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Despite advanced supply chain planning and execution systems, manufacturers and distributors tend to

observe service levels below their targets due to different sources of uncertainty and risks. These risks, such

as drastic changes in demand, machine failures, or systems not properly configured, can lead to planning

or execution issues in the supply chain. It is too expensive to have planners continually track all situations

at a granular level to ensure that no deviations or configuration problems occur. We present a machine

learning system that predicts service level failures a few weeks in advance and alerts the planners. The

system includes a user interface that explains the alerts and helps to identify failure fixes. We conducted

this research in co-operation with Michelin. Through experiments carried out over the course of four phases,

we confirmed that machine learning can help predict service level failures. In our last experiment, planners

were able to use these predictions to make adjustments on tires for which failures were predicted, resulting

in an improvement in the service level of 10 percentage point. Additionally, the system enabled planners to

identify recurrent issues in their supply chain, such as safety stock computations problem, impacting the

overall supply chain efficiency. The proposed system showcases the importance of reducing the silos in supply

chain management.
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Supply chain planning typically comprises multiple optimization systems that differ in

scope and planning horizon, from strategic sales and operations planning to near-real-time

transportation systems. Despite advanced planning and execution systems, manufacturers

and distributors tend to observe service levels below their targets due to different sources

of uncertainty throughout the supply chain. Supply Chain Risk Management (SCRM) is

the field dedicated to identifying these risks and mitigating them.

Jüttner et al. (2003) classifies sources of uncertainty in supply chains between environ-

mental, organizational, and network risks. Environmental risks refer to the impact of the

environment on the supply chain, such as natural disasters and political factors. Organi-

zational risks include uncertainty within the supply chain, such as delays in transport or

production problems. Lastly, network risks refer to issues due to poor interactions between

the subparts of the supply chain. Indeed, as supply chain planning requires the collabora-

tion of different teams and systems that need to be tightly integrated, issues in systems

configurations may be undetected and lead to sub-optimal plans. The authors underscore

that network risks are a very impactful but often neglected source of risks. As part of

SCRM, risk mitigation is an area of research that focuses on building a robust plan that can

account for different sources and magnitude of uncertainty. Yet, it can be too costly to plan

for the worst outcomes, and it is impossible to model uncertainty perfectly. Consequently,

service level failures can occur in supply chains.

A steady stream of research applying Machine Learning (ML) to the field of supply

chain recently emerged due to recent advances in ML and the growing availability of data

(Nguyen et al. 2018). In this paper, we present a system that uses ML to raise alerts when

the supply chain conditions may lead to service level failures. The alerts need to anticipate

issues in time for the planners to take corrective actions but not so early that the next plan

naturally accounts for them. The system focuses the attention of the planners on alerts that

are actionable (it is possible to avoid the failure), exclusive (other systems did not detect

the issues), and significant (failures concern important items for which performing the

corrective action is worthwhile). The system also aims to explain alerts by identifying their

underlying causes, so users gain confidence in the results and get the necessary context for

potential fixes. We developed the system in co-operation with Michelin, an international

tire manufacturer, which provided the business use case and the data.
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In the remainder of this paper, we first present Related Work, followed by the section

Michelin Context introducing some of Michelin’s current challenges and how we frame the

problem. In the Methodology section, we outline how we model the problem and generate

predictions using ML. In the User Interaction with the Model section, we present the work-

flow and User Interface (UI) that we developed so that the system’s predictions are useful

and explainable. We follow with the Results section. Eventually, we give some perspectives

on our work and the remaining challenges for ML to have a deep impact on supply chain

management in Perspectives. The Appendix contains more details on the model and the

data.

Related Work

Nguyen et al. (2018) recently published a survey of big-data analytics for supply chains

that classifies the studies by supply chain functions, including demand management, man-

ufacturing, warehousing, and general supply chain management when the study encom-

passes multiple functions of the supply chain together. In the survey, papers falling in the

latter category are either descriptive or prescriptive approaches on topics such as manag-

ing sustainability (Papadopoulos et al. 2017) or natural disaster risk management (Ong

et al. 2015), but the authors do not report any predictive approaches. They highlight the

increased usage of ML for specific areas of supply chain management, such as demand

forecasting and machine maintenance. Our approach, which would fall in the predictive

applications for the general supply chain category, thus clearly stands out in the cur-

rent domain’s stream of research. Additionally, to our knowledge, no software vendors are

offering a disruption prediction tool ingesting data from several supply chain components

simultaneously, at the time of this study.

