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Drone delivery has garnered significant attention recently due to its potential for faster delivery at lower cost

relative to other delivery options. When scheduling drones from a depot for delivery to various destinations,

the dispatcher must take into account the uncertain wind conditions, which affect the delivery times of drones

to their destinations. To mitigate the risk of delivery delays caused by wind uncertainty, we propose a two-

period drone scheduling model to robustly optimize the delivery schedule. In this framework, the scheduling

decisions are made in the morning, with provision for different delivery schedules in the afternoon that adapt

to updated weather information available by midday. Our approach minimizes the essential riskiness index

(Zhang et al. 2019), which can limit the probability of tardy delivery and the magnitude of lateness. Using

wind observation data, we characterize the uncertain flight times via a cluster-wise ambiguity set, which has

the benefit of tractability while avoiding overfitting to the empirical distribution. The cluster-wise ambiguity

set enables us to adapt the intraday delivery schedule depending on which cluster on the wind vector chart

the observed morning wind vector belongs to. A branch-and-cut algorithm is developed to solve the adaptive

distributionally robust optimization model.

Key words : drone delivery, uncertain flight time, uncertain wind condition, cluster-wise ambiguity set,

distributionally robust optimization.
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1. Introduction

Drone delivery is expected to redefine the traditional shipping market, as it is faster, cheaper, and

not restricted to congested roads, compared to truck delivery (Agatz et al. 2018). The innovative

transportation mode has gained increasing interest in recent years, especially since 2013 when

Amazon CEO Jeff Bezos announced plans for Amazon Prime Air in an interview (Rose 2013). Major
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competitors in the delivery service industry, including DHL, Google, and JD.com, have also been

developing and testing their drone models in recent years. On October 18, 2019, Alphabet’s drone

delivery company, Wing, launched the first U.S. commercial drone delivery flight (Doherty 2019).

Startups such as Flirtey and Drone Delivery Canada have focused on designing and implementing

commercially viable drone delivery systems. Aside from their commercial use, drones can also

be applied in humanitarian logistics to deliver relief items (Rabta et al. 2018) and in healthcare

projects to refill medicine and pick up test kits (Kim et al. 2017).

A well-designed drone delivery system mitigates the risks of weather uncertainty. Uncertain wind

conditions, i.e., speeds and directions of the wind, can impact the transit times of the drones to

their destinations, leading to late deliveries or even cancellations of service (Walker 2014). Mehra

(2015) and Enderle (2019) suggest that delays caused by weather conditions should be overcome

before drone-based order delivery becomes a reality. Black (2017) further state that the future of

drone delivery depends on its capability to adapt to different scenarios of weather conditions, and

drone delivery companies, such as Zipline, are actively working to build models which allow drones

to safely and efficiently operate under different weather scenarios.

In order to tackle this important issue, we explore how the availability of weather data, such as

wind observations, can be used to improve scheduling decisions in a drone delivery system, where

a fleet of identical drones is dispatched to visit a set of N geographically dispersed customers.

Each drone can make multiple round trips, where each round trip is a flight from the depot to

the customer and back to the depot for preparation for the next delivery, which may include tasks

such as mounting a new payload and/or swapping out a depleted battery. The transit times of the

drones between the depot and their assigned customers are affected by wind conditions, i.e., the

wind may increase or decrease their flight times depending on its speed and direction. Figure 1

illustrates the relationship between wind condition and flight times. The depot and customers are

distributed in a two-dimensional space and, without any loss of generality, the coordinate of the

depot is situated at (0,0). The wind vector is represented by the polar coordinate (r, θ), where r

denotes the speed of the wind, and θ is the angle between the direction of the wind and the x-axis.

The location of customer i, i ∈ [N ] is represented by the polar coordinate (di, φi), where di is the

distance from the depot.

The launch speed of drones in the forward direction (i.e., from the depot to customers), which

depends on the weight and size of the customer’s payload, is r̄i. In the absence of a payload, the

launch speed of drones in the backward direction is r̄0, r̄0 ≥ r̄i, i ∈ [N ]. We assume r < r̄i, i ∈ [N ]

to forbid delivery under very windy conditions. The automatic navigation system within a delivery
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drone would adapt according to the wind condition, to offset the wind’s influence on flight direction.

We can derive the nominal forward flight time ui and the backward flight time vi as
ui(r, θ),

di√
(r̄i)2− r2 sin2 (θ−φi) + r cos (θ−φi)

,

vi(r, θ),
di√

(r̄0)2− r2 sin2 (θ−φi)− r cos (θ−φi)
.

(1)

Note that since r < mini∈[N ] r̄i, the launch speed of the drone has a positive influence on flight

duration. While a drone may not increase its launch speed, it could reduce its speed or even delay

its flight, which may be necessary to avoid an early arrival at the customer’s location. For instance,

if a drone departs from the depot at τ and the customer can only be served after τ̄ 1, then the

arrival time of the drone at the customer’s location would be max{τ +ui, τ̄
1}.

In practice, the wind condition cannot be perfectly predicted and the actual flight times may

deviate from the nominal values determined solely by the wind speed. To account for this uncer-

tainty, for a given wind vector, (r, θ), the forward and backward flight times would be uncertain

and given by

ũi = ui(r, θ)ω̃
u
i ṽi = vi(r, θ)ω̃

v
i

for some random factors ω̃ui , ω̃
v
i , each with support [ω, ω̄], mean ω̂, and identical marginal distribu-

tion denoted by Pω ∈P(R).

customer

wind

drone launch direction

drone travel direction
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Figure 1 Illustration for the calculation of flight times. The right part is based on vector addition in Physics.

Weather data, such as historical wind observations, are commonly available from the national

or local meteorological information center, and can be used as predictors of flight times. Figure 2

is a wind rose diagram of a province in China during a particular time interval. Wind information

is reported in terms of speed and direction. Each piece of information can be recognized as a

wind observation sample, based on which we can calculate the flight times between the depot and
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customers, thus generating samples of flight times. Specifically, given H samples of the observed

wind speed and direction, (rh, θh), h ∈ [H], the corresponding forward and backward flight times

of a drone to the ith customer, i∈ [N ] are given by ui(rh, θh) and vi(rh, θh), respectively.

Figure 2 Wind information collected from 145 subregions of Sichuan Province, China, ranging from time interval

00:00 to 04:00 on September 14th, 2019. Data are downloaded from the China National Meteorological

Information Center (http://data.cma.cn/site/index.html). The color-coded bands represent wind speed

ranges and the circles denote different frequencies (from 0 to 8.4%).

Contributions

We propose a drone delivery system to fulfill customers’ requests for their delivery to be made in

either the morning or in the afternoon. Given the weather data, our goal is to robustly optimize the

schedules of the drone delivery system to mitigate the risks of delivery delays due to uncertainty

in wind conditions. The specific challenges and our contributions are summarized as follows.

1. We propose a novel two-period data-driven adaptive distributionally robust optimization

(DRO) model that permits the modeler to use wind observation data to improve scheduling

decisions in a drone delivery system. The scheduling decisions for the fleet of drones are made

in the morning, with provision for different delivery schedules in the afternoon that adapt to

updated weather information available by midday.

2. We show how to construct the ambiguity set characterizing the uncertain flight times of the

drones using wind observation data. We propose a cluster-wise ambiguity set, which has the

benefits of tractability while avoiding overfitting to the empirical distribution. We incorporate
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other weather information in the form of discrete scenarios to enhance the ambiguity set and

improve the drone schedule adaptation.

3. Our approach minimizes a decision criterion that is inspired by the essential riskiness index

(Zhang et al. 2019), which has performed well in vehicle routing problems in terms of meeting

delivery deadlines by limiting the probability of tardy delivery and the magnitude of lateness.

We exploit structures in our proposed decision criterion to reduce the complexity of our model.

4. For computational scalability, we propose a branch-and-cut (B&C) approach to solve the

adaptive DRO model.

5. We show in our computational studies that a small number of clusters obtained via K-means

can achieve high-quality robust drone delivery schedules. We validate that the adaptive DRO

model can effectively reduce lateness in out-of-sample tests in comparison with other classical

models.

Literature Review

This section reviews related works on drone delivery problems and data-driven robust optimiza-

tion (RO). For more details about drones’ civil applications, see the review paper by Otto et al.

(2018). For RO methods, we refer interested readers to the review papers by Gorissen et al. (2015),

Yanıkoğlu et al. (2019), and Rahimian and Mehrotra (2019).

Drone delivery problems. Most studies in drone delivery consider a truck-drone tandem

system, where one truck carries one drone to deliver packages. When the truck performs deliveries

along a traveling salesman problem (TSP) route, the drone can be launched from the truck at

a customer location to make one delivery. Then the truck continues its route and retrieves the

drone at a new customer location. If the drone is not operational, it is carried by the truck. This

problem is termed the flying sidekick TSP (FSTSP) by Murray and Chu (2015). Agatz et al.

(2018) extend the FSTSP by allowing the truck to wait at the customer site for the drone to come

back. They denote the problem as the TSP with drone (TSP-D). Many papers focus on developing

solution methods for the FSTSP or the TSP-D, using simulated annealing heuristic (Ponza 2016),

variable neighborhood search (Freitas and Penna 2020), dynamic programming (Bouman et al.

2018), branch-and-bound (Poikonen et al. 2019), branch-and-price (Roberti and Ruthmair 2019),

among others. Other variants are also studied. For example, Marinelli et al. (2017) extend the

TSP-D by allowing the launching and rendezvous operations to be performed en route. Sacramento

et al. (2019) address a vehicle routing problem (VRP) with drones, where multiple capacitated

trucks, each equipped with one drone, are considered.

There are also other drone-related delivery problems, where trucks and drones do not necessarily

work in tandem. Murray and Chu (2015) introduce a parallel drone scheduling TSP, where drones
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are launched and recovered at the depot, and the truck makes deliveries without carrying any

drones. Dorling et al. (2016) study a multi-trip drone routing problem, where only drones are

involved in the delivery system, and each drone is allowed to visit several customers per trip as

long as the battery power capacity is respected. They use a linear approximation function to

calculate the battery energy consumption. Cheng et al. (2020) address a similar problem in a B&C

framework, where two types of cuts are proposed to calculate the nonlinear energy consumption,

which is a convex function of payload.

One major aspect which makes drone delivery problems particularly challenging, as opposed to

the common vehicle delivery problems, is the influence of weather conditions on drones’ operational

efficiency. Some recent studies attempted to tackle this important issue by incorporating weather

conditions either directly or indirectly into the optimization models. Radzki et al. (2019) study a

drone routing problem considering the impact of wind on energy consumption. They first assume

that each drone travels at a fixed speed during a trip and the wind speed and direction remain

unchanged (i.e., given parameters) during the time horizon. They further assume that the total

weight of a drone is constant during a trip. As all of the influencing factors are given parameters,

energy consumption on each arc is a constant number. Thus, energy constraints are ultimately

transformed into generalized resource constraints. Thibbotuwawa et al. (2019) design a decision

support tool for the multi-trip drone fleet mission planning problem under different weather con-

ditions by decomposing the problem into several subproblems. They first divide the time period

into several flying time slots, and the weather condition in each slot is known and analogous. They

then determine the clusters of customers for each slot and the routes for each cluster. Finally, they

decide on the sequence of routes within each cluster. Kim et al. (2017) consider the influence of

wind and obstacles on flight time by setting symmetric and asymmetric flight distances.

