations per class, for WOF versus TT only.

Figure 3. Savings and average TT and RD variations per class, for WOF versus RD only.

15

5. Results for large industrial instances with sparse TWs

We have studied two instances, labelled a and b, provided by our industrial partner,
Giro. They commercialize the optimization software GeoRoute which is used by some
of the largest postal organizations worldwide. These instances have 475 (Full a) and
458 (Full b) nodes and just a few TWs (resp. 6 and 8), which is an extreme case of
flexibility. We also generated instances with 200 and 300 nodes, selected randomly
from those available, retaining all of the nodes with TWs. We refer to the instances
as rd.XXX.Yg where XXX is the number of nodes selected from the original instance
Full g (where g = a or b) and Y is an identifier. For our tests, we used the same
computer as described above, still with a single thread. In addition to CP-Optimizer,
the disaggregation phase using TBF relied on the MIP solver Cplex, version 12.7.1.0.
Note that, in the original instances, the total service duration accounts for more than
50% of the total route duration, and this time is incompressible.

We present in this section several results about our clustering approach described
in Section 3. First, we compare the usage of the two algorithms presented in Sec-
tions 3.3.2 and 3.3.3 for the disaggregation phase (Section 5.1). Then, we perform a
sensitivity analysis on the value of some parameters used in the disaggregation phase
(Section 5.2) and the aggregation phase (Section 5.3). Finally, we compare the per-
formance of the clustering approach and the direct CP-WOF approach (Section 5.4)
and provide optimality gaps for the solutions computed by the clustering algorithm
(Section 5.5).

In the following tables, #N denotes the number of nodes remaining in the clustered
problem, zWOF

Clus the WOF value (cost) of the solution computed for the clustered
problem, zWOF

Fin the cost of the final solution and Time the total computation time in
seconds. For each instance, the best cost is highlighted in bold. Upon equality, only
the cost obtained with fastest method is emboldened. Note that the WOF value of a
solution is defined as in the previous section, i.e., zWOF “ 8zTT ` 20zRD.

5.1. Comparison of disaggregation algorithms

Sections 3.3.2 and 3.3.3 describe two algorithms for disaggregating a clustered solution.
The first solves a CP model whereas the second combines this CP model with a TBF.
In Table 2, we report the results obtained with both algorithms when a maximum of
20 seconds is allocated to compute a solution in each phase (the total time may exceed
40 seconds because of the time required to cluster the nodes and build the models)
and the parameters are set as follows: dmax “ 20, nmax “ 20, and θ “ 1.

From these results, we observe first that the costs of the final solutions are much less
than those of the clustered solutions. In general, the final solutions computed by both
disaggregation algorithms are of similar quality, with a small advantage for the mixed
CP and TBF algorithm. On the other hand, this algorithm is much faster than the
pure CP algorithm, with an average total time reduction of 30% (obtained by reducing
the disaggregation time by 70% on average). Given that most times required by the
mixed CP and TBF algorithm are below the 40-second time limit, we conclude that the
corresponding solutions computed by this algorithm are optimal for the disaggregation
phase. Moreover, with the pure CP algorithm, increasing θ to 2 or more yields poor-
quality solutions in a limited computational time. These observations led us to use the
mixed CP and TBF disaggregation algorithm to produce the subsequent results.

16

Table 2. Comparative results for the disaggregation algorithms
Pure CP CP + TBF

Instance #N zWOF
Clus zWOF

Fin Time (s) zWOF
Fin Time (s)

rd.200.1a 75 152.63 151.05 41.5 151.05 23.4
rd.200.2a 69 164.55 162.45 41.3 162.45 23.2
rd.200.3a 72 162.08 159.47 41.4 159.47 23.2
rd.300.1a 93 188.51 185.13 42.6 184.87 26.9
rd.300.2a 86 185.50 181.35 42.7 181.26 26.7
rd.300.3a 89 189.65 186.45 42.8 186.10 26.9

