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Abstract

Drone delivery is known as a potential contributor in improving efficiency and alleviating last-mile

delivery problems. For this reason, drone routing and scheduling has become a highly active area

of research in recent years. Unlike the vehicle routing problem, however, designing drones’ routes

is challenging due to multiple operational characteristics including multi-trip operations, recharge

planning, and energy consumption calculation. To fill some important gaps in the literature, this

paper solves a multi-trip drone routing problem, where drones’ energy consumption is modeled as a

nonlinear function of payload and travel distance. We propose adding logical cuts and subgradient

cuts in the solution process to tackle the more complex nonlinear (convex) energy function, instead

of using the linear approximation method as in the literature, which can fail to detect infeasible

routes due to excess energy consumption. We use a 2-index formulation to model the problem and

develop a branch-and-cut algorithm for the formulation. Benchmark instances are first generated

for this problem. Numerical tests indicate that even though the original model is nonlinear, the

proposed approach can solve large problems to optimality. In addition, in multiple instances,

the linear approximation model yields routes that under the nonlinear energy model would be

energy infeasible. Use of a linear approximation for drone energy leads to differences in energy

consumption of about 9% on average compared to the nonlinear energy model.

Keywords: drone routing, nonlinear energy function, logical cut, subgradient cut, branch-and-cut

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) or drones have attracted people’s attention,

especially since 2013 when Amazon announced their Prime Air UAV (Rose 2013). Other companies,
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like DHL, Google, and Alibaba also began developing their own drones, because they believe

drones have the potential to reduce cost and waiting time for last-mile delivery. The development

of technology has made this idea possible. For example, carbon fiber manufacturing costs have

decreased dramatically during the past few years, which enable stronger and lighter air frames

(Morgan 2005); lithium polymer batteries with high energy density are also now available, which

help extend drones’ flight range (Reddy 2010). Different companies have designed different drone

models, notably, the multirotor drones used by UPS and DHL, and the hybrid drones developed

by Amazon and Alphabet. Being similar to the multirotor helicopters, multirotor drones are lifted

and propelled by rotors. Hybrid drones can take off and land vertically (like helicopters), but use

wing or wing-like surfaces to generate lift. Meanwhile they can also perform horizontal maneuvers

like airplanes. On October 18, 2019, Alphabet’s drone unit Wing launched the first commercial

drone delivery flight in the United States (Doherty 2019).

Compared to trucks, drones have some specific advantages: (i) They can save labor, because

no drivers (or pilots) are needed. (ii) They can often travel faster than trucks. (iii) They are not

restricted to road networks (Agatz et al. 2018). These merits enable logistics companies and on-line

stores to use drones for rapid parcel delivery. Humanitarian organizations are also considering using

drones in disaster scenarios. For example, in the immediate aftermath of a disaster, drones can

provide support with risk assessment, mapping, and temporary communication network creation

(Chowdhury et al. 2017). In situations where the transportation network is severely compromised

by natural disasters, drones can deliver emergency supplies to affected regions. In addition, by

taking traffic off the roads, drone might reduce negative implications on congestion, safety, and

the environment (Heutger and Kückelhaus 2014).

On the other hand, some unique characteristics of drones have presented new operational chal-

lenges. Limited battery capacity influences a drone’s flight duration, which can also be affected by

payload, speed, and weather conditions (Dorling et al. 2017). Therefore, how should we represent

the relationship between battery energy consumption and various factors which affect it? How to

route drones so that they can safely return after visiting designated sites? Furthermore, drones’

payload is also limited, which means that a drone can only visit a small number of customers
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during a trip. Thus, how should we schedule drones to serve more demands to maximize their use?

In this paper, we use the term drone routing problem (DRP) to refer to the problem where

a fleet of drones visit a set of customer locations and each drone can visit multiple customers

in a trip. In this case, drones can only be dispatched once from the depot. When drones can

perform multiple trips (each trip starts and ends at the depot), this problem is referred to as

the multi-trip drone routing problem (MTDRP). Existing research on drone operations normally

assumes that drone flight duration is limited by a fixed amount of distance or time. However, flight

duration is actually influenced by several factors such as battery energy capacity, battery weight,

and payload. In addition, no benchmark instances and efficient exact algorithms are available for

the DRP, which poses a limitation on algorithm evaluation. To fill some gaps in this area, this

paper solves a MTDRP with time windows, where a fleet of homogeneous multirotor drones are

dispatched to deliver packages to customers within stipulated time slots. The main contribution

of this paper is to incorporate a nonlinear model of drone energy consumption that depends on

payload and travel distance. We use a 2-index formulation to model the problem and develop a

branch-and-cut algorithm to solve it. We also generate several benchmark instance sets, which are

available to the research community.

The rest of this paper is organized as follows. Section 2 reviews related literature and states

the contributions of our work. Section 3 describes our problem, presents the mathematical model,

and introduces valid inequalities to strengthen it. Section 4 presents techniques for the calculation

of energy consumption and provides details of our exact algorithm. Numerical tests and analyses

are presented in Section 5. This is followed by the conclusions in Section 6.

2. Literature Review

This section reviews related literature on the drone delivery problem and the multi-trip vehicle

routing problem. A summary of the papers on the drone delivery problem is given in Table 1. For

more details about drones’ civil applications, see the review paper by Otto et al. (2018).
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2.1. Drone Delivery Problem

We divide literature on drone delivery problems reviewed here into two categories: drone-only

problems and truck-drone problems. For the former, only drones are used in the delivery system.

For the latter, both trucks (one or multiple) and drones are used simultaneously. A truck can

be used either as a tool to carry drones (i.e., the truck does not have delivery tasks) or for both

delivery tasks and as a temporary hub to launch/retrieve drones. Trucks and drones can also work

in parallel making deliveries.

Drone-only problems. Studies on drone-only delivery systems normally assume that there

are multiple drones and that each drone can cover one or several customers per trip. Choi and

Schonfeld (2017) study an automated drone delivery system, where all customers’ demands are

the same. They use the relationship among battery capacity, payload, and flight range to optimize

the drone fleet size. San et al. (2016) describe the implementation steps used to assign a fleet of

heterogeneous UAVs to deliver items to target locations. Each order placed by a customer can

include one or multiple items. Because of drones’ limited payload, one order may not be completely

fulfilled in one trip; thus, multiple deliveries might be required. They use a genetic algorithm to

solve the problem, where a multi-dimensional chromosome representation is introduced. Dorling

et al. (2017) propose two vehicle routing problem (VRP) variants for drone delivery. The first one

minimizes the total operating cost subject to a delivery time limit, and the second one optimizes

delivery time subject to a budget constraint. The costs include drone fleet cost and energy cost.

Instead of dealing directly with the original form of the power function, which is nonlinear, they

use a linear approximation function to calculate the power consumption which varies linearly with

payload and battery weight. To save cost, each drone can perform multiple trips and visit multiple

customers per trip. They use a simulated annealing (SA) heuristic to solve the models. Troudi

et al. (2018) study a drone delivery problem with time windows and a trip duration limit. They

minimize three different objectives: travel distance, the number of drones used, and the number of

batteries required. When imposing the linear energy constraints, the battery capacity is reserved

at 20% to be a buffer for unusual conditions.

Some works study the impacts of drone delivery on costs and carbon dioxide (CO2) emissions.
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D’Andrea (2014) analyze the feasibility of using drones for package delivery in terms of energy

requirement and economics. They approximate power consumption as a linear function of payload

and velocity. Figliozzi (2017) assess the potential of drones in reducing CO2 emissions generated

by the electricity supply chain and provide a comparison of this system with delivery using diesel

vehicles and electric trucks/tricycles. They also consider the emissions from the vehicle production

and disposal phases. Stolaroff et al. (2018) use the same battery reservation policy as in Troudi et al.

(2018) when studying the energy use and environmental impacts of drones for last-mile delivery

in comparison with medium-duty trucks. Their power function for hovering takes a similar form

as that in Dorling et al. (2017).

There are also studies focusing on drone energy models, where drones’ flying status are con-

sidered. Liu et al. (2017) derive a theoretical model to calculate the multirotor drone’s power

consumption. They identify the model’s parameters by performing field tests. In their experi-

ments, they consider different drone statuses in a flight path: ascend/descend, hover, and straight

line fight. Kirschstein (2020) compare the energy demands of drone-based and ground-based (diesel

trucks and electric trucks) parcel delivery services. Factors like drone weight, speed, head wind

speed, and other drone parameters are taken into account for energy calculation. Zhang et al.

(2020) review energy consumption models for drone delivery. They identify key factors that af-

fect drone energy consumption and discuss similarities and differences among various models. For

cruising flight, drone power consumption can be modeled as a convex function of a drone’s total

weight (e.g., Liu et al. (2017); Stolaroff et al. (2018); Kirschstein (2020)), while for hovering it is

proportional to the weight to the power 1.5 (Dorling et al. 2017).

