Drone Routing with Energy Function: Formulation and Exact Algorithm

Chun Cheng^a, Yossiri Adulyasak^b, Louis-Martin Rousseau^a

^a Polytechnique Montréal and CIRRELT, Montréal, H3C 3A7, Canada ^b HEC Montréal and GERAD, Montréal, H3T 2A7, Canada

Abstract

Drone delivery is known as a potential contributor in improving efficiency and alleviating last-mile delivery problems. For this reason, drone routing and scheduling has become a highly active area of research in recent years. Unlike the vehicle routing problem, however, designing drones' routes is challenging due to multiple operational characteristics including multi-trip operations, recharge planning, and energy consumption calculation. To fill some important gaps in the literature, this paper solves a multi-trip drone routing problem, where drones' energy consumption is modeled as a nonlinear function of payload and travel distance. We propose adding logical cuts and subgradient cuts in the solution process to tackle the more complex nonlinear (convex) energy function, instead of using the linear approximation method as in the literature, which can fail to detect infeasible routes due to excess energy consumption. We use a 2-index formulation to model the problem and develop a branch-and-cut algorithm for the formulation. Benchmark instances are first generated for this problem. Numerical tests indicate that even though the original model is nonlinear, the proposed approach can solve large problems to optimality. In addition, in multiple instances, the linear approximation model yields routes that under the nonlinear energy model would be energy infeasible. Use of a linear approximation for drone energy leads to differences in energy consumption of about 9% on average compared to the nonlinear energy model.

Keywords: drone routing, nonlinear energy function, logical cut, subgradient cut, branch-and-cut

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) or drones have attracted people's attention, especially since 2013 when Amazon announced their Prime Air UAV (Rose 2013). Other companies, like DHL, Google, and Alibaba also began developing their own drones, because they believe drones have the potential to reduce cost and waiting time for last-mile delivery. The development of technology has made this idea possible. For example, carbon fiber manufacturing costs have decreased dramatically during the past few years, which enable stronger and lighter air frames (Morgan 2005); lithium polymer batteries with high energy density are also now available, which help extend drones' flight range (Reddy 2010). Different companies have designed different drone models, notably, the multirotor drones used by UPS and DHL, and the hybrid drones developed by Amazon and Alphabet. Being similar to the multirotor helicopters, multirotor drones are lifted and propelled by rotors. Hybrid drones can take off and land vertically (like helicopters), but use wing or wing-like surfaces to generate lift. Meanwhile they can also perform horizontal maneuvers like airplanes. On October 18, 2019, Alphabet's drone unit Wing launched the first commercial drone delivery flight in the United States (Doherty 2019).

Compared to trucks, drones have some specific advantages: (i) They can save labor, because no drivers (or pilots) are needed. (ii) They can often travel faster than trucks. (iii) They are not restricted to road networks (Agatz et al. 2018). These merits enable logistics companies and on-line stores to use drones for rapid parcel delivery. Humanitarian organizations are also considering using drones in disaster scenarios. For example, in the immediate aftermath of a disaster, drones can provide support with risk assessment, mapping, and temporary communication network creation (Chowdhury et al. 2017). In situations where the transportation network is severely compromised by natural disasters, drones can deliver emergency supplies to affected regions. In addition, by taking traffic off the roads, drone might reduce negative implications on congestion, safety, and the environment (Heutger and Kückelhaus 2014).

On the other hand, some unique characteristics of drones have presented new operational challenges. Limited battery capacity influences a drone's flight duration, which can also be affected by payload, speed, and weather conditions (Dorling et al. 2017). Therefore, how should we represent the relationship between battery energy consumption and various factors which affect it? How to route drones so that they can safely return after visiting designated sites? Furthermore, drones' payload is also limited, which means that a drone can only visit a small number of customers during a trip. Thus, how should we schedule drones to serve more demands to maximize their use?

In this paper, we use the term *drone routing problem* (DRP) to refer to the problem where a fleet of drones visit a set of customer locations and each drone can visit multiple customers in a trip. In this case, drones can only be dispatched once from the depot. When drones can perform multiple trips (each trip starts and ends at the depot), this problem is referred to as the *multi-trip drone routing problem* (MTDRP). Existing research on drone operations normally assumes that drone flight duration is limited by a fixed amount of distance or time. However, flight duration is actually influenced by several factors such as battery energy capacity, battery weight, and payload. In addition, no benchmark instances and efficient exact algorithms are available for the DRP, which poses a limitation on algorithm evaluation. To fill some gaps in this area, this paper solves a MTDRP with time windows, where a fleet of homogeneous multirotor drones are dispatched to deliver packages to customers within stipulated time slots. The main contribution of this paper is to incorporate a nonlinear model of drone energy consumption that depends on payload and travel distance. We use a 2-index formulation to model the problem and develop a branch-and-cut algorithm to solve it. We also generate several benchmark instance sets, which are available to the research community.

The rest of this paper is organized as follows. Section 2 reviews related literature and states the contributions of our work. Section 3 describes our problem, presents the mathematical model, and introduces valid inequalities to strengthen it. Section 4 presents techniques for the calculation of energy consumption and provides details of our exact algorithm. Numerical tests and analyses are presented in Section 5. This is followed by the conclusions in Section 6.

2. Literature Review

This section reviews related literature on the drone delivery problem and the multi-trip vehicle routing problem. A summary of the papers on the drone delivery problem is given in Table 1. For more details about drones' civil applications, see the review paper by Otto et al. (2018).

2.1. Drone Delivery Problem

We divide literature on drone delivery problems reviewed here into two categories: drone-only problems and truck-drone problems. For the former, only drones are used in the delivery system. For the latter, both trucks (one or multiple) and drones are used simultaneously. A truck can be used either as a tool to carry drones (i.e., the truck does not have delivery tasks) or for both delivery tasks and as a temporary hub to launch/retrieve drones. Trucks and drones can also work in parallel making deliveries.

Drone-only problems. Studies on drone-only delivery systems normally assume that there are multiple drones and that each drone can cover one or several customers per trip. Choi and Schonfeld (2017) study an automated drone delivery system, where all customers' demands are the same. They use the relationship among battery capacity, payload, and flight range to optimize the drone fleet size. San et al. (2016) describe the implementation steps used to assign a fleet of heterogeneous UAVs to deliver items to target locations. Each order placed by a customer can include one or multiple items. Because of drones' limited payload, one order may not be completely fulfilled in one trip; thus, multiple deliveries might be required. They use a genetic algorithm to solve the problem, where a multi-dimensional chromosome representation is introduced. Dorling et al. (2017) propose two vehicle routing problem (VRP) variants for drone delivery. The first one minimizes the total operating cost subject to a delivery time limit, and the second one optimizes delivery time subject to a budget constraint. The costs include drone fleet cost and energy cost. Instead of dealing directly with the original form of the power function, which is nonlinear, they use a linear approximation function to calculate the power consumption which varies linearly with payload and battery weight. To save cost, each drone can perform multiple trips and visit multiple customers per trip. They use a simulated annealing (SA) heuristic to solve the models. Troudi et al. (2018) study a drone delivery problem with time windows and a trip duration limit. They minimize three different objectives: travel distance, the number of drones used, and the number of batteries required. When imposing the linear energy constraints, the battery capacity is reserved at 20% to be a buffer for unusual conditions.

Some works study the impacts of drone delivery on costs and carbon dioxide (CO_2) emissions.

D'Andrea (2014) analyze the feasibility of using drones for package delivery in terms of energy requirement and economics. They approximate power consumption as a linear function of payload and velocity. Figliozzi (2017) assess the potential of drones in reducing CO_2 emissions generated by the electricity supply chain and provide a comparison of this system with delivery using diesel vehicles and electric trucks/tricycles. They also consider the emissions from the vehicle production and disposal phases. Stolaroff et al. (2018) use the same battery reservation policy as in Troudi et al. (2018) when studying the energy use and environmental impacts of drones for last-mile delivery in comparison with medium-duty trucks. Their power function for hovering takes a similar form as that in Dorling et al. (2017).

There are also studies focusing on drone energy models, where drones' flying status are considered. Liu et al. (2017) derive a theoretical model to calculate the multirotor drone's power consumption. They identify the model's parameters by performing field tests. In their experiments, they consider different drone statuses in a flight path: ascend/descend, hover, and straight line fight. Kirschstein (2020) compare the energy demands of drone-based and ground-based (diesel trucks and electric trucks) parcel delivery services. Factors like drone weight, speed, head wind speed, and other drone parameters are taken into account for energy calculation. Zhang et al. (2020) review energy consumption models for drone delivery. They identify key factors that affect drone energy consumption and discuss similarities and differences among various models. For cruising flight, drone power consumption can be modeled as a convex function of a drone's total weight (e.g., Liu et al. (2017); Stolaroff et al. (2018); Kirschstein (2020)), while for hovering it is proportional to the weight to the power 1.5 (Dorling et al. 2017).

Truck-drone problems. The truck-drone tandem system is the most intensively studied area in drone delivery problems. Most papers in this area assume that during each trip a drone can visit only one customer. Murray and Chu (2015) consider two types of truck-drone delivery problems. The first is the flying sidekick traveling salesman problem (FSTSP), where one truck carries one drone to deliver parcels to a set of customers. As the driver performs deliveries, the UAV is launched from the truck, delivering a parcel for an individual customer, then the truck and the drone rendezvous at a new customer location. The second problem in Murray and Chu (2015)

is the parallel drone scheduling traveling salesman problem (PDSTSP), where multiple drones make single-stop delivery trips from the depot while a single truck serves other customers without carrying any drone. The objective of both problems is to minimize the time required to service all customers and return to the depot. Simple heuristics are used to solve both problems. Ponza (2016) uses a SA heuristic to solve the FSTSP. Agatz et al. (2018) use a route first-cluster second heuristic to solve a variant of the FSTSP where the truck can wait at the start node for the drone to return. Bouman et al. (2018) and Poikonen et al. (2019) use a dynamic programming (DP) approach and a branch-and-bound (B&B) algorithm for the same variant, respectively. Marinelli et al. (2017) extend the FSTSP by allowing the launch and rendezvous operations to be performed not only at a node, but also along a route arc. A greedy randomized adaptive search procedure is developed for the problem. Jeong et al. (2019) extend the FSTSP by considering energy consumption and no-fly zones. The authors use the power consumption linear approximation from Dorling et al. (2017) and propose an evolutionary-based heuristic solution algorithm that integrates constructive and search heuristics. Moshref-Javadi and Lee (2017) use a truck-drone tandem system to minimize latency in a customer-oriented distribution system. They compare the benefits of using drones for a single trip versus multiple trips. Ham (2018) extends the PDSTSP by assuming that drones can perform two types of tasks: drop-off and pickup. A constraint programming method is applied. Ulmer and Thomas (2018) study a same-day delivery problem with trucks and drones, where customer orders come dynamically during a shift. The authors present a Markov decision model and an approximate DP algorithm to solve the problem.