In the SCRM literature, most papers focus on the identification of risks, such as Heck-

mann et al. (2015), Kumar et al. (2010) or on their mitigation, such as Schmitt (2011),

Paul et al. (2017). Still, a few papers combine both. Simchi-Levi et al. (2015) proposes

methods to identify and mitigate risks in the automotive supply chain context at a tactical

decision level. Some papers, such as Garvey et al. (2015), Ojha et al. (2018) use Bayesian

networks to model risk propagation on simulated data. In contrast, our approach predicts

failures on a short term horizon on real live data. Sharma et al. (2018) proposes a similar

technique, yet the study focuses on predicting failures among last-mile pickup and delivery
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services. Our work is centered around detecting failures in supply chain segments which

are upstream of that last delivery step.

For more information on supply chain planning, we refer the reader to Stadtler and

Kilger (2002), and to Khojasteh (2017) for SCRM specifically.

Michelin Context

Michelin is an international manufacturer that produces and sells tires for a vast range

of vehicles, from cars and motorcycles to tractors and aircraft. Michelin produces roughly

200M tires per year and has a commercial presence in 170 countries, reaching 13.7% of the

global tire market in 2014. For the car tires segment, Michelin distinguishes two channels:

one for orders placed well in advance (typically large quantities, for car manufacturers

or large retailers) and one for orders placed only a few days ahead (typically for local

mechanics), called store-and-sell.

Service Level Failure

In this study, we focus on the store-and-sell channel for car tires in Europe. For this channel,

Michelin has a catalog of products, each with a given target delivery window. For example,

a 48h delivery window means that a local garage can place an order and expect delivery

within 48h. For the corresponding Michelin’s Distribution Center (DC), this translates

into a deadline by which the items need to be available for delivery. Michelin considers a

supply chain failure as the inability to meet this deadline. Michelin tracks the performance

of its supply chain with Key Performance Indicators (KPIs) aggregating orders’ service

level over different scopes, such as products group, regions and periods. In this study, we

focus on service levels aggregated by item and DC at a weekly frequency, and consider a

service level failure as being situations where this aggregation is below Michelin’s target.

Challenges and Opportunities

In an ideal world, Michelin’s planners would continuously monitor the supply chain data

and adjust its parameters when they detect situations or patterns that could lead to service

level failures. However, they are usually unable to monitor the data at a granular level

because of the high volume of data and the complexity of supply chains. To illustrate, for

the store-and-sell channel in Europe only, Michelin has around 4k different types of items,

produced in 10 plants and stored in 15 DCs. Additionally, the planners’ responsibilities

are typically siloed between the different supply chain segments. As such, the ownership
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of the service level’s performance is shared, increasing the complexity in identifying issues

and mitigating them. For these reasons, planners adopt a proactive approach for their

most important products only, and resort to a corrective approach for the vast majority of

their items, i.e. adjusting the parameters only if the service level drops significantly below

the target. This approach is reasonable because it is too costly to monitor all items. Yet,

having a system that can predict situations at risk that require planners’ attention would

help in improving the supply chain performance. Moreover, such a system could detect

problems that human planners would miss.

Sources of Service Level Failure

Different sources of uncertainty in the supply chain cause problems which Michelin typically

categorize as execution issues or planning issues. Execution issues refer to situations where

the plan is adequate to fulfill the orders on time, but an event creates a disruption leading

to a failure. It can be due to environmental and organizational risks, such as delays in

shipments and machine failure. Execution issues are typically challenging to foresee and

prevent. By planning issues, we mean that the plan is inadequate in fulfilling the right

amount of items on time. Planning issues can be imputable to uncertainty in demand that

the plan does not account for, or inadequate systems’ configurations. By configurations, we

refer to the parameters and rules of the system that create the supply chain plans, such as

safety stock targets, demand forecast settings, and master plan parameters. Additionally,

planning issues can be due to poor interaction between the different subparts of the supply

chain, i.e., network risks, as manufacturers tend to leverage heterogeneous systems with

limited integration, either from different vendors or built in-house. Typically, it is possible

to detect planning issues a few weeks in advance and as such, they can be predictive of

future service level failures.

In the store-and-sell channel, the flow of material starts at raw material procurement

and ends when retailers receive the tires. In previous internal studies, Michelin identified

that planning and execution issues impacting the service level occur mostly at the stage of

production, in internal logistics, and at DCs. As such, in this study, we ignore raw material

procurement, upstream logistics, and channel logistics, as shown in Figure 1. We hence

measure service level failures at the shipping door of the DCs. This have the added benefit

of limiting the data effort.
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Figure 1 Flow of materials in the Supply Chain. As part of this study, we only include in the model the following

segments: production, internal logistics and distribution centers.

Raw Materials
Procurement Upstream Logistics Production Internal Logistics Distribution Centers Channel Logistics Retailers 

Methodology

In this section, we present how we model the task of service level failure prediction from a

ML perspective and describe our methodology to train such a model.

The task

We define a service level failure as a situation where the service level for an item at a DC

for a given week is below Michelin’s service level target, resulting in a binary variable.

