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Abstract. This paper, for the first time, studies vehicle routing problems with synchro-
nized visits (VRPS) and stochastic travel and service times. In addition to considering
a home healthcare scheduling problem, we introduce an operating room scheduling
problem with stochastic durations as a novel application of VRPS. We formulate VRPS
with stochastic times as a two-stage stochastic integer programming model that, unlike the
deterministic models in the VRPS literature, does not have any big-M constraints. This
advantage comes at the cost of a large number of second-stage integer variables. We prove
that the integrality constraints on second-stage variables can be relaxed, and therefore, we
can apply the L-shaped algorithm and its branch-and-cut implementation to solve the
problem. We enhance the model by developing valid inequalities and a lower bounding
functional. We analyze the subproblems of the L-shaped algorithm and devise a spe-
cialized algorithm for them that is significantly faster than standard linear programming
algorithms. Computational results show that the branch-and-cut algorithm optimally
solves stochastic home healthcare scheduling instances with 15 patients and 10%–30% of
synchronized visits. It also finds solutions with an average optimality gap of 3.57% for
instances with 20 patients. Furthermore, the branch-and-cut algorithm optimally solves
stochastic operating room scheduling problems with 20 surgeries.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2019.0956.
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1. IntroductionQ: 6

InQ: 7, 8, 9 the literature of vehicle routing problem (VRP), a
large numberQ: 10 of studies have taken into account the
scheduling of services to customers in addition to the
routing of vehicles. Such routing problems are gen-
erally referred to as routing and scheduling problems.
The most well-known problem in this area is vehi-
cle routing problem with time windows (VRPTW),
where a number of vehicles must serve customers with
minimum cost while satisfying some time windows
constraints. Recently, there has been an emergent in-
terest in vehicle routing problem with synchronized
visits (VRPS) in which two or more vehicles of dif-
ferent types must be simultaneously available at
the customer’s location for serving. VRPS has a wide
range of applications in home healthcare schedul-
ing (Bredström and Rönnqvist 2008; Di Mascolo,
Espinouse, and Ozkan 2014), raw milk collection
(Drexl and Sebastian 2007), staff scheduling (Lim,
Rodrigues, and Song 2004; Li, Lim, and Rodrigues
2005), garbage collection (De Rosa et al. 2002), for-
est management (Paraskevopoulos et al. 2016), and

telecommunication (Jaumard et al. 2016). From a
modeling perspective, considering the vehicle syn-
chronization is an essential assumption inmany of the
mentioned applications. In the absence of this feature,
some of these problems, such as the milk collec-
tion and home healthcare scheduling problems, are
oversimplified and do not represent what happens in
the real world. Moreover, from a solution method
viewpoint, VRPS is significantly more complicated
than the classic VRPTW because the scheduling of
vehicles is interdependent, and therefore, finding
a quality solution satisfying all time windows con-
straints is more challenging. The interdependent
scheduling of vehicles in VRPS is even more chal-
lenging when travel and service times are stochastic.
In routing and scheduling problems, uncertainty in

travel and service times is one of the main factors that
significantly increase problems complexity. It has
been dealt with in the literature using stochastic and
robust optimization approaches. Some researchers
studied traveling salesman problems with inde-
pendent and normally distributed travel times and

1

http://pubsonline.informs.org/journal/trsc
mailto:hossein.hashemi@concordia.ca
https://orcid.org/0000-0002-7385-1274
https://orcid.org/0000-0002-7385-1274
mailto:gilles.pesant@polymtl.ca
mailto:louis-martin.rousseau@polymtl.ca
https://doi.org/10.1287/trsc.2019.0956
https://doi.org/10.1287/trsc.2019.0956


developed dynamic programming algorithms to max-
imize the probability that the tour completes by
a deadline (Kao 1978; Sniedovich 1981; Carraway,
Morin, and Moskowitz 1989). In some papers, au-
thors proposed two-stage stochastic programming
methods to formulate the problems and applied
branch-and-cut algorithms (Laporte, Louveaux, and
Mercure 1992; Kenyon and Morton 2003; Adulyasak
and Jaillet 2015). Column generation is another prev-
alent approach to formulate routing and scheduling
problems with stochastic travel and service times.
In this approach, the uncertainty of travel and ser-
vice times is encapsulated in the column definition
and handled in the subproblem (Taş et al. 2014, Yuan,
Liu, and Jiang 2015, Errico et al. 2016).

In another category of papers, researchers devel-
oped chance-constrained programming models for
routing and scheduling problems and solved them
either optimally or heuristically (Laporte, Louveaux,
and Mercure 1992; Li, Tian, and Leung 2010; Zhang,
Chaovalitwongse, and Zhang 2012; Chen et al. 2014;
Miranda and Conceição 2016). In thesemodels, chance
constraints ensure that time windows constraints or
constraints restricting the maximum durations of
tours are satisfied probabilistically. In addition, some
researchers assumed that uncertain travel and service
times belong to an uncertainty set and then applied
robust optimization methods to find reliable routes.
Such robust solutions either satisfy the time win-
dows constraints for all possible realizations of un-
certain parameters (Lee, Lee, and Park 2012; Agra
et al. 2013) or minimize a measure index represent-
ing the amount of constraint violations for the worst
case scenario (Han, Lee, and Park 2013; Souyris et al.
2013; Adulyasak and Jaillet 2015; Jaillet, Qi, and Sim
2016; Zhang et al. 2019). We refer interested readers
to a recent survey by Oyola, Arntzen, and Woodruff
(2017) that covers routing with stochastic travel and
service times comprehensively.

Although there is a rich literature on VRP with
synchronized visits and on VRPwith stochastic travel
and service times, to the best of our knowledge, there
is no paper addressing these aspects simultaneously.
Themain contributions of this research are as follows.

• For the first time, we study VRP with synchro-
nized visits and stochastic travel and service times. In
addition to considering a home healthcare scheduling
problem, we introduce an operating room scheduling
problem with stochastic durations as a novel appli-
cation of VRPS. We then formulate the problem as
a two-stage stochastic integer programming model
that, unlike the deterministic models in the VRPS
literature, does not have any big-M constraints for the
scheduling part of the problem.

• We considerably enhance the quality of the pro-
posed L-shaped algorithm by developing some valid

inequalities for both first- and second-stage models.
We also develop a lower bounding functional for the
second-stage cost and add it to the master problem
(MP) of the L-shaped algorithm.Moreover, we propose
a specialized algorithm for the subproblems of the
L-shaped algorithm that is much faster than standard
linear programming algorithms.
• We report extensive computational results on the

VRP with synchronized visits and stochastic travel
and service times.
We organize the remainder of this paper as follows.

In Section 2, we introduce a VRP with synchronized
visits and stochastic travel and service times. We also
discuss the applications of this problem in home
healthcare and operating room scheduling problems.
In Sections 3 and 4, we propose a two-stage stochastic
programming model and some valid inequalities to
improve it, respectively. In Section 5, we develop an
L-shaped algorithm and present the master prob-
lem and subproblems. We develop a lower bound-
ing functional in Section 6. In Section 7, we pro-
pose a specialized algorithm for the subproblems
of the L-shaped algorithm. We also present extensive
computational results on home healthcare and op-
erating room scheduling problems in Section 8. A case
study on the home healthcare scheduling application
is given in Section 9. Finally, we give some concluding
remarks and future research directions in Section 10.
We provide the proofs of all lemmas and theorems
(except for Theorem 1) in the online appendix. We
have provided a content list at the beginning of the
online appendix for ease of finding the proofs of
lemmas and theorems.

2. Problem Definition and Applications
We consider the following VRP with synchronized
visits. Two or more fleets of homogeneous vehicles
are available at a depot to serve a number of cus-
tomers within a day. For serving each customer, a
specific set of vehicles of different types must be
available at the customer’s location. If some vehicles
arrive to the customer’s location earlier than other
required vehicles, they must wait until others arrive
before service starts. Vehiclesmay require using some
amounts of a limited resource, such as time or the
available space for delivering/picking up items re-
quested by customers.
The service times of homogeneous vehicles are the

same, but they can differ for each vehicle type.When a
vehicle’s service to a customer finishes, the vehicle
either travels to the next customer or finishes its tour
by returning to the depot regardless of whether other
vehicles are still serving the customer. We suppose
that travel and service times are stochastic, and a
number of scenarios representing the uncertainty are
available. Moreover, for each customer, there is a time
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window with a hard earliest start time constraint and
a soft latest start time constraint; if violated, some
penalties are incurred to the objective function. This
assumption already exists in the literature (Taillard
et al. 1997; Gendreau et al. 1999; Qureshi, Taniguchi,
and Yamada 2009). It is more realistic in some appli-
cations, such as home healthcare scheduling, where
the patient cannot be fed for lunch or be injected
earlier than a time threshold, whereas toomuch delay
is penalized.