Some studies consider multiple trucks where each is equipped with one or multiple drones. Wang et al. (2017) and Poikonen et al. (2017) consider a fleet of homogeneous trucks with multiple drones per truck. Their objective is to minimize the maximum duration of the routes, and they focus on the worst-case analysis. Pugliese and Guerriero (2017) extend the problem by considering time window constraints. Wang and Sheu (2019) allow docking hubs where trucks can drop off, and drones can pick up, parcels for delivery maintain backup drones. They present an arc-based model and develop a branch-and-price (B&P) algorithm. Raj and Murray (2020) study the multiple FSTSP with variable drone speeds. They assume that drone power consumption is a function of

TT 1 1 1	a	c			1	1 1.	1 1
Table 1	Summary	OT.	napers	on	drone	deliverv	problem
Table L.	Summary	OI.	papers	on	urone	uon voi v	problom
	•/					•/	

			Problem	1						
Authors	# truck	# drone	# cust/trip	multi-trip	energy function	Solution method				
Choi and Schonfeld (2017)	N/A	multiple	multiple			Mathematical analysis				
San et al. (2016)	N/A	multiple	1	\checkmark		Genetic algorithm				
Dorling et al. (2017)	N/A	multiple	multiple		\checkmark	Simulated annealing heuristic				
Troudi et al. (2018)	N/A	multiple	multiple			Mixed-integer linear programming				
Mumou and Chu (2015)	1	1	1	\checkmark		TSP route and re-assign heuristic				
Multay and Chu (2015)	1	multiple	1	\checkmark		Partition and re-assign heuristic				
Ponza (2016)	1	1	1	\checkmark		Simulated annealing heuristic				
Agatz et al. (2018)	1	1	1	\checkmark		Route first-cluster second				
Bouman et al. (2018)	1	1	1	\checkmark		Dynamic programming				
Poikonen et al. (2019)	1	1	1	\checkmark		Branch-and-bound				
Marinelli et al. (2017)	1	1	1	\checkmark		Greedy randomized adaptive search procedure				
Jeong et al. (2019)	1	1	1	\checkmark	\checkmark	Evolutionary-based heuristic				
Moshref-Javadi and Lee (2017)	1	multiple	1	\checkmark		Mixed-integer linear programming				
Ham (2018)	multiple	multiple	multiple	\checkmark		Constraint programming, variable ordering heuristics				
Ulmer and Thomas (2018)	multiple	multiple	1	\checkmark		Approximate dynamic programming				
Wang et al. (2017)	multiple	multiple	1	\checkmark		Worst-case analysis				
Poikonen et al. (2017)	multiple	multiple	1	\checkmark		Worst-case analysis				
Pugliese and Guerriero (2017)	multiple	multiple	1	\checkmark		Mixed-integer linear programming				
Wang and Sheu (2019)	multiple	multiple	multiple	\checkmark		Branch-and-price				
Raj and Murray (2020)	1	multiple	1	\checkmark	\checkmark	Three-phased iterative heuristic				
Mathew et al. (2015)	1	1	1	\checkmark		Reduce to TSP, then use TSP solver				
Luo et al. (2017)	1	1	multiple	\checkmark		TSP route and split; route and re-assign				
Carlsson and Song (2017)	1	1	1	\checkmark		Continuous approximation model				
Campbell et al. (2017)	1	1/multiple	1	\checkmark		Continuous approximation model				
This paper	N/A	multiple	multiple	\checkmark	\checkmark	Branch-and-cut				

cust/trip: number of customers per drone trip. N/A: trucks are not used in the system.

speed and payload, which affects flight endurance and range.

Sometimes the truck is only used for carrying drones and packages without making any deliveries itself (Mathew et al. 2015; Luo et al. 2017). Carlsson and Song (2017) use continuous approximation techniques to derive the improvement of service quality (i.e., the completion time of all deliveries) by using a truck-drone system. Unlike other studies, they do not restrict the drone launch/retrieval locations to be customer sites. Campbell et al. (2017) also use a continuous approximation approach to derive general insights from the aspect of cost.

In the aforementioned literature, we find that only a few papers explicitly consider energy constraints, and many use an approximation that is linear in the payload. In addition, to the best of our knowledge, no benchmark instance is available for algorithm evaluation, and no efficient exact algorithm has been developed for the DRP.

2.2. Multi-trip Vehicle Routing Problem

The multi-trip vehicle routing problem (MTVRP) extends the classical VRP by allowing each truck to perform multiple trips. Fleischmann (1990) is the first to study this problem. The author develops a modification of the saving algorithm and uses a bin packing heuristic to assign routes to vehicles. Mingozzi et al. (2013) develop two set-partitioning-like formulations for the MTVRP. Azi (2011) develops a B&P algorithm for the MTVRP with time windows (MTVRPTW). Their numerical tests focus on the type 2 instance sets in Solomon (1987). Macedo et al. (2011) propose a network flow model based on generated trips for the same problem. Hernandez et al. (2014) develop an exact two-phase algorithm. In the first phase, they enumerate all feasible trips; in the second phase, they use a B&P algorithm to select the best set of schedules. Azi et al. (2014) and Wang et al. (2014) develop an adaptive large neighborhood search and a route pool-based metaheuristic for the same problem, respectively. Hernandez et al. (2016) develop two set covering formulations for the MTVRPTW without the trip duration constraint and use B&P algorithms. They compare the two models on instances with the first 25 customers of Solomon's "C2", "R2", and "RC2" instances.

In the review paper by Cattaruzza et al. (2016), they suggest that there are four ways to formulate the MTVRP. The first one is the 4-index formulation, which uses both the vehicle index and the trip index. Specifically, a binary variable x_{ij}^{vr} is defined to denote whether trip r of vehicle v travels through arc (i, j). The second and the third ones are the 3-index formulations with either a trip index, or with a vehicle index, respectively. That is, a variable x_{ij}^r (x_{ij}^v) is used to denote whether trip r (vehicle v) travels through arc (i, j). And the last one is the 2-index formulation using a variable x_{ij} , i.e., neither a vehicle nor a trip index is used. For the 3-index formulation with a trip index, since the number of trips performed by each vehicle is unknown, one has to set a sufficiently large cardinality for the trip set, resulting in a weak model with a large number of variables. Or, we can impose an upper bound on the maximal number of trips each vehicle can perform. For the 3-index formulation with a vehicle index, symmetries resulting from identical vehicles are introduced to the model, which make the formulation weak. Cattaruzza et al. (2016) indicate that the only compact formulation for the MTVRP is proposed by Karaoğlan (2015), where a 2-index formulation is applied. Rivera et al. (2013) also use a 2-index formulation for a multi-trip cumulative capacitated VRP, where the objective is to minimize the sum of arrival times at required nodes. For our problem, as there is no limit on the number of trips that each drone can perform, we do not consider the formulation with a trip index. Further, our preliminary tests also indicate that the 3-index formulation with a drone index provides worse results than the 2-index formulation. Therefore, in Section 3.2, we present a 2-index formulation for our MTDRP.

2.3. Our Contributions

The contributions of our study are fourfold. First, we explicitly represent drone's energy consumption as a nonlinear function of payload and travel time, instead of assuming that flight range (maximum distance or time) is a fixed number. To tackle the nonlinear energy function, instead of relying on a linear approximation (e.g., as in Dorling et al. (2017)), we propose adding two types of cuts in the solution process. Our results show that using a linear energy approximation can lead to routes that are energy infeasible under the nonlinear energy consumption model. Second, a 2-index formulation scheme is presented, which is solved by a branch-and-cut (B&C) algorithm. To the best of our knowledge, this paper is the first to formulate a MTDRP and use an exact algorithm for drone routing problems. Third, we generate several benchmark instance sets based on the realistic parameters and known instance sets in the literature, which will be available to the research community and allow for a better comparison of algorithms. Fourth, we provide extensive computational results of the formulation and the algorithm.

3. Formulation

This section presents the problem, constructs the mathematical model, and introduces valid inequalities to strengthen the model.

3.1. Problem Definition

The problem is defined on a directed graph G = (N, A), where $N = \{0, \ldots, n+1\}$ is the set of nodes. Node 0 represents the starting depot, and node n + 1 is a copy of node 0 and it represents the returning depot. $N' = \{1, \ldots, n\}$ is the set of customers. For notational convenience, we denote $N^+ = \{0, \ldots, n\}$ and $N^- = \{1, \ldots, n+1\}$. $A = \{(i, j) : i \in \{0\}, j \in N' \text{ and } i \in N', j \in$ $N^-, i \neq j\}$ is the set of arcs. Sets $\delta^-(i)$ and $\delta^+(i)$ represent node *i*'s predecessor and successor nodes, respectively.

Each customer is associated with a non-negative demand d_i , and a hard time window $[a_i, b_i]$. For the depots, $[a_0, b_0] = [a_{n+1}, b_{n+1}]$, where a_0 and b_0 are the earliest possible departure time and the latest possible arrival time, respectively. A fleet of K homogeneous multirotor drones are based at the depot. Q is the maximum payload of a drone and we assume that $d_i \leq Q, \forall i \in N'$. Each drone can perform several trips and during a trip it can visit several customers. Drone speed is assumed to be a constant number, and with each arc (i, j) is associated a travel time t_{ij} and a travel cost c_{ij} . Further, it is assumed that the triangle inequality is satisfied for t_{ij} . Without loss of generality, here we assume the service time at each customer is 0, because we can set t_{ij} to be the sum of travel time on arc (i, j) and the service time at node i. We consider multirotor drones in the study as these have been often used in drone delivery analyses and we use data from Dorling et al. (2017). Hybrid drones may have different performance characteristics and require a different energy model.

The problem consists in designing a set of drone routes, such that the objective function is optimized and the following constraints are satisfied: (1) Each route starts at depot 0 and ends at depot n + 1. (2) Every customer is visited exactly once. (3) The sum of duration of trips assigned to the same drone does not exceed b_{n+1} . (4) The drone weight capacity constraint, battery energy constraint, and customers' time windows must be respected.

3.2. Mathematical Model

Decision variables. There are two sets of binary variables: $x_{ij} = 1$ if arc (i, j) is traversed by a drone, 0 otherwise. $z_{ij} = 1$ if a trip finishing with customer *i* is followed by another trip visiting *j* as the first customer (performed by the same drone), 0 otherwise. There are four sets of continuous variables: q_{ij} is the product weight carried through arc (i, j) (kg). τ_i is the start of service time at node $i \in N^-$ (second). f_i is the accumulated energy consumption of a drone upon arrival at node i (kWh). e_{ij} is the energy consumption on arc (i, j) (kWh).

Constraints. We organize the constraints into five groups:

(i) Route feasibility:

$$\sum_{j\in\delta^+(i)} x_{ij} = 1 \qquad \forall i \in N',\tag{1}$$

$$\sum_{j \in \delta^{-}(i)} x_{ji} = 1 \qquad \forall i \in N',$$
(2)

$$\sum_{j\in\delta^+(0)} x_{0j} = \sum_{j\in\delta^-(n+1)} x_{j,n+1}.$$
(3)

Constraints (1) and (2) guarantee that each customer is visited exactly once. Constraints (3) indicate that the number of trips leaving the starting depot is equal to the number arriving at the ending depot.

(ii) Weight related constraints:

$$\sum_{i\in\delta^{-}(j)}q_{ij}-\sum_{i\in\delta^{+}(j)}q_{ji}=d_j\qquad\forall j\in N',$$
(4)

$$q_{ij} \le Qx_{ij} \qquad \forall (i,j) \in A,\tag{5}$$

$$q_{i,n+1} = 0 \qquad \forall i \in N'. \tag{6}$$

Equations (4) impose that each customer's demand must be satisfied, and also eliminate subtours. Constraints (5) guarantee that drone weight capacity is respected. Equations (6) indicate that drones cannot carry any product from a customer to the ending depot.