Vural et al. (2019) study a drone location routing problem under different weather conditions.

They state that weather such as snow, fog, and heavy rain would limit drones’ operations in some

regions. In their study, weather scenarios are known with an occurrence probability, and each

scenario indicates whether a specific region can operate drones. They formulate the problem as

a two-stage stochastic programming model. Kim et al. (2019) study a stochastic drone facility

location problem. They assume that battery energy consumption can be negatively affected under

certain weather conditions, which in turn affects drones’ flight range. In order to incorporate the

risk due to weather conditions, a chance constraint is used to ensure that the probability that a

drone’s flight range is larger than or equal to the travel distance between a facility and a customer

is acceptable. They specifically assume that the flight range follows an exponential distribution,

and reformulate the resulting model as a mixed-integer linear programming model. Kim et al.

(2018) consider a drone scheduling problem with uncertain flight ranges, resulting from the impact
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of air temperature on battery duration. They use a RO method for the problem and compare

the performance of three uncertainty sets—polyhedral, box, and ellipsoidal. They use historical

and forecast data to estimate the hourly temperature (a span of 12 hours) over an area, then

calculate the flight range deviation using a regression function. These deviations are fixed values

and considered as different scenarios with weights. Thus, their uncertainty sets are constructed to

represent the randomness of the scenario weights.

The aforementioned works either ignore the impact of weather completely or consider it in a

simplified way. Specifically, future weather conditions (or flight range/time) are assumed to be

deterministic, or follow a known distribution, or belong to some scenarios with known probabilities

at the moment of making decisions. Only Kim et al. (2018) use a distribution-free method; however,

they consider limited deviation scenarios and need to specify the budget or radius of the uncertainty

sets. Unlike nearly all of the reviewed papers, we use the DRO approach with a cluster-wise

ambiguity set, where the distribution of random variables is assumed to lie in an ambiguity set

rather than being known perfectly in advance.

Data-driven robust optimization. Our paper falls within the realm of data-driven RO, where

the key step is to construct an uncertainty or ambiguity set from historical data. Details on the

construction of these sets can be found in Delage and Ye (2010), Bertsimas et al. (2018), Ning

and You (2018), and Chassein et al. (2019). Recently, Chen et al. (2020) propose an event-wise

ambiguity set, which is rich enough to capture a wide range of ambiguity sets such as statistic-based

and machine-learning-based ones. The works of Hao et al. (2020) and Perakis et al. (2020) are novel

applications of the framework proposed in Chen et al. (2020). Specifically, Hao et al. (2020) address

a single-period vehicle allocation problem with uncertain demand, which is related to weather

conditions (rainy or not rainy). They use a multivariate regression tree to construct the ambiguity

set. Perakis et al. (2020) study a two-period, multi-item joint pricing and production problem,

where the K-means clustering algorithm is utilized to partition the demand residuals and then a

cluster-wise ambiguity set is constructed. Our work is related to Zhang et al. (2019) and Zhang et al.

(2020) where they study a vehicle routing problem with time window (VRPTW) under travel time

uncertainty by minimizing the essential riskiness index, a convex decision criterion that takes into

account of the probability of tardy delivery and the magnitude of lateness. While Zhang et al. (2019)

explores a moment-based ambiguity set, Zhang et al. (2020) considers a Wasserstein distance-based

ambiguity set. Quite distinct from their static decision models, we consider an adaptive decision

model, which has the benefit of alleviating the conservatism of the robust solutions. We do so by

considering a cluster-wise ambiguity set that is compatible with our two-period adaptive model.

The rest of the paper is organized as follows. At the end of this section, we summarize the

notation used throughout the paper. Section 2 constructs the ambiguity set from weather data.
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Section 3 presents the decision criterion, builds the DRO model, and introduces the adaptive policy.

Section 4 reformulates the distributionally robust model and presents the solution method. Section

5 reports numerical results. Section 6 concludes this paper.

Notation. We denote by [N ], {1, . . . ,N} the set of positive running indices up to N . Boldface

lowercase and uppercase characters represent vectors and matrices with appropriate dimensions,

respectively. a′ is the transpose of a. We use P0(RI) to represent the set of all distributions on

RI . A random variable, z̃ is denoted with a tilde sign and we use z̃ ∼ P, P ∈ P0(W), W ⊆ RI to

define z̃ as an I-dimensional random variable with distribution P over the support W. We use

ξ+ to represent max{ξ,0}. For a vector u ∈RI , the expression |u| denotes the vector of absolute

values of the components of u. e corresponds to the vector of 1s with an approximate dimension.

ei is the ith standard basis vector.

2. Weather Uncertainty and Influence on Flight

We model a drone delivery system comprising a fleet of D identical drones that are dispatched to

visit a set of N , N >D geographically dispersed customers. Each drone can make multiple round

trips, where each round trip is a flight from the depot to the customer and back to the depot

for preparation for the next delivery. We assume that the drone has sufficient energy to perform

a round trip, since a depleted battery can quickly be swapped with a fully charged one. Hence,

with sufficient supply of charged batteries, we do not need to incorporate charging decisions into

our model. If a fully charged battery is not sufficient for a round trip between the depot and a

customer site, then that customer would be deemed a drone-ineligible customer. We characterize

the uncertainty of flight times as the result of wind conditions. Without loss of generality, we

assume that the time for mounting new payloads and swapping batteries at the depot is negligible,

as it is not influenced by wind conditions and can be incorporated into the model easily (Ham

2018). The service time at customer locations is also neglected here because, whenever necessary,

we can add it to the forward or backward flight time as a constant number.

We consider a two-period model, where Period 1 and Period 2 represent the morning and the

afternoon, respectively. Period 1 starts at time 0 and ends at the midday time, τ̄ 1, while Period

2 starts at τ̄ 1 and ends at τ̄ 2. At the beginning of Period 1, the model optimizes the scheduling

policy, which determines the drones’ delivery schedules in the morning, while the schedules in the

afternoon can flexibly adapt to the observed wind vector, (r1, θ1), in the morning, and/or other

weather information that would be known by midday. We assume that the modeler has H samples

of wind observation data at the beginning of the time period. Under sample h, h ∈ [H], we define

(r1
h, θ

1
h) and (r2

h, θ
2
h) to be the observed wind vectors in Period 1 and Period 2, respectively.
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Ambiguity Set for Uncertain Flight Times

The forward and backward flight times for serving customer i, i ∈ [N ] in Period 1 are uncertain

and we denote them by the random variables ũ1
i and ṽ1

i , which are functions of the wind vectors

from Equation (1). Likewise, we also denote by the random variables ũ2
i and ṽ2

i the forward and

backward flight times for serving customer i, i ∈ [N ] in Period 2. For convenience, we define the

vectorial notation ũt , (ũt1, . . . , ũ
t
N)′ and ṽt , (ṽt1, . . . , ṽ

t
N)′, t ∈ [2]. Based on Equation (1), we also

define

u(r, θ), (u1(r, θ), . . . , uN(r, θ))′

and

v(r, θ), (v1(r, θ), . . . , vN(r, θ))′.

We first characterize the ambiguity set in the first period using a cluster-wise ambiguity set

introduced by Chen et al. (2020). We partition the wind vector chart into K1 non-overlapping

clusters U1
k , k ∈ [K1] so that the index set of the subsamples

Lk = {h∈ [H] | (r1
h, θ

1
h)∈ U1

k}, (2)

are each associated with a region to which the morning wind vectors belong (see Fig. 3). There are

various ways to partition the regions on the wind vector chart, and we will explore this further in

our computational studies.

4 2 0 2 4 6
x

8

6

4

2

0

2

4

6

y

Figure 3 Partitioning the wind vector chart into clusters using K-means clustering algorithm. Note that wind

vectors are converted from polar coordinates to Cartesian coordinates when performing the clustering

operation. The dark points in each cluster are the centroids.

We introduce the random variable κ̃1 taking discrete values in [K1] to represent the scenario

κ̃1 = k associated with the cluster U1
k that would contain the realized wind vector observed in
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Period 1. Accordingly, using wind observational data, we construct the cluster-wise ambiguity set

G1 ⊆P(R2N × [K1]) associated with the random variable (ũ1, ṽ1, κ̃1) as follows:

G1 =



P∈P(R2N × [K1])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ1, ṽ1, κ̃1)∼ P

EP [ũ1 | κ̃1 = k] =µ1
k ∀k ∈ [K1]

EP [ṽ1 | κ̃1 = k] = ν1
k ∀k ∈ [K1]

EP [|ũ1−µ1
k| | κ̃1 = k]≤σ1

k ∀k ∈ [K1]

EP [|ṽ1−ν1
k | | κ̃1 = k]≤ ς1

k ∀k ∈ [K1]

P

 u1
k ≤ ũ1 ≤ ū1

k

v1
k ≤ ṽ1 ≤ v̄1

k

∣∣∣∣∣∣ κ̃1 = k

= 1 ∀k ∈ [K1]

P [κ̃1 = k] = |Lk|/H ∀k ∈ [K1]



, (3)

where the mean flight times associated with the cluster k, k ∈ [K1] are

µ1
k =

1

|Lk|
∑
h∈Lk

u(r1
h, θ

1
h)ω̂, ν1

k =
1

|Lk|
∑
h∈Lk

v(r1
h, θ

1
h)ω̂,

the mean absolute deviations are

σ1
k =

1

|Lk|
∑
h∈Lk

EPω
[
|u(r1

h, θ
1
h)ω̃−µ1

k|
]
, ς1

k =
1

|Lk|
∑
h∈Lk

EPω
[
|v(r1

h, θ
1
h)ω̃−ν1

k |
]
,

and the parameters of the supports are

[u1
k]i = min

h∈[Lk]
ui(r

1
h, θ

1
h)ω, [v1

k]i = min
h∈[Lk]

vi(r
1
h, θ

1
h)ω,

[ū1
k]i = max

h∈[Lk]
ui(r

1
h, θ

1
h)ω̄, [v̄1

k]i = max
h∈[Lk]

vi(r
1
h, θ

1
h)ω̄.

∀i∈ [N ].

In the spirit of RO, the ambiguity set is often designed to encompass distributions that may

deviate from the empirical distribution, which has the benefit of mitigating the risks of overfitting

that may result in poor out-of-sample performance. Observe that when K1 = 1, G1 is reduced

to a marginal moment ambiguity set which, analogous to the box uncertainty set, can be quite

conservative when applied to solving DRO problems. As we increase the number of clusters, the

level of conservativeness reduces, though the computational complexity of the model would increase.