Furthermore, the time available to complete the
tours is limited (e.g., 11 hours). There is also a time
threshold (e.g., nine hours) for the start of the over-
time period in which drivers are paid in addition to
their fixed daily payments. Service to customer can
start in overtime periods but must finish before the
end of total available time limit. The decision maker
must decide on the number of vehicles of different
types to hire, routing of vehicles, and departure times
of vehicles form the depot. The objective function
includes the fixed costs of vehicles, travel costs,
waiting costs, overtime costs, and the penalty of
delays in serving customers with respect to given
latest start times.

We consider two applications of the above prob-
lem in healthcare. The first application is a home
healthcare scheduling problem. Two types of nurses
thatwe refer to as RegisteredNurses (RNs) andHome
Health Aides (HHA) must serve patients at their
homes. An RN is allowed to provide a wide range of

nursing services, such as wound dressing, ostomy
care, intravenous therapy, administering medication,
monitoring the general health of the patient, pain
control, and other health support. However, HHAs
can help patients with only their basic personal
needs, such as walking, feeding, and dressing. In this
problem, we divide patients into three categories:
patients to be cared by an RN, patients to be visited by
an HHA, and patients with needs to be served si-
multaneously by an RN and an HHA. Di Mascolo,
Espinouse, and Ozkan (2014) studied this problem in
the absence of uncertainty for travel and service times
and proposed amixed integer programmingmodel to
minimize the total waiting costs. Figure 1 shows a
very simple deterministic home healthcare schedul-
ing problem with six patients that are visited by two
nurses. Beside each patient, there is a data triplet,
where the entries determine the service duration
and the earliest and latest start times of the time
window, respectively. In this figure, travel times are
mentioned on arcs. For the given routing, we have
computed the arrival times of nurses and start times of
the services. Moreover, we have mentioned the oc-
currence of delays, waiting, and overtimes wherever
they happen.
The second application is an operating room sched-

uling problem with stochastic surgery, anesthesia,
and cleaning times, where each surgery is equiva-
lent to a customer in the VRP with synchronized
visits. To perform each surgery, we require two

Figure 1. (Color online) A Simple Home Healthcare Scheduling Instance with Two NursesQ: 18
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servers (vehicles) to be simultaneously available. These
servers are surgeons and operating rooms. We suppose
that the number of surgeons is given, but the number of
operating rooms,which is identical, is to be determined.
We also assume that a unique surgeon is assigned to
each surgery and that each surgeon has already fixed
the sequence of surgeries to operate. We can divide the
total time to complete a surgery in an operating room
into three parts: (1) the preparation and anesthesia part
during which the surgeon is not necessarily present in
the operating room, (2) the main part of the surgery in
which the surgeon operates, and (3) the cleaning part
during which the operating room is busy, but the
surgeon is not and may have left the room in order to
rest or reach her or his next surgery in another operating
room. For surgeons and operating rooms, the service
time to perform a surgery is equal to the duration of the
main part of the surgery. Also, for operating rooms as
one of the available servers (vehicles), the travel time
from surgery i to surgery j is equal to the sum of
cleaning time after surgery i and the duration of the
preparation and anesthesia part of surgery j. The
durations of all three parts of surgeries are stochastic.

In order to match the operating room scheduling
problem to the VRP with synchronized visits, we
assume that servers (operating rooms and surgeons)
leave a dummy depot to perform surgeries and re-
turn to it at the end of their routes. The operating
room scheduling problem previously explained is
still slightly different from the VRP with synchroni-
zation. For example, surgeons are not homogeneous,
and surgeries are already assigned to surgeons. To
match the operating room scheduling problem with
our VRPS, we consider surgeons as homogeneous
vehicles, and then, for this vehicle type, we consider
the set of allowed arcs for traveling based on the given
sequences of surgeries for surgeons. The decision
maker must decide on the number of operating rooms
and their routings in order to minimize the total cost
that includes fixed costs of operating rooms, wait-
ing costs of surgeons, and overtime costs of operat-
ing rooms and surgeons. Figures 2–4 show a Gantt
chart for a deterministic operating room scheduling

problem and the corresponding routing for surgeons
and operating rooms.
Batun et al. (2011) viewed a similar operating room

scheduling problem as a scheduling problem rather
than a VRPwith synchronized visits. They formulated
the problem as a two-stage stochastic program and
proposed an L-shaped solution algorithm. Although
their model is one of the most interesting papers in the
field of stochastic operating room scheduling, we ob-
served the following shortcomings of their work.
1. The scheduling part of their model suffers from

big-M constraints. It is well known that models with
such constraints are weak owing to poor linear pro-
gramming relaxation. This issue is even worse in this
model because big-M constraints are in the second-
stage model, and therefore, big-M values appear as
coefficients of variables in L-shaped cuts. As a result,
the cuts areweak and cannot approximate the second-
stage cost effectively.
2. Authors proposed two sets of symmetry-breaking

constraints to deal with symmetries in their model. Al-
though these constraints prevent the model from
obtaining the same optimal solution with different pre-
sentations, they are not very effective in improving the
quality of linear programming relaxation, and therefore,
branch-and-bound algorithms may extend a large num-
ber of nodes before these constraints become binding.

Figure 2. (Color online) An Operating Room (OR) Schedule
for Three Surgeons in Five Operating Rooms

Figure 3. The Routing of Operating Rooms in the Schedule
of Figure 2

Figure 4. The Routing of Surgeons in the Schedule of Figure 2
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We have overcome these issues by developing a
model in the next section that is free of big-M con-
straints and any symmetries.

3. Two-stage Stochastic Integer
Programming Model

Wepropose a two-stage stochastic integer programming
model for the VRPS defined in Section 2. In the first-
stage model, the decision maker decides about the
number of vehicles of different types to hire, routing
of vehicles, and their departure times. Then, after the
realization of uncertain travel and service times, the
second-stage model computes the start times of services
to customers. The assumption that all uncertain travel
and service times reveal before deciding on second-stage
variables is reasonable and valid from a modeling per-
spective.This isbecausewith respect toLemma 1,which
we will provide later, the second-stage model does
not use information about future uncertainties while
fixing the start time of the service to any customer.

Wepresent thefirst- and second-stage formulations
in the two following sections separately.

3.1. First-stage Model
We use the notation shown in Table 1 for sets, pa-
rameters, and variables in the first-stage model.

Based on the given notation, we formulate the first-
stage model as follows. In Model (S1), index 0 stands
for the depot:

(S1) min
x,y,m

∑
r∈5

cvrmr +
∑
r∈5

∑
i,j∈(r∪ 0{ }:

i,j( )∈!r

ctrijxrij +Q x,y
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (1)

Subject to :∑
i∈(r: 0,i( )∈!r

xr0i � mr r ∈ 5 (2)
∑

i∈(r∪ 0{ }: i,j( )∈!r

xrij � 1 r ∈ 5, j ∈ (r (3)
∑

i∈(r∪ 0{ }: i,j( )∈!r

xrij �
∑

i∈(r∪ 0{ }: j,i( )∈!r

xrji

r ∈ 5, j ∈ (r ∪ 0{ } (4)∑
i,j∈6: i,j( )∈!r

xrij ≤ |6| − qrs r ∈ 5,6 ⊆ (r : |6| ≥ 2

(5)∑
t∈7dep

rj

yrjt � xr0j r ∈ 5, j ∈ (r (6)

xrij ∈ 0, 1{ } r ∈ 5, i, j ∈ (r ∪ 0{ }( )
: i, j
( ) ∈ !r (7)

yrjt ∈ 0, 1{ } r∈5, j∈ (r, t∈7dep
ri (8)

mr ≥ 0, integer r ∈ 5. (9)

Objective function (1) consists of the fixed costs of
vehicles, the travel costs, and the second-stage cost
Q(x,y) that is a function of first-stage decision vari-
ables xrij and yrjt. We define the second-stage cost in
Section 3.2. Constraints (2) and (3) are degree con-
straints for the depot and customers, respectively.
Constraint (4) is the flow conservation constraint.
Constraint (5) guarantees that, for each type of ve-
hicles, the capacity constraints are respected and
no subtour is allowed. Constraint (6) determines the
departure time of vehicles from the depot. Con-
straints (7)–(9) represent the integrality constraints
for first-stage decision variables. In Model (S1), con-
straint (5) eliminates subtours composed of arcs tra-
versed by vehicles of the same type for different types
of vehicles separately but not together.We illustrate it
by an example depicted in Figure 5. In this figure,
there is no subtour for type 1 and type 2 vehicles

Table 1. Notation Q: 19

Notation Description

Sets
5 The set of all types of available vehicles
5i The set of vehicles required for serving customer i
( The set of all customers
(r The set of customers requiring a type r vehicle.