The model predicts the likelihood of a service level failure. We call alert each model’s

prediction. Given the context of Michelin’s supply chain, we use a prediction horizon of 14

days, i.e., we generate predictions every week on Mondays for the week starting 14 days

later for each item–DC pair. We use the mean service level in the training dataset, 87.5%,

as the model’s baseline. This corresponds to 12.5% failures.

Features

We engineer features from the raw data to represent the state at each segment of the

supply chain included in the rectangular in Figure 1. Generally, the features compare the

actual and planned values for a few periods before the moment of prediction so that they

can measure uncertainty and deviations from the plan. Yet, historical data is not available

for all possible factors impacting the service level, limiting us in our ability to model

the situation at any given time precisely. Thus, we add features that are good proxies in

estimating the uncertainty at each step of the supply chain. As an example, we do not have

access to machine failures data, but we can model if the output of the plants matches the

plan, a good estimation for production execution performance. Additionally, we incorporate

the service level of the preceding weeks as features, since they are good indicators of the

global health of the supply chain. We also include as features some projections known at

the moment of prediction that informed the current supply chain plan, and indicates if it

is likely to meet the projected need. We detail the features that we use in the Appendix,

as well as potential ones we would have liked to use, if data allowed.
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Model

We selected Gradient Boosted Decision Trees (GBDTs) (Friedman 2001) as implemented in

XGBoost (Chen and Guestrin 2016) after some initial comparison with logistic regression,

random forests, and neural networks. They offer the best performance overall, are easy

and fast to train, and handle missing values out of the box. GBDTs are an ensemble of

decisions trees build iteratively where each tree’s target is to correct the cumulative error

made by preceding trees. The first tree generally trains on the delta between the targets

and a baseline, typically the average value of the training set. Additionally, being trees

based, ML scientists usually consider GBDT models as being explainable, as detailed in

section User Interaction with the Model.

Evaluation Metrics

For unbalanced classes, such as failure prediction, performance metrics are typically area

under the Receiver Operating Characteristics (ROC) or precision-recall curves. To evaluate

our models, we use the area under the precision-recall curve, which we obtain by plotting

the precision (ratio of true positives vs. all predicted positives) against the recall (ratio of

true positives vs. all positives). The precision-recall curve helps to directly quantify two

metrics that Michelin cares about: ”how often is the system correct when it predicts a

problem” (precision) and ”how many of the problems is it capturing?” (recall).

User Interaction with the Model

In this section, we describe important features of the workflow and supporting UI that we

developed for users to interact with alerts. A classical spreadsheet approach containing the

model’s predictions do not answer users’ needs around trust, context, and explainability.

The UI, in Figure 2, serves as a dashboard where we display the outputs of the model,

the raw data (such as stock levels, production plans, logistics delays) and some additional

data sources that can help identify the right resolution for the alert. By grouping all the

information, users do not have to access multiple systems to get the necessary information

and can save time to assess and resolve the case. It also increases the users’ confidence in

the model’s results. We will present three essential features from the workflow and UI.

Supply Chain Health Check

First, as an entry point to explore all alerts, a heatmap near the top displays each item–DC

combination, where the color (from green to red) represents the likelihood of failure. Items
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Figure 2 We developed an interactive UI which planners can use to have an overview of all alerts and to explore

each prediction individually, providing context and explanations to identify potential failure resolutions.

Note. The UI uses the library Dash by Plotly. It connects to the model output and additional data sources.



Gauthier-Melancon et al.: A Machine-Learning-Based System for Predicting Service Level Failures in Supply Chains
Article submitted to Interfaces; manuscript no. 037-05-19-OM.R3 9

are on the x-axis grouped by plant, while DCs are on the y-axis grouped by region. At a

glance, managers can assess the health of the supply chain and investigate correlations.

Focusing on Useful Alerts

Second, due to the number of alerts that the system generates, users need the ability to filter

alerts to focus on the ones where they can be impactful. Based on Michelin’s feedback on

which alerts were useful for them, we narrowed down the properties of a useful alert to three

aspects. We define the notion of a useful alert as being exclusive, actionable, and significant

situations. By exclusive, we mean that the system should generate alerts that are not

obvious or detected by other tools. For example, planners are usually aware of production

capacity problems and quality issues. By actionable, we mean that alerts should identify

situations where the planners can attempt to avoid the failure event. Potential actions

include changing the forecast, adjusting the safety-stock levels, and adding transportation

options. The prediction horizon should be long enough to ensure a minimum number

of available actions. For example, anticipating a stock-out for the next day when the

replenishment lead time is one week is not helpful. By significant, we mean that alerts need

to concern items and locations that are important (e.g., in terms of volume or strategy)

so that the corrective action is worth the effort and cost. Nevertheless, alerts that are

not exclusive, actionable, or significant may still allow supply chain planners to forewarn

customers of delays and highlight recurrent problems that structural changes in planning

processes could alleviate. In the UI, we enable planners to filter out non-useful alerts

through dropdown filters (in the white box at the top). The planners could add their

own filters via a configuration file that would apply to specific items, DCs, weeks or a

combination of those.