(iii) Drone energy constraints:

We only consider drones' energy consumption during level flight in this study. Dorling et al. (2017) suggest that the average power during hover is an upper bound on the average power during flight. Since there are not available field tests of small drones making multiple deliveries or of actual delivery drones in *production mode*, in this study, we use the theoretical power consumption during hovering to approximate the horizontal power consumption for a delivery drone making multiple-stop trips. Leishman (2006) describes the energy consumption, P(q), of a single rotor helicopter in hover as a convex function of payload q. Based on the assumption that each rotor shares the total weight of a drone equally, Dorling et al. (2017) derive the power consumption equation for a h-rotor drone as

$$P(q_{ij}) = (W + m + q_{ij})^{\frac{3}{2}} \sqrt{\frac{g^3}{2\rho\varsigma h}},$$
(7)

where W is the frame weight (kg), m is the battery weight (kg), q_{ij} is the payload (kg), g is the force due to gravity (N), ρ is the fluid density of air (kg/m^3) , ς is the area of spinning blade disc (m^2) , h is the number of rotors, and the unit of P is Watt. In the experiments of Liu et al. (2017), the power consumption in hover also takes a similar form, i.e., $P(q_{ij}) = c_p[(W+m+q_{ij})g]^{\frac{3}{2}}$, where

Figure 1: Energy calculation from linear and nonlinear functions (Figure 1 in Dorling et al. (2017))

 c_p is a parameter. We rewrite Equation (7) as

$$P(q_{ij}) = k(W + m + q_{ij})^{\frac{3}{2}},$$
(8)

where k depends on the details of the drone and the environmental parameters and it is a constant in our model. Based on field tests, Dorling et al. (2017) propose to approximate power consumption as

$$P(q_{ij}) = \alpha(m + q_{ij}) + \beta, \tag{9}$$

where $\alpha(kW/kg)$ and $\beta(kW)$ are two constant numbers obtained by a linear approximation.

As shown in Figure 1, when the sum of the battery weight and payload is smaller than A, the linear approximation function overestimates the energy consumption from the nonlinear model, and therefore drone routes calculated with the linear approximation will be "energy feasible" if the nonlinear model is used to calculate energy consumption. However, when the battery and payload weight is larger than A, then the linear approximation function underestimates the energy consumption from the nonlinear model. In this case, drone routes calculated with the linear approximation may be "energy infeasible" (i.e., exceed the battery's energy capacity) if the nonlinear model is used to calculate energy consumption. We use Equation (8) to compute power consumption in this study, and drones' energy consumption constraints are written as

$$f_0 = 0, \tag{10}$$

$$f_i + k'(W + m + q_{ij})^{\frac{3}{2}} t_{ij} \le M_{ij}(1 - x_{ij}) + f_j \quad \forall (i, j) \in A,$$
(11)

$$f_{n+1} \le \sigma. \tag{12}$$

Equations (10) indicate that at the beginning of each trip the accumulated energy consumption is 0, that is, every time a drone begins a new trip we swap it with a fully charged battery. This assumption is common in the literature (Murray and Chu 2015; Chowdhury et al. 2017; Ham 2018). Equations (11) establish the energy relationship between node *i* and its immediate successor *j*, where *k'* is a constant that includes *k* from earlier and the conversion from *Watt-second* to *kWh* and M_{ij} is an arbitrary large constant. We can observe that, when $x_{ij} = 0$, according to Equations (5), q_{ij} also equals 0, then we can set $M_{ij} = k'(W+m)^{\frac{3}{2}}t_{ij} + \sigma$ (σ is the battery energy available for a drone trip (*kWh*)). When $x_{ij} = 1$, the second term of the left-hand side of Equations (11) is the energy consumption on arc (*i*, *j*). Constraints (12) mean that battery's energy capacity constraint must be respected. Since constraints (11) are nonlinear, the model cannot be solved directly by a mixed-integer linear programming (MILP) solver. In Section 4.1, we introduce different types of cuts to tackle this group of constraints implicitly.

We also give the linear approximation version of constraints (11):

$$f_i + [\alpha(m + q_{ij}) + \beta] t_{ij} / 3600 \le M'_{ij} (1 - x_{ij}) + f_j \qquad \forall (i, j) \in A,$$
(13)

where $M'_{ij} = (\alpha m + \beta)t_{ij}/3600 + \sigma$. In numerical tests, we will compare the difference in solution construction when using these two versions of the energy expressions.

(iv) Time and trip related constraints:

$$\tau_i + t_{ij} - M_{ij}^{"}(1 - x_{ij}) \le \tau_j \qquad \forall i \in N', j \in N^-,$$

$$\tag{14}$$

$$a_i \le \tau_i \le b_i \qquad \forall i \in N^-,$$
 (15)

$$\tau_i + (t_{i,n+1} + t_{0j}) \le \tau_j + (1 - z_{ij}) M_{ij}^{'''} \qquad \forall i, j \in N', i \ne j,$$
(16)

$$\sum_{\substack{i \in N'\\i \neq j}} z_{ij} \le x_{0j} \qquad \forall j \in N',\tag{17}$$

$$\sum_{\substack{j \in N'\\j \neq i}} z_{ij} \le x_{i,n+1} \qquad \forall i \in N',$$
(18)

$$\sum_{j \in N'} x_{0j} - \sum_{i \in N'} \sum_{\substack{j \in N'\\ j \neq i}} z_{ij} \le K.$$

$$\tag{19}$$

Constraints (14) establish the time relationship between customer i and its immediate successor j. We set the large constants $M''_{ij} = \max\{b_i + t_{ij} - a_j, 0\}$ (Desaulniers et al. 2014). Constraints (15) denote that the time window constraint must be respected. Here we impose the time window constraint instead of the deadline constraint, because the latter is a special case of the former with $a_i = 0, \forall i \in N$. This model fits best when drones land at customer sites for delivery, as we assume that drones can wait at customer locations until the opening of the time window and the energy consumption during this period is negligible. Note that in the case where the energy consumption during that period must be taken into account (e.g., in case when drones are equipped with cameras and sensors on to actively detect dangerous situations such as package or drone theft, or for a hovering while waiting), we can also incorporate the energy consumption of performing these activities in our model and our solution scheme can still be directly used. The detailed description on the modifications is presented in Appendix A. Equations (16) establish the time relationship between consecutive trips performed by the same drone, where $M_{ij}^{'''} = t_{i,n+1} + t_{0j} + b_i$. These constraints take into account the time to return to the depot and replace the battery. Constraints (17)-(18) connect variables x and z (Karaoğlan 2015). Constraints (19) limit the number of drones that can be used in the system.

(v) Variable domains:

$$x_{ij} \in \{0, 1\}, \ q_{ij}, e_{ij} \ge 0 \qquad \forall (i, j) \in A,$$
(20)

$$f_i \ge 0 \qquad \forall i \in N,\tag{21}$$

$$\tau_i \ge 0 \qquad \forall i \in N^-, \tag{22}$$

$$z_{ij} \in \{0,1\} \qquad \forall i, j \in N'.$$

$$\tag{23}$$

Objective function. We consider the applications of logistics companies who use drones for last-mile delivery, in order to reduce an overall transportation cost. Therefore, we consider a general form of the objective function which also incorporates the energy consumption

$$\min \sum_{(i,j)\in A} (c_{ij}x_{ij} + \delta e_{ij}), \tag{24}$$

where δ is the battery-related cost (kWh) which includes the cost of electricity and the amortization of lithium-ion battery. We will show how variables e_{ij} , $\forall (i, j) \in A$ are incorporated in the constraints and linked to variables f_i and f_j in following sections. Note that the energy cost could be negligible in realistic applications, and we add it here for two reasons: First, to keep consistent with some existing works, which also include the energy cost in the objective function to incorporate the depreciation and operating cost of battery as a function of energy usage (Mathew et al. 2015; Dorling et al. 2017); Second, to demonstrate that our objective function is quite flexible. The model and approach can be used to solve a traditional VRP objective which minimizes the travel cost by dropping the second term, or a green supply chain related objective that minimizes the energy consumption/cost by dropping the first term. We analyze the impact of different objectives on computational efficiency and solution configurations in Section 5.3. For notational convenience, in the following sections we use R, E, and R + E to represent the model that minimizes travel cost ($\delta = 0$), energy cost ($c_{ij} = 0, \forall (i, j) \in A$), and both travel and energy costs (as in the objective function (24)), respectively. For the energy calculation, we use a subscript e if the nonlinear energy function is used, and a subscript a if the linear approximation method is used.

We note that constraints in group (i), (ii), (iv), and (v) are adopted from studies on VRP and MTVRP (Desaulniers et al. 2014; Karaoğlan 2015; Cattaruzza et al. 2016). However, the nonlinear energy constraints and the objective function are newly introduced. Moreover, the timewindow constraints, which are not considered in Karaoğlan (2015) and Dorling et al. (2017), are also considered in our study. Thus, our model generalizes the other models in the literature, such that it can capture important practical constraints. We further emphasize that our modeling and solution schemes (introduced in next section) simultaneously optimize multi-trip drone routing operations and energy consumption under time windows constraints. We also include a more complex nonlinear energy function.

3.3. Valid Inequalities

We use constraints (25) to indicate the least number of trips needed to visit all the customers (Semet et al. 2014; Santos et al. 2014).

$$\sum_{j \in N'} x_{0j} \ge \left\lceil \frac{\sum_{i \in N'} d_i}{Q} \right\rceil.$$
(25)

Constraints (26) are derived from Equations (8) using the constant d_j to replace the variable q_{ij} , which yields linear equations and a lower bound of $P(q_{ij})$ since $q_{ij} \ge d_j$ when $x_{ij} = 1$. Constraints (26) mean that if arc (i, j) is traversed by a drone, the energy consumption is at least equal to the value of the right-hand side.

$$e_{ij} \ge k'(W + m + d_j)^{\frac{3}{2}} t_{ij} x_{ij} \qquad \forall (i,j) \in A.$$
 (26)

4. Solution Method

In this section, we introduce the techniques to handle the nonlinear energy consumption, and develop a B&C algorithm for our model. We note that our solution method can also be applied to other applications with nonlinear energy functions.

4.1. Cuts for Nonlinear Energy Function

Logical cut (infeasibility cut). We first solve the model without constraints (10)–(12). When a feasible solution is generated, we check whether it satisfies the energy capacity constraint for each trip. For any violated trip $\{0, i_1, \ldots, i_l, n+1\}$, we add the logical cut

$$x_{i_1i_2} + x_{i_2i_3} + \ldots + x_{i_{l-1}i_l} \le l - 2, \tag{27}$$

where i_{l-1} is the (l-1)th customer in the trip, and there are l customers in total in the trip. Equation (27) means that the customer sequence is not allowed to be performed.

Subgradient cut. In Equation (8), $P(q_{ij})$ is a convex function in q_{ij} . Thus, the tangent line at point $(\bar{q}_{ij}, \bar{P}(\bar{q}_{ij}))$ (we use a bar '-' to represent known values) is

$$P(q_{ij}) = \bar{P}(\bar{q}_{ij}) + \bar{\beta}_{ij}(q_{ij} - \bar{q}_{ij}), \qquad (28)$$

where $\bar{\beta}_{ij} = \frac{3}{2}k(W + m + \bar{q}_{ij})^{\frac{1}{2}}$, and it is the derivative. Figure 2 is an illustration of the tangent line. Therefore, the subgradient cut derived for constraints (11) can be added using a conditional

form as follows:

$$e_{ij} \ge [\bar{P}(\bar{q}_{ij})x_{ij} + \bar{\beta}_{ij}(q_{ij} - \bar{q}_{ij})]/1000 \times (t_{ij}/3600) \quad \forall (i,j) \in A.$$
⁽²⁹⁾

When $x_{ij} = 0$, the right-hand side of Equation (29) is a negative number $(q_{ij} = 0$ because of constraints (5)) and the cut is inactive. When $x_{ij} = 1$, the cut is added and the right-hand side of (29) underestimates the energy from Equation (8).