Truck-drone problems. The truck-drone tandem system is the most intensively studied

area in drone delivery problems. Most papers in this area assume that during each trip a drone

can visit only one customer. Murray and Chu (2015) consider two types of truck-drone delivery

problems. The first is the flying sidekick traveling salesman problem (FSTSP), where one truck

carries one drone to deliver parcels to a set of customers. As the driver performs deliveries, the

UAV is launched from the truck, delivering a parcel for an individual customer, then the truck and

the drone rendezvous at a new customer location. The second problem in Murray and Chu (2015)
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is the parallel drone scheduling traveling salesman problem (PDSTSP), where multiple drones

make single-stop delivery trips from the depot while a single truck serves other customers without

carrying any drone. The objective of both problems is to minimize the time required to service all

customers and return to the depot. Simple heuristics are used to solve both problems. Ponza (2016)

uses a SA heuristic to solve the FSTSP. Agatz et al. (2018) use a route first-cluster second heuristic

to solve a variant of the FSTSP where the truck can wait at the start node for the drone to return.

Bouman et al. (2018) and Poikonen et al. (2019) use a dynamic programming (DP) approach and

a branch-and-bound (B&B) algorithm for the same variant, respectively. Marinelli et al. (2017)

extend the FSTSP by allowing the launch and rendezvous operations to be performed not only at a

node, but also along a route arc. A greedy randomized adaptive search procedure is developed for

the problem. Jeong et al. (2019) extend the FSTSP by considering energy consumption and no-fly

zones. The authors use the power consumption linear approximation from Dorling et al. (2017) and

propose an evolutionary-based heuristic solution algorithm that integrates constructive and search

heuristics. Moshref-Javadi and Lee (2017) use a truck-drone tandem system to minimize latency

in a customer-oriented distribution system. They compare the benefits of using drones for a single

trip versus multiple trips. Ham (2018) extends the PDSTSP by assuming that drones can perform

two types of tasks: drop-off and pickup. A constraint programming method is applied. Ulmer

and Thomas (2018) study a same-day delivery problem with trucks and drones, where customer

orders come dynamically during a shift. The authors present a Markov decision model and an

approximate DP algorithm to solve the problem.

Some studies consider multiple trucks where each is equipped with one or multiple drones.

Wang et al. (2017) and Poikonen et al. (2017) consider a fleet of homogeneous trucks with multiple

drones per truck. Their objective is to minimize the maximum duration of the routes, and they

focus on the worst-case analysis. Pugliese and Guerriero (2017) extend the problem by considering

time window constraints. Wang and Sheu (2019) allow docking hubs where trucks can drop off, and

drones can pick up, parcels for delivery maintain backup drones. They present an arc-based model

and develop a branch-and-price (B&P) algorithm. Raj and Murray (2020) study the multiple

FSTSP with variable drone speeds. They assume that drone power consumption is a function of
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Table 1: Summary of papers on drone delivery problem
Problem

Authors # truck # drone # cust/trip multi-trip energy function Solution method

Choi and Schonfeld (2017) N/A multiple multiple Mathematical analysis
San et al. (2016) N/A multiple 1

√
Genetic algorithm

Dorling et al. (2017) N/A multiple multiple
√ √

Simulated annealing heuristic
Troudi et al. (2018) N/A multiple multiple

√ √
Mixed-integer linear programming

Murray and Chu (2015)
1 1 1

√
TSP route and re-assign heuristic

1 multiple 1
√

Partition and re-assign heuristic
Ponza (2016) 1 1 1

√
Simulated annealing heuristic

Agatz et al. (2018) 1 1 1
√

Route first-cluster second
Bouman et al. (2018) 1 1 1

√
Dynamic programming

Poikonen et al. (2019) 1 1 1
√

Branch-and-bound
Marinelli et al. (2017) 1 1 1

√
Greedy randomized adaptive search procedure

Jeong et al. (2019) 1 1 1
√ √

Evolutionary-based heuristic
Moshref-Javadi and Lee (2017) 1 multiple 1

√
Mixed-integer linear programming

Ham (2018) multiple multiple multiple
√

Constraint programming, variable ordering heuristics
Ulmer and Thomas (2018) multiple multiple 1

√
Approximate dynamic programming

Wang et al. (2017) multiple multiple 1
√

Worst-case analysis
Poikonen et al. (2017) multiple multiple 1

√
Worst-case analysis

Pugliese and Guerriero (2017) multiple multiple 1
√

Mixed-integer linear programming
Wang and Sheu (2019) multiple multiple multiple

√
Branch-and-price

Raj and Murray (2020) 1 multiple 1
√ √

Three-phased iterative heuristic
Mathew et al. (2015) 1 1 1

√
Reduce to TSP, then use TSP solver

Luo et al. (2017) 1 1 multiple
√

TSP route and split; route and re-assign
Carlsson and Song (2017) 1 1 1

√
Continuous approximation model

Campbell et al. (2017) 1 1/multiple 1
√

Continuous approximation model
This paper N/A multiple multiple

√ √
Branch-and-cut

# cust/trip: number of customers per drone trip. N/A: trucks are not used in the system.

speed and payload, which affects flight endurance and range.

Sometimes the truck is only used for carrying drones and packages without making any de-

liveries itself (Mathew et al. 2015; Luo et al. 2017). Carlsson and Song (2017) use continuous

approximation techniques to derive the improvement of service quality (i.e., the completion time

of all deliveries) by using a truck-drone system. Unlike other studies, they do not restrict the

drone launch/retrieval locations to be customer sites. Campbell et al. (2017) also use a continuous

approximation approach to derive general insights from the aspect of cost.

In the aforementioned literature, we find that only a few papers explicitly consider energy

constraints, and many use an approximation that is linear in the payload. In addition, to the best

of our knowledge, no benchmark instance is available for algorithm evaluation, and no efficient

exact algorithm has been developed for the DRP.

2.2. Multi-trip Vehicle Routing Problem

The multi-trip vehicle routing problem (MTVRP) extends the classical VRP by allowing each

truck to perform multiple trips. Fleischmann (1990) is the first to study this problem. The author

develops a modification of the saving algorithm and uses a bin packing heuristic to assign routes

to vehicles. Mingozzi et al. (2013) develop two set-partitioning-like formulations for the MTVRP.
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Azi (2011) develops a B&P algorithm for the MTVRP with time windows (MTVRPTW). Their

numerical tests focus on the type 2 instance sets in Solomon (1987). Macedo et al. (2011) propose

a network flow model based on generated trips for the same problem. Hernandez et al. (2014)

develop an exact two-phase algorithm. In the first phase, they enumerate all feasible trips; in

the second phase, they use a B&P algorithm to select the best set of schedules. Azi et al. (2014)

and Wang et al. (2014) develop an adaptive large neighborhood search and a route pool-based

metaheuristic for the same problem, respectively. Hernandez et al. (2016) develop two set covering

formulations for the MTVRPTW without the trip duration constraint and use B&P algorithms.

They compare the two models on instances with the first 25 customers of Solomon’s “C2”, “R2”,

and “RC2” instances.

In the review paper by Cattaruzza et al. (2016), they suggest that there are four ways to

formulate the MTVRP. The first one is the 4-index formulation, which uses both the vehicle index

and the trip index. Specifically, a binary variable xvrij is defined to denote whether trip r of vehicle

v travels through arc (i, j). The second and the third ones are the 3-index formulations with either

a trip index, or with a vehicle index, respectively. That is, a variable xrij (xvij) is used to denote

whether trip r (vehicle v) travels through arc (i, j). And the last one is the 2-index formulation

using a variable xij, i.e., neither a vehicle nor a trip index is used. For the 3-index formulation

with a trip index, since the number of trips performed by each vehicle is unknown, one has to set

a sufficiently large cardinality for the trip set, resulting in a weak model with a large number of

variables. Or, we can impose an upper bound on the maximal number of trips each vehicle can

perform. For the 3-index formulation with a vehicle index, symmetries resulting from identical

vehicles are introduced to the model, which make the formulation weak. Cattaruzza et al. (2016)

indicate that the only compact formulation for the MTVRP is proposed by Karaoğlan (2015),

where a 2-index formulation is applied. Rivera et al. (2013) also use a 2-index formulation for

a multi-trip cumulative capacitated VRP, where the objective is to minimize the sum of arrival

times at required nodes. For our problem, as there is no limit on the number of trips that each

drone can perform, we do not consider the formulation with a trip index. Further, our preliminary

tests also indicate that the 3-index formulation with a drone index provides worse results than the
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2-index formulation. Therefore, in Section 3.2, we present a 2-index formulation for our MTDRP.

2.3. Our Contributions

The contributions of our study are fourfold. First, we explicitly represent drone’s energy

consumption as a nonlinear function of payload and travel time, instead of assuming that flight

range (maximum distance or time) is a fixed number. To tackle the nonlinear energy function,

instead of relying on a linear approximation (e.g., as in Dorling et al. (2017)), we propose adding two

types of cuts in the solution process. Our results show that using a linear energy approximation can

lead to routes that are energy infeasible under the nonlinear energy consumption model. Second,

a 2-index formulation scheme is presented, which is solved by a branch-and-cut (B&C) algorithm.