Model Explainability

Lastly, in the waterfall graph in the top third of the screen (for readability, we present in

Figure 3 a larger version on a white background), we provide some explainability around

the predictions. In general, explaining results helps users gain confidence in a ML system.

Additionally, identifying which supply chain conditions lead to a failure prediction can

help planners find the appropriate resolution. One way to explain a model’s output is

to identify the most important features. Additive feature attribution methods (Lundberg

and Lee 2017) are approaches that assign a contributing value to each feature for each
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prediction, such that the sum of all contributions is equal to the model’s output. Through

game theory, we can consider this value attribution problem as a cooperative game, by

viewing features as different players. The solution to this problem is solved with Shapley

values (Shapley 1953). The intuition behind those values is to compare the prediction

with and without each feature. Unfortunately, computing Shapley values has exponential

complexity, and as such, they typically need to be approximated. We use a method called

Tree SHAP (Lundberg et al. 2018), which estimates Shapley values for decision trees in

pseudo-polynomial time. As Shapley values are additive, we can display them in a waterfall

graph such as in Figure 3. In the context of GBDTs, Shapley values sum to the difference

between the prediction (failure risk) and the model’s baseline, in our case, the average

service level in the training set (y intercept). In this example, the rightmost bar displays

the model prediction. Through a waterfall graph, the other bars illustrate the positive (in

green) or negative (in red) contributions, as estimated by Tree SHAP, for each feature’s

family on the model’s prediction. The Table 3 in the Appendix indicates the mapping

between features and features’ family that we considered. Note that Shapley values share

the same units as the model’s output, here log-odds ratio, and as such, they represent

log-odds contributions. The graph uses a non-linear (logit) y-axis so that we can linearly

compare the contributions of the bars.

Results

In this section, we present the experiments and discuss the results both from a statistical

and business perspectives.

Experiments Overview

The project was carried out in four phases. In the first, we gathered data and developed

the model, by focusing on about a hundred 17′′ summer tires that Michelin identified as

adequate representatives of the general situation in their supply chain. Once we validated

the performance of the model, we moved to the second phase, where we performed live tests

for ten weeks. This phase’s focus was on users’ adoption of the system, as we developed

a workflow and UI to convert predictions into actionable alerts that could bring business

value. Users experimented dynamically with the tool for a few weeks, during which they

identified pertinent issues in their supply chain. As planners found the tool useful, we

moved to a third phase, where we tested if our model could generalize to an extended
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Figure 3 The contribution of the different features for a given prediction can be approximated with methods

such as Tree SHAP through a waterfall graph, where the sum of their contributions is equivalent to

the difference between the model’s output (here 0.747) and the model’s baseline (here 0.151).

Note. In this example, the main underlying cause is a production problem. The service level in the last few weeks

and features representing the safety stock at the DC are also factors that increase the failure risk. Favorable logistic

conditions slightly lower it.

range of products. As such, we tested the 17′′ summer tires model on the complete range

of Michelin car tires in Europe and obtained satisfactory results. Thus, we extended to a

fourth phase where planners used the system dynamically once more, for six weeks, and

performed corrective actions at scale to measure the impact on the service level.

First phase - Initial Performance

For the first phase, targeting 17′′ summer tires, we had access to more than 43k data points

covering 14 months and describing the supply chain conditions of 95 items, produced at 10

plants, and stored in 16 DCs. All tires are mono-sourced, i.e., only one plant produces them

at a time. These orders represent over 23k customers. We used the first twelve months as

the training set and performed nested cross-validation (CV) (as standard in time series

based predictions) and Grid Search for hyper-parameters’ tuning. In the Appendix, we list

the selected hyper-parameters and the CV parameters. We used the remaining two months

and a half as a test set. Figure 4 shows the precision-recall curve of the model. The mean

service level is around 87.5%. As such, a random classifier would correspond to a horizontal

line at y = 0.125, as the dotted line represents. Our curves are significantly above this,

which indicates the predictive value of the proposed model.
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Figure 4 Precision-recall curves are displayed below for 17” summer tires on the training set (blue area) and the

test set (gray area).

Note. The training set spans the first twelve months of data, more precisely from 2016-09-01 to 2017-09-20. The test

set encompasses the following two months and a half of data for the same tires, from 2017-09-21 to 2017-12-12. The

horizontal dotted line displays the mean service level in the dataset.