Full a 94 232.35 226.78 48.0 226.75 42.9
rd.200.1b 79 177.89 176.42 41.3 176.42 22.9
rd.200.2b 75 174.10 172.19 41.4 172.19 23.1
rd.200.3b 70 166.26 165.23 41.6 165.23 22.9
rd.300.1b 84 207.86 204.54 42.8 204.73 41.9
rd.300.2b 84 206.25 204.27 42.8 203.78 26.9
rd.300.3b 88 208.49 205.23 42.6 205.06 26.7

Full b 95 252.31 247.55 47.5 247.51 41.7
Avg 82 190.60 187.72 42.9 187.63 28.5

5.2. Impact of the flexibility parameter value

In this section, we assess the impact of the value of flexibility parameter θ on the
solution quality and the total computational time. This parameter controls the number
of clustered nodes that can be reordered around each node in the disaggregation phase.
In Table 3, we present the results obtained for three different values of θ, namely, θ “ 1
as in the previous section, as well as θ “ 2 and θ “ 3 which allow more flexibility during
disaggregation. For these tests, a maximum time limit of 300 seconds for the whole
solution process was set to yield optimal solutions for the disaggregation phase in all
instances except for two with θ “ 3. From these results, we observe that increasing
the flexibility enables slightly improving the quality of the final solution (by 0.13%
and 0.18% for θ “ 2 and θ “ 3, respectively) but could be costly in time consumption.
Because θ “ 2 offers a good trade-off between solution quality and computational
time, we use this value in the following sections.

Table 3. Comparative results for three values of θ
θ “ 1 θ “ 2 θ “ 3

Instance #N zWOF
Clus zWOF

Fin Time (s) zWOF
Fin Time (s) zWOF

Fin Time (s)
rd.200.1a 75 152.63 151.05 23.4 150.72 25.1 150.72 29.2
rd.200.2a 69 164.55 162.45 23.2 162.26 25.7 162.26 34.2
rd.200.3a 72 162.08 159.47 23.2 159.28 24.2 159.02 42.3
rd.300.1a 93 188.51 184.87 26.9 184.24 35.5 183.91 76.9
rd.300.2a 86 185.50 181.26 26.7 181.02 59.6 180.95 95.3
rd.300.3a 89 189.65 186.10 26.9 186.13 57.0 185.31 102.4

Full a 94 232.35 226.75 42.9 226.52 71.7 226.92 300.0
rd.200.1b 79 177.89 176.42 22.9 176.42 24.2 176.39 30.1
rd.200.2b 75 174.10 172.19 23.1 172.10 24.6 171.82 32.1
rd.200.3b 70 166.26 165.23 22.9 165.23 24.3 165.09 28.4
rd.300.1b 84 207.86 204.54 65.8 204.05 35.4 203.98 80.0
rd.300.2b 84 206.25 203.78 26.9 203.52 44.7 203.52 164.8
rd.300.3b 88 208.49 205.06 26.7 204.57 37.3 204.20 115.9

Full b 95 252.31 247.51 41.7 246.97 78.8 247.65 300.0
Avg 82 190.60 187.62 30.2 187.36 40.6 187.27 102.3

5.3. Impact of the clustering parameter values

As mentioned above, all our basic tests were run using dmax “ 20 and nmax “ 20,
yielding clustered problems with an average of 82 clustered nodes and a maximum
of 95 nodes. To show the impact of using clustered problems that are less clustered,
we solved all instances using a less aggressive clustering procedure. This procedure

17

stopped when the number of clustered nodes reached 100 (resp. 120) nodes, except
when the minimum traveling time di is equal to the previous one. In this case, the
aggregation continues until finding a larger minimum traveling time, yielding a clus-
tered problem with slightly less than 100 (resp. 120) nodes. The results of these tests
are reported in Table 4 for the three different stopping criterion, where the latter are
denoted #N « 100 and #N « 120.