Figure 2: The tangent line of the power function

Remarks: (i) Being different from the logical cuts, constraints (10) and (12) are necessary when applying the subgradient cuts, and constraints (11) become $f_i + e_{ij} \leq M_{ij}(1 - x_{ij}) + f_j, \forall (i, j) \in A$. (ii) For the models with energy costs in the objective, i.e., the E and R + E models, we must apply the subgradient cuts to ensure the involvement of energy cost. However, logical cuts are optional because the subgradient cuts can also guarantee that the energy capacity constraints are respected. (iii) For the models without energy costs, i.e., the R model, we can implement the cuts in three ways: only add logical cuts, only add subgradient cuts, or add both together. If there is only one customer in a trip, we do not add either logical or subgradient cuts for the R model, because we can guarantee that each customer is eligible to be serviced by a drone when generating the instance sets. Moreover, when only the logical cuts are used for model R, we do not need valid inequalities (26).

Our techniques can be applied for any energy function that is convex or piecewise convex in payload. If it is not a convex function, then our logical cut can be used. In other words, our method generalizes the ones presented in the literature.

4.2. Branch-and-Cut Algorithm

The B&C algorithm has been extensively used to solve MILP problems, and it is a combination of a cutting plane method with a B&B algorithm (Mitchell 2002). In our B&C scheme, we first add valid inequalities to the formulations at the root node of the search tree. We then solve the linear programming (LP) relaxation problem at each node of the tree. Each time a fractional solution is obtained, we detect and generate violated cuts in a cutting-plane fashion and the LP relaxation at the current B&B node is re-optimized. If all the cuts are respected and the solution still has fractional-valued integer variables, the branching process continues. If an integer solution is obtained and no cuts are generated, we consider updating the incumbent solution and pruning some nodes. This process continues until all nodes of the tree are evaluated.

4.2.1. Separation of Subtour Inequalities

Although constraints (4) can eliminate subtours, we introduce another group of subtour elimination constraints (SECs) which can help improve computational efficiency for the B&C scheme. The SECs are as follows (Laporte 1986):

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - q(S) \qquad \forall S \subseteq N', |S| \ge 2,$$
(30)

where $q(S) = \left\lceil \frac{\sum_{i \in S} d_i}{Q} \right\rceil$ is the minimum number of trips needed to visit customers in set S. The separation algorithm is performed by using the CVRPSEP package of Lysgaard et al. (2004).

4.2.2. Implementation of Cuts and SECs

For the logical and subgradient cuts, they are applied when an integer solution is obtained. For the SECs, we only generate them at the root node since they are redundant for our models due to the fact that subtours are eliminated by constraints (4) and it is time consuming to solve the separation problems at all nodes of the B&B tree.

5. Numerical Experiment

In this section, we present the instances and discuss our numerical tests for the MTDRP with the energy function presented in this paper. The B&C algorithms are coded in Python on Pycharm 2.7 using Gurobi 7.5.1 as the solver. All the parameters are set to their default values in the solver. The experiments are performed on a cluster of Intel Xeon X5650 CPUs with 2.67 GHz and 24 GB RAM under Linux 6.3. Each experiment is conducted on a single core of one node unless specified. The computing time limit is set to four hours.

5.1. Instance Sets

We introduce two sets of benchmark instances. The first set, named Set A, is created based on the instance generation frameworks presented in Solomon (1987) and Dorling et al. (2017). The second set, named Set B, is an extension of Solomon's instances, taking into account drones' specific characteristics. For Set A instances, we further consider two types of instances and each has 10–50 customers. For type 1 instances, named Set A_1 , the depots are located at the lower left corner of the region. For type 2 instances, named Set A_2 , the depots are in the middle of the region. We use Set A instances for preliminary tests and performance comparisons. We conduct experiments on Set B instances. The detailed instance generation procedures are presented in Appendix B. All the instances and solutions are also available at the following URL: https: //sites.google.com/view/chengchun/instances.

We assume that 4-cell 14.8V lithium polymer batteries are used for drones. According to the field tests in Dorling et al. (2017), we set $\alpha = 0.217 \ kW/kg$, $\beta = 0.185 \ kW$, $m = 1.5 \ kg$, $W = 1.5 \ kg$, $Q = 1.5 \ kg$, $g = 9.81 \ N/kg$, $\rho = 1.204 \ kg/m^3$, $\varsigma = 0.0064 \ m^2$, h = 6, $\delta = 360 \ kWh$. For Set A instances, we set the battery energy capacity $\sigma = 0.27 \ kWh$; For Set B instances, we set $\sigma = 0.027 \ kWh$.

5.2. Enhancement Strategy Evaluation

This section analyzes the effect of valid inequalities and SECs. We conduct all the tests on instances with 10–30 customers in Set A. First, we only apply subgradient cuts to the model to evaluate the valid inequalities and SECs. After knowing the performances, we further compare different implementations of cuts. Results are provided in Table 2. For each model, we present detailed results of the largest instances (i.e., those with 30 customers) in the first six rows, and the results of all instances in the last two rows. The column *None* gives the results without any enhancement strategy. The remaining columns indicate that one (or all) valid inequalities or SECs are added to the model. Opt is the number of instances solved to optimality. UP, LB, and RLB are the best upper bound, the best lower bound, and the lower bound at the root node, respectively. Gap is the percentage difference between the best upper and lower bounds. CPU is the time in seconds consumed to solve the instance.

				С	Only subgrad	lient		Only logical	Subgradient +logical
	Cust		None	(25)	(26)	(25)+(26)	(25)+(26) + SECs	(25)+SECs	(25)+(26) + SECs
R_e	30 All	Opt UB LB Gap CPU RLB Opt Gap	$7/10^{*}$ 11604.97 11539.12 0.56 6810.79 11013.32 46/50^{*} 0.14	7/10 11608.23 11544.82 0.53 6038.29 11041.65 45/50 0.16	5/10 11604.97 11520.78 0.72 10041.20 11013.31 43/50 0.22	7/10 11616.74 11541.28 0.63 7436.01 11033.22 45/50 0.19	7/10 11604.97 11553.25 0.44 6501.20 11037.09 46/50 0.13	7/10 11604.97 11558.07 0.39 6033.06 11055.78 46/50 0.11	8/10 11611.46 11575.70 0.31 6643.34 11039.42 47/50 0.10
E_e	30 All	Opt UB LB Gap CPU RLB Opt Gap	0/10 833.62 597.37 28.24 14400.00 123.92 31/50 8.83	0/10 836.92 611.69 26.82 14400.00 80.82 31/50 8.06	3/10 828.35 810.58 2.24 11515.46 705.74 41/50 0.54	3/10 828.63 812.01 2.07 12046.49 704.07 41/50 0.50	4/10 828.25 819.55 1.05 11437.83 708.00 43/50 0.22	Not Applicable	6/10 828.63 819.65 1.07 9440.20 708.00 46/50 0.22
$(R+E)_e$	30 All	Opt UB LB Gap CPU RLB Opt Gap	6/10 12451.89 12321.26 1.03 11631.34 11015.17 44/50 0.30	5/10 12471.68 12293.59 1.40 9808.45 11181.01 43/50 0.38	6/10 12437.36 12343.51 0.75 8577.97 11709.88 45/50 0.19	6/10 12437.36 12365.55 0.57 8623.99 11742.26 45/50 0.18	7/10 12437.36 12369.68 0.54 8512.23 11766.60 46/50 0.16	Not Applicable	7/10 12450.29 12374.19 0.60 8270.53 11766.70 46/50 0.18

Table 2: Average results with different valid inequalities and SECs for Set A instances

* indicates the number of instances (out of 10 and 50) that are solved to optimality.

Table 2 shows that different implementations of cuts yield different performances. In general, the simultaneous application of logical cuts, subgradient cuts, valid inequalities (25)–(26), and the SECs, gives the best performance for the three models. Specifically, a few more instances can be solved to optimality for the R_e and E_e models. For the $(R + E)_e$ model, the number of optimally solved instances is the same when only using the subgradient cut or using both cuts together; however, the average optimality gap is relatively close. We can also observe that, for instances with 30 customers, the average RLB is improved from 123.92 to 705.74 for model E_e when the valid inequalities based on the energy function (i.e., constraints (26)) are used. In addition, the E_e model consumes the most computation time on average, because its average RLB is not as tight as those of the other two models. In particular, RLB/LB= 0.86 for the E_e model whereas RLB/LB= 0.95 for the other two models. In the following sections, we use the 2-index formulation constructed in Section 3.2, together with constraints (25)-(26), SECs, and both logical and subgradient cuts, to perform our tests for each model.

5.3. Details of Solutions for Set A Instances With Size 10–30

Tables 3–4 give a summary details of results. *Cust* is the number of customers. *Log*, *Sub*, and *SECs* are the number of generated logical cuts, subgradient cuts, and SECs, respectively. In Table 4, *UAVs* is the number of drones used, and *Swap* represents the average number of battery swaps. When calculating *Swap*, we do not count the first trip performed by a drone. For example, if a drone has conducted 3 trips, then the value of *Swap* would be 2. T/d indicates the average number of trips performed by each drone. The last column in Table 4 is the proportion of energy cost to total cost. More detailed results for each instance are presented in Appendix C.