Customers in this set may also need to be visited by
vehicles of other types

!r The set of allowed arcs for type r vehicles
7 The set of available time slots within the scheduling

horizon that includes the normal and overtime
periods. (We suppose that the available time is split
into smaller time slots with equal lengths. In the
remainder of this paper, wherever we state that an
event happens at time slot t, we mean that it occurs at
the beginning of the time slot)

7
dep
ri The set of time slots at which a type r vehicle may

depart the depot to serve customer i with the
condition that it can return to the depot before the
end of the scheduling horizon.We have presented the
computation of this set by given data in Online
Appendix EC.1

Parameters
ctrij Travel cost for a type r vehicle for traveling from

customer i to customer j
cvr The fixed cost of hiring a type r vehicle
dri The required amount of the resource (if there is any) that

is consumed by a type r vehicle while serving
customer i

Cr The capacity of type r vehicles for the resource that they
consume while serving customers

qrs A lower bound on the minimum number of type r
vehicles required for serving customers in set S ⊆ (r.
We compute it by qrs � max{�∑i∈6 dir/Cr, 1	}

Variables
mr The number of type r vehicles to hire
xrij 1 if a type r vehicle visits customer j immediately after

customer i; 0 otherwise
yrjt 1 if a type r vehicle departs the depot at time slot t to

visit customer j; 0 otherwise
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separately, but path A-B-C-D formed by both types of
vehicles is a subtour. In our problem, this type of
subtour is also illegal and results in infeasibility in
the scheduling of customers visits. The infeasibility
happens because the start times of services to any pair
of customers (i1, i2) in the subtourmust satisfy starti1 <
starti2 and starti1 > starti2 , which is a contradiction.
Therefore, although infeasibility cuts from the sub-
problems of L-shaped algorithm will remove such sub-
tours,we should avoid thembeforehand in thefirst-stage
model. Doing so, we call the subproblem for infeasible
solutions fewer times, and therefore, the algorithm will
spend more time finding and evaluating feasible solu-
tions. As discussed later, we address this issue by adding
valid inequalities and also, a lower bounding functional
developed in Sections 4.1 and 6, respectively.

3.2. Second-stage Model
To formulate the second-stage model, we use the
variables, sets, and parameters in Table 2.

An assumption inmodeling the second stage is that
travel and service times are multiples of the time slots
length. In the previous notation, we suppose that sriω,
trijω, and also, all elements of ξ(ω) are given in terms of
time slots length. We formulate the second-stage
model for scenario ω ∈ Ω as follows:

(S2) Q x,y, ξ ω( )( ) � min
u,v,w

∑
r∈5

∑
i∈(r :

i,0( )∈!r

∑
t∈7ri0tω

coritωuri0tω

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+∑

i∈(

∑
t∈7iω

cditvitω +∑
r∈5

cwr wrω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10)

Subject to :∑
t∈7rijω

urijtω � xrij r ∈ 5, i, j ∈ (r ∪ 0{ }( ) : i, j
( ) ∈ !r

(11)∑
i∈ (r∪ 0{ }( ):

i,j( )∈!r

∑
t′∈7rijω:

t′+sriω+trijω≤t

urijt′ω ≥ ∑
k∈ (r∪ 0{ }( ):

j,k( )∈!r & t∈7rjkω

urjktω

r ∈ 5, j ∈ (r, t ∈ 7jω (12)

∑
j∈ (r∪ 0{ }( ):

i,j( )∈!r & t∈7rijω

urijtω � vitω r ∈ 5, i ∈ (r, t ∈ 7iω (13)

wrω � ∑
i∈(r:
i,0( )∈!r

∑
t∈7ri0ω

fritωuri0tω − ∑
i,j∈(r∪ 0{ }:

i,j( )∈!r

grijωxrij

−∑
i∈(r

∑
t∈7dep

ri

tyrit r ∈ 5
(14)

ur0itω � yrit r ∈ 5, i ∈ (r : 0, i( ) ∈ !r, t ∈ 7
dep
ir

(15)
urijtω ∈ 0, 1{ } r ∈ 5, i, j ∈ (r ∪ 0{ }( ) : i, j

( ) ∈ !r

(16)
t ∈ 7rijω

vitω ∈ 0, 1{ } i ∈ (, t ∈ 7iω . (17)
Objective function (10) represents the second-stage

cost in scenario ω and includes overtime, delay,
and waiting costs. The second-stage cost Q(x, y)
in objective function (1) is calculated by Q(x,y) �
Eω∈Ω[Q(x,y, ξ(ω))], where Eω∈Ω[.] computes the ex-
pected value over scenarios ω ∈ Ω. Constraint (11)
links first- and second-stage decision variables xrij
and urijtω. Constraint (12) is the no overlap constraint
and indicates that, if the service to customer j starts at
time slot t, then the service to customer i visited im-
mediately before customer j by the same vehicle must
have started by time slot t − sriω − trijω. Constraint (13)
is the synchronization constraint and ensures that
required vehicles start serving the customer at the
same time. Constraint (14) computes total waiting
times for different types of vehicles. We used auxil-
iary variables wrω for the ease of presenting objective
function (10). We can simply substitute wrω in ob-
jective function (10). In this case, it would be more
reasonable to transfer the expected value of the sec-
ond and third terms on the right-hand side of con-
straint (14) to objective function (1) in the first-stage
model. Constraint (15) introduces the departure times
from the depot to the second-stage model. Con-
straints (16) and (17) represent integrality constraints
for second-stage variables.

4. Valid Inequalities
We develop some valid inequalities for the first- and
second-stage models. We add the first two valid
inequalities to the first-stage model, whereas the
third class of valid inequalities is for the second-
stage model. The main motivation of adding these
valid inequalities is to improve the linear pro-
gramming relaxation of the first-stage model that
results in more efficiency of the proposed L-shaped
algorithm.

Figure 5. (Color online) A Subtour Formed by Two
Different Types of Vehicles
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4.1. Subtour Elimination Constraints
As illustrated by Figure 1, constraint (5) does not
eliminate subtours formed by arcs traversed by ve-
hicles of different types. The following valid in-
equalities (18)–(21) avoid these subtours.

A new variable is zij (one if any vehicle serves
customer j immediately after customer i; zero
otherwise):

zij ≥ xrij r ∈ 5, i, j ∈ (r ∪ 0{ }( ) : i, j
( ) ∈ !r (18)

zij ≤
∑

r∈5: i,j( )∈!r

xrij i, j ∈ (r ∪ 0{ }( ) : i, j
( ) ∈ ∪

r∈5i

!r (19)
∑

i,j∈6: i,j( )∈ ∪
r∈5i

!r

zij ≤ |6| − 1 6 ⊆ ( : |6| ≥ 2 (20)

0 ≤ zij ≤ 1 i, j ∈ ( ∪ 0{ }( ) : i, j
( ) ∈ ∪

r∈5i

!r. (21)

Table 2. Notation

Notation Description

Sets
7iω The set of time slots at which the service to customer i

may start in scenario ω
7rijω The set of times slots at which a type r vehicle may start

serving customer i immediately before customer j in
scenario ω. How to compute sets 7iω and 7rijω is
described in Online Appendix EC.1

Ω The set of random scenarios
Original parameters
L The length of the normal working hours for which no

overtime cost is considered. In our model, we
consider this parameter in terms of time slots length.
We also note that L ≤ |7| holds because set 7 defined
in Section 3.1 includes some additional time slots for
overtime periods

ei The earliest start time in the time window of customer i
li The latest start time in the time window of customer i
sriω The duration of the service provided by a type r vehicle

to customer i in scenario ω
trijω The travel time of a type r vehicle from customer i to a

customer j in scenario ω
coritω The overtime cost of a type r vehicle if it starts serving

customer i at time slot t in scenario ω and then
immediately returns to the depot. We compute it by
coritω � c′overtime ×max{t + sriω + tri0ω − L, 0}, where
c′overtime is the overtime cost for a single time slot
beyond the session length L. We remind that the
service to a customer can start in overtime periods but
must finish before the end of total available time |7|

cdit The delay cost of serving customer iwhen the service to
the customer starts at time slot t. We compute it by
cdit � c′delay ×max{t − li, 0}, where c′delay is the delay cost
for a single time slot beyond the latest start time li

cwr The waiting cost of resource r for each unit time slot
ξ(ω) The vector of uncertain parameters including travel and

service times in scenario ω
Auxiliary parameters
fritω The time slot at which a type r vehicle arrives in the

depot immediately after starting to serve customer i
at time slot t in scenario ω. We have
fritω � t + sriω + tri0ω

grijω The amount of time in scenario ω that a type r vehicle is
involved in serving customer i and also in traveling to
the next customer j. We have grijω � sriω + trijω

Variables
urijtω 1 if a type r vehicle starts serving customer i at time slot t

immediately before serving customer j in scenario ω;
0 otherwise

vitω 1 if the service to customer i starts at time slot t in
scenario ω; 0 otherwise

wrω The total waiting time of all type r vehicles in scenarioω
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Constraints (18) and (19) indicate that, for a fixed
arc (i, j), zij takes one if at least one of the variables xrij is
equal to one, and it takes zero if all variables xrij are
equal to zero. Constraint (20) is the subtour elimi-
nation constraint defined on zij variables. Because xrij
variables are binary, we do not need to consider in-
tegrality constraints for zij variables. Although con-
straint (20) looks similar to the subtour elimination
constraint for the asymmetric traveling salesman
problem (ATSP), we cannot optimally separate con-
straint (20) as in ATSP. We have explained this issue
in Online Appendix EC.5 and proposed a heuris-
tic to partially separate this constraint. This heu-
ristic does not necessarily detect all violated sub-
tours. However, the lower bounding functional
introduced in Section 6 guarantees that all subtours
are avoided.