Second phase - Business Validation with Users

In the second phase, we developed a UI so planners could interact with the model’s predic-

tions. They used the system dynamically for a few weeks, and we iterated on the UI so it

could support a manageable workflow where planners could quickly identify useful alerts

and have an impact. As such, we verified the model’s performance on a subset of useful

alerts only, with the exception that we included alerts concerning tires of all significance

(big runners, medium runners, and long-tail products). Hence the subset contains exclusive

and actionable alerts only, as defined by planners. As shown in Figure 5, the performance

is slightly lower than for all the alerts, and in particular, the system does not reach a

high precision level. Since users tend to filter out easy-to-find problems captured by other

systems, i.e., not exclusive alerts, we expected a drop in performance. Nonetheless, results

are still satisfactory.

While using the system, planners identified recurrent issues in the supply chain imper-

ceptible in high-level metrics. Below, we present three such situations identified during the

second phase.

First, the system generated multiple similar alerts that enabled Michelin to detect a

problem in the computation of the safety stock for their small-volume tires, affecting around



Gauthier-Melancon et al.: A Machine-Learning-Based System for Predicting Service Level Failures in Supply Chains
Article submitted to Interfaces; manuscript no. 037-05-19-OM.R3 13

Figure 5 Precision-recall curves are shown below on the subset of useful (exclusive and actionable) alerts only

(green area), as compared to the performance on the full original test set (gray area).

Note. The gray area represents the same test set as in Figure 4.

25k units on that week. To temporarily fix the problem, the planners manually changed the

safety-stock targets of the item–DC combinations for which the system predicted service

level failures. After a few weeks, to everyone’s surprise, planners discovered that the safety-

stock overwriting process was faulty as well, so the manual changes had no impact. By

bringing visibility to these issues, planners were able to improve the safety stock target

computations and fix the overwriting process. A month after discovering these issues, these

changes reduced the number of items affected by the problem to around 2.8k tires, a

decrease of 89%.

Second, the system detected multiple situations where the underlying cause was a fore-

casting issue, highlighting that the forecasting algorithm was not sufficiently dynamic. The

system identified individual cases of under-forecasting and raised awareness of these issues,

motivating further work at Michelin on forecast improvements.

Third, the system detected multiple situations where the supply chain plan phased out

too aggressively an item soon-to-be discontinued, given the customer demand. The planners

reached out to the appropriate team to address this issue.

Overall, these issues result from supply chain systems that are either wrongly configured,

no more adapted to the current supply chain dynamics, or not interacting well with one

another. By raising Michelin’s awareness of these issues so they could fix the problems at
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their source, our alerting system already had a positive impact beyond the tires in the

scope of this phase.

Third phase - Full Scope of Tires in Europe

For the third phase, we had access to the data for most of the car tires sold by Michelin

in Europe (around 4k items), ranging from 13′′ to 22′′ and beyond. The data spread about

11 months and represents about 500k points. Because we had access to less than a year of

data, we decided, together with Michelin, not to retrain the initial 17′′ model and test it

directly on the extended scope. Figure 6 shows that the extended performance is slightly

better than its initial one on 17′′ tires. Differences in the nature of the product, such as the

presence of long-tails (tires with a low volume of sales) which may be more failure-prone,

could explain the small performance improvement. Still, for predictions associated with a

low recall (top-left of the plot), the model is performing at higher precision on the 17” test

set. These results show that the model generalizes well.

Figure 6 Precision-recall curves on a test set containing the full range of tires (yellow area) as compared to the

original test set (gray area).

Note. The gray area is the initial test set as shown on Figure 4. The new test set includes all sizes of tires (around

4k items for 11 months of data). The performance is similar, indicating that the model generalizes well to new items.

Fourth phase - Dynamic Phase on Full Scope

The focus of phase four was on testing the system dynamically on the full scope of tires

and performing corrective actions at scale to measure the impact on the service level.
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Today, due to Michelin’s internal processes, planners only have access to adjusting the

safety stock target as a corrective action, as we discuss later in Managerial Insights. To

that end, during the last three weeks of the phase, planners implemented a process that

would automatically overwrite the safety stock target for certain item–DC combinations.

However, as increasing safety stocks can be costly, the automatic process needs to only

apply to situations where increasing the safety stock can result in avoiding failures. As

an example, if an alert is due to production or logistic problems, increasing safety stocks

would not result in any gain. As such, to identify the relevant situations, planners use

the model explainability, as shown in Figure 3. The automatic safety stock adjustments

only apply to item–DC combinations concerned by an alert with ”safety stock at DC” as

the main underlying cause. Over the course of three weeks, planners acted on 23% of the

store-and-sell volume based on the ML predictions. In Table 1, we present the detailed

results observed on the impacted tires and compare them to tires on which planners did

not intervene. We break it down by volume of tires. Big runners represent typically around

6% of the tires and 60% in terms of sales volume, medium runners, respectively 12% and