Table 3: Average results on cuts for Set A instances with size 10-30

		R_e						E_e						$(R+E)_e$					
	\mathbf{Cust}	Opt	Gap	CPU	Log	Sub	SECs	Opt	Gap	CPU	Log	Sub	SECs	Opt	Gap	CPU	Log	Sub	SECs
Set A ₁	10 15 20 25 30	$5/5 \\ 5/5 \\ 5/5 \\ 4/5 \\ 3/5$	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.4 \\ 0.6 \end{array}$	$\begin{array}{c} 0.5 \\ 176.6 \\ 162.2 \\ 4666.1 \\ 6860.3 \end{array}$	$\begin{array}{c} 0.2 \\ 3.4 \\ 1.6 \\ 3.0 \\ 3.8 \end{array}$	92.2 400.6 349.8 552.4 1172.8	21.4 27.6 35.4 34.2 42.4	5/5 5/5 5/5 5/5 3/5	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 1.0 \end{array}$	0.9 82.6 72.3 4508.6 8989.8	$\begin{array}{c} 0.4 \\ 2.6 \\ 1.6 \\ 4.8 \\ 3.4 \end{array}$	$138.2 \\ 595.4 \\ 558.2 \\ 1282.0 \\ 1884.6$	31.4 33.2 39.4 39.8 47.8	5/5 5/5 5/5 4/5 3/5	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.6 \\ 0.7 \end{array}$	$\begin{array}{c} 0.6 \\ 306.2 \\ 224.0 \\ 4945.6 \\ 8865.7 \end{array}$	$\begin{array}{c} 0.0 \\ 2.8 \\ 0.6 \\ 4.4 \\ 2.8 \end{array}$	$\begin{array}{c} 134.8 \\ 518.6 \\ 615.6 \\ 1512.0 \\ 1759.0 \end{array}$	25.2 32.6 35.6 38.2 47.0
Set A ₂	10 15 20 25 30	$5/5 \\ 5/5 $	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.4 \\ 5.0 \\ 27.0 \\ 202.3 \\ 6426.4 \end{array}$	$\begin{array}{c} 0.0 \\ 2.4 \\ 2.0 \\ 2.2 \\ 3.2 \end{array}$	40.8 152.2 259.0 469.4 927.2	$16.6 \\ 34.0 \\ 34.6 \\ 36.6 \\ 41.2$	$5/5 \\ 5/5 \\ 5/5 \\ 5/5 \\ 3/5 $	$0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 1.2$	0.5 4.1 37.3 301.0 9890.6	$0.4 \\ 1.4 \\ 1.6 \\ 4.0 \\ 5.0$	142.6 274.4 487.6 921.0 1815.8	$13.8 \\ 27.6 \\ 40.0 \\ 37.2 \\ 35.4$	$5/5 \\ 5/5 \\ 5/5 \\ 5/5 \\ 4/5$	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.5 \end{array}$	$\begin{array}{c} 0.3 \\ 5.7 \\ 33.1 \\ 313.1 \\ 7675.3 \end{array}$	$0.0 \\ 1.8 \\ 1.4 \\ 2.4 \\ 4.0$	71.4 297.8 500.8 853.0 1437.4	9.8 29.4 36.4 39.4 39.6

Table 4: Average results on drones for Set A instances with size 10–30

		R_e			E_e			$(R+E)_e$				
	Cust	UAVs	Swap	T/d	UAVs	Swap	T/d	UAVs	Swap	T/d	$\operatorname{Cost}_e(\%)$	
	10	2.0	3.2	2.6	2.0	3.2	2.6	2.0	3.2	2.6	6.6	
	15	2.2	4.0	2.9	2.2	4.2	3.0	2.2	4.0	2.9	6.6	
$ \begin{array}{c} 15 \\ 5et A_1 & 20 \\ 25 \\ 30 \\ \hline 10 \end{array} $	20	3.6	6.2	2.8	3.6	6.2	2.8	3.6	6.2	2.8	6.8	
	25	3.8	7.4	3.0	3.8	7.6	3.0	3.8	7.6	3.0	6.8	
	30	5.0	8.4	2.7	5.0	8.4	2.7	5.0	8.2	2.6	6.8	
	10	2.0	3.4	2.7	2.0	3.6	2.8	2.0	3.4	2.7	6.4	
	15	2.8	5.6	3.1	2.8	6.2	3.3	2.8	5.6	3.1	6.4	
Set A ₂	20	3.4	7.2	3.2	3.4	7.4	3.2	3.4	7.2	3.2	6.6	
000 112	25	4.0	8.6	3.2	4.0	9.2	3.3	4.0	8.6	3.2	6.7	
	30	4.4	9.6	3.2	4.4	10.0	3.3	4.4	9.6	3.2	6.6	
Av	verage	3.3	6.4	2.9	3.3	6.6	3.0	3.3	6.4	2.9	6.6	

Table 3 shows that the number of subgradient cuts is much larger than that of the logical cuts. This is because the subgradient cuts are produced for edges while the logical cuts are generated for trips. For the largest problems (30 customers), the R_e model consumes the least computing time and the E_e model consumes the most computing time. Further, instances in Set A₁ require more time than those in Set A₂, because the locations of the depot and customers are more geographically dispersed in Set A₁.

Table 4 indicates that more drones are used with an increasing number of customers and that, in most cases, each drone performs 2 or 3 trips. For the $(R + E)_e$ model, the energy cost only accounts for a small portion (around 6.6%) of the total cost. The average results seem similar for the three models; however, with different objectives, different schedules are indeed generated for some instances. An example is given in Table 5. It shows that two more trips are performed for the E_e model, leading to a greater travel distance and a lower energy consumption. Moreover, we find that for this instance the schedules generated by the R_e and $(R+E)_e$ models are quite similar, except that the travel direction of the second and fifth trips are opposite. Since we perform our tests on an undirected network, travel direction influences energy consumption because of different payloads on arcs. However, as the $(R + E)_e$ model includes the energy cost in the objective, it can always guarantee that drones travel in directions with minimal energy consumption. Thus, in realistic applications, for undirected networks, even though decision makers favor a VRP objective which minimizes the travel cost, they can still add energy cost in the objective and set a small value for energy price to save battery energy consumption and further reduce the recharging time.

10010 01 00	neutres generate	a by amerene	objectives for me		00_10_2
R_e			E_e	(R +	$E)_e$
Trips	Energy (kWh)	Trips	Energy (kWh)	Trips	Energy (kWh)
	0.1585 0.2389 0.2099 0.2530 0.1733 0.2418 0.1690 0.1341		$\begin{array}{c} 0.1585\\ 0.2389\\ 0.0937\\ 0.1645\\ 0.1637\\ 0.1354\\ 0.1690\\ 0.1341\\ 0.0462\\ 0.1794 \end{array}$	$\begin{matrix} [0, \ 3, \ 1, \ 16] \\ [0, \ 2, \ 4, \ 16] \\ [0, \ 5, \ 10, \ 15, \ 16] \\ [0, \ 6, \ 12, \ 16] \\ [0, \ 8, \ 7, \ 16] \\ [0, \ 11, \ 9, \ 16] \\ [0, \ 13, \ 16] \\ [0, \ 14, \ 16] \end{matrix}$	0.1585 0.2344 0.2099 0.2530 0.1637 0.1835 0.1690 0.1341
Total energy (kWh) Total travel distance	1.5785 7995.39		1.4834 8153.26		1.5061 7995.39

Table 5: Schedules generated by different objectives for instance Set_A2_Cust_15_2

5.4. Performance Comparison Between Models with Nonlinear and Linear Energy Functions

In this section, we compare the model performance with our nonlinear and linear energy models. Table 6 presents a summary of results, with some detailed results in Appendix C. For solutions generated by the linear approximation models, after obtaining the trips, we calculate the energy consumption using the nonlinear model (8) for each trip and report the average results in the last two rows of Table 6. *Infeasible* is the number of instances for which the linear approximation models yield trips that when energy is calculated with (8) exceed the energy capacity. *Energy gap* is the percentage difference in energy calculation, which is computed as *(energy from (8) – energy from (9))/energy from (9)*.

	mode	l R	model <i>l</i>	R + E
Energy function	Nonlinear	Linear	Nonlinear	Linear
Opt	47/50	49/50	46/50	50/50
Optimality gap	0.10	0.04	0.18	0.00
CPU	1852.69	911.59	2236.96	743.95
Travel distance	8276.33	8227.72	8278.71	8227.68
Infeasible	0/50	20/50	0/50	18/50
Energy gap (%)	0.00	9.45	0.00	9.32

Table 6: Statistics of solutions generated by models R and R + E with nonlinear and linear energy functions

From Table 6, we get two observations: (1) **Computational efficiency**. For both models, the computational efficiency with the linear approximation (Equation (9)) is better than that of the nonlinear method (Equation (8)). By using the approximation method, more instances can be solved in a shorter time frame. For the R and R+E models with the nonlinear energy function, the average computation times are 1852.69 and 2236.96 seconds, respectively. Thus, we can conclude that, even though our original models are nonlinear, the use of logical and subgradient cuts can help solve large problems to optimality. (2) *Feasibility and solution quality*. In multiple instances, the approximation models yield "energy infeasible" trips when energy is calculated based on the nonlinear model (8). For the R and R + E models, the approximation method produces infeasible trips for 20 and 18 instances respectively. In addition, the energy gap is around 9% on average between the two methods.

To further display the importance of how energy is calculated, we give an example in Table 7 to show the different schedules generated by the two methods. It demonstrates that the first trip given by the two approximation models consumes $0.2925 \ kWh$ energy, which violates the battery's

	Nonlinear energy fund	ction	Line	ar energy	function	
					Energy cons	umption
	Trips	Energy	Trips	Linear	Nonlinear	Energy $gap(\%)$
	[0, 1, 14, 2, 6, 26]	0.2685	[0,1,14,2,6,16,26]	0.2656	0.2925	10.13
	[0, 4, 7, 8, 26]	0.1348	[0, 7, 8, 26]	0.1147	0.1240	8.11
	[0, 5, 20, 26]	0.2056	[0, 5, 20, 26]	0.1857	0.2056	10.72
	[0, 13, 11, 26]	0.1501	[0, 13, 11, 26]	0.1378	0.1501	8.93
	[0, 15, 3, 26]	0.1471	[0, 15, 3, 26]	0.1346	0.1471	9.29
R	[0, 17, 10, 24, 12, 25, 26]	0.2528	[0, 12, 24, 10, 17, 4, 26]	0.1965	0.2175	10.69
	[0, 18, 9, 16, 26]	0.2138	[0, 25, 18, 9, 26]	0.1944	0.2146	10.39
	[0, 19, 21, 26]	0.1551	[0, 21, 19, 26]	0.1320	0.1447	9.62
	[0, 22, 26]	0.0134	[0, 22, 26]	0.0127	0.0134	5.51
	[0, 23, 26]	0.0684	[0, 23, 26]	0.0622	0.0684	9.97
	[0, 1, 14, 2, 6, 26]	0.2685	[0,1,14,2,6,16,26]	0.2656	0.2925	10.13
	[0, 4, 7, 8, 26]	0.1348	[0, 8, 7, 26]	0.1099	0.1177	7.10
	[0, 20, 5, 26]	0.2039	[0, 20, 5, 26]	0.1845	0.2039	10.51
	[0, 13, 11, 26]	0.1501	[0, 13, 11, 26]	0.1378	0.1501	8.93
	[0, 15, 3, 26]	0.1471	[0, 15, 3, 26]	0.1346	0.1471	9.29
R + E	[0, 17, 10, 24, 12, 25, 26]	0.2528	[0, 4, 17, 10, 24, 12, 26]	0.1903	0.2091	9.88
	[0, 18, 9, 16, 26]	0.2138	[0, 25, 18, 9, 26]	0.1944	0.2146	10.39
	[0, 21, 19, 26]	0.1447	[0, 21, 19, 26]	0.1320	0.1447	9.62
	[0, 22, 26]	0.0134	[0, 22, 26]	0.0127	0.0134	5.51
	[0, 23, 26]	0.0684	[0, 23, 26]	0.0622	0.0684	9.97

Table 7: Detailed solutions of models with nonlinear and linear energy functions for instance Set_A1_Cust_25_2

energy capacity (0.27 kWh). However, if the linear approximation method is used, it will consider these trips as feasible ones. Therefore, care is needed when modeling energy consumption to ensure energy feasibility of routes.

5.5. Impact of Time Windows

Here, we first consider new instances with tighter time windows at customers. We generate the width of customers' time windows according to a new normal distribution whose mean is $0.15(b_{n+1} - t_{j,n+1} - t_{0j})$, and keep other data unchanged. Next, we remove the time constraints (14)–(16) and solve a multi-trip drone routing problem. Summary results are reported in Table 8 and detailed results are presented in Appendix C.