4.2. Capacity Constraints for Service Times
As discussed for the first-stage model, if vehicles
consume a limited resource while serving customers,
constraint (5) is essential to ensure that the capac-
ity constraints are satisfied. In healthcare applica-
tions explained in Section 2, there is not any physi-
cal resource required while serving customers.
However, in routing and scheduling problems,
we can consider “time” as a resource and impose
constraint (5) to guarantee that the total service
time in each tour does not exceed the maximum
available time in the scheduling horizon. Therefore,
we can add the following valid inequality to the first-
stage model: ∑

i,j∈6: i,j( )∈!r

xrij ≤ |6| − ∑
i∈6

sriω/|7|
⌈ ⌉

r ∈ 5, ω ∈ Ω,6 ⊆ ( : |6| ≥ 2.

(22)

The above cut is known as the rounded capac-
ity inequality in the literature (Lysgaard, Letchford,
and Eglese 2004). We also add some other valid
inequalities by considering “time” as a consum-
able resource while serving customers. These con-
straints are framed capacity, strengthened comb,
homogeneous multistar, and hypotour inequal-
ities. We refer readers for more information about
these valid inequalities to Lysgaard, Letchford, and
Eglese (2004).

4.3. Improved No Overlap Constraints
The following theorem shows an improvement on
constraint (12).

Theorem 1. Constraints (23) and (24) are valid inequalities
for the second-stage model:

∑
i∈ (r∪ 0{ }( ):

i,j( )∈!r

∑
t′∈7rijω:

t′+sriω+trijω≤t

urijt′ω ≥ ∑
k∈ (r∪ 0{ }( ):

j,k( )∈!r

∑
t′∈7rjkω:
t′≤t

urjkt′ω

r ∈ 5, j ∈ (r, t ∈ 7jω

(23)∑
i∈ (r∪ 0{ }( ): i,j( )∈!r

& t−sriω−trijω( )∈7rijω

urij t−sriω−trijω( )ω�
∑

k∈ (r∪ 0{ }( ):
j,k( )∈!r & t∈7rjkω

urjktω

r ∈ 5, j ∈ (r : |5j| � 1 (24)
t ∈ 7jω : t > ej.

Proof. The validity of constraint (23) originates from the
definition of variables urijtω. We have obtained con-
straint (23) by lifting the right-hand side of constraint (12).
Constraint (23) indicates that, if service to customer j
starts at time t or earlier, then the vehicle must have
arrived to this customer at time t or earlier. Constraint (24)
also implies that, for any customer j requiring a single
vehicle (condition 5j � {r} in (24)), the service starts as
soon as the vehicle arrives to the customer if the arrival
time is after the earliest start time of the corresponding time
window(condition t ∈ 7jω : t > ej in (24)).Constraint (24) is
valid because as stated later by Lemma 1, there is no
advantage to postpone the service to a customer when all
required vehicles are available at the customer’s location. □

Theorem 2. Clique inequalities (25) and (26) are equivalent
to constraints (23) and (24):∑

k∈ (r∪ 0{ }( ):
j,k( )∈!r & t′∈7rjkω

∑
t′∈7rjkω:
t′≤t

urjktω + ∑
i∈ (r∪ 0{ }( ):

i,j( )∈!r

∑
t′∈7rijω:

t′+sriω+trijω>t

urijt′ω ≤ 1

r ∈ 5, j ∈ (r, t ∈ 7jω

(25)∑
k∈ (r∪ 0{ }( ):

j,k( )∈!r & t∈7rjkω

urjktω + ∑
i∈ (r∪ 0{ }( ):

i,j( )∈!r

∑
t′∈7rijω:

t′+sriω+trijω ��t

urijt′ω � 1

r ∈ 5, j ∈ (r : |5j| � 1 (26)
t ∈ 7jω : t > ej.

Althoughconstraints (25) and (26) andconstraints (23)
and (24) are equivalent, the former are computa-
tionally more effective because mixed integer pro-
gramming solvers benefit from their clique structure.
Therefore, for the lower bounding functional in-
troduced in Section 6,weuse constraints (25) and (26).

5. L-shaped Algorithm
The L-shaped algorithm is applicable to stochastic pro-
gramming models with continuous recourse decision
variables. However, the second-stage variables of the
model that we developed in Section 3 are integer. The
following theorem handles this issue.
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Theorem 3. The second-stage Model (S2) is still valid if we
relax integrality constraints (16) and (17) provided that all
subtours are prevented by the lower bounding functional
presented later in Section 6.

As a result of Theorem 3,we can apply the L-shaped
algorithm rather than the integer L-shaped algorithm.
Proving the validity of this relaxation is a very im-
portant achievement because integer recourse vari-
ables significantly make two-stage stochastic pro-
grams more difficult. We refer readers to Sherali
and Zhu (2009) and Ahmed (2011) as surveys on
challenging two-stage stochastic integer programs.
The MP of the proposed L-shaped algorithm is as
follows:

(MP) min
x,y,m,θ

∑
r∈5

cvrmr +
∑
r∈5

∑
i,j∈(r∪ 0{ }:

i,j( )∈!r

ctrijxrij

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−∑

r∈5

∑
i,j∈ (r∪ 0{ }( ):

i,j( )∈!r

cwr
∑
ω∈Ω

pωgrijtω

( )
xrij +

−∑
r∈5

∑
i∈(r

∑
t∈7dep

ri

cwr tyrit + θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (27)

Subject to :
2( ) − 9( ) (28)
θ ≥ ∑

ω∈Ω
pωθω (29)

θω ≥ ∑
r∈5

∑
i,j∈(r∪ 0{ }:

i,j( )∈!r

π 1( )
crijωxrij +

∑
r∈5

∑
i∈(r: i,0( )∈!r

∑
t∈7dep

ri

π 2( )
critωyrit

ω ∈ Ω, c ∈ #o
ω (30)∑

r∈5

∑
i,j∈(r∪ 0{ }:

i,j( )∈!r

σ 1( )
crijωxrij +

∑
r∈5

∑
i∈(r: i,0( )∈!r

∑
t∈7dep

ri

σ 2( )
critωyrit ≤ 0

ω ∈ Ω, c ∈ # f
ω (31)

We also formulate subproblem (SPω) for scenariosω ∈
Ω in the L-shaped algorithm as follows:

SPω( ) Q′ x,y, ξ ω( )( )
�min

u,v

∑
r∈5

∑
i∈(r:
i,0( )∈!r

∑
t∈7ri0tω

coritω

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ uri0tω +∑
i∈(

∑
t∈7iω

cditvitω

+∑
r∈5

∑
i∈(r:
i,0( )∈!r

∑
t∈7ri0tω

cwr fritωuri0tω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
(32)

Subject to

11( ), 13( ), 15( ), 23( ) (33)
urijtω ≥ 0 r ∈ 5, i, j ∈ (r ∪ 0{ }( ) : i, j

( ) ∈ !r, t ∈ 7rijω

(34)
vitω ≥ 0 i ∈ (, t ∈ 7iω. (35)
In objective function (27), the third and fourth terms

are the negative parts of the waiting cost in the
second-stage Model (S2). We have assumed that, in the
second-stage Model (S2), wrω in objective function (10)
is substituted using constraint (14), and then, the
negative parts of wrω are transferred to the objective
function of first-stage Model (S1). In the third term
of (27), pω represents the probability of scenario ω.
Also, θ is the approximation of the second-stage cost
without the negative parts of the waiting cost. In
constraint (29), θω stands for the approximation of the
second-stage cost in scenario ω without the negative
parts of the waiting cost. Constraints (30) and (31) are
the optimality and feasibility cuts that are iteratively
generated after solving subproblems (SPω). In these
constraints, #o

ω and #
f
ω are the set of generated op-

timality and feasibility cuts for scenario ω. In con-
straint (30), π(1)

crijω and π(2)
critω are the dual variables of

constraints (11) and (15) when generating optimality
cut c ∈ #o

ω. Likewise, in constraint (31), σ(1)crijω and σ(2)critω
are the extreme rays of constraints (11) and (15)
when generating feasibility cut c ∈ #

f
ω. In the ob-

jective function (32), the third term is obtained af-
ter substituting wrω in objective function (10) us-
ing constraint (14). In constraints (34) and (35) of
the subproblem, we have removed that the upper
bound constraints obtained from relaxing the integrality
constraints (16) and (17) because they are trivial with
respect to constraints (3), (11), (13), (34), and (35).
In the L-shaped algorithm, after solving theMP, we

fix the first-stage solution in subproblems and solve
them for all scenarios ω ∈ Ω. We then generate op-
timality and feasibility cuts from optimally solved
and infeasible subproblems, respectively. The algo-
rithm iterates until it reaches the maximum accept-
able optimality gap or the time limit. We also im-
plement the branch-and-cut version of the L-shaped
algorithm, where we solve the master problem once
by a branch-and-cut algorithm. In the branch-and-
bound tree, whenever we find a first-stage feasible
solution, we solve subproblems and add optimality
and feasibility cuts (30) and (31) to the branch-and-
bound tree. In the branch-and-cut algorithm,we solve
subproblems only when we find a first-stage feasi-
ble solution and do not solve them for first-stage
solutions that are fractional or include infeasible
subtours in any node of the branch-and-bound tree.
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More implementation details are provided in Online
Appendix EC.19.