20% and finally long tails, 82% and 20%. Overall, we witnessed in three weeks a gain of 10

percentage points (p.p.) in the service level of impacted tires. To measure that, planners

measure the service level for each item–DC combinations on the week where the ML model

produces the prediction, and 3 weeks later; i.e. the prediction horizon. To put the gain in

context, we also provide numbers for the same period on the variation of demand and days

of coverage, i.e., coverage of the stock as compared to the demand. Admittedly, it could

be easy to observe an increase in the service level only due to a decrease in the demand,

or at the expense of an increase in the total inventory and storage cost. As shown in the

table, this is not the case. First, the decrease in demand is steeper on tires not affected by

any corrective action (-10% vs -2%), without resulting in any gain in service level. This

demonstrates that the overall increase of 10 p.p. in the service level is not only due to the

negative trend in demand. If it were the case, tires not impacted by any action would have

a natural increase in their service level as well. Secondly, the days of coverage increased

only by a small margin (2 days) for impacted tires, as compared to an increase of 8 days for

not-impacted tires. This can be due in part to the decrease in demand. Finally, in addition

to these results, Michelin also stated that improving the service level leads to lowering the

order cancellation rate, thus increasing sales and revenue.
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Table 1 Changes observed over three weeks of corrective actions in service level (in percentage points),
demand (%), and days of coverage, by volume of tires.

Changes in ... Service Level (p.p.) Demand (%) Coverage (Days)

Action No Action Action No Action Action No Action

Big Runners +4 -4 0% -3% +1 +6
Medium Runners +14 +3 -7% -10% +2 +9
Long Tail +14 +5 -2% -21% +4 +15

Total (weighted by volume) +10 0 -2% -10% +2 +8

Note. We measure the values before and after the prediction horizon, hence three weeks apart. The columns

Action display aggregated results on all items affected by an automatic safety stock adjustment based on
a ML alert. The columns No Action display aggregated results for the remaining items, thus for which the

supply chain plan remained as is. The total is a weighted average according to the volume of tires in each

category.

Perspectives
Available Data

It is not yet standard practice, to our knowledge, to archive all of the supply chain data

at the finest granularity. For example, at the beginning of our case study, Michelin did not

archive the forecast at the item–DC level, nor the Available To Promise, a value derived

from the fulfillment plan indicating how many items at a DC on a given day are not yet

allocated. This lack of history led us to discard some data that we believe could improve the

model’s predictions. Before ML can significantly enter this space, archiving must become

the default policy for supply chain data. Our initiative influenced Michelin’s perspective

on the importance of archiving data at the most granular level, and in response, they

implemented a data lake during the project.

Managerial Insights

The ML approach for failure predictions brings new opportunities for planners to inter-

vene in the supply chain. As such, Michelin needs to adapt its current process so planners

can perform manual corrections easily. Today, the available corrective actions for planners

are still limited, the main one being adjusting the safety stock at the DC. For example,

because Michelin does not perform its forecasting process at the most granular level, it is

yet impossible for planners to change the individual forecast of a specific instance. Adjust-

ing safety stock is the most practical lever planners have to re-allocate tires or increase

production. Adding new corrective actions could allow planners to react to deviations and

other issues more readily.
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Supply chain management is complex, and planners typically own only one segment,

such as safety-stock specialists, forecasting experts, and logistics planners. As such, it is

challenging to gain a product or customer view of the supply chain. At Michelin, our system

was the first one to offer a quick holistic view of the supply chain conditions affecting

one particular item. It provided an opportunity for different specialists to collaborate

and discuss global supply chain mechanisms, as well as specific issues, broadening their

understanding of the supply chain. Indeed, the tool instigated regular meetings between

planners, who would not interact as frequently otherwise. Our experiments suggest that

the tool could also help with the training of new employees since it gives just the right

level of information about every stage of the supply chain affecting the service level, and

the available levers to react to different disruptions.

Long Term Viability

As manufacturers deploy failure prediction systems at scale, the supply chain performance

will tend to improve. The system will catch systemic issues and help refine supply chain

planning tools, such as making better forecasts. From a statistical perspective, as fewer

failures will occur, the system will face a shift in the distribution of the data, often referred

to as concept drift in the literature. As such, the model will need continuous re-training.

This could imply dropping from the model historical periods that are too different from the

current distribution, or weighting the data points differently according to their relevance

in today’s dynamics. We believe that designing such a re-training loop will be one of the

main challenges for the long term viability of failure prediction systems.

Conclusion

We developed a system that uses ML to predict service level failures in a supply chain.

Early on in this project, it has been clear that a good performing algorithm is usually

not sufficient to ensure users’ adoption. It needs to be paired with a system that builds

confidence and understanding in the model’s predictions. Our performance results and

the level of engagement from planners show the potential of ML systems to complement

existing systems for supply chain management. We believe that this type of approach can

be applied to more complex supply networks and other areas such as production planning.