Table 4. Comparative results for three clustering procedure stopping criteria
dmax “ 20, nmax “ 20 #N « 100 #N « 120

Instance #N zWOF
Fin Time #N zWOF

Fin Time #N zWOF
Fin Time

rd.200.1a 75 150.72 25.7 100 151.23 24.2 117 151.02 23.6
rd.200.2a 69 162.26 26.2 100 162.33 24.4 113 162.33 23.8
rd.200.3a 72 159.28 24.7 100 159.16 24.0 104 159.44 24.0
rd.300.1a 93 184.24 36.1 94 183.33 34.7 119 185.92 31.1
rd.300.2a 86 181.02 58.7 99 181.23 35.8 119 181.49 28.6
rd.300.3a 89 185.47 70.3 100 185.78 32.2 115 184.75 31.6

Full a 94 226.52 76.4 99 225.87 94.7 120 227.83 63.2
rd.200.1b 79 176.42 24.8 100 173.94 24.3 115 173.99 23.5
rd.200.2b 75 172.10 25.4 92 172.17 24.2 110 171.49 23.7
rd.200.3b 70 165.23 25.1 94 164.20 24.4 105 164.81 23.7
rd.300.1b 84 204.05 35.9 98 204.78 34.2 118 205.76 28.3
rd.300.2b 84 203.52 45.3 100 203.68 30.9 120 204.10 28.8
rd.300.3b 88 204.57 37.9 100 205.44 32.2 120 206.72 29.8

Full b 95 246.97 80.1 100 244.78 93.6 120 249.98 59.3
Avg 82.4 187.31 42.3 98.3 186.99 38.1 115.4 187.83 31.7

These results show that the second approach (#N « 100) produces better solu-
tions on average than the other two. The third one (#N « 120) is the fastest. It may
be explained by the fact that the clustered nodes contain less customers and, thus,
the disaggregation problem is easier to solve, but less permissive. The first approach
(dmax “ 20, nmax “ 20) has the most aggressive clustering phase, increasing the prob-
ability of sub-optimal inner routes in the cluster nodes and a poorer approximation.
This could be counter-balanced by the fact that the clustered problem is easier to
solve, due to fewer nodes in the instances. For the following section, the results were
produced using the clustering setting #N « 100.

5.4. Direct CP-WOF algorithm versus clustering algorithm

In this section, we compare the direct CP-WOF algorithm of Section 2 and the clus-
tering heuristic. For the latter, we imposed a time limit of 20 seconds for solving the
clustered problem. For both algorithms, a 60-second overall time limit was enforced.

The results are reported in Table 5 where the last column (Imp) gives the cost im-
provement in percentage obtained by the solutions produced by the clustering heuris-
tic over those computed by the direct CP-WOF algorithm. On average, the clustering
heuristic yields an average cost improvement of 1.60%, in around half the time allowed
for the CP-WOF method. Note that the disaggregation method terminated before the
time limit for all the instances except the full ones, ensuring that there is no better
feasible disaggregation given the computed clusters and clustered sequence. Observe
also that the cost zWOF

Clus of the clustering phase solution is, on average, less than that
of the direct CP-WOF algorithm solution (zWOF).

Figure 4 presents the cost of the best solution found in function of the computa-
tional time for the two original instances Full a and Full b and two different algorithms,
namely, the direct CP-WOF algorithm (solid lines) and the proposed clustering algo-
rithm (dashed-dotted lines). For the latter algorithm, the solution process stops when
the disaggregation problem is solved to optimality at around 90 seconds. For these

18

Table 5. Comparative results between the CP-WOF algorithm

and the clustering algorithm
WOF Clustering

Instance zWOF Time #N zWOF
Clus zWOF

Fin Time Imp
rd.200.1a 157.28 60.0 100 151.96 151.23 23.4 3.37%
rd.200.2a 164.15 60.0 100 163.01 162.33 23.5 0.96%
rd.200.3a 159.30 60.0 100 160.54 159.16 23.5 0.08%
rd.300.1a 185.55 60.0 94 187.20 183.33 34.3 1.01%
rd.300.2a 186.18 60.0 99 184.24 181.23 35.4 2.26%
rd.300.3a 186.03 60.0 100 188.60 185.78 31.5 0.12%