6. Lower Bounding Functional
In the following, we develop a lower bounding func-
tional for the proposed L-shaped algorithm.

Lemma 1. For a fixed first-stage solution, in any scenario
ω ∈ Ω, services to customers start as soon as all required
vehicles are available at the customers’ locations.

With respect to Lemma 1, it is clear that the second-
stage model does not use information on future un-
certain travel and service times while deciding about
the start time of the service to any customer. This is the
reason for the validity of our assumption on making
second-stage decisions after the revelation of all un-
certain times.

Lemma 2. For a fixed first-stage solution, if customers are
served as soon as the required vehicles are available at
customers’ locations, the finish time of service to each cus-
tomer is convex in terms of ξ(ω).

As discussed in Section 3.2, Q(x,y, ξ(ω)) that is for-
mulated by relations (10)–(17) computes the second-
stage cost for a fixed first-stage solution (x,y) in
scenario ω assuming that service and travel times in
this scenario are multiples of the time slots length.
Similarly, Q′(x, y, ξ(ω)), defined by (32)–(35), calcu-
lates the second-stage cost without negative parts of
the waiting cost for scenario ω if all travel and service
times are multiples of the time slots length. Let us
define Qgeneral(x,y, ξ(ω)) as a function that computes
the second-stage cost without negative parts of the
waiting cost for a fixed first-stage solution (x, y) in
scenario ω without any condition on service and
travel times (i.e., these times are not necessarily
multiples of the time slots length).

Lemma 3. For a fixed first-stage solution (x,y), Qgeneral(x,
y, ξ(ω)) is convex in terms of ξ(ω).
Lemma 4. Q′(x, y, �ξ(ω)
) ≤ Qgeneral(x, y, ξ(ω)) holds
where �ξ(ω)
 denotes a vector of travel and service times
rounded down to largest multiple of time slot length in
scenario ω.

Theorem 4. θ ≥ Q′(x, y, �ξ(ω̄)
) is a valid inequality for
MP where ξ(ω̄) is the vector of travel and service times for
the average scenario (i.e., ξ(ω̄) � ∑

ω∈Ω
pωξ(ω)).

The validity of Theorem 4 relies on Lemmas 3 and 4
as well as Jensen’s Inequality (Jensen 1906). This
theorem shows that we can add θ ≥ Q′(x,y, �ξ(ω̄)
) as
a lower bounding functional to the MP. To consider
this lower bounding functional in our model, we

should impose the following constraints to themaster
problem:

θ ≥ ∑
r∈5

∑
i∈(r:
i,0( )∈!r

∑
t∈7ri0tω̄

coritω̄uri0tω̄ +∑
i∈(

∑
t∈7iω̄

cditvitω̄

+∑
r∈5

∑
i∈(r:
i,0( )∈!r

∑
t∈7ri0tω̄

cwr fritω̄uri0tω̄ (36)

11( ), 13( ), 15( ), 23( ), 34( ) − 35( ) for scenario ω̄ rather
than scenario ω.

(37)
We note that, in constraints (36) and (37), ω̄ denotes

the scenario corresponding to the realization �ξ(ω̄)
.
In this lower bounding functional, we make a copy of
the second-stage variables for scenario ω̄ and add the
corresponding second-stage constraints and the ob-
jective function by (36) and (37). We emphasize that
we add lower bounding constraints (36) and (37) for a
single scenario ω̄ not all available scenarios. There-
fore, this lower bounding functional includes signif-
icantly fewer constraints and variables compared with
the extensive form of the second-stage model (10)–(17).
The above lower bounding functional is very effec-
tive, and it is a vital part of the L-shaped algorithm
developed in this paper. This is because it provides a
strong lower bound for approximating the second-
stage cost.
There are some points that can improve the pro-

posed lower bounding functional. First, as stated by
Theorem 3, integrality constraints on the second-
stage variables are trivial, and we can relax them.
Also, as discussed in Section 5, we can remove the
obtained upper bound constraints urijtω ≤ 1 and vitω ≤
1 from the subproblem. However, we noticed that Q: 11
CPLEX finds feasible solutions more easily when we
declare these variables as integer variables. This is
perhaps because CPLEX applies some heuristics to
find feasible solutions that are more effective in the
case of integer variables. Therefore, in the lower
bounding functional (36) and (37), we replace con-
straints (34) and (35) by constraints (16) and (17) and
consider variables vitω̄ and urijtω̄ as binary variables.
These constraints are valid for the lower bounding
functional because the proof of validity θ ≥ Q′(x,y,
�ξ(ω̄)
) in Theorem 4 remains unchanged with con-
straints (16) and (17) instead of constraints (34) and
(35) in subproblem (SPω). Second, because of the
clique structure of constraint (25), it is more effective
than constraint (23) when we have integrality con-
straint on vitω̄ and urijtω̄ variables. Therefore, in the
lower bounding functional, we replace constraint (23)
by constraint (25) in (37). Moreover, we improve the
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lower bounding functional by adding constraint (26)
for scenario ω̄.

Theorem 5. The proposed lower bounding functional elim-
inates all subtours.

This theorem is very important considering that we
can only heuristically separate the subtour elimina-
tion constraints (21).

7. Analysis of Subproblems
To generate the optimality and feasibility cuts, we
need to solve subproblems for all scenariosω ∈ Ω and
extract dual values or infeasibility extreme rays. This
step of the algorithm is computationally demand-
ing, especially for our subproblems that include a
large number of variables and constraints. This issue
is even worse in the case of the branch-and-cut
implementation of the L-shaped algorithm, where
we must solve subproblems whenever we find a first-
stage feasible solution in any node of the branch-and-
bound tree. We develop a specialized algorithm for
subproblems that is much faster than standard linear
programming algorithms.

In Online Appendix EC.14, we provide an algo-
rithm that, for a fixed first-stage solution (x̂, ŷ), com-
putes the start times of services to customers in sce-
nario ω. The idea of this algorithm is that for any
demand point i, for which the required servers are
available at its location, it sets the start time of service
to the maximum of the earliest start time ei and the
latest arrival times of its servers. After fixing the start
time of a demand point, the algorithm computes the
arrival times of servers to the next demand points
in their visit lists and similarly calculates the start
time of service to the new demand point. This step of
the algorithm continues until the all start times are
computed. Using this algorithm, if we find that the
completion times of all tours are within the sched-
uling horizon |7|, the subproblem is feasible, and we
use the formula presented in Section 7.1 to compute
the dual values π(1)

crijω and π(2)
critω. We then generate an

optimality cut (30) based on the calculated dual
values. However, if we realize that any vehicle
completes its tour after the end of the scheduling
horizon, we generate an infeasibility cut as explained
in Section 7.2.

7.1. Optimality Cuts
In this section, assuming that the subproblem is
feasible, we analyze its dual formulation in order to
compute the optimal values of dual variables. As
stated in Lemma 1, subproblem (SPω) has a special
structure, and for a fixed first-stage solution, we can
find the optimal second-stage solution by serving
customers as soon as all required vehicles are available.
The special structure of subproblem (SPω) motivated

us to analyze the dual formulation of the subproblem
in order to see if there is any shortcut to find the
optimal dual solution.
Before writing the dual formulation of subproblem

(SPω) given by (32)–(35), we note that, with respect to
constraint (11), constraint (15) is redundant in the case
that x̂r0i � 0 holds. Considering this point, we write
the dual formulation of the subproblem (SPω) as
follows:

Dω( ) max
π

∑
r∈5

∑
i,j∈(r∪ 0{ }:

i,j( )∈!r

x̂rijπ
1( )
rijω +∑

r∈5

∑
i∈(r:
x̂r0i�1

∑
t∈7dep

ri

ŷritπ
2( )
ritω

(38)
Subject to :

π 1( )
r0jω+

∑
t′∈7jω:

t+tr0jω≤t′
π 3( )
rjt′ω+1 x̂r0j�1( )π 2( )

rjtω ≤ 0

r ∈5, j∈(r : 0, j
( ) ∈!r, t∈7r0jω (39)

π 1( )
rijω+

∑
t′∈7jω:

t+sriω+trijω≤t′
π 3( )
rjt′ω−

∑
t′∈7iω:
t≤t′

π 3( )
rit′ω+π 4( )

ritω ≤ 0

r∈5, i, j∈(r : i, j
( ) ∈!r, t ∈7rijω (40)

π 1( )
ri0ω−

∑
t′∈7iω:
t≤t′

π 3( )
rit′ω+π 4( )

ritω ≤λritω

r∈5, i∈(r : i,0( ) ∈!r, t ∈7ri0ω (41)
−∑

r∈5
π 4( )
ritω ≤ cdit i ∈ (, t ∈ 7iω (42)

π 3( )
rjtω ≥ 0 r ∈ 5, j ∈ (r, t ∈ 7jω. (43)
In Model (Dω), π(1)

rijω, π
(2)
rjtω, π

(3)
rjtω, and π(4)

ritω denote the
dual variables corresponding to constraints (11), (15),
(23), and (13), respectively. To simplify the model and
also the analysis that follows, we have defined a new
parameterλritω by λritω � coritω + cwr fritω. In constraint (39)
and also in the remainder of the paper, we note that1(.)
is an indicator that is equal to one if condition (.) is
satisfied and zero otherwise.
In Online Appendix EC.15, we present some compli-

cated formulas as a parametric solution for Model (Dω).
Lemma 5. The dual solution proposed in Online Appendix
EC.15 is a feasible dual solution for Model (Dω).