In the extreme, each cluster can contain exactly one sample, in which case, due to the support

and deviations constraint, the ambiguity set would only contain the empirical distribution if the

factors ω̃ui , ω̃
v
i are deterministic. In practice, the number of clusters is determined empirically in

validation tests. If the number is small, this approach would benefit from greater scalability.

By midday, in preparation for Period 2, the random variable (ũ1, ṽ1, κ̃1) would be realized. Apart

from the wind data, we assume that there is other weather information such as atmospheric pres-

sures, weather forecasts, and other covariates, which could be used to predict the wind condition
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in the afternoon. To incorporate this information into our ambiguity set, we have to discretize

the weather information into S finite scenarios, which can be done using standard classification

approaches used in machine learning. Accordingly, we use s̃ to denote the random weather sce-

narios, which would be realized by midday. We assume that the weather data contains historical

information of the weather scenarios, which we denote by sh, h ∈ [H]. We define the index set of

the subsamples associated with the different weather scenarios,

Vs = {h∈ [H] | sh = s}. (4)

In the absence of other weather information beyond wind observation data, we can use the

random scenario κ̃1 defined for the ambiguity set G1 as the random scenario for predicting wind

condition in the afternoon, in which case, S =K1 and Vs =Ls for all s∈ [S].

Given a realized scenario s̃= s, we can characterize Period 2 flight times (ũ2, ṽ2) via a cluster-

wise ambiguity set as before. We partition the wind vectors (r2
h, θ

2
h), h∈ Vs into K2 non-overlapping

clusters U2
g , g ∈ [K2]. Each cluster g ∈ [K2] is associated with the subset of samples

L2
sg =

{
h∈ Vs | (r2

h, θ
2
h)∈ U2

g

}
.

We also introduce the random variable κ̃2, taking discrete values in [K2] to represent the scenario

κ̃2 = g associated with the cluster U2
g that would contain the realized wind vector observed in

Period 2. For each scenario s, s∈ [S], we construct the ambiguity set G2
s ⊆P(R2N× [K2]) as follows:

G2
s =



P∈P(R2N × [K2])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ2, ṽ2, κ̃2)∼ P

EP [ũ2 | κ̃2 = g] =µ2
sg ∀g ∈ [K2]

EP [ṽ2 | κ̃2 = g] = ν2
sg ∀g ∈ [K2]

EP
[
|ũ2−µ2

sg| | κ̃2 = g
]
≤σ2

sg ∀g ∈ [K2]

EP
[
|ṽ2−ν2

sg| | κ̃2 = g
]
≤ ς2

sg ∀g ∈ [K2]

P

 u2
sg ≤ ũ2 ≤ ū2

sg

v2
sg ≤ ṽ2 ≤ v̄2

sg

∣∣∣∣∣∣ κ̃2 = g

= 1 ∀g ∈ [K2]

P [κ̃2 = g] = |L2
sg|/|Vs| ∀g ∈ [K2]



, (5)

where the mean flight times associated with cluster g, g ∈ [K2] under scenario s, s∈ S are

µ2
sg =

1

|L2
sg|

∑
h∈L2sg

u(r2
h, θ

2
h)ω̂, ν2

sg =
1

|L2
sg|

∑
h∈L2sg

v(r2
h, θ

2
h)ω̂,

the mean absolute deviations are

σ2
sg =

1

|L2
sg|

∑
h∈L2sg

EPω
[
|u(r2

h, θ
2
h)ω̃−µ2

sg|
]
, ς2

sg =
1

|L2
sg|

∑
h∈L2sg

EPω
[
|v(r2

h, θ
2
h)ω̃−ν2

sg|
]
,
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and the parameters of the supports are[
u2
sg

]
i
= min

h∈[L2sg ]
ui(r

2
h, θ

2
h)ω,

[
v2
sg

]
i
= min

h∈[L2sg ]
vi(r

2
h, θ

2
h)ω,[

ū2
sg

]
i
= max

h∈[L2sg ]
ui(r

2
h, θ

t
h)ω̄,

[
v̄2
sg

]
i
= max

h∈[L2sg ]
vi(r

2
h, θ

2
h)ω̄.

∀i∈ [N ].

In general, the discrete random variable κ̃1, κ̃2, and s̃ are dependent and hence we denote W as

the support of the joint discrete random variable (κ̃1, κ̃2, s̃). We are now ready to characterize the

full ambiguity set. The actual joint distribution of (ũ1, ṽ1, ũ2, ṽ2, s̃)∼ P is unknown but belongs to

an ambiguity set, F , as follows:

F =


Q∈P(R4N × [S])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ1, ṽ1, ũ2, ṽ2, s̃)∼Q

∃P∈P(R4N ×W) :

(ũ1, ṽ1, ũ2, ṽ2, (κ̃1, κ̃2, s̃))∼ P

∃Q1 ∈ G1 : (ũ1, ṽ1, κ̃1)∼Q1

∃Q2
s ∈ G2

s : (ũ2, ṽ2, κ̃2)|s̃=s ∼Q2
s ∀s∈ [S]

P [(κ̃1, κ̃2, s̃) = (k, g, s)] = qkgs ∀(k, g, s)∈W


, (6)

where

qkgs =
|Vs ∩Lk ∩L2

sg|
H

,

or explicitly as

F =



Q∈P(R4N × [S])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ1, ṽ1, ũ2, ṽ2, s̃)∼Q

∃P∈P(R4N ×W) :

(ũ1, ṽ1, ũ2, ṽ2, (κ̃1, κ̃2, s̃))∼ P

EP [ũ1 | κ̃1 = k] =µ1
k ∀k ∈ [K1]

EP [ṽ1 | κ̃1 = k] = ν1
k ∀k ∈ [K1]

EP [|ũ1−µ1
k| | κ̃1 = k]≤σ1

k ∀k ∈ [K1]

EP [|ṽ1−ν1
k | | κ̃1 = k]≤ ς1

k ∀k ∈ [K1]

EP [ũ2 | s̃= s, κ̃2 = g] =µ2
sg ∀s∈ [S], g ∈ [K2]

EP [ṽ2 | s̃= s, κ̃2 = g] = ν2
sg ∀s∈ [S], g ∈ [K2]

EP
[
|ũ2−µ2

sg| | s̃= s, κ̃2 = g
]
≤σ2

sg ∀s∈ [S], g ∈ [K2]

EP
[
|ṽ2−ν2

sg| | s̃= s, κ̃2 = g
]
≤ ς2

sg ∀s∈ [S], g ∈ [K2]

P


u1
k ≤ ũ1 ≤ ū1

k

v1
k ≤ ṽ1 ≤ v̄1

k

u2
sg ≤ ũ2 ≤ ū2

sg

v2
sg ≤ ṽ2 ≤ v̄2

sg

∣∣∣∣∣∣∣∣∣∣∣
κ̃1 = k,

κ̃2 = g,

s̃= s

= 1 ∀(k, g, s)∈W

P [(κ̃1, κ̃2, s̃) = (k, g, s)] = qkgs ∀(k, g, s)∈W



. (7)
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3. The Drone Delivery Model

Our goal is to robustly optimize the schedules of the drone delivery system to mitigate the risks

of delivery delays caused by wind uncertainty. Customers specify their preference for delivery in

either the morning or in the afternoon. Hence, we partition the customers into three groups, C1,

C2, and C3. The first two groups, C1 and C2 are the sets of customers that expect to have their

delivery made in Period 1 and Period 2 respectively. The third group C3 is the set of unconstrained

customers who can be served in either period. Customers in C3 are notified to expect their delivery

in either Period 1 or Period 2. Hence, customers assigned to be served in Period 1 should be served

within [0, τ̄ 1], while customers assigned to be served in Period 2 should be served within [τ̄ 1, τ̄ 2].

Poor service occurs whenever the scheduled delivery time windows could not be met.

Decision Criterion

For a given delivery policy, the arriving time of a drone is a function of the random variable

(ũ1, ṽ1, ũ2, ṽ2, s̃)∼ P, P∈F , which we denote by ξ(ũ1, ṽ1, ũ2, ṽ2, s̃) for some function ξ :R4N× [S] 7→

R. For convenience, we use ξ̃ , ξ(ũ1, ṽ1, ũ2, ṽ2, s̃) to represent the random arriving time. A service

is delayed whenever ξ̃ > τ , where τ ∈ {τ̄ 1, τ̄ 2} is the delivery time expected by the customer.

Our goal is to mitigate the risks of service delays under distributional ambiguity, and we evaluate

such risks using the essential riskiness index (ERI) proposed by Zhang et al. (2019). The index

is endowed with good computational properties and it performs well as an optimization criterion

in a vehicle routing problem, to help meet delivery deadlines by limiting the probability of tardy

delivery and the magnitude of lateness (Zhang et al. 2020).

Definition 1. Given an arriving time function, ξ : R4N × [S] 7→ R and the expected delivery

time, τ ∈R+. The essential riskiness index is defined as

ρτ (ξ̃) = min

{
γ ≥ 0

∣∣∣∣ sup
P∈F

EP

[
max

{
ξ̃− τ,−γ

}]
≤ 0

}
, (8)

where min∅=∞ by convention.

We briefly present some of the important properties as ERI.

i) Monotonicity: If P
[
ξ̃1 ≥ ξ̃2

]
= 1, ∀P∈F , then ρτ (ξ̃1)≥ ρτ (ξ̃2);

ii) Satisficing: ρτ (ξ̃) = 0 if and only if P
[
ξ̃ ≤ τ

]
= 1, ∀P∈F ;

iii) Infeasibility: If sup
P∈F

EP

[
ξ̃
]
> τ , then ρτ (ξ̃) =∞;

iv) Convexity: For all λ∈ [0,1], ρτ (λξ̃1 + (1−λ)ξ̃2)≤ λρτ (ξ̃1) + (1−λ)ρτ (ξ̃2);

v) Delay bounds:

P
[
ξ̃− τ > ρτ (ξ̃)ϑ

]
≤ 1

1 +ϑ
, ∀ϑ> 0,P∈F .
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Monotonicity ensures that an uncertain arriving time that dominates another would not be better

off under ERI. Satisficing ensures that if the delivery time can always be met, then the risk of

poor service under ERI is zero. The infeasibility property ensures that the average arriving time,

even under distributional ambiguity, should not exceed the expected delivery time. The property of

convexity provides a more tractable formulation compared to non-convex ones, such as the criterion

based on the probability of service delays. Finally, as shown in the property of delay bounds,

the ERI ensures that the probability of lateness reduces reciprocally as the magnitude of lateness

increases in multiples of the index value. Thus, unlike the probability of service delay, the ERI

accounts for both the probability of delay and its magnitude. ERI has other useful and interesting

properties and we refer interested readers to Zhang et al. (2019) and Zhang et al. (2020).