To the best of our knowledge, this paper is the first to formulate a MTDRP and use an exact

algorithm for drone routing problems. Third, we generate several benchmark instance sets based

on the realistic parameters and known instance sets in the literature, which will be available to the

research community and allow for a better comparison of algorithms. Fourth, we provide extensive

computational results of the formulation and the algorithm.

3. Formulation

This section presents the problem, constructs the mathematical model, and introduces valid

inequalities to strengthen the model.

3.1. Problem Definition

The problem is defined on a directed graph G = (N,A), where N = {0, . . . , n+ 1} is the set of

nodes. Node 0 represents the starting depot, and node n+ 1 is a copy of node 0 and it represents

the returning depot. N ′ = {1, . . . , n} is the set of customers. For notational convenience, we

denote N+ = {0, . . . , n} and N− = {1, . . . , n + 1}. A = {(i, j) : i ∈ {0}, j ∈ N ′ and i ∈ N ′, j ∈

N−, i 6= j} is the set of arcs. Sets δ−(i) and δ+(i) represent node i’s predecessor and successor

nodes, respectively.

Each customer is associated with a non-negative demand di, and a hard time window [ai, bi].

For the depots, [a0, b0] = [an+1, bn+1], where a0 and b0 are the earliest possible departure time
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and the latest possible arrival time, respectively. A fleet of K homogeneous multirotor drones are

based at the depot. Q is the maximum payload of a drone and we assume that di ≤ Q,∀i ∈ N ′.

Each drone can perform several trips and during a trip it can visit several customers. Drone speed

is assumed to be a constant number, and with each arc (i, j) is associated a travel time tij and

a travel cost cij. Further, it is assumed that the triangle inequality is satisfied for tij. Without

loss of generality, here we assume the service time at each customer is 0, because we can set tij

to be the sum of travel time on arc (i, j) and the service time at node i. We consider multirotor

drones in the study as these have been often used in drone delivery analyses and we use data from

Dorling et al. (2017). Hybrid drones may have different performance characteristics and require a

different energy model.

The problem consists in designing a set of drone routes, such that the objective function is

optimized and the following constraints are satisfied: (1) Each route starts at depot 0 and ends at

depot n+ 1. (2) Every customer is visited exactly once. (3) The sum of duration of trips assigned

to the same drone does not exceed bn+1. (4) The drone weight capacity constraint, battery energy

constraint, and customers’ time windows must be respected.

3.2. Mathematical Model

Decision variables. There are two sets of binary variables: xij = 1 if arc (i, j) is traversed

by a drone, 0 otherwise. zij = 1 if a trip finishing with customer i is followed by another trip

visiting j as the first customer (performed by the same drone), 0 otherwise. There are four sets

of continuous variables: qij is the product weight carried through arc (i, j) (kg). τi is the start of

service time at node i ∈ N− (second). fi is the accumulated energy consumption of a drone upon

arrival at node i (kWh). eij is the energy consumption on arc (i, j) (kWh).

Constraints. We organize the constraints into five groups:

(i) Route feasibility: ∑
j∈δ+(i)

xij = 1 ∀i ∈ N ′, (1)

∑
j∈δ−(i)

xji = 1 ∀i ∈ N ′, (2)

10



∑
j∈δ+(0)

x0j =
∑

j∈δ−(n+1)

xj,n+1. (3)

Constraints (1) and (2) guarantee that each customer is visited exactly once. Constraints (3)

indicate that the number of trips leaving the starting depot is equal to the number arriving at the

ending depot.

(ii) Weight related constraints:∑
i∈δ−(j)

qij −
∑

i∈δ+(j)

qji = dj ∀j ∈ N ′, (4)

qij ≤ Qxij ∀(i, j) ∈ A, (5)

qi,n+1 = 0 ∀i ∈ N ′. (6)

Equations (4) impose that each customer’s demand must be satisfied, and also eliminate subtours.

Constraints (5) guarantee that drone weight capacity is respected. Equations (6) indicate that

drones cannot carry any product from a customer to the ending depot.

(iii) Drone energy constraints:

We only consider drones’ energy consumption during level flight in this study. Dorling et al.

(2017) suggest that the average power during hover is an upper bound on the average power during

flight. Since there are not available field tests of small drones making multiple deliveries or of actual

delivery drones in production mode, in this study, we use the theoretical power consumption during

hovering to approximate the horizontal power consumption for a delivery drone making multiple-

stop trips. Leishman (2006) describes the energy consumption, P (q), of a single rotor helicopter

in hover as a convex function of payload q. Based on the assumption that each rotor shares the

total weight of a drone equally, Dorling et al. (2017) derive the power consumption equation for a

h-rotor drone as

P (qij) = (W +m+ qij)
3
2

√
g3

2ρςh
, (7)

where W is the frame weight (kg), m is the battery weight (kg), qij is the payload (kg), g is the

force due to gravity (N), ρ is the fluid density of air (kg/m3), ς is the area of spinning blade disc

(m2), h is the number of rotors, and the unit of P is Watt. In the experiments of Liu et al. (2017),

the power consumption in hover also takes a similar form, i.e., P (qij) = cp[(W +m+ qij)g]
3
2 , where
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Figure 1: Energy calculation from linear and nonlinear functions (Figure 1 in Dorling et al. (2017))

cp is a parameter. We rewrite Equation (7) as

P (qij) = k(W +m+ qij)
3
2 , (8)

where k depends on the details of the drone and the environmental parameters and it is a constant

in our model. Based on field tests, Dorling et al. (2017) propose to approximate power consumption

as

P (qij) = α(m+ qij) + β, (9)

where α(kW/kg) and β(kW ) are two constant numbers obtained by a linear approximation.

As shown in Figure 1, when the sum of the battery weight and payload is smaller than A, the

linear approximation function overestimates the energy consumption from the nonlinear model,

and therefore drone routes calculated with the linear approximation will be “energy feasible” if

the nonlinear model is used to calculate energy consumption. However, when the battery and

payload weight is larger than A, then the linear approximation function underestimates the en-

ergy consumption from the nonlinear model. In this case, drone routes calculated with the linear

approximation may be “energy infeasible” (i.e., exceed the battery’s energy capacity) if the non-

linear model is used to calculate energy consumption. We use Equation (8) to compute power

consumption in this study, and drones’ energy consumption constraints are written as

f0 = 0, (10)
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fi + k′(W +m+ qij)
3
2 tij ≤Mij(1− xij) + fj ∀(i, j) ∈ A, (11)

fn+1 ≤ σ. (12)

Equations (10) indicate that at the beginning of each trip the accumulated energy consumption

is 0, that is, every time a drone begins a new trip we swap it with a fully charged battery. This

assumption is common in the literature (Murray and Chu 2015; Chowdhury et al. 2017; Ham 2018).

Equations (11) establish the energy relationship between node i and its immediate successor j,

where k′ is a constant that includes k from earlier and the conversion from Watt-second to kWh

and Mij is an arbitrary large constant. We can observe that, when xij = 0, according to Equations

(5), qij also equals 0, then we can set Mij = k′(W +m)
3
2 tij+σ (σ is the battery energy available for

a drone trip (kWh)). When xij = 1, the second term of the left-hand side of Equations (11) is the

energy consumption on arc (i, j). Constraints (12) mean that battery’s energy capacity constraint

must be respected. Since constraints (11) are nonlinear, the model cannot be solved directly by a

mixed-integer linear programming (MILP) solver. In Section 4.1, we introduce different types of

cuts to tackle this group of constraints implicitly.

We also give the linear approximation version of constraints (11):

fi + [α(m+ qij) + β]tij/3600 ≤M ′
ij(1− xij) + fj ∀(i, j) ∈ A, (13)

where M ′
ij = (αm+ β)tij/3600 + σ. In numerical tests, we will compare the difference in solution

construction when using these two versions of the energy expressions.

(iv) Time and trip related constraints:

τi + tij −M
′′

ij(1− xij) ≤ τj ∀i ∈ N ′, j ∈ N−, (14)

ai ≤ τi ≤ bi ∀i ∈ N−, (15)

τi + (ti,n+1 + t0j) ≤ τj + (1− zij)M
′′′

ij ∀i, j ∈ N ′, i 6= j, (16)∑
i∈N ′
i 6=j

zij ≤ x0j ∀j ∈ N ′, (17)

∑
j∈N ′
j 6=i

zij ≤ xi,n+1 ∀i ∈ N ′, (18)
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∑
j∈N ′

x0j −
∑
i∈N ′

∑
j∈N ′
j 6=i

zij ≤ K. (19)

Constraints (14) establish the time relationship between customer i and its immediate successor

j. We set the large constants M
′′
ij = max{bi + tij − aj, 0} (Desaulniers et al. 2014). Constraints

(15) denote that the time window constraint must be respected. Here we impose the time window

constraint instead of the deadline constraint, because the latter is a special case of the former with

ai = 0,∀i ∈ N . This model fits best when drones land at customer sites for delivery, as we assume

that drones can wait at customer locations until the opening of the time window and the energy

consumption during this period is negligible. Note that in the case where the energy consumption

during that period must be taken into account (e.g., in case when drones are equipped with

cameras and sensors on to actively detect dangerous situations such as package or drone theft, or

for a hovering while waiting), we can also incorporate the energy consumption of performing these

activities in our model and our solution scheme can still be directly used. The detailed description

on the modifications is presented in Appendix A. Equations (16) establish the time relationship

between consecutive trips performed by the same drone, where M
′′′
ij = ti,n+1 + t0j + bi. These

constraints take into account the time to return to the depot and replace the battery. Constraints

(17)–(18) connect variables x and z (Karaoğlan 2015). Constraints (19) limit the number of drones

that can be used in the system.