Full a 234.90 60.0 99 231.70 226.43 60.0 3.17%
rd.200.1b 176.84 60.0 100 175.32 173.94 23.6 1.41%
rd.200.2b 173.15 60.0 92 173.50 172.17 23.7 0.49%
rd.200.3b 166.42 60.0 94 165.23 164.20 23.9 1.16%
rd.300.1b 210.33 60.0 98 208.16 204.78 33.8 2.22%
rd.300.2b 206.44 60.0 100 205.64 203.68 30.3 1.12%
rd.300.3b 209.89 60.0 100 207.49 205.44 31.6 1.79%

Full b 251.82 60.0 100 249.79 245.15 60.0 2.29%
Avg 190.59 60.0 98 189.46 187.06 32.7 1.60%

two instances, we clearly see that the clustering algorithm can provide much better
quality solutions than the direct CP-WOF algorithm, even if a 60-second time limit
was imposed.

Figure 4. Cost of the best solution found in function of the computational time

5.5. Optimality gaps of the clustering algorithm solutions

To conclude the assessment of the quality of the solutions produced by the clustering
algorithm, we computed for each instance a lower bound on its optimal value by
solving the corresponding traveling salesman problem (TSP), defining the arc costs as
the arc TTs only (i.e., omitting the service times). Because zWOF “ 8zTT ` 20zRD

and zRD ě zTT ` ST , where ST is the total service time, we deduce that zWOF ě

28zTT`20ST . Therefore, a valid lower bound (LB) on the optimal WOF value is given
by LB “ 28zTTTSP ` 20ST , where zTTTSP is the optimal value of the corresponding TSP.
For each instance, Table 6 reports this lower bound (LB) and the relative optimality
gap between LB and zWOF

Fin , the cost of solution computed by the clustering algorithm.
The results indicate that the computed solutions are all within 1.8% of optimality,

19

with an average of 1.3%. Given that the lower bounds are not necessarily tight (TWs
are relaxed in the TSP), these gaps show the effectiveness of the proposed clustering
algorithm.

Table 6. Optimality gaps
Instance LB zWOF

Fin Gap (%)
rd.200.1a 148.88 151.23 1.58
rd.200.2a 160.77 162.33 0.97
rd.200.3a 156.99 159.16 1.38
rd.300.1a 180.88 183.33 1.35
rd.300.2a 179.25 181.23 1.11
rd.300.3a 183.40 185.78 1.30

Full a 223.37 226.43 1.37
rd.200.1b 171.96 173.94 1.15
rd.200.2b 169.13 172.17 1.79
rd.200.3b 161.99 164.20 1.37
rd.300.1b 202.68 204.78 1.04
rd.300.2b 200.77 203.68 1.45
rd.300.3b 201.89 205.44 1.76

Full b 243.26 245.15 0.78
Avg 184.66 187.06 1.30

6. Conclusion

In this paper we highlighted the particularities of the well-known traveling salesman
problem with time windows that arise in the context of postal operations, namely,
the importance of minimizing not only the total travel time but also the total route
duration, and the fact that very few customers have time windows, reducing signifi-
cantly the efficiency of the standard TW preprocessing techniques. To solve this new
TSPTW variant, we devised a three-step clustering heuristic which first clusters the
unconstrained customers, then solves the clustered problem, before sequencing the
customers inside the clustered nodes, with some flexibility between the consecutive
nodes. Compared to a CP algorithm that tackles the problem at once, this heuristic
is able to produce better-quality solutions (with an average optimality gap of 1.3%)
in shorter computational times on industrial instances involving up to 475 customers.

As a future work, we will tackle the postal territory design problem, considering
that this design is a strategic decision which is taken approximately once per year
perhaps, while optimizing the TSPTW occurs at an operational, daily, decision level.

Acknowledgements

We are thankful to the personnel of GIRO Inc., in particular, Charles Fleurent
and Patrick Saint-Louis, who provided to us the problem definition and the real-life
datasets. We gratefully acknowledge the financial support of GIRO Inc. and the Nat-
ural Sciences and Engineering Research Council of Canada under the grant RDCPJ
4634633-14.

References

Ascheuer, N., Fischetti, M., & Grötschel, M. (2001, May 01). Solving the asymmetric travelling
salesman problem with time windows by branch-and-cut. Mathematical Programming,
90(3), 475–506.