The drone delivery problem can be modeled as a multi-trip VRPTW proposed in Zhang et al.

(2020), where the objective of the model is to minimize the sum of the ERIs associated with service

delay risks for all customers. Accordingly, to ensure high quality of services across all customers,

the drone delivery system could also minimize the following joint decision criterion

%τ (ξ̃),
∑
i∈[N ]

ρτi(ξ̃i),

where ξ̃i and τi are, respectively, the uncertain arriving time and expected delivery time for the

ith customer. The benefit of this criterion in achieving high-quality solutions with reasonable

computational effort have been demonstrated in Zhang et al. (2020). Moreover, the joint decision

criterion satisfies the following salient properties:

i) Monotonicity: If P
[
ξ̃1 ≥ ξ̃2

]
= 1, ∀P∈F , then %τ (ξ̃1)≥ %τ (ξ̃2);

ii) Satisficing: %τ (ξ̃) = 0 if and only if P
[
ξ̃≤ τ

]
= 1, ∀P∈F ;

iii) Non-abandonment: If there exists i∈ [N ] such that sup
P∈F

EP

[
ξ̃i

]
> τi, then %τ (ξ̃) =∞;

iv) Convexity: For all λ∈ [0,1], %τ (λξ̃1 + (1−λ)ξ̃2)≤ λ%τ (ξ̃1) + (1−λ)%τ (ξ̃2).

Because we are using a nonstandard decision criterion, these properties serve as an axiomatic

framework for which our decision criterion would be justified. In our opinion, these properties are

reasonable for any joint decision criterion that evaluates the overall customer service. In particular,

the non-abandonment property ensures that any feasible solution for which the objective value is

finite implies that the average arriving time at every customer’s location would not exceed the

expected delivery time. We are cognizant of other joint decision criteria that would also preserve

the same properties, such as the one that takes the value of the highest ERI among all customers.

However, from our numerical experience, minimizing the maximum ERI results in having an excess

of multiple optimal solutions, which has an impact on the quality of the solutions as well as the

computational time to solve the model. We will illustrate this in our computational studies.
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While it may be possible to cast our problem as a static robust VPRTW proposed in Zhang et al.

(2020), our goal is to extend to an adaptive model, where it is possible to improve the drone delivery

schedule in response to the new information available by midday. The static robust VPRTW of

Zhang et al. (2020) would be far too complex for our purpose. One simplifying assumption that

enables us to take this approach is that customers can only choose between two delivery deadlines,

{τ̄ 1, τ̄ 2}. Alongside this, we propose the following joint decision criterion:

%τ (ξ̃),
∑

d∈[D]:K1
d
6=∅

(
max
i∈K1

d

{
ρτ̄1
(
ξ̃i

)})
+

∑
d∈[D]:K2

d
6=∅

(
max
i∈K2

d

{
ρτ̄2
(
ξ̃i

)})
, (9)

where Ktd ⊆ [N ] denotes the set of customers assigned to be served by drone d, d ∈ [D] in period

t, t ∈ [2]. Observe that the joint decision criterion also satisfies the properties of monotonicity,

satisficing, non-abandonment, and convexity.

The main reason for our proposed joint decision criterion is the potential to have a simpler

formulation that is more scalable computationally, as we will demonstrate in the following propo-

sition.

Proposition 1. The joint decision criterion %τ (ξ̃) is equivalent to

%τ (ξ̃) =
∑

d∈[D]:K1
d
6=∅

ρτ̄1
(
ξ̃`1

d

)
+

∑
d∈[D]:K2

d
6=∅

ρτ̄2
(
ξ̃`2

d

)
,

where `td denotes the last customer served by drone d, d∈D in Period t, t∈ [2].

Proof. For each drone d, d∈ [D], in each period the arriving time at the last assigned customer is

always larger than the arrival times at other assigned customers, i.e.,

ξ̃`1
d
≥ ξ̃i ∀i∈K1

d, ξ̃`2
d
≥ ξ̃i ∀i∈K2

d.

Based on the monotonicity property of %τ (ξ̃), we have

ρτ̄1
(
ξ̃`1

d

)
≥ ρτ̄1

(
ξ̃i

)
∀i∈K1

d, ρτ̄2
(
ξ̃`2

d

)
≥ ρτ̄2

(
ξ̃i

)
∀i∈K2

d,

which indicate that

ρτ̄1
(
ξ̃`1

d

)
= max

i∈K1
d

{
ρτ1(ξ̃i)

}
, ρτ̄2

(
ξ̃`2

d

)
= max

i∈K2
d

{
ρτ2(ξ̃i)

}
.

�

Observe that the random arrival time at the last customer by drone d, d∈ [D] in Period 1 is

ξ̃`1
d

=
∑

i∈K1
d
\{`1

d
}

(ũ1
i + ṽ1

i ) + ũ1
`1
d
. (10)
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Note that the arrival time in Period 2 is not an additive function of the flight times because

customers in Period 2 can only be served after τ̄ 1. We assume that whenever the anticipated arrival

is before τ̄ 1, the drone is able to reduce its speed or delay its departure from the depot so that

the arrival would be punctual at τ̄ 1. We also need to account for the first customer to be served

in Period 2 by drone d, d∈ [D], which we denote by `2d. Hence, the random arrival time at the last

customer by drone d, d∈ [D] in Period 2 is

ξ̃`2
d

= max

∑
i∈K1

d

(ũ1
i + ṽ1

i ) + ũ2
`2
d
, τ̄ 1

+ ṽ2
`2
d

+
∑

i∈K2
d
\{`2d,`2d}

(
ũ2
i + ṽ2

i

)
+ ũ2

`2
d

∀d∈ [D]. (11)

Under our proposed joint decision criterion, Proposition 1 implies that we only need to keep

track of, for every drone, the last customer to be served in the morning, and the first and last

customers served in the afternoon by the drone. In particular, the sequence of customers being

served before the last customer in Period 1, and the sequence of customers being served between

the first and the last customer in Period 2, would not affect the joint decision criterion. This greatly

reduces the complexity of the model compared to a VRPTW formulation, in terms of the number

of binary variables needed to model the problem.

Scheduling Decisions and Event-wise Adaptations

To obtain an explicit mathematical optimization model, we first denote C̄1 = C1∪C3 and C̄2 = C2∪C3

as the sets of customers who can expect their deliveries in the morning and afternoon, respectively.

For scheduling decisions (y1
id, x

1
id), i ∈ C̄1, d ∈ [D] associated with Period 1, we define the binary

variable y1
id = 1 if and only if customer i is the last customer visited by drone d in Period 1, i.e.,

i∈K1
d ∩{`1d}, and the binary variable x1

id = 1 if and only if i∈K1
d\{`1d}.

As we have mentioned, the drone schedule in the afternoon can flexibly adapt to wind informa-

tion, which is available by midday when the random scenario s̃ is realized. Hence, the decisions

associated with Period 2 are functions of s ∈ [S], which we denote by y2
id(s), x

2
id(s), z

2
id(s), i ∈ C̄2,

d ∈ [D]. For a given scenario s ∈ [S], the binary variable y2
id(s) = 1 if and only if i ∈K2

d ∩{`2d}, the

binary variable x2
id(s) = 1 if and only if i ∈ K2

d\{`
2
d, `

2
d} and the binary variable z2

id(s) = 1 if and

only if i∈K2
d ∩{`

2
d}.

The adaptive scheduling decisions in Period 2 can be defined within a family of binary function

maps. For flexibility in adaptation, we adopt the event-wise adaptation introduced in Chen et al.

(2020). We first define an event E ⊆ [S] by a subset of scenarios. A partition of scenarios then induces

a collection S of mutually exclusive and collectively exhaustive (MECE) events. Correspondingly,

we define a mapping fS : [S] 7→ S such that fS(s) = E , for which E is the only event in S that
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contains the scenario s. Given a collection S of MECE events, we define the event-wise adaptation

to characterize the scheduling decisions in Period 2 as follows:

A (S),

x : [S] 7→ {0,1}C̄2×D
∣∣∣∣∣∣ x(s) =xE , E = fS(s)

for some xE ∈ {0,1}C̄2×D

 .

In the case of a non-adaptive (or static) policy, we have S = {[S]}, so that the scheduling decisions

in Period 2 would not change its solutions in response to the outcomes of the scenario s̃. For the

case of full adaption, the collection S would have S different events, each containing an element of

[S].

The feasible drone delivery schedule is as follows:

X =



(x1,y1,

x2,y2,z2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
d∈[D]

(x1
id + y1

id) = 1 ∀i∈ C1,∑
d∈[D]

(
x2
id(s) + y2

id(s) + z2
id(s)

)
= 1 ∀i∈ C2, s∈ [S],∑

d∈[D]

(
x1
id + y1

id +x2
id(s) + y2

id(s) + z2
id(s)

)
= 1 ∀i∈ C3, s∈ [S],∑

i∈C̄1
y1
id = 1 ∀d∈ [D],∑

i∈C̄2
y2
id(s) = 1 ∀d∈ [D], s∈ [S],∑

i∈C̄2
z2
id(s) = 1 ∀d∈ [D], s∈ [S],

x1,y1 ∈ {0,1}C̄1×D

x2,y2,z2 ∈A(S).



(12a)

(12b)

(12c)

(12d)

(12e)

(12f)

Constraints (12a)–(12c) mean that customers in each set are respectively scheduled to be visited

exactly once in their allowable delivery time slots. Constraints (12d)–(12e) impose that each drone

at each period can only have one customer as the last served one. Constraints (12f) mean that for

each drone in Period 2, it can only have one customer as the first visited customer. The index s

in the constraints suggests that the afternoon schedule should be feasible under any scenario s,

s∈ [S].

The schedule decision can be enhanced by the following lexicographic ordering constraints, which

break the symmetry between drones (Adulyasak et al. 2014)

j∑
i=1,i∈C1

2j−ix1
id ≥

j∑
i=1,i∈C1

2j−ix1
id+1 ∀j ∈ C1, d∈ [D− 1]. (13)

Now, for a given d, d ∈ [D], the arrival time at the last customer in Period 1 can be written as

the function

ζ1
d(x1,y1, ũ1, ṽ1),

∑
i∈C̄1

(
x1
id(ũ

1
i + ṽ1

i ) + y1
idũ

1
i

)
, (14)
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and likewise the arrival time at the last customer in Period 2 can be expressed as

ζ2
d(x1,y1,x2,y2,z2, ũ1, ṽ1, ũ2, ṽ2, s̃)

, max

{∑
i∈C̄1

(x1
id + y1

id)(ũ
1
i + ṽ1

i ) +
∑
i∈C̄2

z2
id(s̃)ũ

2
i , τ̄

1

}
+
∑
i∈C̄2

(
z2
id(s̃)ṽ

2
i +x2

id(s̃)(ũ
2
i + ṽ2

i ) + y2
id(s̃)ũ

2
i

)
.