Table 8: Average results for models with tighter time windows and without time windows

				mod	el R_e			model E _e						model $(R+E)_e$					
		Tight	er time	windows	With	out time	e windows	Tight	er time	windows	With	out time	windows	Tight	er time	windows	With	out time	windows
	\mathbf{Cust}	Opt	$_{\rm Gap}$	CPU	Opt	$_{\rm Gap}$	CPU	Opt	$_{\rm Gap}$	CPU	Opt	$_{\rm Gap}$	CPU	Opt	$_{\rm Gap}$	CPU	Opt	Gap	CPU
Set A ₁	10 15 20 25 30	5/5 5/5 5/5 5/5 3/5	$0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.6$	0.2 32.2 82.1 2377.8 6565.7	$5/5 \\ 5/5 \\ 5/5 \\ 4/5 \\ 1/5$	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.7 \\ 0.5 \end{array}$	$0.5 \\ 527.4 \\ 387.1 \\ 5948.0 \\ 12339.4$	5/5 5/5 5/5 3/5 3/5	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 1.6 \\ 1.1 \end{array}$	$\begin{array}{c} 0.3 \\ 47.8 \\ 106.8 \\ 6319.1 \\ 8552.8 \end{array}$	5/5 5/5 5/5 4/5 2/5	$0.0 \\ 0.0 \\ 0.0 \\ 0.4 \\ 1.3$	$1.0 \\ 44.6 \\ 200.7 \\ 5641.6 \\ 12211.0$	5/5 5/5 5/5 5/5 3/5	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.7 \end{array}$	$\begin{array}{c} 0.3 \\ 41.7 \\ 87.8 \\ 3179.9 \\ 6425.4 \end{array}$	5/5 5/5 5/5 4/5 1/5	0.0 0.0 0.0 0.8 0.8	$\begin{array}{c} 0.4 \\ 129.5 \\ 287.5 \\ 5061.6 \\ 12468.2 \end{array}$
Set A_2	10 15 20 25 30	5/5 5/5 5/5 5/5 5/5	$0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0$	$\begin{array}{c} 0.1 \\ 1.0 \\ 10.1 \\ 140.2 \\ 646.5 \end{array}$	5/5 5/5 5/5 5/5 3/5	$0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.9$	1.5 8.8 97.4 1183.1 8849.3	5/5 5/5 5/5 5/5 5/5	$0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0$	0.2 1.3 19.3 240.7 2458.6	5/5 5/5 5/5 5/5 3/5	$0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.5$	$0.9 \\ 4.4 \\ 47.2 \\ 119.2 \\ 7969.1$	5/5 5/5 5/5 5/5 5/5	0.0 0.0 0.0 0.0 0.0	$0.2 \\ 1.2 \\ 13.4 \\ 121.8 \\ 507.5$	$5/5 \\ 5/5 \\ 5/5 \\ 5/5 \\ 4/5$	0.0 0.0 0.0 0.0 0.5	1.0 9.6 73.4 1006.6 6988.8

From Table 3 and Table 8, when the time windows are tighter, one more instance can be solved

to optimality for the R_e model, and two more instances for the $(R + E)_e$ model. Moreover, for problems of the same size, the average computation time is generally reduced for the three models. However, when the time constraints are absent, instances become much more difficult to handle. Fewer instances can be solved to optimality within the time limit and the average computation time also increases. These observations are consistent with the results provided by Azi (2011), where a B&P algorithm is used for the MTVRPTW.

5.6. Algorithm Performance on Extended Solomon's Instances

In this section we test our algorithm on Set B instances based on the well-known Solomon's instances. All the experiments are performed on 4 core processors with a 12-hour (43200 seconds) time limit. Summarized results are shown in Table 9 and detailed results on each instance are provided in Appendix C. In Table 9, column *Inst* is the instance label.

			25 cust	omers					40 cus	tomers		
	mode	el R_e	mode	el E_e	model ($(R+E)_e$	mod	lel R_e	mod	el E_e	model	$(R+E)_e$
Inst	Gap	CPU	Gap	CPU	Gap CPU		Gap	CPU	Gap	CPU	Gap	CPU
c201	0.00	1.4	0.00	11.5	0.00	2.5	0.00	48.3	0.00	229.9	0.00	43.8
c202	0.00	13.4	0.00	48.5	0.00	19.7	0.00	372.9	0.00	14073.8	0.00	955.4
c203	0.00	56.4	0.00	86.5	0.00	74.8	0.00	3881.6	0.95	43200.0	0.00	10685.1
c204	0.00	48.2	0.00	240.8	0.00	78.6	0.20	43200.0	1.55	43200.0	0.00	16940.6
c205	0.00	13.0	0.00	29.5	0.00	9.0	0.00	871.2	0.00	23630.3	0.00	881.7
c206	0.00	21.1	0.00	40.8	0.00	21.7	0.00	2011.9	1.83	43200.0	0.00	8368.8
c207	0.00	32.0	0.00	55.3	0.00	43.4	0.00	5757.3	0.00	5567.9	0.00	8358.9
c208	0.00	23.2	0.00	34.7	0.00	34.3	0.00	1936.7	0.63	43200.0	0.00	3547.3
r201	0.00	4.0	0.00	8.7	0.00	5.6	0.00	437.7	0.00	2730.5	0.00	348.1
r202	0.00	32.9	0.00	26.9	0.00	29.2	0.00	11666.6	1.22	43200.0	0.00	8183.1
r203	0.00	132.1	0.00	40.2	0.00	58.0	0.00	33302.4	0.00	17013.0	0.00	40920.9
r204	0.00	134.2	0.00	125.4	0.00	120.3	0.58	43200.0	0.00	37471.4	1.22	43200.0
r205	0.00	38.5	0.00	21.8	0.00	27.1	0.00	5921.7	0.00	7086.4	0.00	8098.5
r206	0.00	54.8	0.00	29.8	0.00	84.6	0.96	43200.0	0.00	5167.2	0.42	43200.0
r207	0.00	83.5	0.00	37.4	0.00	87.8	1.18	43200.0	0.00	22529.7	0.00	39388.0
r208	0.00	75.7	0.00	47.9	0.00	106.7	0.96	43200.0	0.36	43200.0	0.67	43200.0
r209	0.00	42.8	0.00	41.5	0.00	50.0	0.00	42044.0	5.91	43200.0	1.40	43200.0
r210	0.00	46.0	0.00	24.8	0.00	60.2	0.00	14821.3	0.00	2832.5	0.68	43200.0
r211	0.00	136.1	0.00	53.4	0.00	102.5	1.44	43200.0	0.62	43200.0	1.16	43200.0
rc201	0.00	28.0	0.00	31.7	0.00	60.0	0.00	959.5	7.42	43200.0	0.00	2540.3
rc202	0.00	366.9	0.00	315.0	0.00	125.1	0.79	43200.0	2.86	43200.0	0.62	43200.0
rc203	0.00	15.7	0.00	29.9	0.00	56.8	0.00	1542.6	0.00	509.2	0.00	5064.3
rc204	0.00	5.4	0.00	64.3	0.00	952.8	0.00	110.3	0.00	2663.9	0.00	9900.8
rc205	0.00	63.4	0.00	269.0	0.00	100.6	0.00	27642.5	13.59	43200.0	1.58	43200.0
rc206	0.00	65.4	0.00	59.5	0.00	755.0	0.00	4719.6	10.42	43200.0	0.00	39338.2
rc207	0.00	1253.2	0.00	58.3	0.00	7306.9	0.39	43200.0	1.10	43200.0	0.91	43200.0
rc208	0.00	207.4	0.00	23.0	0.00	157.5	0.00	1684.8	0.00	237.6	0.00	7961.0
Average	$0.00^{(0)}$	110.9	$0.00^{(0)}$	68.7	$0.00^{(0)}$	390.0	$0.24^{(8)}$	18716.0	$1.80^{(13)}$	26049.8	$0.32^{(9)}$	22234.3

Table 9: Algorithm performance on Solomon's instances of type 2

(-) indicates the number of instances (out of 27) that are not solved to optimality.

We can observe that all instances with 25 customers are solved to optimality within the time limit. When the number of customers increases to 40, 19 out of 27 instances are optimally solved for model R_e , and this number decreases to 14 and 18 for model E_e and model $(R + E)_e$, respectively. The CPU time also varies widely, ranging from a few minutes to many hours. In terms of computational performance as opposed to the MTVRPTW which is relatively similar to the MTDRP considered in this paper, our algorithms could generally solve larger instance sizes compared to those considered in exact algorithms for the MTVRPTW despite the fact that our original models are nonlinear and more complex.

5.7. Results for Large Instances of Set A

Here, we report the results of Set A instances with 35–50 customers in Table 10. More detailed results are given in Appendix C. All the experiments are performed on 4 core processors with a 12-hour time limit. The instances with 10–30 customers that were not optimally solved in previous experiments are also solved again with the longer time limit. Our results show that all the previous instances, except $Set_A1_Cust_30_5$ for model E_e , are solved to optimality under the new experiment setting. The optimality gap of this instance for model E_e is 1.77%. For some instances, when we directly solve the E_e model or the $(R + E)_e$ model, we find that the optimality gap is over 5% within the time limit, mainly resulting from the poor lower bound. Considering the R_e model is relatively easier than the other two models, for these specific instances, we first solve the R_e model to get a feasible solution and then use this solution as a start for the other two models. The results of these instances are marked by a square in Table 10.

Table 10 shows that the average gap ranges from 1.81% to 2.28% for instances in Set A₁ and from 1.29% to 1.50% for instances in Set A₂, which further confirms our previous observation that generally instances in Set A₂ are easier than those in Set A₁. For the R_e model, 13 out of 35 instances are solved to optimality. For the E_e and $(R+E)_e$ models, the number of optimally solved instances are 12 and 10 respectively. We also note that it is effective to use the first solution of the R_e model as a start for the other two models. In particular, for the E_e model, 5 instances can be solved to optimality by using this method. We further use this idea to model E_e for Solomon's r209, rc201, rc205, and rc206 instances with 40 customers (i.e., instances whose optimality gap is over 5% in Table 9). The results show that all these instances can be solved to optimality now.