20

Baldacci, R., Mingozzi, A., & Roberti, R. (2012). New State-Space Relaxations for Solving
the Traveling Salesman Problem with Time Windows. INFORMS Journal on Computing,
24(3), 356–371.

Boland, N., Hewitt, M., Vu, D. M., & Savelsbergh, M. (2017). Solving the traveling salesman
problem with time windows through dynamically generated time-expanded networks. In
Integration of ai and or techniques in constraint programming: 14th international conference,
cpaior 2017, padua, italy, june 5-8, 2017, proceedings (pp. 254–262). Cham: Springer Inter-
national Publishing.

Calvo, R. W. (2000). A new heuristic for the traveling salesman problem with time windows.
Transportation Science, 34(1), 113–124.

Christofides, N., Mingozzi, A., & Toth, P. (1981). State-space relaxation procedures for the
computation of bounds to routing problems. Networks, 11(2), 145–164.

Dash, S., Gunluk, O., Lodi, A., & Tramontani, A. (2012). A time bucket formulation for the
traveling salesman problem with time windows. INFORMS Journal on Computing, 24(1),
132-147.

Deb, K. (2014). Multi-objective optimization. In E. K. Burke & G. Kendall (Eds.), Search
methodologies: Introductory tutorials in optimization and decision support techniques (pp.
403–449). Boston, MA: Springer US.

Desrochers, M., Desrosiers, J., & Solomon, M. (1992). A new optimization algorithm for the
vehicle routing problem with time windows. Operations research, 40(2), 342–354.

Dumas, Y., Desrosiers, J., Gelinas, E., & Solomon, M. M. (1995, apr). An optimal algorithm for
the traveling salesman problem with time windows. Operations Research, 43(2), 367–371.

Ferreira da Silva, R., & Urrutia, S. (2010). A general vns heuristic for the traveling salesman
problem with time windows. Discrete Optimization, 7, 203–211.

Gendreau, M., Hertz, A., & Laporte, G. (1992). New insertion and postoptimization procedures
for the traveling salesman problem. Operations Research, 40(6), 1086–1094.

Gendreau, M., Hertz, A., Laporte, G., & Stan, M. (1998, mar). A generalized insertion
heuristic for the traveling salesman problem with time windows. Operations Research,
46(3), 330–335.

Kara, I., & Derya, T. (2015). Formulations for minimizing tour duration of the traveling
salesman problem with time windows. Procedia Economics and Finance, 26, 1026–1034.

Langevin, A., Desrochers, M., Desrosiers, J., Gélinas, S., & Soumis, F. (1993). A two-
commodity flow formulation for the traveling salesman and the makespan problems with
time windows. Networks, 23(7), 631–640.

López-Ibáñez, M., & Blum, C. (2010). Beam-aco for the travelling salesman problem with
time windows. Computers & Operations Research, 37(9), 1570 - 1583.

López-Ibáñez, M., Blum, C., Ohlmann, J. W., & Thomas, B. W. (2013). The travelling
salesman problem with time windows: Adapting algorithms from travel-time to makespan
optimization. Applied Soft Computing, 13(9), 3806–3815.

Ohlmann, J. W., & Thomas, B. W. (2007). A compressed-annealing heuristic for the traveling
salesman problem with time windows. INFORMS Journal on Computing, 19(1), 80–90.

Savelsbergh, M. (1985). Local search in routing problems with time windows. Annals of
Operations Research, 4(1), 285–305.

Savelsbergh, M. (1990). An efficient implementation of local search algorithms for constrained
routing problems. European Journal of Operational Research, 47(1), 75 - 85.

Savelsbergh, M. (1992). The Vehicle Routing Problem with Time Windows : minimizing route
duration. ORSA Journal on Computing, 4(2), 146-154.

van Hoeve, W.-J. (2001). The alldifferent constraint: A survey. arXiv preprint cs/0105015.