(v) Variable domains:

xij ∈ {0, 1}, qij, eij ≥ 0 ∀(i, j) ∈ A, (20)

fi ≥ 0 ∀i ∈ N, (21)

τi ≥ 0 ∀i ∈ N−, (22)

zij ∈ {0, 1} ∀i, j ∈ N ′. (23)

Objective function. We consider the applications of logistics companies who use drones

for last-mile delivery, in order to reduce an overall transportation cost. Therefore, we consider a

general form of the objective function which also incorporates the energy consumption

min
∑

(i,j)∈A

(cijxij + δeij), (24)
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where δ is the battery-related cost ($/kWh) which includes the cost of electricity and the amorti-

zation of lithium-ion battery. We will show how variables eij,∀(i, j) ∈ A are incorporated in the

constraints and linked to variables fi and fj in following sections. Note that the energy cost could

be negligible in realistic applications, and we add it here for two reasons: First, to keep consistent

with some existing works, which also include the energy cost in the objective function to incorpo-

rate the depreciation and operating cost of battery as a function of energy usage (Mathew et al.

2015; Dorling et al. 2017); Second, to demonstrate that our objective function is quite flexible. The

model and approach can be used to solve a traditional VRP objective which minimizes the travel

cost by dropping the second term, or a green supply chain related objective that minimizes the

energy consumption/cost by dropping the first term. We analyze the impact of different objectives

on computational efficiency and solution configurations in Section 5.3. For notational convenience,

in the following sections we use R, E, and R+E to represent the model that minimizes travel cost

(δ = 0), energy cost (cij = 0,∀(i, j) ∈ A), and both travel and energy costs (as in the objective

function (24)), respectively. For the energy calculation, we use a subscript e if the nonlinear energy

function is used, and a subscript a if the linear approximation method is used.

We note that constraints in group (i), (ii), (iv), and (v) are adopted from studies on VRP

and MTVRP (Desaulniers et al. 2014; Karaoğlan 2015; Cattaruzza et al. 2016). However, the

nonlinear energy constraints and the objective function are newly introduced. Moreover, the time-

window constraints, which are not considered in Karaoğlan (2015) and Dorling et al. (2017), are

also considered in our study. Thus, our model generalizes the other models in the literature, such

that it can capture important practical constraints. We further emphasize that our modeling and

solution schemes (introduced in next section) simultaneously optimize multi-trip drone routing

operations and energy consumption under time windows constraints. We also include a more

complex nonlinear energy function.
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3.3. Valid Inequalities

We use constraints (25) to indicate the least number of trips needed to visit all the customers

(Semet et al. 2014; Santos et al. 2014).∑
j∈N ′

x0j ≥
⌈∑

i∈N ′ di

Q

⌉
. (25)

Constraints (26) are derived from Equations (8) using the constant dj to replace the variable qij,

which yields linear equations and a lower bound of P (qij) since qij ≥ dj when xij = 1. Constraints

(26) mean that if arc (i, j) is traversed by a drone, the energy consumption is at least equal to the

value of the right-hand side.

eij ≥ k′(W +m+ dj)
3
2 tijxij ∀(i, j) ∈ A. (26)

4. Solution Method

In this section, we introduce the techniques to handle the nonlinear energy consumption, and

develop a B&C algorithm for our model. We note that our solution method can also be applied

to other applications with nonlinear energy functions.

4.1. Cuts for Nonlinear Energy Function

Logical cut (infeasibility cut). We first solve the model without constraints (10)–(12).

When a feasible solution is generated, we check whether it satisfies the energy capacity constraint

for each trip. For any violated trip {0, i1, . . . , il, n+ 1}, we add the logical cut

xi1i2 + xi2i3 + . . .+ xil−1il ≤ l − 2, (27)

where il−1 is the (l − 1)th customer in the trip, and there are l customers in total in the trip.

Equation (27) means that the customer sequence is not allowed to be performed.

Subgradient cut. In Equation (8), P (qij) is a convex function in qij. Thus, the tangent line

at point (q̄ij, P̄ (q̄ij)) (we use a bar ‘-’ to represent known values) is

P (qij) = P̄ (q̄ij) + β̄ij(qij − q̄ij), (28)

where β̄ij = 3
2
k(W + m + q̄ij)

1
2 , and it is the derivative. Figure 2 is an illustration of the tangent

line. Therefore, the subgradient cut derived for constraints (11) can be added using a conditional
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form as follows:

eij ≥ [P̄ (q̄ij)xij + β̄ij(qij − q̄ij)]/1000× (tij/3600) ∀(i, j) ∈ A. (29)

When xij = 0, the right-hand side of Equation (29) is a negative number (qij = 0 because of

constraints (5)) and the cut is inactive. When xij = 1, the cut is added and the right-hand side of

(29) underestimates the energy from Equation (8).

!"(!#$%)

Slope = '̅$%

!#$%

Figure 2: The tangent line of the power function

Remarks: (i) Being different from the logical cuts, constraints (10) and (12) are necessary when

applying the subgradient cuts, and constraints (11) become fi+eij ≤Mij(1−xij)+fj,∀(i, j) ∈ A.

(ii) For the models with energy costs in the objective, i.e., the E and R + E models, we must

apply the subgradient cuts to ensure the involvement of energy cost. However, logical cuts are

optional because the subgradient cuts can also guarantee that the energy capacity constraints are

respected. (iii) For the models without energy costs, i.e., the R model, we can implement the cuts

in three ways: only add logical cuts, only add subgradient cuts, or add both together. If there

is only one customer in a trip, we do not add either logical or subgradient cuts for the R model,

because we can guarantee that each customer is eligible to be serviced by a drone when generating

the instance sets. Moreover, when only the logical cuts are used for model R, we do not need valid

inequalities (26).

Our techniques can be applied for any energy function that is convex or piecewise convex in

payload. If it is not a convex function, then our logical cut can be used. In other words, our

method generalizes the ones presented in the literature.
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4.2. Branch-and-Cut Algorithm

The B&C algorithm has been extensively used to solve MILP problems, and it is a combination

of a cutting plane method with a B&B algorithm (Mitchell 2002). In our B&C scheme, we first

add valid inequalities to the formulations at the root node of the search tree. We then solve the

linear programming (LP) relaxation problem at each node of the tree. Each time a fractional

solution is obtained, we detect and generate violated cuts in a cutting-plane fashion and the LP

relaxation at the current B&B node is re-optimized. If all the cuts are respected and the solution

still has fractional-valued integer variables, the branching process continues. If an integer solution

is obtained and no cuts are generated, we consider updating the incumbent solution and pruning

some nodes. This process continues until all nodes of the tree are evaluated.

4.2.1. Separation of Subtour Inequalities

Although constraints (4) can eliminate subtours, we introduce another group of subtour elimi-

nation constraints (SECs) which can help improve computational efficiency for the B&C scheme.

The SECs are as follows (Laporte 1986):∑
i∈S

∑
j∈S

xij ≤ |S| − q(S) ∀S ⊆ N ′, |S| ≥ 2, (30)

where q(S) =
⌈∑

i∈S di
Q

⌉
is the minimum number of trips needed to visit customers in set S. The

separation algorithm is performed by using the CVRPSEP package of Lysgaard et al. (2004).

4.2.2. Implementation of Cuts and SECs

For the logical and subgradient cuts, they are applied when an integer solution is obtained. For

the SECs, we only generate them at the root node since they are redundant for our models due

to the fact that subtours are eliminated by constraints (4) and it is time consuming to solve the

separation problems at all nodes of the B&B tree.

5. Numerical Experiment

In this section, we present the instances and discuss our numerical tests for the MTDRP with

the energy function presented in this paper. The B&C algorithms are coded in Python on Pycharm

2.7 using Gurobi 7.5.1 as the solver. All the parameters are set to their default values in the solver.
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The experiments are performed on a cluster of Intel Xeon X5650 CPUs with 2.67 GHz and 24 GB

RAM under Linux 6.3. Each experiment is conducted on a sing1e core of one node unless specified.

The computing time limit is set to four hours.

5.1. Instance Sets

We introduce two sets of benchmark instances. The first set, named Set A, is created based

on the instance generation frameworks presented in Solomon (1987) and Dorling et al. (2017).