(15)

Thus, under our proposed decision criterion, we solve the following DRO problem:

inf
∑
d∈[D]

(γ1
d + γ2

d)

s.t. sup
P∈F

EP
[
max

{
ζ1
d(x1,y1, ũ1, ṽ1)− τ̄ 1,−γ1

d

}]
≤ 0 ∀d∈ [D] (16a)

sup
P∈F

EP
[
max

{
ζ2
d(x1,y1,x2,y2,z2, ũ1, ṽ1, ũ2, ṽ2, s̃)− τ̄ 2,−γ2

d

}]
≤ 0 ∀d∈ [D] (16b)

γ1
d , γ

2
d ≥ 0 ∀d∈ [D],

(x1,y1,x2,y2,z2)∈X .

The DRO model (16) with cluster-wise moment-based ambiguity set and event-wise adaption fits

into the robust stochastic optimization framework recently introduced by Chen et al. (2020). They

also provide an algebraic modeling toolbox, RSOME - Robust Stochastic Optimization Made Easy,

which facilitates rapid prototyping of our model. Specifically, by using affine recourse adaptation

on a lifted ambiguity set, we can model the problem intuitively via RSOME. However, while it

is convenient to do so, the MATLAB-based toolbox generates numerous auxiliary variables and

results in slow computational performance. Our goal is to eradicate all of the auxiliary variables

and propose a B&C approach to solve our problem. We use RSOME as a reference to check the

correctness of our approach.

4. Solving via Branch-and-Cut

For greater scalability, we present a classical RO reformulation, which would enable us to develop

a B&C algorithm to solve the model. We first address the supremum over the ambiguity set in the

constraints (16a).

Note that sup
P∈F

EP [max{ζ1
d(x1,y1, ũ1, ṽ1)− τ̄ 1,−γ1

d}] is equivalent to

sup
P∈G1

EP
[
max

{
ζ1
d(x1,y1, ũ1, ṽ1)− τ̄ 1,−γ1

d

}]
.

Under the law of total probability, constraints (16a) can be reformulated as

∑
k∈[K1]

qk sup
P∈G1

k

EP

[
max

{∑
i∈C̄1

(
x1
id(ũ

1
i + ṽ1

i ) + y1
idũ

1
i

)
− τ̄ 1,−γ1

d

}]
≤ 0 ∀d∈ [D]



Cheng et al.: Robust Drone Delivery with Weather Information

19

where qk = |Lk|/H,

G1
k =


Q∈P(R4N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ1, ã1, ṽ1, b̃1)∼ P

EP [ũ1] =µ1
k

EP [ṽ1] = ν1
k

EP [ã1]≤σ1
k

EP

[
b̃1
]
≤ ς1

k

P
[
(ũ1, ã1, ṽ1, b̃1)∈Ξ1

k

]
= 1


,

and

Ξ1
k ,


(u1,a1,v1,b1)∈R4N

∣∣∣∣∣∣∣∣∣∣∣

u1
k ≤u1 ≤ ū1

k

a1 ≥ |u1−µ1
k|

v1
k ≤ v1 ≤ v̄1

k

b1 ≥ |v1−ν1
k |


.

Note here that we adopt the “lifted ambiguity set” first proposed by Wiesemann et al. (2014) to

keep the expectation constraints within the ambiguity set linear.

Theorem 1. The optimization problem

sup
P∈G1

k

EP

[
max

{∑
i∈C̄1

(
x1
id(ũ

1
i + ṽ1

i ) + y1
idũ

1
i

)
− τ̄ 1,−γ1

d

}]
(17)

is equivalent to

max
(u1

1,v
1
1 ,p1,p2)∈Y1

kd

{(∑
i∈C̄1

(x1
id + y1

id)ei

)′
u1

1 +

(∑
i∈C̄1

x1
idei

)′
v1

1 − τ̄ 1p1− γ1
dp2

}
, (18)

where

Y1
kd =



(u1
1,v

1
1, p1, p2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃a1
j ,b

1
j , j ∈ [2] :

u1
1 +u1

2 =µ1
k

v1
1 +v1

2 = ν1
k

a1
1 +a1

2 ≤σ1
k

b1
1 + b1

2 ≤ ς1
k

p1 + p2 = 1

u1
kpj ≤u1

j ≤ ū1
kpj ∀j ∈ [2]

a1
j ≥ |u1

j −µ1
kpj| ∀j ∈ [2]

v1
kpj ≤ v1

j ≤ v̄1
kpj ∀j ∈ [2]

b1
j ≥ |v1

j −ν1
kpj| ∀j ∈ [2]

p1, p2 ≥ 0

u1
j ,a

1
j ,v

1
j ,b

1
j ∈RN ∀j ∈ [2],



.
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Proof. See Appendix A.1. �

To address the supremum over the ambiguity set in the constraints (16b), we also note that

under the law of total probability, constraints (16b) is equivalent to

∑
(k,g,s)∈W

qkgs sup
P∈Fkgs

EP

[
max

{
max

{∑
i∈C̄1

(x1
id + y1

id)(ũ
1
i + ṽ1

i ) +
∑
i∈C̄2

z2
id(s)ũ

2
i , τ̄

1

}

+
∑
i∈C̄2

(
z2
id(s)ṽ

2
i +x2

id(s)(ũ
2
i + ṽ2

i ) + y2
id(s)ũ

2
i

)
− τ̄ 2,−γ2

d

}]
≤ 0 ∀d∈ [D] (19)

where

Fkgs =



Q∈P(R8N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ1, ṽ1, ã1, b̃1, ũ2, ṽ2, ã2, b̃2)∼ P

EP [ũ1] =µ1
k

EP [ṽ1] = ν1
k

EP [ã1]≤σ1
k

EP

[
b̃1
]
≤ ς1

k

EP [ũ2] =µ2
sg

EP [ṽ2] = ν2
sg

EP [ã2]≤σ2
sg

EP

[
b̃2
]
≤ ς2

sg

P
[
(ũ1, ṽ1, ã1, b̃1, ũ2, ṽ2, ã2, b̃2)∈Ξ2

kgs

]
= 1



,

and

Ξ2
kgs =


(u1,v1,a1,b1,u2,v2,a2,b2)∈R8N

∣∣∣∣∣∣∣∣∣∣∣

u1
k ≤u1 ≤ ū1

k, v1
k ≤ v1 ≤ v̄1

k

a1 ≥ |u1−µ1
k|, b1 ≥ |v1−ν1

k |

u2
sg ≤u2 ≤ ū2

sg, v
2
sg ≤ v2 ≤ v̄2

sg

a2 ≥ |u2−µ2
sg|, b2 ≥ |v2−ν2

sg|


.

Theorem 2. The optimization problem,

sup
P∈Fkgs

EP

[
max

{
max

{∑
i∈C̄1

(x1
id + y1

id)(ũ
1
i + ṽ1

i ) +
∑
i∈C̄2

z2
id(s)ũ

2
i , τ̄

1

}

+
∑
i∈C̄2

(z2
id(s)ṽ

2
i +x2

id(s)(ũ
2
i + ṽ2

i ) + y2
id(s)ũ

2
i )− τ̄ 2,−γ2

d

}]
,

(20)

is equivalent to

max
(u1

1,v
1
1 ,u

2
1,v

2
1 ,u

2
2,v

2
2 ,p1,p2,p3)∈Y2

kgsd

{(∑
i∈C̄1

(x1
id + y1

id)ei

)′
(u1

1 +v1
1) +

(∑
i∈C̄2

(z2
id(s) +x2

id(s))ei

)′
(u2

1 +v2
1)

+

(∑
i∈C̄2

y2
id(s)ei

)′
u2

1− τ̄ 2p1 + τ̄ 1p2
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+

(∑
i∈C̄2

z2
id(s)ei

)′
v2

2 +

(∑
i∈C̄2

x2
id(s)ei

)′
(u2

2 +v2
2)

+

(∑
i∈C̄2

y2
id(s)ei

)′
u2

2− τ̄ 2p2− γ2
dp3

}

where

Y2
kgsd =



(u1
1,v

1
1,u

2
1,v

2
1,u

2
2,v

2
2, p1, p2, p3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃u1
2,v

1
2,u

1
3,v

1
3,a

1
j ,b

1
j , j ∈ [3] :

u1
1 +u1

2 +u1
3 =µ1

k

v1
1 +v1

2 +v1
3 = ν1

k

a1
1 +a1

2 +a1
3 ≤σ1

k

b1
1 + b1

2 + b1
3 ≤ ς1

k

u2
1 +u2

2 +u2
3 =µ2

sg

v2
1 +v2

2 +v2
3 = ν2

sg

a2
1 +a2

2 +a2
3 ≤σ2

sg

b2
1 + b2

2 + b2
3 ≤ ς2

sg

p1 + p2 + p3 = 1

u1
kpj ≤u1

j ≤ ū1
kpj ∀j ∈ [3]

v1
kpj ≤ v1

j ≤ v̄1
kpj ∀j ∈ [3]

a1
j ≥ |u1

j −µ1
kpj| ∀j ∈ [3]

b1
j ≥ |v1

j −ν1
kpj| ∀j ∈ [3]

u2
sgpj ≤u2

j ≤ ū2
sgpj ∀j ∈ [3]

v2
sgpj ≤ v2

j ≤ v̄2
sgpj ∀j ∈ [3]

a2
j ≥ |u2

j −µ2
sgpj| ∀j ∈ [3]

b2
j ≥ |v2

j −ν2
sgpj| ∀j ∈ [3]

pj, p2, p3 ≥ 0

u1
j ,a

1
j ,v

1
j ,b

1
j ,u

2
j ,a

2
j ,v

2
j ,b

2
j ∈RN ∀j ∈ [3]



.