As this system gets used in production over an extensive period, it will probably trend

towards identifying less structural changes for more fine-grained issues. A natural extension
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would be to perform corrective actions based on the predicted failures automatically so

that the supply chain becomes a self-learning entity, dealing with deviations in autopilot

mode. As the availability of data improves, such initiatives will lead the way to a new era

in supply chain management.
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Appendix. Data and Parameters

Data Format

For each m historical instances, we compute a set of n features (fn) at the item, DC, and week level. We

present the complete list of features in the next section, Features Set. To determine failures, we compute

aggregated service levels with the mean of the corresponding orders weighted according to the product

quantities. We then compare these aggregated service levels to the global service level target and convert

them into a binary variable, y. If the service level is below the target, it is considered as a failure (1), else a

0. Table 2 shows the data format. Note that we do not use the product, location, and week (grey columns)

as features explicitly, hence the model generalizes to new locations and products.

Table 2 Data format used in the model.

Product Location Week f1 f2 ... fn Failure

x1 AXP 9272 W1 y1 1
x2 BFR 875 W1 y2 0
x3 AXP 9272 W2 y3 0
... ... ... ... ... ...
xm GFT 7654 W700 ym 1

Note. Grey columns were dropped out of the model, so the system can

produce alerts for new products and locations.

Features Set

Below we first detail general features that could be useful for the task of predicting service level failure.

Following, we present the features that were available for our project and that we used in our final model.

In Table 3, we list the specific features and in Table 4, statistical measures for each feature.
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General Useful Features

First, production problems can be good indicators of future failures since the lead time between the plant and

the DCs delays their impact, allowing the system to foresee potential issues and delays. Relevant features

include (1) production plan vs. actual production; (2) inventory on-hand compared to latest forecast; and

(3) percentage of production capacity achieved.

Second, between the plant and the DC or between the DC and the ultimate consumer, logistics problems

may occur in the transportation network or the loading and unloading, delaying the shipment of the items.

Although essential to understand past failures, transportation disruptions are less likely to predict future

ones. For example, a delay may be weather-related and likely to be resolved within the time horizon. Still,

useful features could include (1) average logistics delays in the last period and (2) percentage of logistics

capacity achieved.

Lastly, forecasting deviations and stock problems at the DC may indicate that the plan is no longer

meeting the demand. Relevant features include (1) cumulative forecasts of the last few periods compared to

the customer orders, indicating over- or under-forecasting and (2) inventory on-hand vs. safety-stock target.

Available Features

In Table 3, we detail the complete list of features used in the final model. Each feature type corresponds to

either an item, DC, plant, or combination of those, as noted in column Aggregation. We compute each feature

type for different time steps, from the three weeks preceding the instance to the three weeks after (for some

projections), as detailed in column Time. The variable t0 corresponds to the day on which the prediction

is done. t+n corresponds to values that were projected for the week n relative to t0. As an example, t+ 1

means projection for the entire week starting on t0. Even though the time indicator points that these values

are in the ”future”, these are values that are known at t0 as they are projections made for these weeks, such

as the forecast at the DC. The column Nb indicates the number of features as a result of the different time

steps for each feature type. Lastly, the column Underlying Cause indicates the mapping between feature

types and the feature families. In particular, we use these mappings to produce the cumulative contributions

graph in Figure 3, as well as to categorize the alerts by cause in the UI to accelerate their resolution. In

total, our model uses 35 features.

Table 3 Features set used in the final model, according to data availability.

Feature Types Aggregation Time Nb Underlying Cause

(1) Production Plan vs Actual Production Item-Plant t0 1 Production
(2) Inventory and Production Plan vs Needs Item-Plant t0:t+2 9 Production
(3) Inventory vs Safety Stock Item-Plant t-2:t+2 5 Production
(4) Average logistic delays Item-Plant-DC t-3:t0 4 Logistic
(5) Total Stock (all items) vs Capacity DC t0 1 Logistic
(6) Inventory vs Safety Stock Item-DC t0:t3 4 Safety Stock at DC
(7) Projected Safety Stock vs current Safety Stock Item-DC t1:t3 3 Safety Stock at DC
(8) Past service level (Volume tires) Item- DC t-3:t0 4 Unknown
(9) Past service level (Count orders) Item-DC t-3:t0 4 Unknown

Note. For feature type (2), 3 different needs projections were used for each time step, resulting in 3x3 features in total.
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In Table 4, we display the distribution for each feature in the training set, thus on 17” summer tires for the

first 12 months of data (2016-09-01 to 2017-09-20). We show the mean and variance, important percentiles,

as well as the percentage of nan and infinite values.

Table 4 Distribution of features in the training set.