Lemma 6. The objective value of the dual solution proposed
in Online Appendix EC.15 is equal to the optimal objective
value of subproblem (SPω).

Theorem 6. The dual solution obtained proposed in Online
Appendix EC.15 is the optimal solution of Model (Dω).

The validity of Theorem 6 is based on the strong
duality theorem in linear programming. Lemmas 5
and 6 demonstrate that the proposed dual solution
obtained inOnlineAppendix EC.15 is feasible and has
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an objective value that is equal to the optimal ob-
jective value of the primal subproblem. Theorem 6
indicates that, instead of using simplex or interior
point algorithms, we can simply use relations in
Online Appendix EC.15 in order to find the values of
dual variables π(1)

crijω and π(2)
critω in optimality cut (30).

7.2. Feasibility Cuts
The only way that, for a first-stage solution, sub-
problem (SPω) may turn out infeasible is that, for at
least one vehicle, the tour does not complete within
the scheduling horizon |7|. The first idea to prevent
from revisiting first-stage solutions with infeasible
subproblems is to use the following simple no good
cut:∑
r∈5

∑
i∈(r:

∃t∈7dep
ri :ŷrit�1

yri depri( ) +
∑
r∈5

∑
i,j∈ (r∪ 0{ }( ):
i,j( )∈!r & x̂rij�1

xrij ≤ n − 1. (44)

In (44), n is the sum of the number of x̂rij and ŷrit
variables that are equal to one. It is clear that, if the
subproblem is infeasible for a given first-stage solu-
tion, modified solutions obtained by postponing the
departure times are also infeasible. Therefore, we can
enhance (44) as follows:∑
r∈5

∑
i∈(r:

∃t∈7dep
ri :ŷrit�1

∑
t′∈7dep

ri
:

t′≥depri

yrit′ +
∑
r∈5

∑
i,j∈ (r∪ 0{ }( ):
i,j( )∈!r& x̂rij�1

xrij ≤n−1. (45)

No good cuts are generally known as weak cuts.
Therefore, in the following, we explain how to de-
velop stronger feasibility cuts. In order to propose the
new feasibility cuts, we first need to define the notions
of “path” and “critical path.” We define a path P by
P � (Pnodes,Presources), where Pnodes � 〈av〉v�1to|Pnodes | is a
sequence of |Pnodes| nodes in ( ∪ {0} visited on the path
and Presources � 〈rv〉v�1 to |Pnodes |−1 is series of vehicles types
corresponding to arcs (av, av+1) for v � 1 to |Pnodes| − 1.
The vehicles types are not necessarily the same for
different arcs. The destination of the last arc in a path
is the depot (i.e., a|Pnodes | � 0), whereas the originmay or
may not be the depot. For a given first-stage solution,
we refer to a path as a “critical path” in scenario ω if
the two following conditions are satisfied.

1. The vehicle corresponding to each arc on the
path is a critical vehicle for the customer at the arc
tail (we defined the notion of “critical vehicle” in
Section 7.1).

2. The sum of travel and service times on the path
plus the start time of the service to the first customer
on the path violates the scheduling horizon’s time
limit.

The reason for infeasibility of subproblem (SPω) for
a given first-stage solution is the existence of at least
one critical path. In the following, we present two

types of no good cuts in order to prevent the part of
the first-stage solution resulting in critical paths.
We devise the first cut for critical paths originating
from the depot. For this type of critical paths, we
propose the following cut using the notation P �
(Pnodes,Presources) explained above:

∑
t∈7dep

r1a2
:t≥depr1a2

yr1a2t +
∑|Pnodes |−1

v�1
xrvavav+1 ≤ |Pnodes| − 1. (46)

Wepropose the second type of cuts for critical paths
not originating from the depot. In this case, all ve-
hicles visiting the first customer are noncritical, and
the service to the customer starts when his time
window opens. We can write the no good cut as
follows without any knowledge about customers
visited before the first customer on the path and any
departure time:

∑|Pnodes |−1

v�1
xrvavav+1 ≤ |Pnodes| − 2. (47)

In Online Appendix EC.18, we provide an algo-
rithm to extract critical paths for a given first-stage
solution in scenario ω.

8. Computational Results
We implemented the proposed algorithms in C++
and used IBM ILOG CPLEX Optimization Studio
V12.6 to solve mixed integer programming models.
We ran experiments on a computer with two Intel
Xeon X5650 Westmere processors, 2.67 GHz, and a
total of 12 cores. We used a single core for running each
test instance. We have provided more implementation
details of the proposed L-shaped and branch-and-cut
algorithms in Online Appendix EC.19.

8.1. Home Healthcare Scheduling Instances
In this section, we explain how we generated a set of
home healthcare scheduling instances with stochastic
travel and service times. To generate most of data in
these instance sets, we used the data generation ap-
proach proposed by Di Mascolo, Espinouse, and
Ozkan (2014). We slightly modified the proposed
approach in order to consider stochasticity for travel
and service times. In these instances, two groups of
nurses, includingRNs andHHAs,must serve patients
who are uniformly dispersed in a square area with a
side length of 40 km. The home healthcare center is
located at the center of this area. For stochastic in-
stances, we set the number of patients to {10, 15, 20}.
Moreover, we define synchronization rate as the per-
centage of patients requiring a simultaneous service by
an RN and an HHS and set it to {10, 20, 30, 40}. To
determine the type of required nurses for patients
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without any synchronization, we randomly divided
them to two groups of the same size and supposed that
these groups must by served by RNs and HHAs sep-
arately. For each patient, we generated the earliest start
time and also the length of the timewindow from [0, 120
minutes] and [60, 180 minutes] randomly and then,
fixed the latest start time to the sum of time window’s
earliest start time and its length.

For stochastic instances, we generated 100 random
scenarios for travel and service times. For each sce-
nario, we randomly generated the service times from
[20, 180 minutes]. Also, we generated the travel time
between every pair of customers i and j from a normal
distribution with a mean μij � dij and a standard
deviation σij � dij/6, where dij is the Euclidean dis-
tance between customers i and j.

We supposed that the normal session length for
nurses is nine hours, after which overtime penalties
are incurred. Moreover, we set the maximum avail-
able time for completing tours to 11 hours. Based on
http://www.payscale.com, we estimated the fixed
costs of hiring an HHA and an RN to be $94.41 and
$216 per day, respectively, which are equivalent to
$10.49 and $24 per hour, respectively. We also sup-
posed that nurses are paid with double rates for
working beyond the normal session length. Also, we
set the per hour delay cost for serving a patient to
$15.73, which is equal to 1.5 times an HHA’s salary
rate. Because we let the model decide about the
number of nurses and we pay fixed costs for hiring
RNs and HHA, the model tends to minimize waiting
times to visit patients by a few nurses. Therefore, we
did not consider waiting costs in the home healthcare
scheduling problem. However, in the case that the
number of nurses is fixed a priori, one can consider
waiting costs. We obtained 120 home healthcare
scheduling instances by generating 10 instances for
each combination of the number of patients and the
synchronization rate.