			mo	del R_e	mo	del E_e	model	$(R+E)_e$
	Cust	Inst	Gap	CPU	Gap	CPU	Gap	CPU
		1	4.11	43200.0	4.55^{\Box}	43200.0	3.24^{\Box}	43200.0
		2	1.80	43200.0	3.58^{\Box}	43200.0	2.78	43200.0
	35	3	0.00	20642.0	0.00^{\Box}	21866.9	0.98	43200.0
	55	4	0.00	30214.8	0.00	36895.7	0.21	43200.0
		5	0.00	29126.0	0.00	15121.7	0.00	20446.6
		1	3.38	43200.0	2.92	43200.0	3.95	43200.0
		2	0.00	13947.5	0.90	43200.0	0.59	43200.0
Set A_1	40	3	3.74	43200.0	4.74	43200.0	3.78^{\Box}	43200.0
		4	0.44	43200.0	0.00^{\Box}	23208.1	0.39	43200.0
		5	0.73	43200.0	1.30^{\Box}	43200.0	2.32	43200.0
		1	4.24	43200.0	3.65^{\Box}_{-}	43200.0	3.96_{-}	43200.0
		2	2.15	43200.0	2.66^{\square}	43200.0	2.06^{\Box}	43200.0
	45	3	1.51	43200.0	3.76	43200.0	2.46^{\Box}	43200.0
		4	3.05	43200.0	4.42^{\Box}	43200.0	3.15^{\Box}	43200.0
		5	1.95	43200.0	1.79^{\Box}	43200.0	2.29	43200.0
	\mathbf{Av}	erage	1.81	37942.0	2.28	38152.8	2.14	41683.1
		1	2.53	43200.0	0.00^{\square}	31873.4	2.65	43200.0
		2	0.00	1755.4	0.00	18306.0	0.00	3397.5
	35	3	0.00	8732.7	2.83	43200.0	0.00	11645.0
		4	0.00	9765.1	0.00	38648.4	0.00	25076.3
		5	0.00	9491.5	0.00	42292.8	0.00	18041.8
		1	0.00	32162.3	0.00	6219.5	0.00	21628.1
		2	1.12	43200.0	1.44	43200.0	0.00	41897.4
	40	3	0.00	3298.6	0.00	30554.3	0.00	5495.7
	-	4	2.13	43200.0	0.00^{\square}	7308.4	2.16	43200.0
Set As		5	5.05	43200.0	6.39	43200.0	4.81	43200.0
Det M2		1	0.00	6142.2	0.00	1802.5	0.00	8093.6
		2	0.00	41018.0	1.30	43200.0	1.32	43200.0
	45	3	1.20	43200.0	2.15	43200.0	0.00	7452.0
		4	2.02	43200.0	1.85⊔	43200.0	2.68	43200.0
		5	0.00	37956.5	2.11	43200.0	1.00	43200.0
		1	1.80	43200.0	0.74^{\Box}	43200.0	2.36	43200.0
		2	3.81	43200.0	2.24	43200.0	3.80	43200.0
	50	3	2.92	43200.0	4.20^{\square}	43200.0	2.72	43200.0
		4	1.32	43200.0	3.29	43200.0	0.72⊔	43200.0
		5	1.80	43200.0	1.55⊔	43200.0	2.01^{\square}	43200.0
	\mathbf{Av}	erage	1.29	31276.1	1.50	34770.27	1.31	30896.4

Table 10: Results using multicore processors for Set A instances with 35-50 customers

 $\ensuremath{\overline{\Box}}$ We use the first feasible solution of the R model as an initial solution for this model.

6. Conclusions

This paper solves a MTDRP with time windows. A 2-index formulation is introduced and a B&C algorithm is developed. We propose two types of cuts to tackle the nonlinear energy function. We demonstrate the differences between using a complex nonlinear energy consumption function and a linear approximation, which can result in higher energy use and energy infeasible drone routes. We generate benchmark instances for the drone routing problem and conduct extensive numerical experiments to evaluate the effects of valid inequalities and user cuts. The effectiveness of our modeling scheme and the B&C algorithm is confirmed by solving generated instances and Solomon's type 2 instances.

The limitations of the energy function used in our work include: (1) We did not consider the energy consumption of other flight status like taking off and landing. (2) Some other factors such as drone speed and wind speed were neglected in our power function. (3) The parameters associated with the drones considered in our paper are small drones with limited payloads and a low travel speed; however, the recently developed drone models by Amazon and UPS can carry payloads of up to five pounds and fly at speeds up to 50 *mph*. Thus, we consider future research which can extend this work in the following aspects: (1) More complex power models with additional influence factors can be used for drone energy calculation. In this case, the energy consumption of other flight status should also be explicitly incorporated into the mathematical model. (2) Numerical tests can be conducted by using the parameters collected from production level delivery drones to provide operational insights for decision-makers.

Acknowledgements

The first author wishes to acknowledge the supporters of this study: the Institute for Data Valorization (IVADO) and the Interuniversity Research Center on Enterprise Networks, Logistics and Transportation (CIRRELT). We thank Calcul Québec for providing computing facilities for the experiments. We also thank the associate editor and two anonymous referees for their helpful comments.

References

- Agatz, N., Bouman, P., Schmidt, M., 2018. Optimization approaches for the traveling salesman problem with drone. Transportation Science, 52 (4), 965–981.
- Azi, N., 2011. Méthodes exactes et heuristiques pour le problème de tournées de véhicules avec fenêtres de temps et réutilisation de véhicules. Ph.D. thesis, Université de Montréal.
- Azi, N., Gendreau, M., Potvin, J.-Y., 2014. An adaptive large neighborhood search for a vehicle routing problem with multiple routes. Computers & Operations Research 41, 167–173.
- Bouman, P., Agatz, N., Schmidt, M., 2018. Dynamic programming approaches for the traveling salesman problem with drone. Networks 72 (4), 528–542.
- Campbell, J. F., Sweeney, D., II, Z. J., 2017. Strategic design for delivery with trucks and drones. Technical Report.
- Carlsson, J. G., Song, S., 2017. Coordinated logistics with a truck and a drone. Management Science, 64 (9), 4052–4069.
- Cattaruzza, D., Absi, N., Feillet, D., 2016. Vehicle routing problems with multiple trips. 4OR 14 (3), 223–259.
- Choi, Y., Schonfeld, P. M., 2017. Optimization of multi-package drone deliveries considering battery capacity. In: 96th Annual Meeting of the Transportation Research Board, Washington, DC (Paper No. 17–05769).
- Chowdhury, S., Emelogu, A., Marufuzzaman, M., Nurre, S. G., Bian, L., 2017. Drones for disaster response and relief operations: A continuous approximation model. International Journal of Production Economics 188, 167–184.
- D'Andrea, R., 2014. Guest editorial can drones deliver? IEEE Transactions on Automation Science and Engineering 11 (3), 647–648.
- Desaulniers, G., Madsen, O. B., Ropke, S., 2014. Chapter 5: The vehicle routing problem with time windows. In: Vehicle Routing: Problems, Methods, and Applications, 2nd edition. SIAM, Philadelphia, pp. 119–159.
- Doherty, J., 2019. Alphabet's Wing begins first commercial drone delivery service in U.S., beating Amazon, Uber. Accessed December 6, 2019,https://www.newsweek.com/ wing-drone-first-commercial-delivery-1466471.
- Dorling, K., Heinrichs, J., Messier, G. G., Magierowski, S., 2017. Vehicle routing problems for drone delivery. IEEE Transactions on Systems, Man, and Cybernetics: Systems 47 (1), 70–85.
- Figliozzi, M. A., 2017. Lifecycle modeling and assessment of unmanned aerial vehicles (Drones) CO₂e emissions. Transportation Research Part D: Transport and Environment 57, 251–261.

- Fleischmann, B., 1990. The vehicle routing problem with multiple use of the vehicles. Working Paper, Fachereich Wirtschaftswissenschafte, Universität Hamburg.
- Ham, A. M., 2018. Integrated scheduling of *m*-truck, *m*-drone, and *m*-depot constrained by time-window, droppickup, and *m*-visit using constraint programming. Transportation Research Part C: Emerging Technologies 91, 1–14.
- Hernandez, F., Feillet, D., Giroudeau, R., Naud, O., 2014. A new exact algorithm to solve the multi-trip vehicle routing problem with time windows and limited duration. 4OR 12 (3), 235–259.
- Hernandez, F., Feillet, D., Giroudeau, R., Naud, O., 2016. Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows. European Journal of Operational Research 249 (2), 551– 559.
- Heutger, M., Kückelhaus, M., 2014. Unmanned aerial vehicle in logistics: a DHL perspective on implications and use cases for the logistics industry. Technical Report, DHL Trend Research, http://www.dhl.com/content/ dam/downloads/g0/about_us/logistics_insights/dhl_trend_report_uav.pdf.
- Jeong, H. Y., Song, B. D., Lee, S., 2019. Truck-drone hybrid delivery routing: Payload-energy dependency and No-Fly zones. International Journal of Production Economics 214, 220–233.
- Karaoğlan, I., 2015. A branch-and-cut algorithm for the vehicle routing problem with multiple use of vehicles. International Journal of Lean Thinking 6 (1), 21–46.
- Kirschstein, T., 2020. Comparison of energy demands of drone-based and ground-based parcel delivery services. Transportation Research Part D: Transport and Environment 78, 102209.
- Laporte, G., 1986. Generalized subtour elimination constraints and connectivity constraints. Journal of the Operational Research Society 37 (5), 509–514.
- Leishman, G. J., 2006. Principles of helicopter aerodynamics, 2nd edition. Cambridge university press, New York.
- Liu, Z., Sengupta, R., Kurzhanskiy, A., 2017. A power consumption model for multi-rotor small unmanned aircraft systems. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 310–315.
- Luo, Z., Liu, Z., Shi, J., 2017. A two-echelon cooperated routing problem for a ground vehicle and its carried unmanned aerial vehicle. Sensors 17 (5), 1144.
- Lysgaard, J., Letchford, A. N., Eglese, R. W., 2004. A new branch-and-cut algorithm for the capacitated vehicle routing problem. Mathematical Programming 100 (2), 423–445.

- Macedo, R., Alves, C., de Carvalho, J. V., Clautiaux, F., Hanafi, S., 2011. Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model. European Journal of Operational Research 214 (3), 536–545.
- Marinelli, M., Caggiani, L., Ottomanelli, M., Dell'Orco, M., 2017. En-route truck-drone parcel delivery for optimal vehicle routing strategies. IET Intelligent Transport Systems 12 (4), 253–261.
- Mathew, N., Smith, S. L., Waslander, S. L., 2015. Planning paths for package delivery in heterogeneous multirobot teams. IEEE Transactions on Automation Science and Engineering 12 (4), 1298–1308.
- Mingozzi, A., Roberti, R., Toth, P., 2013. An exact algorithm for the multitrip vehicle routing problem. INFORMS Journal on Computing 25 (2), 193–207.
- Mitchell, J. E., 2002. Branch-and-cut algorithms for combinatorial optimization problems. Handbook of applied optimization, 65–77.
- Morgan, P., 2005. Carbon fibers and their composites. CRC press, Florida.
- Moshref-Javadi, M., Lee, S., 2017. Using drones to minimize latency in distribution systems. In: IIE Annual Conference. Proceedings. Institute of Industrial and Systems Engineers (IISE), pp. 235–240.
- Murray, C. C., Chu, A. G., 2015. The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery. Transportation Research Part C: Emerging Technologies 54, 86–109.
- Otto, A., Agatz, N., Campbell, J., Golden, B., Pesch, E., 2018. Optimization approaches for civil applications of unmanned aerial vehicles (uavs) or aerial drones: A survey. Networks 0 (0), 1–48.
- Poikonen, S., Golden, B., Wasil, E. A., 2019. A branch-and-bound approach to the traveling salesman problem with a drone. INFORMS Journal on Computing 31 (2), 335–346.
- Poikonen, S., Wang, X., Golden, B., 2017. The vehicle routing problem with drones: Extended models and connections. Networks 70 (1), 34–43.
- Ponza, A., 2016. Optimization of drone-assisted parcel delivery. Master's thesis, University of Padova, Italy.
- Pugliese, L. D. P., Guerriero, F., 2017. Last-mile deliveries by using drones and classical vehicles. In: International Conference on Optimization and Decision Science. Springer, pp. 557–565.
- Raj, R., Murray, C. C., 2020. Fly slower, deliver faster: The multiple flying sidekicks traveling salesman problem with variable drone speeds. https://ssrn.com/abstract=3549622.