The second set, named Set B, is an extension of Solomon’s instances, taking into account drones’

specific characteristics. For Set A instances, we further consider two types of instances and each

has 10–50 customers. For type 1 instances, named Set A1, the depots are located at the lower

left corner of the region. For type 2 instances, named Set A2, the depots are in the middle of the

region. We use Set A instances for preliminary tests and performance comparisons. We conduct

experiments on Set B instances. The detailed instance generation procedures are presented in

Appendix B. All the instances and solutions are also available at the following URL: https:

//sites.google.com/view/chengchun/instances.

We assume that 4-cell 14.8V lithium polymer batteries are used for drones. According to

the field tests in Dorling et al. (2017), we set α = 0.217 kW/kg, β = 0.185 kW , m = 1.5 kg,

W = 1.5 kg, Q = 1.5 kg, g = 9.81 N/kg, ρ = 1.204 kg/m3, ς = 0.0064 m2, h = 6, δ = 360 $/kWh.

For Set A instances, we set the battery energy capacity σ = 0.27 kWh; For Set B instances, we

set σ = 0.027 kWh.

5.2. Enhancement Strategy Evaluation

This section analyzes the effect of valid inequalities and SECs. We conduct all the tests on

instances with 10–30 customers in Set A. First, we only apply subgradient cuts to the model to

evaluate the valid inequalities and SECs. After knowing the performances, we further compare

different implementations of cuts. Results are provided in Table 2. For each model, we present

detailed results of the largest instances (i.e., those with 30 customers) in the first six rows, and

the results of all instances in the last two rows. The column None gives the results without any

enhancement strategy. The remaining columns indicate that one (or all) valid inequalities or SECs
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are added to the model. Opt is the number of instances solved to optimality. UP, LB, and RLB are

the best upper bound, the best lower bound, and the lower bound at the root node, respectively.

Gap is the percentage difference between the best upper and lower bounds. CPU is the time in

seconds consumed to solve the instance.

Table 2: Average results with different valid inequalities and SECs for Set A instances

Only subgradient Only logical
Subgradient
+logical

Cust None (25) (26) (25)+(26)
(25)+(26)
+SECs

(25)+SECs
(25)+(26)
+SECs

Re

30 Opt 7/10? 7/10 5/10 7/10 7/10 7/10 8/10
UB 11604.97 11608.23 11604.97 11616.74 11604.97 11604.97 11611.46
LB 11539.12 11544.82 11520.78 11541.28 11553.25 11558.07 11575.70
Gap 0.56 0.53 0.72 0.63 0.44 0.39 0.31
CPU 6810.79 6038.29 10041.20 7436.01 6501.20 6033.06 6643.34
RLB 11013.32 11041.65 11013.31 11033.22 11037.09 11055.78 11039.42

All Opt 46/50? 45/50 43/50 45/50 46/50 46/50 47/50
Gap 0.14 0.16 0.22 0.19 0.13 0.11 0.10

Ee

30 Opt 0/10 0/10 3/10 3/10 4/10

Not Applicable

6/10
UB 833.62 836.92 828.35 828.63 828.25 828.63
LB 597.37 611.69 810.58 812.01 819.55 819.65
Gap 28.24 26.82 2.24 2.07 1.05 1.07
CPU 14400.00 14400.00 11515.46 12046.49 11437.83 9440.20
RLB 123.92 80.82 705.74 704.07 708.00 708.00

All Opt 31/50 31/50 41/50 41/50 43/50 46/50
Gap 8.83 8.06 0.54 0.50 0.22 0.22

(R+ E)e

30 Opt 6/10 5/10 6/10 6/10 7/10

Not Applicable

7/10
UB 12451.89 12471.68 12437.36 12437.36 12437.36 12450.29
LB 12321.26 12293.59 12343.51 12365.55 12369.68 12374.19
Gap 1.03 1.40 0.75 0.57 0.54 0.60
CPU 11631.34 9808.45 8577.97 8623.99 8512.23 8270.53
RLB 11015.17 11181.01 11709.88 11742.26 11766.60 11766.70

All Opt 44/50 43/50 45/50 45/50 46/50 46/50
Gap 0.30 0.38 0.19 0.18 0.16 0.18

? indicates the number of instances (out of 10 and 50) that are solved to optimality.

Table 2 shows that different implementations of cuts yield different performances. In general,

the simultaneous application of logical cuts, subgradient cuts, valid inequalities (25)–(26), and the

SECs, gives the best performance for the three models. Specifically, a few more instances can be

solved to optimality for the Re and Ee models. For the (R+ E)e model, the number of optimally

solved instances is the same when only using the subgradient cut or using both cuts together;

however, the average optimality gap is relatively close. We can also observe that, for instances

with 30 customers, the average RLB is improved from 123.92 to 705.74 for model Ee when the valid

inequalities based on the energy function (i.e., constraints (26)) are used. In addition, the Ee model

consumes the most computation time on average, because its average RLB is not as tight as those

of the other two models. In particular, RLB/LB= 0.86 for the Ee model whereas RLB/LB= 0.95
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for the other two models. In the following sections, we use the 2-index formulation constructed in

Section 3.2, together with constraints (25)–(26), SECs, and both logical and subgradient cuts, to

perform our tests for each model.

5.3. Details of Solutions for Set A Instances With Size 10–30

Tables 3–4 give a summary details of results. Cust is the number of customers. Log, Sub, and

SECs are the number of generated logical cuts, subgradient cuts, and SECs, respectively. In Table

4, UAVs is the number of drones used, and Swap represents the average number of battery swaps.

When calculating Swap, we do not count the first trip performed by a drone. For example, if a

drone has conducted 3 trips, then the value of Swap would be 2. T/d indicates the average number

of trips performed by each drone. The last column in Table 4 is the proportion of energy cost to

total cost. More detailed results for each instance are presented in Appendix C.

Table 3: Average results on cuts for Set A instances with size 10–30
Re Ee (R+ E)e

Cust Opt Gap CPU Log Sub SECs Opt Gap CPU Log Sub SECs Opt Gap CPU Log Sub SECs

Set A1

10 5/5 0.0 0.5 0.2 92.2 21.4 5/5 0.0 0.9 0.4 138.2 31.4 5/5 0.0 0.6 0.0 134.8 25.2
15 5/5 0.0 176.6 3.4 400.6 27.6 5/5 0.0 82.6 2.6 595.4 33.2 5/5 0.0 306.2 2.8 518.6 32.6
20 5/5 0.0 162.2 1.6 349.8 35.4 5/5 0.0 72.3 1.6 558.2 39.4 5/5 0.0 224.0 0.6 615.6 35.6
25 4/5 0.4 4666.1 3.0 552.4 34.2 5/5 0.0 4508.6 4.8 1282.0 39.8 4/5 0.6 4945.6 4.4 1512.0 38.2
30 3/5 0.6 6860.3 3.8 1172.8 42.4 3/5 1.0 8989.8 3.4 1884.6 47.8 3/5 0.7 8865.7 2.8 1759.0 47.0

Set A2

10 5/5 0.0 0.4 0.0 40.8 16.6 5/5 0.0 0.5 0.4 142.6 13.8 5/5 0.0 0.3 0.0 71.4 9.8
15 5/5 0.0 5.0 2.4 152.2 34.0 5/5 0.0 4.1 1.4 274.4 27.6 5/5 0.0 5.7 1.8 297.8 29.4
20 5/5 0.0 27.0 2.0 259.0 34.6 5/5 0.0 37.3 1.6 487.6 40.0 5/5 0.0 33.1 1.4 500.8 36.4
25 5/5 0.0 202.3 2.2 469.4 36.6 5/5 0.0 301.0 4.0 921.0 37.2 5/5 0.0 313.1 2.4 853.0 39.4
30 5/5 0.0 6426.4 3.2 927.2 41.2 3/5 1.2 9890.6 5.0 1815.8 35.4 4/5 0.5 7675.3 4.0 1437.4 39.6

Table 4: Average results on drones for Set A instances with size 10–30

Re Ee (R+ E)e

Cust UAVs Swap T/d UAVs Swap T/d UAVs Swap T/d Coste (%)

Set A1

10 2.0 3.2 2.6 2.0 3.2 2.6 2.0 3.2 2.6 6.6
15 2.2 4.0 2.9 2.2 4.2 3.0 2.2 4.0 2.9 6.6
20 3.6 6.2 2.8 3.6 6.2 2.8 3.6 6.2 2.8 6.8
25 3.8 7.4 3.0 3.8 7.6 3.0 3.8 7.6 3.0 6.8
30 5.0 8.4 2.7 5.0 8.4 2.7 5.0 8.2 2.6 6.8

Set A2

10 2.0 3.4 2.7 2.0 3.6 2.8 2.0 3.4 2.7 6.4
15 2.8 5.6 3.1 2.8 6.2 3.3 2.8 5.6 3.1 6.4
20 3.4 7.2 3.2 3.4 7.4 3.2 3.4 7.2 3.2 6.6
25 4.0 8.6 3.2 4.0 9.2 3.3 4.0 8.6 3.2 6.7
30 4.4 9.6 3.2 4.4 10.0 3.3 4.4 9.6 3.2 6.6

Average 3.3 6.4 2.9 3.3 6.6 3.0 3.3 6.4 2.9 6.6

Table 3 shows that the number of subgradient cuts is much larger than that of the logical cuts.