8.2. Results for Home Healthcare
Scheduling Instances

We report the results of the home healthcare scheduling
problem with stochastic travel and service times in Ta-
ble 3. In this table, we report the results of the pro-
posed algorithms under columns L-shaped algorithm
and branch-and-cut algorithm. L-shaped algorithm
refers to the master-subproblem implementation of the
proposed algorithm. In this case, we iteratively solve the
master problem and generate optimality and feasi-
bility cuts in each iteration by solving the sub-
problems after convergence of the master problem.
In the branch-and-cut algorithm, we solve the master
problem only once. Within its branch-and-bound tree
of this single master problem, whenever we find a
first-stage feasible solution, we solve subproblems

and add optimality and feasibility cuts to the tree. For
L-shaped algorithm and branch-and-cut algorithm,
we have included all proposed enhancements, including
the lower bounding functional, valid inequalities, and
the specialized algorithm for subproblems. Moreover,
under column branch-and-cut algorithmwithout LBF,
we have presented the computational results of
the branch-and-cut algorithmwith all enhancements
except the lower bounding functional in order to
evaluate the effect of this feature of the algorithm.
In absence of the lower bounding functional, we
add the MTZ subtour elimination constraint (Miller,
Tucker, and Zemlin 1960) based on xrij variables. This
constraint ensures elimination of all subtours but
is generally weaker than other subtour elimination
constraints.
In Table 3, each row represents the average of

over 10 instances. Under Data Info., Pat. No. and Syn
(%) give the number of patients and the percentage
of customers requiring synchronized visits, respec-
tively.UnderL-shaped algorithmand branch-and-cut
algorithm, we report the results of the proposed al-
gorithms. Because the branch-and-cut algorithm out-
performs the L-shaped algorithm, we give more
details for the branch-and-cut algorithm. Time (sec)
gives the computational time of algorithms in sec-
onds. LB. and UB. indicate the best lower and upper
bounds of algorithms, respectively, and Gap. computes
the gap between these bounds. The subscripts of
LB., UB., and Gap. are L, B, and N, which represent
L-shaped algorithm, branch-and-cut algorithm, and
branch-and-cut algorithm without LBF, respectively.
Also, under L-shaped algorithm, Itegives the number
of times that the L-shaped algorithm has iterated
between the master problem and subproblems. Under
branch-and-cut algorithm,we also have the following
columns. Nodes No. gives the number of nodes that are
examined in thebranch-and-cut algorithm. Feas. Cut No.
and Opt. Cut No. indicate the numbers of generated
feasibility and optimality cuts, respectively. We set a
time limit of 24 hours for running instances. However,
in order to show that the proposed branch-and-cut
algorithm finds high-quality upper bounds in less
computational time, we report column ΔUB

4h,24h(%),
which computes the gap between the upper bounds
obtained after 4 and 24 hours. VSS indicates the value
of the stochastic solution in percentage. We obtain
this value by VSS � 100(UBdet −UBB)/UBdet, where
UBdet indicates the objective value of the stochastic
problem for the solution obtained by solving the
“mean-value” problem. By “mean-value” problem,
we refer to the problem with a single scenario that is
the average of all scenarios. For the fixed “mean-
value” solution, if the stochastic problem turns out
infeasible in at least one scenario, then we have
UBdet � ∞ and VSS � 100%.
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In Table 3, the average values of GapB are 0.00%,
0.60%, and 3.57% for instances with 10, 15, and 20
patients, respectively, whereas the averages of GapL
for the same size instances are 1.27%, 1.88%, and
6.70%. These values demonstrate that the branch-and-
cut algorithm significantly outperforms the L-shaped
algorithm, especially in larger-sized instances. We
can see that, as the size of instances increases, the
problem gets more difficult, and average values of
GapB increase. Small values of ΔUB

4h,24h demonstrate that
the branch-and-cut algorithmfinds high-quality upper
bounds in the first four hours of computational time.
Moreover, in Table 3, we observe that all average
values of VSS are 100% that demonstrate that con-
sidering stochasticity in modeling the home health-
care scheduling problem is very important and so-
lutions obtained by solving the “mean-value”problem
are infeasible in the stochastic problem.

Moreover, under column branch-and-cut algorithm
without LBF, the average values of GapN are 28.30%,
364.79%, and 847.29%. Comparisonof thesevalueswith
those of the branch-and-cut algorithmdemonstrates that
the lower bounding functional is extremely vital for
the effectiveness of the branch-and-cut algorithm. We
also observe that, for those instances withGapN equal
to 0.00%, computational times are significantly larger
than those of the branch-and-cut algorithm with the
lower bounding functional.

Table 4 presents the computational results of the
branch-and-bound algorithm with different solution
methods for subproblems. In this table, each row
gives the average of results for 40 instances with dif-
ferent synchronization rates. Under Proposedmethod,
we provide results for the case that subproblems are
solved using themethod proposed in Section 7. Primal
simplex, Dual simplex, and Interior point present
computational results for cases that we used standard
linear programming algorithms to solve subproblems.
Furthermore, Ave. time (sec) shows the average so-
lution time for solving a single subproblem, andNodes
no. indicates the number of nodes explored within a
computational time of 30 minutes. Also, under columns

Primal simplex, Dual simplex, and Interior point, Time
ratio gives the ratio of the correspondingAve. time (sec)
to the Ave. time (sec) of our proposed method. Aver-
age values of Time ratio demonstrate that our sub-
problem analysis method is 169, 483, and 196 times
faster than primal simplex, dual simplex, and inte-
rior point methods, respectively. Moreover, our pro-
posed method explores a significantly higher number
of nodes and provides lower optimality gapswithin the
time limit.

8.3. Operating Room Scheduling Instances
For the operating room scheduling problem, we gen-
erated a set of instances with stochastic surgery, anes-
thesia, and cleaning times. We set the number of sur-
geries to {11, 15, 20, 25}. For each instance, we generated
500 random scenarios. We generated surgery and an-
esthesia durations using distributions provided Q: 12in table
1 of Gul et al. (2011). Gul et al. (2011) extracted these
distributions from the data of 4,034 patients at Mayo
Clinic in thefirst 21weeks of 2006. Because no data are
available in Gul et al. (2011) for cleaning times, we
generated them from [0, 15 minutes] uniformly. After
transforming the generated durations to travel and
service times in the equivalent VRPS as explained in
Section 2, we rounded travel and service times to the
closest multiple of five minutes, which is the length of
time slots in our model.
To generate operating room scheduling instances,

we introduce a parameter ρ that denotes the average
working time of a surgeon. We set ρ to {5, 7, 9} hours.
We set the number of surgeons to �γ/ρ	, where γ
denotes the sum of surgeries durations averaged over
all scenarios. We assigned surgeries to surgeons as
follows. The idea of the following procedure is to
make balanced workloads for surgeons. We first
sorted surgeries in a decreasing order of the average
surgery duration. Then, we assigned surgeries one by
one from the sorted list to surgeons. To assign each
surgery, among all surgeons, we choose the one with
the lowest sum of assigned surgeries durations. After
assigning all surgeries,we sequenced surgeries randomly

Table 4. Comparison of Different Solution Methods for Subproblems in Stochastic Home Healthcare Scheduling InstancesQ: 20
Within a Time Limit of 30 Minutes

Data
info. Proposed method Primal simplex Dual simplex Interior point

Pat. no.

Ave.
time
(sec)

Nodes
no.

GapB
(%)

Ave.
time
(sec)

Time
ratio

Nodes
no.

GapB
(%)

Ave.
time
(sec)

Time
ratio

Nodes
n.

GapB
(%)

Ave.
time
(sec)

Time
ratio

Nodes
no.

GapB
(%)

10 0.007 1,835 1.23 0.596 86 403 3.64 1.563 220 60 8.28 0.653 94 194 6.24
15 0.012 2,227 2.55 1.884 161 32 INF 4.581 378 0 INF 1.912 164 9 INF
20 0.016 802 24.56 4.291 259 1 INF 14.832 850 0 INF 5.516 330 0 INF
Average 0.012 1,621 9.45 2.257 169 145 INF 6.992 483 20 INF 2.694 196 68 INF
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for each surgeon. We supposed that the normal session
length, during which no overtime penalty is paid, is
nine hours.We also considered the possibility of having
overtime for at most two hours. Because it does not
make sense to consider time windows for the start time
surgeries, we set earliest and latest start times to the
beginning and end of the day, respectively. We also
supposed that surgeons are available at the beginning of
the scheduling horizon.

We used all cost coefficients provided by Batun
et al. (2011). The fixed cost of opening an operating
room is $4,437. There is no waiting cost for operat-
ing rooms because we consider fixed cost for them.
However, because there is no fixed cost for surgeons,
we considered the waiting cost to be $88.74 per
minute for them. We also set the overtime cost for
surgeons and operating rooms to $133.11 and $12.37
per minute, respectively. We generated 10 instances
for each combination of ρ and the number of surgeries
for a total of 120 instances.

8.4. Results for Operating Room
Scheduling Instances

We report the results of the operating room sched-
uling problem with stochastic durations in Table 5. In
this table, each row represents the average over 10
instances. Under Data info., Pat. no. and Sur. time
limit, we give the number of patients and the value of
parameter ρ used for the generation of instances,
respectively. Other columns of this table are the same
as similar columns in Table 3.