Proof. See Appendix A.2. �

With Theorems 1 and 2, we can now transform the DRO problem to a classical linear RO

problem (see, for instance, Ben-Tal and Nemirovski 1998) as follows:

inf
∑
d∈[D]

(γ1
d + γ2

d)

s.t.
∑
k∈[K1]

qk

((∑
i∈C̄1

(x1
id + y1

id)ei

)′
u1k

1 +

(∑
i∈C̄1

x1
idei

)′
v1k

1 − τ̄ 1pk1 − γ1
dp

k
2

)
≤ 0 ∀(u1k

1 ,v
1k
1 , p

k
1 , p

k
2)∈Y1

kd, k ∈ [K1], ∀d∈ [D] (21a)
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∑
(k,g,s)∈W

qkgs

((∑
i∈C̄1

(x1
id + y1

id)ei

)′
(u1kgs

1 +v1kgs
1 ) +

(∑
i∈C̄2

(z2
id(s) +x2

id(s))ei

)′
(u2kgs

1 +v2kgs
1 )

+

(∑
i∈C̄2

y2
id(s)ei

)′
u2kgs

1 − τ̄ 2pkgs1 + τ̄ 1pkgs2 +

(∑
i∈C̄2

z2
id(s)ei

)′
v2kgs

2 +

(∑
i∈C̄2

x2
id(s)ei

)′
(u2kgs

2 +v2kgs
2 )

+

(∑
i∈C̄2

y2
id(s)ei

)′
u2kgs

2 − τ̄ 2pkgs2 − γ2
dp

kgs
3

)
≤ 0

∀(u1
1,v

1
1,u

2
1,v

2
1,u

2
2,v

2
2, p1, p2, p3)∈Y2

kgsd, (k, g, s)∈W ∀d∈ [D] (21b)

γ1
d , γ

2
d ≥ 0 ∀d∈ [D]

(x1,y1,x2,y2,z2)∈X ,

where constraints (21a) and (21b) are dynamically added, which has the advantage of keeping the

number of decision variables small compared to the explicit formulation via RSOME. Specifically,

we solve model (21) by ignoring these two groups of constraints. Whenever an integer solution is

generated, we solve the equivalent maximum models presented in Theorem 1 and Theorem 2. If

the resulting solutions violate the constraints, cuts are generated and added to the model, and the

model is solved again. This process continues until the optimality gap is satisfied.

5. Numerical Experiments

In this section, we first introduce the instance sets and benchmark approaches, and then conduct

numerical tests to evaluate the proposed B&C algorithm and the cluster-wise DRO framework.

Instance Sets

We set drones’ launch speed in both directions to 20 m/s, i.e., r̄0 = r̄i = 20 m/s, i ∈ [N ], based

on Amazon Prime Air and Workhorse HorseFly drones (used by UPS), which can fly at speeds up

to 50 mph (i.e., 22.35 m/s) (Lavars 2015, Burns 2017). For each customer i, i ∈ [N ], we generate

a random number from the interval [6000,18000] to denote the distance di between the depot

and the customer. This indicates that if wind is neglected, it generally takes 10 to 30 minutes

for a drone to perform a round trip. The distance data is based on the following reports: The

Amazon Prime Air drone can fly 15 miles (in about 20 minutes at a speed of 20 m/s) to deliver

packages (Lee 2019) and the HorseFly drone has a 30-minute flight time (Burns 2017). The angle

φi, i∈ [N ] between customer i and the x-axis takes a random integer value between 0 and 360. We

set C1 = {1, . . . ,0.4N}, C2 = {0.4N + 1, . . . ,0.8N}, and C3 = {0.8N + 1, . . . ,N}. Let τ̄ 1 = 4000 and

τ̄ 2 = 8000. We randomly generate instances of 15 and 20 customers, where 2 and 3 drones are used

in the delivery system, respectively. For a fixed number of customers, we generate 5 instances.

With respect to weather information, we use the wind data downloaded from the China

National Meteorological Information Center (http://data.cma.cn/site/index.html). For each geo-

graphic region, the realized wind of the last 7 days (including the current day) are available. Each
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region is divided into several subregions, where the average wind speed and degree are reported

hourly, i.e., 24 records per day. We utilize the wind data of Sichuan Province, a landlocked province

in Southwest China, ranging from September 14th to 19th, 2019. The wind information is reported

for 145 subregions; therefore, we have 3480 records per day. We consider every two hours as a time

horizon, and the first hour is Period 1 and the second hour is Period 2. Thus, for each day, we can

get 1740 wind samples. Note that for some missing data, we randomly generate continuous values

based on the lower and upper bounds of the available data. We use the data of September 14th

as the (in-sample) training data, i.e., H = 1740, and the data from September 15th to 19th as the

(out-of-sample) test data, producing 8700 samples.

To construct the cluster-wise ambiguity set, we use the K-means clustering algorithm to partition

the wind samples. We note that we also tried other clustering algorithms such as the hierarchical

clustering (Murtagh and Contreras 2012), and our preliminary tests showed that the results were

similar to those under the K-means clustering. Thus, we opt to use the K-means clustering as

it is a widely adopted clustering algorithm and easy to implement. For the adaptive scheduling

decisions in Period 2, we define each first-period cluster as an event. All of the algorithms and

models are implemented in Python programming language using Gurobi 7.5.1 as the solver. The

computations are executed on an Intel Core i5 2.3 GHz processor with 8GB memory.

Benchmark Approaches

We evaluate our DRO framework by comparing its solutions with those generated by the four other

benchmark models. The first one is the deterministic model that maximizes the slack of time. The

second one maximizes the joint on-time service probability. The third one has the same objective

function as our DRO model, but it is implemented in a stochastic programming framework. The

last one minimizes the maximum ERI.

Deterministic Model (DM). Since the considered drone delivery system is service-oriented,

a natural objective would be to construct a drone schedule that maximizes the slack of time in a

deterministic model.

max
∑
d∈[D]

∑
t∈[2]

ldt

s.t.
∑
i∈C̄1

(x1
id(u

1
i + v1

i ) + y1
idu

1
i )≤ τ̄ 1− ld1 ∀d∈ [D],∑

i∈C̄1
(x1
id + y1

id)(u
1
i + v1

i ) +
∑
i∈C̄2

((z2
id +x2

id)(u
2
i + v2

i ) + y2
idu

2
i )≤ τ̄ 2− ld2 ∀d∈ [D],

τ̄ 1 +
∑
i∈C̄2

(z2
idv

2
i +x2

id(u
2
i + v2

i ) + y2
idu

2
i )≤ τ̄ 2− ld2 ∀d∈ [D],

ldt ≥ 0 ∀d∈ [D], t∈ [2],

(x1,y1,x2,y2,z2)∈X .
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The first three constraints calculate the slack time ldt for drone d, d∈ [D] in period t, t∈ [2]. Since

the objective function only captures the magnitude of slack and does not indicate its probability,

if two solutions have the same magnitude of slack time, the one with a potential probability of

5% may have the same preference as the other one with a probability of 95%. In computational

experiments, we set the flight times u1, v1, u2, and v2 as their sample means.

Maximizing On-time Probability (MOP). To improve service quality, decision-makers may

prefer to penalize lateness to guarantee that drones can serve customers within stipulated time

windows as well as possible. Thus, another benchmark method is to maximize the joint on-time

service probability as follows:

max P [ζ− τ̄ ≤ 0]

s.t. (x1,y1,x2,y2,z2)∈X ,
(22)

where ζ =

ζ1
d , . . . , ζ

1
D

ζ2
d , . . . , ζ

2
D

 and τ̄ = (τ̄ 1, τ̄ 2)′e′, e∈RD. In contrast to the objective of the deterministic

model, the objective of Model (22) only captures the lateness probability and ignores the magnitude

of lateness completely. Thus, if the lateness probabilities of two solutions are the same, the one with

a lateness magnitude of 40 minutes may have the same preference as the one with a lateness of 1

minute. Moreover, as the objective to be maximized is not a concave function, we use an empirical

distribution approximation reformulation to solve Model (22) as follows:

max
1

H

∑
h∈[H]

Ih

s.t.
∑
i∈C̄1

(x1
id(u

1
ih + v1

ih) + y1
idu

1
ih)− τ̄ 1 ≤ (1− Ih)M 1

h ∀d∈ [D], h∈ [H],∑
i∈C̄1

(x1
id + y1

id)(u
1
ih + v1

ih) +
∑
i∈C̄2

((z2
id +x2

id)(u
2
ih + v2

ih) + y2
idu

2
ih)− τ̄ 2 ≤ (1− Ih)M 2

h ∀d∈ [D], h∈ [H],

τ̄ 1 +
∑
i∈C̄2

(z2
idv

2
ih +x2

id(u
2
ih + v2

ih) + y2
idu

2
ih)− τ̄ 2 ≤ (1− Ih)M 2

h ∀d∈ [D], h∈ [H],

Ih ∈ {0,1} ∀h∈ [H],

(x1,y1,x2,y2,z2)∈X ,

where utih ∈ R and vtih ∈ R are the travel times in Period t, t ∈ [2] with respect to sample h,

h ∈ [H]. Ih = 1 if and only if all drones at all periods serve customers on time under sample h,

h ∈ [H]. M t
h, h ∈ [H], t ∈ [2] is a sufficiently large number. We choose M 1

h =
∑
i∈C̄1

(u1
ih + v1

ih) and

M 2
h = max

{∑
i∈C̄1

(u1
ih + v1

ih) , τ̄ 1

}
+
∑
i∈C̄2

(u2
ih + v2

ih).
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Minimizing ERI Using Empirical Distribution (ERI-E). For Model (16), we assume the

travel times follow an empirical distribution, thus the expectations in constraints (16a) and (16b)

are now evaluated over a known distribution. The resulting model is

inf
∑
d∈[D]

(γ1
d + γ2

d)

s.t. 1
H

∑
h∈[H]

wtdh ≤ 0 ∀d∈ [D], t∈ [2],

w1
dh ≥

∑
i∈C̄1

(x1
id(u

1
ih + v1

ih) + y1
idu

1
ih)− τ̄ 1 ∀d∈ [D], h∈ [H],

w2
dh ≥

∑
i∈C̄1

(x1
id + y1

id)(u
1
ih + v1

ih) +
∑
i∈C̄2

((z2
id +x2

id)(u
2
ih + v2

ih) + y2
idu

2
ih)− τ̄ 2 ∀d∈ [D], h∈ [H],

w2
dh ≥ τ̄ 1 +

∑
i∈C̄2

(z2
idv

2
ih +x2

id(u
2
ih + v2

ih) + y2
idu

2
ih)− τ̄ 2 ∀d∈ [D], h∈ [H],

wtdh ≥−γtd ∀d∈ [D], h∈ [H], t∈ [2],

γtd ≥ 0 ∀d∈ [D], t∈ [2],

(x1,y1,x2,y2,z2)∈X .

Minimizing the Maximum ERI (M-ERI). We can also minimize the maximum ERI with

empirical distribution. To do so, we replace the objective of the ERI-E model with

minγ

and add the additional constraints

γ ≥ γtd ∀d∈ [D], t∈ [2].

For all methods, we first derive the delivery decisions from training data, then evaluate their out-

of-sample performance using the following four indicators, which are relevant to decision-makers

in a service-oriented system.

• MaxPro: The maximum lateness probability across all customers.

• SumPro: The sum of lateness probabilities of all customers.

• MaxExp: The maximum expected lateness duration across all customers.

• SumExp: The sum of expected lateness durations of all customers.

When calculating the expected lateness, we assume the travel times follow an empirical distribution.

In addition, for the sequence of customers (except the last customer in Period 1 and the first and

last customers in Period 2), we assume that drones will serve a customer first if the customer is

nearer to the depot.
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Algorithm Performance

We compare the performance of the B&C algorithm with RSOME by solving the adaptive DRO

model. The optimality gap for both methods is set to 0.01%. Average results are reported in Table

1, where time ratio is obtained by using the computing time of the B&C algorithm to divide that

of the RSOME. We conduct the comparison on instances with 15 customers, as RSOME fails to

provide a solution within 6 hours for some instances with N = 20 when K1 ≥ 2.