This is because the subgradient cuts are produced for edges while the logical cuts are generated
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for trips. For the largest problems (30 customers), the Re model consumes the least computing

time and the Ee model consumes the most computing time. Further, instances in Set A1 require

more time than those in Set A2, because the locations of the depot and customers are more

geographically dispersed in Set A1.

Table 4 indicates that more drones are used with an increasing number of customers and that,

in most cases, each drone performs 2 or 3 trips. For the (R + E)e model, the energy cost only

accounts for a small portion (around 6.6%) of the total cost. The average results seem similar for

the three models; however, with different objectives, different schedules are indeed generated for

some instances. An example is given in Table 5. It shows that two more trips are performed for

the Ee model, leading to a greater travel distance and a lower energy consumption. Moreover, we

find that for this instance the schedules generated by the Re and (R+E)e models are quite similar,

except that the travel direction of the second and fifth trips are opposite. Since we perform our

tests on an undirected network, travel direction influences energy consumption because of different

payloads on arcs. However, as the (R + E)e model includes the energy cost in the objective, it

can always guarantee that drones travel in directions with minimal energy consumption. Thus, in

realistic applications, for undirected networks, even though decision makers favor a VRP objective

which minimizes the travel cost, they can still add energy cost in the objective and set a small

value for energy price to save battery energy consumption and further reduce the recharging time.

Table 5: Schedules generated by different objectives for instance Set A2 Cust 15 2

Re Ee (R+ E)e

Trips Energy (kWh) Trips Energy (kWh) Trips Energy (kWh)

[0, 3, 1, 16] 0.1585 [0, 3, 1, 16] 0.1585 [0, 3, 1, 16] 0.1585
[0, 4, 2, 16] 0.2389 [0, 4, 2, 16] 0.2389 [0, 2, 4, 16] 0.2344
[0, 5, 10, 15, 16] 0.2099 [0, 10, 5, 16] 0.0937 [0, 5, 10, 15, 16] 0.2099
[0, 6, 12, 16] 0.2530 [0, 12, 16] 0.1645 [0, 6, 12, 16] 0.2530
[0, 7, 8, 16] 0.1733 [0, 8, 7, 16] 0.1637 [0, 8, 7, 16] 0.1637
[0, 9, 11, 16] 0.2418 [0, 9, 16] 0.1354 [0, 11, 9, 16] 0.1835
[0, 13, 16] 0.1690 [0, 13, 16] 0.1690 [0, 13, 16] 0.1690
[0, 14, 16] 0.1341 [0, 14, 16] 0.1341 [0, 14, 16] 0.1341

[0, 11, 16] 0.0462
[0, 15, 6, 16] 0.1794

Total energy (kWh) 1.5785 1.4834 1.5061
Total travel distance 7995.39 8153.26 7995.39
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5.4. Performance Comparison Between Models with Nonlinear and Linear Energy Functions

In this section, we compare the model performance with our nonlinear and linear energy models.

Table 6 presents a summary of results, with some detailed results in Appendix C. For solutions

generated by the linear approximation models, after obtaining the trips, we calculate the energy

consumption using the nonlinear model (8) for each trip and report the average results in the last

two rows of Table 6. Infeasible is the number of instances for which the linear approximation

models yield trips that when energy is calculated with (8) exceed the energy capacity. Energy

gap is the percentage difference in energy calculation, which is computed as (energy from (8) −

energy from (9))/energy from (9).

Table 6: Statistics of solutions generated by models R and R + E with nonlinear and linear energy functions

model R model R+ E

Energy function Nonlinear Linear Nonlinear Linear

Opt 47/50 49/50 46/50 50/50
Optimality gap 0.10 0.04 0.18 0.00
CPU 1852.69 911.59 2236.96 743.95
Travel distance 8276.33 8227.72 8278.71 8227.68
Infeasible 0/50 20/50 0/50 18/50
Energy gap (%) 0.00 9.45 0.00 9.32

From Table 6, we get two observations: (1) Computational efficiency . For both models,

the computational efficiency with the linear approximation (Equation (9)) is better than that of

the nonlinear method (Equation (8)). By using the approximation method, more instances can be

solved in a shorter time frame. For the R and R+E models with the nonlinear energy function, the

average computation times are 1852.69 and 2236.96 seconds, respectively. Thus, we can conclude

that, even though our original models are nonlinear, the use of logical and subgradient cuts can help

solve large problems to optimality. (2) Feasibility and solution quality . In multiple instances,

the approximation models yield “energy infeasible” trips when energy is calculated based on the

nonlinear model (8). For the R and R+E models, the approximation method produces infeasible

trips for 20 and 18 instances respectively. In addition, the energy gap is around 9% on average

between the two methods.

To further display the importance of how energy is calculated, we give an example in Table 7

to show the different schedules generated by the two methods. It demonstrates that the first trip

given by the two approximation models consumes 0.2925 kWh energy, which violates the battery’s
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Table 7: Detailed solutions of models with nonlinear and linear energy functions for instance Set A1 Cust 25 2

Nonlinear energy function Linear energy function

Energy consumption

Trips Energy Trips Linear Nonlinear Energy gap(%)

R

[0, 1, 14, 2, 6, 26] 0.2685 [0, 1, 14, 2, 6, 16, 26] 0.2656 0.2925 10.13
[0, 4, 7, 8, 26] 0.1348 [0, 7, 8, 26] 0.1147 0.1240 8.11
[0, 5, 20, 26] 0.2056 [0, 5, 20, 26] 0.1857 0.2056 10.72
[0, 13, 11, 26] 0.1501 [0, 13, 11, 26] 0.1378 0.1501 8.93
[0, 15, 3, 26] 0.1471 [0, 15, 3, 26] 0.1346 0.1471 9.29
[0, 17, 10, 24, 12, 25, 26] 0.2528 [0, 12, 24, 10, 17, 4, 26] 0.1965 0.2175 10.69
[0, 18, 9, 16, 26] 0.2138 [0, 25, 18, 9, 26] 0.1944 0.2146 10.39
[0, 19, 21, 26] 0.1551 [0, 21, 19, 26] 0.1320 0.1447 9.62
[0, 22, 26] 0.0134 [0, 22, 26] 0.0127 0.0134 5.51
[0, 23, 26] 0.0684 [0, 23, 26] 0.0622 0.0684 9.97

R+ E

[0, 1, 14, 2, 6, 26] 0.2685 [0, 1, 14, 2, 6, 16, 26] 0.2656 0.2925 10.13
[0, 4, 7, 8, 26] 0.1348 [0, 8, 7, 26] 0.1099 0.1177 7.10
[0, 20, 5, 26] 0.2039 [0, 20, 5, 26] 0.1845 0.2039 10.51
[0, 13, 11, 26] 0.1501 [0, 13, 11, 26] 0.1378 0.1501 8.93
[0, 15, 3, 26] 0.1471 [0, 15, 3, 26] 0.1346 0.1471 9.29
[0, 17, 10, 24, 12, 25, 26] 0.2528 [0, 4, 17, 10, 24, 12, 26] 0.1903 0.2091 9.88
[0, 18, 9, 16, 26] 0.2138 [0, 25, 18, 9, 26] 0.1944 0.2146 10.39
[0, 21, 19, 26] 0.1447 [0, 21, 19, 26] 0.1320 0.1447 9.62
[0, 22, 26] 0.0134 [0, 22, 26] 0.0127 0.0134 5.51
[0, 23, 26] 0.0684 [0, 23, 26] 0.0622 0.0684 9.97

energy capacity (0.27 kWh). However, if the linear approximation method is used, it will consider

these trips as feasible ones. Therefore, care is needed when modeling energy consumption to ensure

energy feasibility of routes.

5.5. Impact of Time Windows

Here, we first consider new instances with tighter time windows at customers. We generate

the width of customers’ time windows according to a new normal distribution whose mean is

0.15(bn+1 − tj,n+1 − t0j), and keep other data unchanged. Next, we remove the time constraints

(14)–(16) and solve a multi-trip drone routing problem. Summary results are reported in Table 8

and detailed results are presented in Appendix C.