Type Time Mean Var
Percentiles %

Min 25 50 75 Max nan inf

1 t0 -0.6 9.5 -324.0 -0.1 0.0 0.3 4.0 0.5 0.0
2 t0low 463.1 2013.5 0.0 2.3 8.7 28.0 9999.0 0.3 0.0
2 t0med 348.9 1788.6 0.0 1.8 4.5 11.6 9999.0 0.3 0.0
2 t0high 320.8 1738.7 0.0 1.6 3.1 6.8 9999.0 0.3 0.0
2 t1low 479.7 2050.9 0.0 2.3 8.7 27.8 9999.0 0.4 0.0
2 t1med 356.2 1808.2 0.0 1.8 4.5 11.6 9999.0 0.4 0.0
2 t1high 329.8 1763.5 0.0 1.6 3.1 6.9 9999.0 0.4 0.0
2 t2low 486.2 2064.1 0.0 2.3 8.8 27.3 9999.0 8.4 0.0
2 t2med 373.1 1851.8 0.0 1.8 4.6 11.7 9999.0 8.4 0.0
2 t2high 344.6 1798.2 0.0 1.6 3.1 7.1 9999.0 8.4 0.0
3 t-2 116.4 526.6 0.0 5.8 27.2 74.2 31680.0 0.3 0.0
3 t-1 110.9 524.6 0.0 5.6 26.6 72.0 31802.0 0.3 0.0
3 t0 109.2 519.2 0.0 5.4 25.7 70.6 31802.0 0.3 0.0
3 t1 107.6 486.3 0.0 5.4 25.2 69.8 31802.0 0.4 0.0
3 t2 119.0 820.7 0.0 5.3 24.2 66.7 31680.0 8.4 0.0
4 t-3 -1.4 2.9 -22.0 -2.8 -0.9 0.0 28.0 0.3 0.0
4 t-2 -1.4 3.0 -22.0 -2.9 -0.9 0.0 28.0 0.3 0.0
4 t-1 -1.4 3.0 -22.0 -2.9 -0.9 0.0 28.0 0.3 0.0
4 t0 -1.4 3.0 -22.0 -2.8 -0.9 0.0 28.0 0.3 0.0
5 t0 0.8 0.1 0.3 0.7 0.8 0.9 1.2 0.3 0.0
6 t0 1.3 8.4 -471.4 0.3 0.9 1.5 772.0 0.0 0.1
6 t1 1.2 7.7 -471.4 0.3 0.9 1.5 772.0 0.0 0.1
6 t2 1.4 7.0 -463.6 0.3 0.8 1.6 386.0 0.0 0.1
6 t3 1.5 7.2 -458.8 0.3 0.8 1.6 386.0 0.0 0.1
7 t1 1.0 0.2 0.0 1.0 1.0 1.1 3.0 0.1 0.0
7 t2 1.1 0.4 0.0 1.0 1.0 1.1 8.0 0.1 0.0
7 t3 1.1 0.5 0.0 1.0 1.0 1.2 10.0 0.1 0.0
8 t-3 0.9 0.3 0.0 1.0 1.0 1.0 1.0 0.4 0.0
8 t-2 0.9 0.3 0.0 1.0 1.0 1.0 1.0 0.4 0.0
8 t-1 0.9 0.3 0.0 1.0 1.0 1.0 1.0 0.4 0.0
8 t0 0.9 0.3 0.0 1.0 1.0 1.0 1.0 0.3 0.0
9 t-3 0.9 0.3 0.0 1.0 1.0 1.0 1.0 0.4 0.0
9 t-2 0.9 0.3 0.0 1.0 1.0 1.0 1.0 0.4 0.0
9 t-1 0.9 0.3 0.0 1.0 1.0 1.0 1.0 0.4 0.0
9 t0 0.9 0.3 0.0 1.0 1.0 1.0 1.0 0.3 0.0

Notes. The columns Type and Time map to Table 3 columns. The low, med and high sub-

scripts for feature type 2 refer to different projections. The two last columns quantify the % of

nan and infinite values for that feature.

Algorithm

We selected the following hyper-parameters for the GBDT using XGBoost: n estimators=75, learn-

ing rate=0.1 and max depth=5. These are the parameters of the best performing model according to the
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mean average performance over the training splits detailed hereafter. We kept the other hyper-parameters

at their default value.

For CV parameters, we used three splits. In Table 5, we detail the dates that we used to create the splits.

Table 5 Cross-Validation splits used to train and test the model.

Train Splits Test Splits

Start Date End Date Nb of rows Start Date End Date Nb of rows

2016-09-01 2017-04-06 21,396 2017-04-07 2017-05-31 6,019
2016-09-01 2017-05-31 27,415 2017-06-01 2017-07-31 5,920
2016-09-01 2017-07-31 33,335 2017-08-01 2017-09-20 4,336

2016-09-01 2017-09-20 37,671 2017-09-21 2017-12-12 6,133

Note. The test set from the last split is what we called our test set for the Phase 1.
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