In Table 5, we observe that the values of GapB are
considerably less than those of GapL. This observation
demonstrates that the branch-and-cut algorithm strongly
dominates the L-shaped algorithm in the operating room
scheduling context too. In Table 5, the average values of
GapB are 0.00%, 0.00%, 0.11%, and 2.20% for instances
with 11, 15, 20, and 25 surgeries, respectively. We
observe that most of the instances with up to 20 sur-
geries are optimally solved. Furthermore, our branch-
and-cut algorithm can solve instances with 25 surgeries

and average surgeon time limits of nine hours optimally.
These results demonstrate that our branch-and-cut al-
gorithm is significantlymore effective than the algorithm
proposed by Batun et al. (2011), which can solve in-
stances with up to 10 and 11 surgeries optimally.
Moreover, in Table 5, the average values of VSS are

8.10%, 39.12%, 38.98%, and 40.06%, which show that
value of stochastic solution for instances with more
surgeries is higher and that the application of our
algorithm is more justifiable and beneficial in such
cases. In addition, we observe that VSS increases as
the average surgeon time limit increases. This is be-
cause in instances with higher average surgeon time
limits (ρ), it is more likely that the mean-value solu-
tion results in unexpected overtime or infeasibility in
the stochastic problem. The other noticeable point is
that the values of ΔUB

4h,24h are less than 0.78%, which
shows that our branch-and-cut algorithm improves
the upper bound values within the first four hours
of computational time. It is also noteworthy that
the average of computational time to obtain opti-
mal solutions of instances with 11 surgeries is 2,231
seconds, whereas the solution times of the algo-
rithm proposed by Batun et al. (2011) for two sets of
instances with the same size are 4,866 and 9,992
seconds.
Comparison of the average values ofGapN andGapB

for instances with 15, 20, and 25 patients shows that
the lower bounding functional plays an important
role in the proposed branch-and-cut algorithm. We
also observe that, for instances with 10 patients, the
average computational times of branch-and-cut al-
gorithm without LBF are considerably larger than
those of branch-and-cut algorithm.
Similar to Table 4, Table 6 provides the computa-

tional results of the branch-and-bound algorithm for
stochastic operating room scheduling instances with
different solution methods of subproblems. In all
cases, we set the time limit to 30 minutes. We observe
that our proposed specialized algorithm for sub-
problems is 78, 76, and 59 times faster than primal

Table 6. Comparison of Different Solution Methods for Subproblems in Stochastic Operating Room Scheduling Instances
Within a Time Limit of 30 Minutes

Data
info. Proposed method Primal simplex Dual simplex Interior point

Pat. no.

Ave.
time
(sec)

Nodes
no.

GapB
(%)

Ave.
time
(sec)

Time
ratio

Nodes
no.

GapB
(%)

Ave.
time
(sec)

Time
ratio

Nodes
no.

GapB
(%)

Ave.
time
(sec)

Time
ratio

Nodes
no.

GapB
(%)

11 0.053 307 2.79 1.91 37 0 24.64 1.96 37 0 23.86 1.97 38 0 24.31
15 0.058 280 6.62 3.35 58 0 INF 3.76 61 0 INF 2.93 49 0 INF
20 0.088 114 10.03 7.38 84 0 INF 9.23 91 0 INF 5.79 67 0 INF
25 0.107 89 12.81 17.57 132 0 INF 15.28 114 1 INF 9.20 80 0 INF
Average 0.077 198 8.06 7.55 78 0 INF 7.56 76 0 INF 4.97 59 0 INF
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simplex, dual simplex, and interior point methods,
respectively. We can also observe that our method
explores 198 nodes within the time limit, whereas
othermethods time out in the root node of the branch-
and-bound tree. It is also noteworthy that the value
of Time ratio increases in terms of the number of
patients.

9. Case Study
In addition to the generated instances, we tested our
proposed algorithm on a set of real-world instances
for a home healthcare company located in Canada.
We had access to the record of visits in the first three
months of 2018. To create each test instance, on each
day, we chose 10, 15, or 20 visits randomly. This
resulted in 90 instances with a varied number of
synchronized visits. The earliest and latest start times
of the time windows are in the ranges of [8:00 a.m.,
3:00 p.m.] and [8:30 a.m., 6:00 p.m.], respectively.
Figure 6 shows the histogram of service times that
vary between 10 and 260 minutes; 80% of service
times are less than or equal to two hours. After dis-
cussingwith the company’s specialists, we decided to

consider the fixed cost of RN andHHA and the length
of the scheduling horizon as explained in Section 8.
In Table 7, we report the computational results of

the home healthcare instances with real data. Under
Data info., Syn. no. and Inst. no. show the number of
visits requiring synchronization and the number of
instances for that category, respectively. This table
shows that our proposed algorithm finds quality
solutions with reasonable optimality gaps within a
time limit of four hours. As in Table 3, for almost all of
the new instances, VSS was 100% because of the in-
feasibility of the expected value solution in the sto-
chastic problem. Therefore, in Table 7, we report
RVSS, a revised version of VSS, instead of VSS. RVSS
provides a better insight on the value of consider-
ing stochasticity in the synchronized VRP. We use
RVSS � 100(UBH −UBB)/UBH . In this formula, UBH

represents a finite upper bound obtained using a
heuristic algorithm that solves some modified ex-
pected value problems in several iterations until it
obtains a feasible solution for the stochastic problem.
RVSS (%) implies the amount of cost saving resulted
from our proposed algorithm compared with this
reasonable heuristic that one may use in the practice
without taking the uncertainty into account. The
details of this heuristic are provided in Online Ap-
pendix EC.20. Table 7 shows that the average RVSS
(%) is around 8.50%. The details of the cost im-
provement in RVSS (%) are given in the last four
columns of the table. For instance, under Hiring cost
impr. (%), the values of 100(UBhiring

H −UBhiring
B )/UBH

are computed, where UBhiring
H and UBhiring

B are the
hiring costs of nurses in the heuristic solution and
our branch-and-cut solution, respectively. Compared
with the heuristic, our algorithm results in solutions
that save between 17.60% and 22.40% on hiring costs
of nurses on average. This saving comes at the expense of

Figure 6. (Color online) Histogram of the Service Times in
the Real-World Home Healthcare Scheduling Instances

Table 7. Computational Results of the Branch and Cut for the Home Healthcare Scheduling Problem with Real Data

Data info. Branch-and-cut algorithm

Pat. no.
Syn.
no.

Inst.
no.

Time
(sec) LBB UBB GapB(%) RVSS(%)

Hiring cost
impr (%)

Travel cost impr
(%)

Overtime cost
impr (%)

Delay cost
impr (%)

10 1–2 16 76 787 787 0.00 10.39 15.67 0.47 −1.02 −4.73
10 3–4 14 333 894 894 0.00 8.42 19.54 0.63 −3.86 −7.89
Average 204 841 841 0.00 9.47 17.60 0.55 −2.44 −6.31
15 1–2 10 331 1,039 1,039 0.00 9.76 22.28 0.84 −4.42 −8.94
15 3–4 14 1,002 1,162 1,162 0.00 7.86 21.82 1.16 −5.54 −9.58
15 5–6 6 5,150 1,176 1,179 0.31 9.05 23.95 0.02 −5.02 −9.90
Average 1,608 1,124 1,125 0.06 8.73 22.40 0.82 −5.06 −9.43
20 1–2 9 1,805 1,241 1,241 0.00 8.03 23.92 1.06 −5.45 −11.50
20 3–4 6 6,138 1,358 1,360 0.14 6.62 18.68 0.71 −4.83 −7.94
20 5–6 7 7,749 1,499 1,502 0.21 6.00 18.14 0.63 −4.91 −7.86
20 7–8 8 12,370 1,561 1,572 0.73 8.08 19.01 1.11 −4.47 −7.57
Average 6,876 1,410 1,414 0.27 7.28 20.21 0.90 −4.94 −8.89
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the deterioration of overtime and delay cost that are
justifiable considering the total saving.

10. Conclusion
In this paper, we studied a vehicle routing problem
with synchronized visits and stochastic travel and
service times. In addition to considering a home
healthcare scheduling problem, we cast an operat-
ing room scheduling problem with stochastic dura-
tions as a VRPS. We developed a two-stage sto-
chastic integer programming model to formulate
VRPS with stochastic times. In contrast to the de-
terministic models in the VRPS literature, our pro-
posed formulation is free of big-M constraints. We
obtained this advantage by splitting the available
time into smaller time slots that resulted in a large
number of second-stage integer variables.We proved
that the integrality constraints on second-stage var-
iables can be relaxed. Having continuous variables in
the second stage, we applied the L-shaped algo-
rithm and its branch-and-cut implementation as so-
lution methods. Moreover, we improved the pro-
posed approach by devising valid inequalities and a
lower bounding functional. We also analyzed the
subproblems of the L-shaped algorithm and pro-
posed a specialized algorithm for them that is sig-
nificantly faster than standard linear programming
algorithms (60 to 480 times). These enhancements are
general and applicable to a wide range of stochastic
routing and scheduling problems with or without
synchronization.

Computational experiments revealed that, in the
stochastic home healthcare scheduling problem, the
branch-and-cut algorithm solves instances with 15
patients and 10%–30% of synchronized visits to op-
timality. In addition, it finds solutions with an av-
erage optimality gap of 3.57% for instances with 20
patients. In the stochastic operating room scheduling
problem, the branch-and-cut algorithm is capable of
finding optimal solutions for instances with 20 sur-
geries. This is a considerable improvement over the
state-of-art algorithm that reports on instances with
11 surgeries.

In this research, we supposed that vehicles of the
same type are identical and considered an implicit
assignment of them to customers. A possible future
research direction would be to explore the possibility of
the explicit assignment of identical vehicles with dif-
ferent costs in the objective function. Moreover, de-
veloping robust and chance constraints for VRPS with
uncertain travel and service times should be of interest.
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