Table 8: Average results for models with tighter time windows and without time windows
model Re model Ee model (R + E)e

Tighter time windows Without time windows Tighter time windows Without time windows Tighter time windows Without time windows

Cust Opt Gap CPU Opt Gap CPU Opt Gap CPU Opt Gap CPU Opt Gap CPU Opt Gap CPU

Set A1

10 5/5 0.0 0.2 5/5 0.0 0.5 5/5 0.0 0.3 5/5 0.0 1.0 5/5 0.0 0.3 5/5 0.0 0.4
15 5/5 0.0 32.2 5/5 0.0 527.4 5/5 0.0 47.8 5/5 0.0 44.6 5/5 0.0 41.7 5/5 0.0 129.5
20 5/5 0.0 82.1 5/5 0.0 387.1 5/5 0.0 106.8 5/5 0.0 200.7 5/5 0.0 87.8 5/5 0.0 287.5
25 5/5 0.0 2377.8 4/5 0.7 5948.0 3/5 1.6 6319.1 4/5 0.4 5641.6 5/5 0.0 3179.9 4/5 0.8 5061.6
30 3/5 0.6 6565.7 1/5 0.5 12339.4 3/5 1.1 8552.8 2/5 1.3 12211.0 3/5 0.7 6425.4 1/5 0.8 12468.2

Set A2

10 5/5 0.0 0.1 5/5 0.0 1.5 5/5 0.0 0.2 5/5 0.0 0.9 5/5 0.0 0.2 5/5 0.0 1.0
15 5/5 0.0 1.0 5/5 0.0 8.8 5/5 0.0 1.3 5/5 0.0 4.4 5/5 0.0 1.2 5/5 0.0 9.6
20 5/5 0.0 10.1 5/5 0.0 97.4 5/5 0.0 19.3 5/5 0.0 47.2 5/5 0.0 13.4 5/5 0.0 73.4
25 5/5 0.0 140.2 5/5 0.0 1183.1 5/5 0.0 240.7 5/5 0.0 119.2 5/5 0.0 121.8 5/5 0.0 1006.6
30 5/5 0.0 646.5 3/5 0.9 8849.3 5/5 0.0 2458.6 3/5 0.5 7969.1 5/5 0.0 507.5 4/5 0.5 6988.8

From Table 3 and Table 8, when the time windows are tighter, one more instance can be solved
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to optimality for the Re model, and two more instances for the (R + E)e model. Moreover, for

problems of the same size, the average computation time is generally reduced for the three models.

However, when the time constraints are absent, instances become much more difficult to handle.

Fewer instances can be solved to optimality within the time limit and the average computation

time also increases. These observations are consistent with the results provided by Azi (2011),

where a B&P algorithm is used for the MTVRPTW.

5.6. Algorithm Performance on Extended Solomon’s Instances

In this section we test our algorithm on Set B instances based on the well-known Solomon’s

instances. All the experiments are performed on 4 core processors with a 12-hour (43200 seconds)

time limit. Summarized results are shown in Table 9 and detailed results on each instance are

provided in Appendix C. In Table 9, column Inst is the instance label.

Table 9: Algorithm performance on Solomon’s instances of type 2

25 customers 40 customers

model Re model Ee model (R+ E)e model Re model Ee model (R+ E)e

Inst Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU

c201 0.00 1.4 0.00 11.5 0.00 2.5 0.00 48.3 0.00 229.9 0.00 43.8
c202 0.00 13.4 0.00 48.5 0.00 19.7 0.00 372.9 0.00 14073.8 0.00 955.4
c203 0.00 56.4 0.00 86.5 0.00 74.8 0.00 3881.6 0.95 43200.0 0.00 10685.1
c204 0.00 48.2 0.00 240.8 0.00 78.6 0.20 43200.0 1.55 43200.0 0.00 16940.6
c205 0.00 13.0 0.00 29.5 0.00 9.0 0.00 871.2 0.00 23630.3 0.00 881.7
c206 0.00 21.1 0.00 40.8 0.00 21.7 0.00 2011.9 1.83 43200.0 0.00 8368.8
c207 0.00 32.0 0.00 55.3 0.00 43.4 0.00 5757.3 0.00 5567.9 0.00 8358.9
c208 0.00 23.2 0.00 34.7 0.00 34.3 0.00 1936.7 0.63 43200.0 0.00 3547.3

r201 0.00 4.0 0.00 8.7 0.00 5.6 0.00 437.7 0.00 2730.5 0.00 348.1
r202 0.00 32.9 0.00 26.9 0.00 29.2 0.00 11666.6 1.22 43200.0 0.00 8183.1
r203 0.00 132.1 0.00 40.2 0.00 58.0 0.00 33302.4 0.00 17013.0 0.00 40920.9
r204 0.00 134.2 0.00 125.4 0.00 120.3 0.58 43200.0 0.00 37471.4 1.22 43200.0
r205 0.00 38.5 0.00 21.8 0.00 27.1 0.00 5921.7 0.00 7086.4 0.00 8098.5
r206 0.00 54.8 0.00 29.8 0.00 84.6 0.96 43200.0 0.00 5167.2 0.42 43200.0
r207 0.00 83.5 0.00 37.4 0.00 87.8 1.18 43200.0 0.00 22529.7 0.00 39388.0
r208 0.00 75.7 0.00 47.9 0.00 106.7 0.96 43200.0 0.36 43200.0 0.67 43200.0
r209 0.00 42.8 0.00 41.5 0.00 50.0 0.00 42044.0 5.91 43200.0 1.40 43200.0
r210 0.00 46.0 0.00 24.8 0.00 60.2 0.00 14821.3 0.00 2832.5 0.68 43200.0
r211 0.00 136.1 0.00 53.4 0.00 102.5 1.44 43200.0 0.62 43200.0 1.16 43200.0

rc201 0.00 28.0 0.00 31.7 0.00 60.0 0.00 959.5 7.42 43200.0 0.00 2540.3
rc202 0.00 366.9 0.00 315.0 0.00 125.1 0.79 43200.0 2.86 43200.0 0.62 43200.0
rc203 0.00 15.7 0.00 29.9 0.00 56.8 0.00 1542.6 0.00 509.2 0.00 5064.3
rc204 0.00 5.4 0.00 64.3 0.00 952.8 0.00 110.3 0.00 2663.9 0.00 9900.8
rc205 0.00 63.4 0.00 269.0 0.00 100.6 0.00 27642.5 13.59 43200.0 1.58 43200.0
rc206 0.00 65.4 0.00 59.5 0.00 755.0 0.00 4719.6 10.42 43200.0 0.00 39338.2
rc207 0.00 1253.2 0.00 58.3 0.00 7306.9 0.39 43200.0 1.10 43200.0 0.91 43200.0
rc208 0.00 207.4 0.00 23.0 0.00 157.5 0.00 1684.8 0.00 237.6 0.00 7961.0

Average 0.00(0) 110.9 0.00(0) 68.7 0.00(0) 390.0 0.24(8) 18716.0 1.80(13) 26049.8 0.32(9) 22234.3

(−) indicates the number of instances (out of 27) that are not solved to optimality.

We can observe that all instances with 25 customers are solved to optimality within the time

limit. When the number of customers increases to 40, 19 out of 27 instances are optimally solved

25



for model Re, and this number decreases to 14 and 18 for model Ee and model (R + E)e, re-

spectively. The CPU time also varies widely, ranging from a few minutes to many hours. In

terms of computational performance as opposed to the MTVRPTW which is relatively similar to

the MTDRP considered in this paper, our algorithms could generally solve larger instance sizes

compared to those considered in exact algorithms for the MTVRPTW despite the fact that our

original models are nonlinear and more complex.

5.7. Results for Large Instances of Set A

Here, we report the results of Set A instances with 35–50 customers in Table 10. More detailed

results are given in Appendix C. All the experiments are performed on 4 core processors with

a 12-hour time limit. The instances with 10–30 customers that were not optimally solved in

previous experiments are also solved again with the longer time limit. Our results show that all

the previous instances, except Set A1 Cust 30 5 for model Ee, are solved to optimality under the

new experiment setting. The optimality gap of this instance for model Ee is 1.77%. For some

instances, when we directly solve the Ee model or the (R+E)e model, we find that the optimality

gap is over 5% within the time limit, mainly resulting from the poor lower bound. Considering

the Re model is relatively easier than the other two models, for these specific instances, we first

solve the Re model to get a feasible solution and then use this solution as a start for the other two

models. The results of these instances are marked by a square in Table 10.

Table 10 shows that the average gap ranges from 1.81% to 2.28% for instances in Set A1 and

from 1.29% to 1.50% for instances in Set A2, which further confirms our previous observation

that generally instances in Set A2 are easier than those in Set A1. For the Re model, 13 out of 35

instances are solved to optimality. For the Ee and (R+E)e models, the number of optimally solved

instances are 12 and 10 respectively. We also note that it is effective to use the first solution of

the Re model as a start for the other two models. In particular, for the Ee model, 5 instances can

be solved to optimality by using this method. We further use this idea to model Ee for Solomon’s

r209, rc201, rc205, and rc206 instances with 40 customers (i.e., instances whose optimality gap is

over 5% in Table 9). The results show that all these instances can be solved to optimality now.
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Table 10: Results using multicore processors for Set A instances with 35–50 customers

model Re model Ee model (R+ E)e

Cust Inst Gap CPU Gap CPU Gap CPU

Set A1

35

1 4.11 43200.0 4.55� 43200.0 3.24� 43200.0

2 1.80 43200.0 3.58� 43200.0 2.78 43200.0

3 0.00 20642.0 0.00� 21866.9 0.98 43200.0

4 0.00 30214.8 0.00� 36895.7 0.21 43200.0
5 0.00 29126.0 0.00 15121.7 0.00 20446.6

40

1 3.38 43200.0 2.92 43200.0 3.95 43200.0
2 0.00 13947.5 0.90 43200.0 0.59 43200.0