Table 1 Performance comparison (CPU time in seconds) between B&C and RSOME

N K1 K2 B&C RSOME Time ratio

15 1 1 4.98 3.36 1.48

2 10.09 19.38 0.52

3 18.57 37.42 0.50

2 1 19.93 29.15 0.68

2 50.53 120.05 0.42

3 102.70 344.24 0.30

3 1 88.89 201.41 0.44

2 243.65 294.56 0.83

3 471.87 1868.23 0.25

4 1 880.01 466.13 1.89

2 2353.60 5485.28 0.43

5 1 3478.40 6615.62 0.53

Table 1 shows that the B&C algorithm can solve instances to optimality within a shorter time

frame in most cases (10 out of 12). In particular, when K2 = 3, the average CPU time of the B&C

is equal to or less than half of the computing time of the RSOME. Therefore, we can conclude

that the B&C algorithm can generally achieve a greater scalability for the adaptive DRO model

compared to RSOME.

Comparison of Decision Criteria

We first evaluate the performance of different decision criteria. For models MOP, M-ERI, and

ERI-E, the optimality gap is set to 0.5% and the time limit for solving each model is set to 3600

seconds. The average results of out-of-sample tests are reported in Table 2.

Table 2 shows that while Method DM consumes the least CPU time, it generates very poor

solutions, leading to significant out-of-sample lateness when uncertainty is present. Specifically, the

lateness probability for the worst-case customer, MaxPro, is as much as 18.35% and 13.03% for

N = 15 and 20, respectively; however, under other decision criteria, the value of MaxPro is around

3%.
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Table 2 Average results of out-of-sample tests under different decision criteria

N Model MaxPro SumPro MaxExp SumExp CPU time

15 DM 0.1835 0.2410 17.17 25.43 0.06

MOP 0.0362 0.0743 7.93 16.11 2563.31

M-ERI 0.0360 0.0732 7.56 15.65 530.04

ERI-E 0.0339 0.0668 7.57 14.81 90.22

20 DM 0.1303 0.1809 17.38 29.01 0.06

MOP 0.0309 0.0892 7.11 20.36 3580.08

M-ERI 0.0319 0.1053 6.90 22.78 3600.00

ERI-E 0.0298 0.0850 7.09 19.86 3599.33

In general, Method ERI-E provides a better out-of-sample performance than the three other

methods. Specifically, it shows a superiority in indicators MaxPro, SumPro, and SumExp. It also

consumes much less CPU time than Methods M-ERI and MOP when N = 15. Method M-ERI

performs better with regard to MaxExp, which is consistent with its objective function; however, it

performs worse in other indicators and requires more CPU time in comparison with ERI-E. This

is because there exist multiple optimal solutions under this criterion. Based on the results here, we

use Method ERI-E to evaluate our robust framework in the next section.

Comparison Between Robust Method and Empirical Distribution

In this section, we compare the out-of-sample performance of the static DRO model and Method

ERI-E. The DRO model is solved by the B&C algorithm with the same optimality gap and time

limit as those of Method ERI-E. The average results are reported in Table 3, where the first row

under each N presents the results of Method ERI-E.

Table 3 shows that the static DRO model can find solutions with better out-of-sample perfor-

mance in all indicators for N = 15 when (K1,K2) = (5,1) and for N = 20 when (K1,K2) = (4,2).

Moreover, the static DRO model consumes less CPU time in these two cases compared to its empir-

ical counterpart, ERI-E. When N = 20 and (K1,K2) = (5,1), the DRO model produces solutions

with better performance in indicators MaxPro, SumPro, and MaxExp, and the value of SumExp is

larger than that of Method ERI-E by only 0.01. However, the DRO model requires much less com-

puting time (1428.63 seconds versus 3599.33 seconds) on average. Thus, we can conclude that the

robust method is more effective in mitigating the service lateness than the empirical distribution

for our drone delivery problem.

Comparison Between Adaptive and Static Robust Models

This section compares the performance of the adaptive and static DRO models. The average results

are reported in Table 4, with results of the static model shown in parentheses. Under the same

cluster numbers, if the static model performs better in an indicator, we mark the results in bold.
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Table 3 Average results of out-of-sample tests generated by the static DRO model

N K1 K2 MaxPro SumPro MaxExp SumExp CPU time

15 ERI-E 0.0339 0.0668 7.57 14.81 90.22

1 1 0.0391 0.0677 8.61 15.23 5.15

2 0.0344 0.0655 8.01 15.06 11.37

3 0.0332 0.0647 7.70 14.71 22.49

2 1 0.0349 0.0647 8.05 14.86 9.90

2 0.0337 0.0652 7.77 14.65 25.68

3 0.0364 0.0657 7.83 14.90 56.56

3 1 0.0340 0.0650 7.93 14.83 26.41

2 0.0330 0.0646 7.81 14.77 72.18

3 0.0325 0.0644 7.83 14.79 93.55

4 1 0.0334 0.0650 7.70 14.88 35.93

2 0.0340 0.0650 7.71 14.82 89.10

5 1 0.0329 0.0644 7.53 14.63 65.45

20 ERI-E 0.0298 0.0850 7.09 19.86 3599.33

1 1 0.0406 0.0931 8.74 21.15 18.58

2 0.0321 0.0865 7.34 20.34 49.37

3 0.0323 0.0838 7.59 20.06 96.90

2 1 0.0364 0.0889 8.14 20.66 68.16

2 0.0300 0.0838 7.33 20.04 475.42

3 0.0343 0.0849 7.69 20.00 595.31

3 1 0.0350 0.0855 8.26 20.12 265.55

2 0.0304 0.0830 7.23 19.82 891.86

3 0.0303 0.0836 7.43 19.85 1734.09

4 1 0.0297 0.0822 7.16 19.71 671.79

2 0.0283 0.0821 6.81 19.73 2860.55

5 1 0.0293 0.0839 6.98 19.87 1428.63

Table 4 shows that under the same cluster numbers, in most cases the adaptive model can find

solutions with better out-of-sample performance in all indicators compared to the static model.

When N = 20, under some cluster numbers, even though the adaptive model is not solved to

optimality, it can still generate solutions with better performance. The static model performs

better in indicators MaxPro and MaxExp under some cluster numbers, while the adaptive model

demonstrates superiority in the two other indicators. In the previous section, we observe that

the static model performs better in all indicators when (K1,K2) = (5,1) for N = 15 compared

to Method ERI-E, whereas the adaptive model can further improve performance under multiple

cluster numbers besides (K1,K2) = (5,1), e.g., (K1,K2) = (2,2) and (2,3), etc. Likewise, for N =
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Table 4 Average results of out-of-sample tests generated by the adaptive and static DRO models

N K1 K2 MaxPro SumPro MaxExp SumExp CPU time

15 2 1 0.0355 (0.0349) 0.0612 (0.0647) 7.95 (8.05) 14.07 (14.86) 18.62 (9.90)

2 0.0308 (0.0337) 0.0590 (0.0652) 7.41 (7.77) 13.67 (14.65) 57.03 (25.68)

3 0.0312 (0.0364) 0.0587 (0.0657) 7.24 (7.83) 13.81 (14.90) 135.64 (56.56)

3 1 0.0326 (0.0340) 0.0606 (0.0650) 7.62 (7.93) 13.89 (14.83) 76.69 (26.41)

2 0.0318 (0.0330) 0.0602 (0.0646) 7.54 (7.81) 14.00 (14.77) 277.58 (72.18)

3 0.0320 (0.0325) 0.0595 (0.0644) 7.52 (7.83) 13.74 (14.79) 537.31 (93.55)

4 1 0.0335 (0.0334) 0.0612 (0.0650) 7.62 (7.70) 14.04 (14.88) 189.63 (35.93)

2 0.0325 (0.0340) 0.0596 (0.0650) 7.27 (7.71) 13.68 (14.82) 578.85 (89.10)

5 1 0.0321 (0.0329) 0.0607 (0.0644) 7.20 (7.53) 13.94 (14.63) 491.41 (65.45)

20 2 1 0.0306 (0.0364) 0.0814 (0.0889) 7.31 (8.14) 19.65 (20.66) 336.44 (68.16)

2 0.0342 (0.0300) 0.0812 (0.0838) 7.91 (7.33) 19.14 (20.04) 2920.24 (475.42)

3 0.0299 (0.0343) 0.0785 (0.0849) 7.14 (7.69) 19.00 (20.00) 3174.50 (595.31)

3 1 0.0329 (0.0350) 0.0782 (0.0855) 7.70 (8.26) 18.23 (20.12) 3022.32 (265.55)

2 0.0282 (0.0304) 0.0755 (0.0830) 7.13 (7.23) 18.33 (19.82) 3600.00 (891.86)

3 0.0293 (0.0303) 0.0773 (0.0836) 6.98 (7.43) 18.26 (19.85) 3600.00 (1734.09)

4 1 0.0331 (0.0297) 0.0792 (0.0822) 7.40 (7.16) 18.33 (19.71) 3600.00 (671.79)

2 0.0269 (0.0283) 0.0783 (0.0821) 6.64 (6.81) 17.76 (19.73) 3600.00 (2860.55)

5 1 0.0338 (0.0293) 0.0836 (0.0839) 7.20 (6.98) 18.51 (19.87) 3600.00 (1428.63)

20, the performance of the adaptive model also dominates that of the static model in all indicators

when (K1,K2) = (4,2). Another observation is that with a small number of clusters, both robust

models outperform the empirical distribution; however, the out-of-sample performance does not

necessarily improve with a larger number of clusters, because the ambiguity set would converge to

the empirical distribution with increasing clusters, which may lead to overfitting. In practice, we

can determine the number of clusters via validation tests.

Table 5 gives the detailed solutions of one instance under (K1,K2) = (3,2) for N = 15. The

centroids of the first-period clusters can be easily obtained after applying the K-means clustering

algorithm, which is available in many open-source machine learning libraries (e.g., the scikit-learn

library that we use). We can observe that under different clusters (or events), the adaptive DRO

model generates different delivery schedules for Period 2. For any out-of-sample, when decision-

makers have observed the wind realization in Period 1, they can calculate the distance between

that realization and each cluster centroid to decide which cluster the observation belongs to, then

adopt the corresponding delivery schedule in that cluster for Period 2.
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Table 5 Detailed solutions of the DRO models for one instance

Delivery schedule in Period 1

Adaptive Static

[4, 1, 2, 3], [5, 15, 6] [4, 1, 2, 6], [5, 15, 3]

Centroid (Cartesian coordinate)

Delivery schedule in Period 2

Adaptive Static

(-0.76, 0.68) [9, 8, 7, 14], [11, 13, 10, 12]

[13, 8, 11, 12], [10, 9, 7, 14](1.55, 0.15) [11, 9, 14, 10], [7, 8, 13, 12]

(-0.16, -1.23) [7, 9, 8, 14], [10, 11, 13, 12]

6. Conclusions

In this paper, we introduce a distributionally robust optimization model to solve a two-period

drone scheduling problem with uncertain flight times, which can be implemented in a data-driven

framework using historical weather information. We propose a cluster-wise moment-based ambi-

guity set by partitioning the wind vector chart into different clusters, which allows us to adapt the

delivery schedule in the afternoon to updated weather information available by midday. For greater

scalability, we develop a branch-and-cut algorithm for the adaptive robust model. To evaluate

the proposed robust scheme, we benchmark our method against other classical models. Numer-

ical results demonstrate that our robust framework, especially the adaptive robust model, can

effectively reduce the service lateness at customers in out-of-sample tests.
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Appendix A Proofs of Theorems

A.1 Proof of Theorem 1

Because of the feasibility and the linearity of the ambiguity set (see, for instance, Bertsimas et al.