21

Appendix A. Time Bucket Formulation

The TBF (Dash et al., 2012) is a MIP model which gathers several variables of a
time-indexed formulation into time buckets, to reduce the combinatorial nature of the
problem. Each bucket b “ rb, b̄s represents a portion of the time horizon. Let B be the
set of all buckets used. With the directed graph G “ pV,Aq introduced in Section 2,
the TBF has three types of variables:

‚ xij “ 1 if arc pi, jq P A is used; 0 otherwise.
‚ zbi “ 1 if node i is visited in bucket b; 0 otherwise.
‚ ybij “ 1 if arc pi, jq P A is used and node i is visited in bucket b; 0 otherwise.

We define three subsets:

‚ Bi Ď B is the subset of buckets allowed for node i.
‚ V `piq Ď V ztpu (resp. V ´piq Ď V ztqu) is the subset of possible successors (resp.

predecessors) of i. It can be tightly defined, as discussed in Section 2.
‚ Ikpi, bq is the subset of Bk representing the potential starting buckets of node k

if arc pk, iq is used and the visit to node i started in bucket b. We have

Ikpi, blq “ tb P Bk : b̄l´1 ă b` tki ď b̄lu

where b0 “ ´8 is assumed.

Given this notation the time bucket relaxation (TBR) for the TSPTW is

min
ÿ

pi,jqPA

tijxij (A1)

subject to:

ÿ

bPBi

zbi “ 1, @i P V (A2)

ÿ

jPV `piq

ybij “ zbi , @i P V ztqu, @b P Bi (A3)

ÿ

kPV ´piq

ÿ

βPIkpi,bq

yβki “ zbi , @i P V ztpu, @b P Bi (A4)

ÿ

bPBi

ybij “ xij , @pi, jq P A (A5)

xij , y
b
ij , z

b
i P t0, 1u, @i P V, @pi, jq P A, @b P Bi. (A6)

The objective function (A1) minimizes the TT. Constraints (A2) ensure that each
service point is visited in a single bucket. Constraints (A3) and (A4) link the variables
y and z, while guaranteeing that a valid bucket is used via the set Ikpi, bq. Constraints
(A5) link x and y.

Model (A1)–(A6), as its name implies, is a relaxation of the TSPTW. The feasibility
checks of the model are made as if every time was at the beginning of a bucket, so as
shown in Figure A1, subtour elimination constraints (SECs) and infeasible path cuts
(IPCs) should be added to obtain an exact formulation, the so-called TBF.

22

Figure A1. Subtour and infeasible path examples.

If the TT between two nodes is shorter than the width of a time bucket, subtours
may occur. In dense areas or when the bucket width is large, the subtours may contain
more than two nodes. In Figure A1, the infeasible path p1rb1,2s, 2rb2,3s, 3rb3,3sq, using
respectively the second, third, and third buckets of nodes 1, 2, and 3, is allowed by the
TBR since the feasibility depends on Ikpi, bq, which selects buckets in Bk as long as a
“time index” of the buckets matches with one time index of b (P Bi).

For every subtour detected, let S Ă V ztp, qu be the associated nodes. The following
SEC must be added:

ÿ

pi,jqPδpSq

xij ě 1 (A7)

where δpSq is the subset of arcs pi, jq of A such that i P S and j P V ztSu.
For every infeasible path P (which would violate some TWs), we add the IPC:

ÿ

pi,jqPP
xij ď |P| ´ 1. (A8)

The narrower the buckets, the more accurate the model and the fewer SECs and
IPCs have to be added while solving the MIP. However, increasing the number of
variables increases the combinatorial nature of the problem. With wider buckets, a
node may not be assigned to the right bucket. However, if the solution remains feasible,
we can retain it, because only the sequence matters. For this reason, the TBF may
greatly reduce the TT.

We can try to capture the RD information of the sequence found, but it is not accu-
rate, since we know only in which bucket the route finishes. Intuitively, the objective
function may be modified to minimize z, where z is defined by the following constraint,
leading to an overestimation of the real RD objective function:

z ě
ÿ

bPBq

b̄zbq ´
ÿ

bPBp

bzbp. (A9)

However, it is possible to be more accurate, especially when the waiting time is low,

23

by replacing (A9) by:

z ě
ÿ

bPBq

bzbq ´
ÿ

bPBp

b̄zbp (A10)

z ě
ÿ

pi,jqPA

tijxij . (A11)

In both cases, the buckets have to be carefully assigned, and this requires the addi-
tion of some constraints; see Dash et al. (2012). Moreover, to obtain the exact RD, we
must refine the buckets to increase the accuracy in terms of the departure time from
and the arrival time at the depot. These two values greatly affect the computational
time, and hence we do not use the TBF to minimize the RD. When an upper bound
on RD is imposed like in Section 3.3.3, it is enforced through the addition of IPCs.