3 3.74 43200.0 4.74 43200.0 3.78� 43200.0

4 0.44 43200.0 0.00� 23208.1 0.39 43200.0

5 0.73 43200.0 1.30� 43200.0 2.32 43200.0

45

1 4.24 43200.0 3.65� 43200.0 3.96 43200.0

2 2.15 43200.0 2.66� 43200.0 2.06� 43200.0

3 1.51 43200.0 3.76 43200.0 2.46� 43200.0

4 3.05 43200.0 4.42� 43200.0 3.15� 43200.0

5 1.95 43200.0 1.79� 43200.0 2.29 43200.0

Average 1.81 37942.0 2.28 38152.8 2.14 41683.1

Set A2

35

1 2.53 43200.0 0.00� 31873.4 2.65 43200.0
2 0.00 1755.4 0.00 18306.0 0.00 3397.5
3 0.00 8732.7 2.83 43200.0 0.00 11645.0
4 0.00 9765.1 0.00 38648.4 0.00 25076.3
5 0.00 9491.5 0.00 42292.8 0.00 18041.8

40

1 0.00 32162.3 0.00 6219.5 0.00 21628.1
2 1.12 43200.0 1.44 43200.0 0.00 41897.4
3 0.00 3298.6 0.00 30554.3 0.00 5495.7

4 2.13 43200.0 0.00� 7308.4 2.16 43200.0

5 5.05 43200.0 6.39� 43200.0 4.81 43200.0

45

1 0.00 6142.2 0.00 1802.5 0.00 8093.6
2 0.00 41018.0 1.30 43200.0 1.32 43200.0
3 1.20 43200.0 2.15 43200.0 0.00 7452.0

4 2.02 43200.0 1.85� 43200.0 2.68 43200.0
5 0.00 37956.5 2.11 43200.0 1.00 43200.0

50

1 1.80 43200.0 0.74� 43200.0 2.36 43200.0

2 3.81 43200.0 2.24� 43200.0 3.80 43200.0

3 2.92 43200.0 4.20� 43200.0 2.72 43200.0

4 1.32 43200.0 3.29 43200.0 0.72� 43200.0

5 1.80 43200.0 1.55� 43200.0 2.01� 43200.0

Average 1.29 31276.1 1.50 34770.27 1.31 30896.4

� We use the first feasible solution of the R model as an initial solution for this model.
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6. Conclusions

This paper solves a MTDRP with time windows. A 2-index formulation is introduced and a

B&C algorithm is developed. We propose two types of cuts to tackle the nonlinear energy function.

We demonstrate the differences between using a complex nonlinear energy consumption function

and a linear approximation, which can result in higher energy use and energy infeasible drone

routes. We generate benchmark instances for the drone routing problem and conduct extensive

numerical experiments to evaluate the effects of valid inequalities and user cuts. The effectiveness

of our modeling scheme and the B&C algorithm is confirmed by solving generated instances and

Solomon’s type 2 instances.

The limitations of the energy function used in our work include: (1) We did not consider the

energy consumption of other flight status like taking off and landing. (2) Some other factors such as

drone speed and wind speed were neglected in our power function. (3) The parameters associated

with the drones considered in our paper are small drones with limited payloads and a low travel

speed; however, the recently developed drone models by Amazon and UPS can carry payloads

of up to five pounds and fly at speeds up to 50 mph. Thus, we consider future research which

can extend this work in the following aspects: (1) More complex power models with additional

influence factors can be used for drone energy calculation. In this case, the energy consumption

of other flight status should also be explicitly incorporated into the mathematical model. (2)

Numerical tests can be conducted by using the parameters collected from production level delivery

drones to provide operational insights for decision-makers.
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Appendix A. Drone Energy Consumption for Waiting Time at Customer Locations

We can incorporate a non-zero energy consumption for waiting time at customer locations in

our model. Specifically, we introduce new variables wi,∀i ∈ N ′ to represent the waiting time for

the opening of the time window at customer i ∈ N ′. Variables τi,∀i ∈ N− now denote drones’

arrival time at node i ∈ N−. Correspondingly, constraints (14)–(16) are modified as follows to

include wi in the model

τi + wi + tij −M
′′

ij(1− xij) ≤ τj ∀i ∈ N ′, j ∈ N−, (A.1)

ai ≤ τi + wi ≤ bi ∀i ∈ N ′, (A.2)

an+1 ≤ τn+1 ≤ bn+1, (A.3)

τi + wi + (ti,n+1 + t0j) ≤ τj + (1− zij)M
′′′

ij ∀i, j ∈ N ′, i 6= j, (A.4)

wi ≥ 0 ∀i ∈ N ′. (A.5)

Now we set M
′′
ij = bi + tij, and M

′′′
ij take the same values as before. We assume the unit energy

consumption for waiting (e.g., performing sensing activities, hovering, etc.) as γ (kWh/s). Then,

constraints (11) are replaced by

f0 + k′(W +m+ q0j)
3
2 t0j ≤M0j(1− x0j) + fj ∀j ∈ N ′, (A.6)

fi + γwi + k′(W +m+ qij)
3
2 tij ≤Mij(1− xij) + fj ∀i ∈ N ′, j ∈ N−, (A.7)

where constraints (A.6) establish the energy relationship between the starting depot 0 and customer

i, and constraints (A.7) are the energy relationship between customer i and node j (which can be

a customer node or the ending depot n + 1). Mij take the same values as before. The objective

function becomes

min
∑

(i,j)∈A

(cijxij + δeij) +
∑
i∈I

δγwi. (A.8)

Then, our solution schemes can be directly applied for this extension.
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Appendix B. Instance Generation Procedures

This section presents the detailed procedures for instance generation.

Appendix B.1. New Benchmark Instances (Set A)

In this set, we consider two types of instances and each has 10–50 customers. For type 1

instances, named Set A1, the depots are located at the lower left corner of the region. For type

2 instances, named Set A2, the depots are in the middle of the region. For a fixed number of

customers in each type, we generate 5 instances. Our instances are labeled as Set Ax Cust Y Z,

which represents that this is the Z th instance of Y customers in Set Ax.

Based on the size of drones, we consider the delivery of relatively lightweight items (including

those like medicines). The demand of the first 40% of customers is drawn uniformly from [0.1, 0.7]

and the demand of the remaining customers is drawn uniformly from [0.1, 1.5]. We set K =

d
∑

i∈N′ di
3Q

e, that is, we expect that each drone can perform 3 or more trips on average. For Set

A1, the coordinate of the depot is (0, 0). The x−coordinate and y−coordinate of each customer

is drawn uniformly from [0, 480]. Since we assume travel distance and travel time are the same,

if a customer is located at (0, 480), then the travel time from the depot to this customer would

be 480 seconds. Meanwhile, we let cij = tij ∀(i, j) ∈ A. For the depots, we set a0 = an+1 = 0

and generate the right-hand side of the time window as follows: We first compute the travel time

between the depot and each customer, i.e., t0j, and rank them in a non-increasing order; we then

sum up the first hth numbers in order, where h = d |N
′|

K
e and the sum is denoted as s. Finally, we

set b0 = bn+1 = d2se. This generation scheme is based on the idea that, in an extreme situation,

each drone trip only involves one customer and each drone performs at most h trips. And all the

deliveries can be finished within d2se time limit. As travel time satisfies triangle inequality, the

earliest time that a customer j can be serviced is t0j, and the latest time that a drone must leave

j is bn+1 − tj,n+1. To create customers’ time windows, we refer to the method in Solomon (1987).

We first randomly generate the center of the time window oj from [t0j, bn+1− tj,n+1] using uniform

distribution, then we generate the time window’s width wj as a normally distributed random

number whose mean is 0.25(bn+1 − tj,n+1 − t0j) and standard deviation is 0.05(bn+1 − tj,n+1 − t0j).

We set aj = max(dt0je, boj − 0.5wjc), bj = min{bbn+1 − tj,n+1c, boj + 0.5wjc}. For Set A2, the
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coordinate of the depot is (480, 480). The x-coordinate and y-coordinate of each customer is

drawn uniformly from [0, 960]. The method of generating the time windows is the same as that of

Set A1.

Appendix B.2. Instances Extended From Solomon’s Instances (Set B)

We generate this set of instances based on the principle of minimal modifications to the original

data. To fit Solomon’s instances, we need to add a service time si,∀i ∈ N ′ to constraints (14)

and (16) when conducting our numerical tests. We also make some modifications to customers’

demands to fit the drone’s payload and to allow multi-trip operations. In particular, for type C2

and RC2 instances with the first 25 and 40 customers, demands are multiplied by 0.03, because the

minimal and the maximal demands are 10 and 40, respectively. For type R2 instances, demands

are multiplied by 0.05 for those with the first 25 customers, because the minimal and the maximal

demand are 2 and 29, respectively; demands are multiplied by 0.045 for those with the first 40

customers, because the maximal demand now becomes 31. We determine the number of drones as

described in the former section.

Appendix C. Detailed Results

This section provides the detailed results of our numerical tests in Section 5, which are also

available at https://sites.google.com/view/chengchun/instances.
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