2019, Chen et al. 2020, Mohajerin Esfahani and Kuhn 2018), strong duality holds, thus we can

reformulate Problem (17) as the following minimization problem, with α,β,δ,ε, η as the dual

variables associated with the expectations and probability in G1
k:

min (µ1
k)
′α+ (ν1

k)′β+ (σ1
k)
′δ+ (ς1

k)′ε+ η

s.t. (u1)′α+ (v1)′β+ (a1)′δ+ (b1)′ε+ η

≥
∑
i∈C̄1

(x1
id(u

1
i + v1

i ) + y1
idu

1
i )− τ̄ 1 ∀(u1,a1,v1,b1)∈Ξ1

k,

(u1)′α+ (v1)′β+ (a1)′δ+ (b1)′ε+ η≥−γ1
d ∀(u1,a1,v1,b1)∈Ξ1

k,

δ,ε≥ 0,

α,β,δ,ε,∈RN , η ∈R.

(A.1)

Using the duality result of RO, i.e., the dual of the robust counterpart (‘primal worst’) is equal

to the optimistic counterpart of the dual problem (‘dual best’) (Beck and Ben-Tal 2009), Problem

(A.1) is equivalent to the following maximization problem:

max
(u1

j ,a
1
j ,v

1
j ,b

1
j)∈Ξ1

k
∀j∈[2]

min (µ1
k)
′α+ (ν1

k)′β+ (σ1
k)
′δ+ (ς1

k)′ε+ η

s.t. (u1
1)′α+ (v1
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1)′ε+ η
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δ,ε≥ 0,

α,β,δ,ε,∈RN , η ∈R.

By duality of the inner linear optimization problem we have, equivalently,

max

(∑
i∈C̄1

(x1
id + y1

id)ei

)′
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dp2
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a1
j ≥ |u1

j −µ1
k| ∀j ∈ [2]

v1
k ≤ v1

j ≤ v̄1
k ∀j ∈ [2]

b1
j ≥ |v1

j −µ1
k| ∀j ∈ [2]

p1, p2 ≥ 0

u1
j ,a

1
j ,v

1
j ,v

1
j ∈RN ∀j ∈ [2].

By perspective transformation, i.e., u1
1p1→u1

1, v1
1p1→ v1

1, we obtain the linear optimization model

presented in Equation (18), noting that the equivalence holds because the feasiblity Y1
kd requires

u1
j = a1

j = v1
j = b1

j = 0 whenever pj = 0. �

A.2 Proof of Theorem 2

The proof is similar to the proof of Theorem 1. Problem (20) is equivalent to the following mini-

mization problem:
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id(s) +x2

id(s))(u
2
i + v2

i ) + y2
id(s)u

2
i

)
− τ̄ 2

∀(u1,v1,a1,b1,u2,v2,a2,b2)∈Ξ2
kgs

(u1)′α1 + (v1)′β1 + (a1)′δ1 + (b1)′ε1 + (u2)′α2 + (v2)′β2 + (a2)′δ2 + (b2)′ε2 + η

≥ τ̄ 1 +
∑
i∈C̄2

(
z2
id(s)v

2
i +x2

id(s)(u
2
i + v2

i ) + y2
id(s)u

2
i

)
− τ̄ 2 ∀(u1,v1,a1,b1,u2,v2,a2,b2)∈Ξ2

kgs

(u1)′α1 + (v1)′β1 + (a1)′δ1 + (b1)′ε1 + (u2)′α2 + (v2)′β2 + (a2)′δ2 + (b2)′ε2 + η≥−γ2
d

∀(u1,v1,a1,b1,u2,v2,a2,b2)∈Ξ2
kgs

δn,εn ≥ 0 ∀n∈ [2]

αn,βn,δn,εn ∈RN , η ∈R ∀n∈ [2].

Using the duality result of robust optimization we have, equivalently,

max
(u1

j ,v
1
j ,a

1
j ,b

1
j ,u

2
j ,v

2
j ,a

2
j ,b

2
j )∈Ξ2

kgs
∀j∈[3]

min
(

(µ1
k)
′α1 + (ν1

k)′β1 + (σ1
k)
′δ1 + (ς1

k)′ε1

+ (µ2
sg)
′α2 + (ν2

sg)
′β2 + (σ2

sg)
′δ2 + (ς2

sg)
′ε2 + η

)
s.t. (u1

1)′α1 + (v1
1)′β1 + (a1

1)′δ1 + (b1
1)′ε1 + (u2

1)′α2 + (v2
1)′β2 + (a2

1)′δ2 + (b2
1)′ε2 + η

≥

(∑
i∈C̄1

(x1
id + y1

id)ei

)′
(u1

1 +v1
1) +

(∑
i∈C̄2

(z2
id(s) +x2

id(s))ei

)′
(u2

1 +v2
1) +

(∑
i∈C̄2

y2
id(s)ei

)′
u2

1− τ̄ 2

(u1
2)′α1 + (v1

2)′β1 + (a1
2)′δ1 + (b1

2)′ε1 + (u2
2)′α2 + (v2

2)′β2 + (a2
2)′δ2 + (b2

2)′ε2 + η
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≥ τ̄ 1 +

(∑
i∈C̄2

z2
id(s)ei

)′
v2

2 +

(∑
i∈C̄2

x2
id(s)ei

)′
(u2

2 +v2
2) +

(∑
i∈C̄2

y2
id(s)ei

)′
u2

2− τ̄ 2

(u1
3)′α1 + (v1

3)′β1 + (a1
3)′δ1 + (b1

3)′ε1 + (u2
3)′α2 + (v2

3)′β2 + (a2
3)′δ2 + (b2

3)′ε2 + η≥−γ2
d

δn,εn ≥ 0 ∀n∈ [2]

αn,βn,δn,εn ∈RN , η ∈R ∀n∈ [2].

By duality of the inner optimization problem we have, equivalently,

max

(∑
i∈C̄1

(x1
id + y1

id)ei

)′
(u1

1 +v1
1)p1 +

(∑
i∈C̄2

(z2
id(s) +x2

id(s))ei

)′
(u2

1 +v2
1)p1

+

(∑
i∈C̄2

y2
id(s)ei

)′
u2

1p1− τ̄ 2p1 + τ̄ 1p2 +

(∑
i∈C̄2

z2
id(s)ei

)′
v2

2p2

+

(∑
i∈C̄2

x2
id(s)ei

)′
(u2

2 +v2
2)p2 +

(∑
i∈C̄2

y2
id(s)ei

)′
u2

2p2− τ̄ 2p2− γ2
dp3

s.t. u1
1p1 +u1

2p2 +u1
3p3 =µ1

k

v1
1p1 +v1

2p2 +v1
3p3 = ν1

k

a1
1p1 +a1

2p2 +a1
3p3 ≤σ1

k

b1
1p1 + b1

2p2 + b1
3p3 ≤ ς1

k

u2
1p1 +u2

2p2 +u2
3p3 =µ2

sg

v2
1p1 +v2

2p2 +v2
3p3 = ν2

sg

a2
1p1 +a2

2p2 +a2
3p3 ≤σ2

sg

b2
1p1 + b2

2p2 + b2
3p3 ≤ ς2

sg

p1 + p2 + p3 = 1

u1
k ≤u1

j ≤ ū1
k ∀j ∈ [3]

v1
k ≤ v1

j ≤ v̄1
k ∀j ∈ [3]

a1
j ≥ |u1

j −µ1
k| ∀j ∈ [3]

b1
j ≥ |v1

j −ν1
k | ∀j ∈ [3]

u2
sg ≤u2

j ≤ ū2
sg ∀j ∈ [3]

v2
sg ≤ v2

j ≤ v̄2
sg ∀j ∈ [3]

a2
j ≥ |u2

j −µ2
sg| ∀j ∈ [3]

b2
j ≥ |v2

j −ν2
sg| ∀j ∈ [3]

p1, p2, p3 ≥ 0
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By perspective transformation, it is equivalent to the following linear optimization problem

max

(∑
i∈C̄1

(x1
id + y1

id)ei

)′
(u1

1 +v1
1) +

(∑
i∈C̄2

(z2
id(s) +x2

id(s))ei

)′
(u2

1 +v2
1)

+

(∑
i∈C̄2

y2
id(s)ei

)′
u2

1− τ̄ 2p1 + τ̄ 1p2 +

(∑
i∈C̄2

z2
id(s)ei

)′
v2

2

+

(∑
i∈C̄2

x2
id(s)ei

)′
(u2

2 +v2
2) +

(∑
i∈C̄2

y2
id(s)ei

)′
u2

2− τ̄ 2p2− γ2
dp3

s.t. u1
1 +u1

2 +u1
3 =µ1

k

v1
1 +v1

2 +v1
3 = ν1

k

a1
1 +a1

2 +a1
3 ≤σ1

k

b1
1 + b1

2 + b1
3 ≤ ς1

k

u2
1 +u2

2 +u2
3 =µ2

sg

v2
1 +v2

2 +v2
3 = ν2

sg

a2
1 +a2

2 +a2
3 ≤σ2

sg

b2
1 + b2

2 + b2
3 ≤ ς2

sg

p1 + p2 + p3 = 1

u1
kpj ≤u1

j ≤ ū1
kpj ∀j ∈ [3]

v1
kpj ≤ v1

j ≤ v̄1
kpj ∀j ∈ [3]

a1
j ≥ |u1

j −µ1
kpj| ∀j ∈ [3]

b1
j ≥ |v1

j −ν1
kpj| ∀j ∈ [3]

u2
sgpj ≤u2

j ≤ ū2
sgpj ∀j ∈ [3]

v2
sgpj ≤ v2

j ≤ v̄2
sgpj ∀j ∈ [3]

a2
j ≥ |u2

j −µ2
sgpj| ∀j ∈ [3]

b2
j ≥ |v2

j −ν2
sgpj| ∀j ∈ [3]

p1, p2, p3 ≥ 0.
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