In the TBF, the bucket generation may be key to the performance. We generate
the time buckets on a fixed base L so b0 “ r0, L ´ 1s, b1 “ rL, 2L ´ 1s, and so on. If
necessary, we replace the first and last bucket of each service point i by more accurate
ones that match the TW. If L “ 10 and for some i, rRi, Dis “ r27, 44s, Bi is defined
by tr27, 29s, r30, 39s, r40, 44su instead of tr20, 29s, r30, 39s, r40, 49su. This allows us to
discard some buckets in Ikpi, bq that could have been considered with the original
buckets.

The TBR is solved using Cplex 12.7.1.0, and SECs and IPCs are added via callbacks
during the process. We use the lazycallback technology, i.e., we check for subtours and
infeasible paths at every integer solution and then add the corresponding constraints
(A7) and (A8) to the model.

Appendix B. Supporting Computational Results

In this appendix, we present some computational results to support our claims that
the CP algorithm is efficient at minimizing RD for small and medium-sized instances
while it is outperformed by the TBF-based algorithm when minimizing TT.

First, using the CP algorithm, we solved the 105 GHLS instances (Gendreau et al.,
1998) with the objective of minimizing RD only. Figure B1 reports the performance
profile curve for these experiments. It shows the number of instances solved to optimal-
ity (vertical axis) with respect to a time limit (horizontal axis) given in milliseconds
and using a logarithmic scale. We can observe that 96 out of the 105 instances can
be solved to optimality within one second of computational time and that the most
difficult instance is solved in 71 seconds.

We conducted another set of experiments that consists of solving the 60 GHLS in-
stances with less than 60 nodes and the objective of minimizing TT, using both the
CP and the TBF-based algorithms. A maximum time of 300 seconds was imposed
to solve each instance. In Figure B2, we report for each instance the optimality gaps
obtained for the CP algorithm (blue) and the TBF-based algorithm (red) (some circles
are superimposed). A cross indicates that the TBF-based algorithm cannot find a fea-
sible solution for the corresponding instance within the time limit. These results show
that the CP algorithm always returns a solution, whereas the TBF-based algorithm
cannot for 19 instances. However, when the TBF-based algorithm can find a solution
for an instance, it generally solves it to optimality. Table B1 reports the number of
instances solved to optimality by both algorithms with respect to several time limits.

24

Figure B1. Performance profile curve for minimizing RD with the CP algorithm

From these results, we deduce that the TBF-based algorithm is much faster than the
CP algorithm to prove optimality.

Figure B2. Optimality gap when minimizing TT using each algorithm

Table B1. Number of instances solved to op-

timality with respect to a time limit when mini-
mizing TT using each algorithm

instances solved
Time limit (s) CP TBF

1 0 6
5 0 11
30 0 31
120 1 34
300 2 35

25

	Introduction
	Problem formulations
	Constraint programming model
	Multiobjective model: Weighted objective function
	A time-bucket formulation

	Solution algorithm for real-world instances
	Clustering
	Solution of the clustered problem
	Disaggregation
	Precedence constraints
	Pure CP disaggregation algorithm
	Mixed CP and TBF disaggregation algorithm

	Results on small and medium-sized benchmark instances
	Comparative results
	Sensitivity analysis on the weights of the WOF

	Results for large industrial instances with sparse TWs
	Comparison of disaggregation algorithms
	Impact of the flexibility parameter value
	Impact of the clustering parameter values
	Direct CP-WOF algorithm versus clustering algorithm
	Optimality gaps of the clustering algorithm solutions

	Conclusion
	Time Bucket Formulation
	Supporting Computational Results