- Reddy, T. B., 2010. Chapter 14: Lithium primary batteries. In: Linden's Handbook of Batteries, 4th edition. McGraw-Hill Professional, New York, pp. 14.1–14.90.
- Rivera, J. C., Afsar, H. M., Prins, C., 2013. Multistart evolutionary local search for a disaster relief problem. In: International Conference on Artificial Evolution (Evolution Artificielle). Springer, pp. 129–141.
- Rose, C., 2013. Amazon's Jeff Bezos Looks to the Future. Accessed December 6, 2019, https://www.cbsnews.com/ news/amazons-jeff-bezos-looks-to-the-future/.
- San, K. T., Lee, E. Y., Chang, Y. S., 2016. The delivery assignment solution for swarms of uavs dealing with multi-dimensional chromosome representation of genetic algorithm. In: Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE Annual. IEEE, pp. 1–7.
- Santos, F. A., Mateus, G. R., da Cunha, A. S., 2014. A branch-and-cut-and-price algorithm for the two-echelon capacitated vehicle routing problem. Transportation Science 49 (2), 355–368.
- Semet, F., Toth, P., Vigo, D., 2014. Chapter 2: Classical exact algorithms for the capacitated vehicle routing problem. In: Vehicle Routing: Problems, Methods, and Applications, Second Edition. SIAM, Philadelphia, pp. 37–57.
- Solomon, M. M., 1987. Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research 35 (2), 254–265.
- Stolaroff, J. K., Samaras, C., ONeill, E. R., Lubers, A., Mitchell, A. S., Ceperley, D., 2018. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery. Nature Communications 9 (1), 409.
- Troudi, A., Addouche, S.-A., Dellagi, S., Mhamedi, A., 2018. Sizing of the drone delivery fleet considering energy autonomy. Sustainability 10 (9), 3344.
- Ulmer, M. W., Thomas, B. W., 2018. Same-day delivery with a heterogeneous fleet of drones and vehicles. Networks 72 (4), 475–505.
- Wang, X., Poikonen, S., Golden, B., 2017. The vehicle routing problem with drones: Several worst-case results. Optimization Letters 11 (4), 679–697.
- Wang, Z., Liang, W., Hu, X., 2014. A metaheuristic based on a pool of routes for the vehicle routing problem with multiple trips and time windows. Journal of the Operational Research Society 65 (1), 37–48.
- Wang, Z., Sheu, J.-B., 2019. Vehicle routing problem with drones. Transportation Research Part B: Methodological 122, 350–364.

Zhang, J., Campbell, J. F., Sweeney, D., II, Hupman, A. C., 2020. Energy consumption models for delivery drones: A comparison and assessment.

Appendix A. Drone Energy Consumption for Waiting Time at Customer Locations

We can incorporate a non-zero energy consumption for waiting time at customer locations in our model. Specifically, we introduce new variables $w_i, \forall i \in N'$ to represent the waiting time for the opening of the time window at customer $i \in N'$. Variables $\tau_i, \forall i \in N^-$ now denote drones' arrival time at node $i \in N^-$. Correspondingly, constraints (14)–(16) are modified as follows to include w_i in the model

$$\tau_i + w_i + t_{ij} - M''_{ij}(1 - x_{ij}) \le \tau_j \qquad \forall i \in N', j \in N^-,$$
(A.1)

$$a_i \le \tau_i + w_i \le b_i \qquad \forall i \in N',\tag{A.2}$$

$$a_{n+1} \le \tau_{n+1} \le b_{n+1},$$
 (A.3)

$$\tau_i + w_i + (t_{i,n+1} + t_{0j}) \le \tau_j + (1 - z_{ij}) M_{ij}^{'''} \qquad \forall i, j \in N', i \ne j,$$
(A.4)

$$w_i \ge 0 \qquad \forall i \in N'.$$
 (A.5)

Now we set $M''_{ij} = b_i + t_{ij}$, and M''_{ij} take the same values as before. We assume the unit energy consumption for waiting (e.g., performing sensing activities, hovering, etc.) as γ (kWh/s). Then, constraints (11) are replaced by

$$f_0 + k'(W + m + q_{0j})^{\frac{3}{2}} t_{0j} \le M_{0j}(1 - x_{0j}) + f_j \quad \forall j \in N',$$
(A.6)

$$f_i + \gamma w_i + k' (W + m + q_{ij})^{\frac{3}{2}} t_{ij} \le M_{ij} (1 - x_{ij}) + f_j \quad \forall i \in N', j \in N^-,$$
(A.7)

where constraints (A.6) establish the energy relationship between the starting depot 0 and customer i, and constraints (A.7) are the energy relationship between customer i and node j (which can be a customer node or the ending depot n + 1). M_{ij} take the same values as before. The objective function becomes

$$\min \sum_{(i,j)\in A} (c_{ij}x_{ij} + \delta e_{ij}) + \sum_{i\in I} \delta\gamma w_i.$$
(A.8)

Then, our solution schemes can be directly applied for this extension.

Appendix B. Instance Generation Procedures

This section presents the detailed procedures for instance generation.

Appendix B.1. New Benchmark Instances (Set A)

In this set, we consider two types of instances and each has 10–50 customers. For type 1 instances, named Set A_1 , the depots are located at the lower left corner of the region. For type 2 instances, named Set A_2 , the depots are in the middle of the region. For a fixed number of customers in each type, we generate 5 instances. Our instances are labeled as Set_A_x-Cust_Y_Z, which represents that this is the Zth instance of Y customers in Set A_x .

Based on the size of drones, we consider the delivery of relatively lightweight items (including those like medicines). The demand of the first 40% of customers is drawn uniformly from [0.1, 0.7]and the demand of the remaining customers is drawn uniformly from [0.1, 1.5]. We set K = $\left\lceil \frac{\sum_{i \in N'} d_i}{3Q} \right\rceil$, that is, we expect that each drone can perform 3 or more trips on average. For Set A₁, the coordinate of the depot is (0, 0). The x-coordinate and y-coordinate of each customer is drawn uniformly from [0, 480]. Since we assume travel distance and travel time are the same, if a customer is located at (0, 480), then the travel time from the depot to this customer would be 480 seconds. Meanwhile, we let $c_{ij} = t_{ij} \ \forall (i,j) \in A$. For the depots, we set $a_0 = a_{n+1} = 0$ and generate the right-hand side of the time window as follows: We first compute the travel time between the depot and each customer, i.e., t_{0j} , and rank them in a non-increasing order; we then sum up the first *h*th numbers in order, where $h = \lceil \frac{|N'|}{K} \rceil$ and the sum is denoted as *s*. Finally, we set $b_0 = b_{n+1} = \lfloor 2s \rfloor$. This generation scheme is based on the idea that, in an extreme situation, each drone trip only involves one customer and each drone performs at most h trips. And all the deliveries can be finished within [2s] time limit. As travel time satisfies triangle inequality, the earliest time that a customer j can be serviced is t_{0j} , and the latest time that a drone must leave j is $b_{n+1} - t_{j,n+1}$. To create customers' time windows, we refer to the method in Solomon (1987). We first randomly generate the center of the time window o_j from $[t_{0j}, b_{n+1} - t_{j,n+1}]$ using uniform distribution, then we generate the time window's width w_j as a normally distributed random number whose mean is $0.25(b_{n+1}-t_{j,n+1}-t_{0j})$ and standard deviation is $0.05(b_{n+1}-t_{j,n+1}-t_{0j})$. We set $a_j = \max(\lceil t_{0j} \rceil, \lfloor o_j - 0.5w_j \rfloor), b_j = \min\{\lfloor b_{n+1} - t_{j,n+1} \rfloor, \lfloor o_j + 0.5w_j \rfloor\}$. For Set A₂, the coordinate of the depot is (480, 480). The x-coordinate and y-coordinate of each customer is drawn uniformly from [0, 960]. The method of generating the time windows is the same as that of Set A₁.

Appendix B.2. Instances Extended From Solomon's Instances (Set B)

We generate this set of instances based on the principle of minimal modifications to the original data. To fit Solomon's instances, we need to add a service time $s_i, \forall i \in N'$ to constraints (14) and (16) when conducting our numerical tests. We also make some modifications to customers' demands to fit the drone's payload and to allow multi-trip operations. In particular, for type C2 and RC2 instances with the first 25 and 40 customers, demands are multiplied by 0.03, because the minimal and the maximal demands are 10 and 40, respectively. For type R2 instances, demands are multiplied by 0.05 for those with the first 25 customers, because the minimal and the maximal demand are 2 and 29, respectively; demands are multiplied by 0.045 for those with the first 40 customers, because the maximal demand now becomes 31. We determine the number of drones as described in the former section.

Appendix C. Detailed Results

This section provides the detailed results of our numerical tests in Section 5, which are also available at https://sites.google.com/view/chengchun/instances.

		Trip	ය ය ය ල ය	r 4 0 r r	$\begin{smallmatrix}&11\\10\\9\\9\end{smallmatrix}$	10 11 12 13	13 14 13 13 13	ල ය ය ල ය	ထဆင္ဆင္	13 10 10 9	12 13 13 13	16 14 13 13	
		UAVs	00000		44400	4 6 4 4 4	ດດດດດ	00000		40040	****	44544	
		SECs	21 16 22 24	32 5 8 33 8 36 5 8 33 8	44 29 36 32	43 28 6 33 1 43 8 6 33 1	46 45 49 60	1552	25 25 25 25 25 25 25 25 25 25 25 25 25 2	34 41 31 22 31 22 31 22 31 24 22 31 24 24 24 24 24 24 24 24 24 24 24 24 24	50 34 33 33 31	40 55 35 39	
		Sub	200 80 137 137	316 550 376 590	384 775 541 460 918	1454 : 2458 : 666 : 1199 : 1783 :	1947 1476 1984 1828 1560	75 96 109 32	211 351 322 365	323 392 313 764	408 798 1468 736 855	1674 - 573 - 1767 - 1788 - 1385 -	
		Log	00000	a o 10 - 4 0	0 - 0 0 7	5 5 0 13	8 0 5 1 3	00000	10150	00000	04001	56423	
	$(+ E)_e$	ГB	111.8 195.6 155.4 186.2	42.0 51.3 65.0 24.8	47.6 05.8 36.7 55.1 07.8	436.5 05.8 74.8 02.3 428.0	119.8 361.7 681.0 073.9 644.5	72.6 25.6 67.8 01.1	68.4 142.8 165.5 178.0 178.3	524.4 145.0 190.1 36.3 05.1	733.9 747.4 216.3 705.7 101.9	939.4 913.3 128.8 128.8 321.1	
	(R	8	88 5 88 89 5 88 89 5 88	5 5 5 1 5 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	82 86 72 72	0.0 10 10 10 10 10 10 10 10 10 10 10 10 10	4 94 8 12 0.0 11 0.0 11 0.0 11	54 52 51 51 51	68 15 18 18 18 18 18 18 18 18 18 18 18 18 18	19 19 19 18 18	91911	.2 13 1.1 11 5 11 0.0 12	
		CPU	$\begin{array}{c} 0.9 \\ 0.2 \\ 0.5 \\ 1.3 \\ 0.4 \end{array}$	12.8 22.5 1391 40.4 63.8	2.5 75.7 24.7 34.0 983.3	217.0 8600 1186 324.5 1440	8584 1732 1440 5211 1440	$\begin{array}{c} 0.2 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.3 \end{array}$	$1.0 \\ 10.1 \\ 1.5 \\ 10.0 \\ 5.8 \\ 5.$	43.0 27.1 15.4 22.0 57.9	229.7 159.0 971.0 66.5 139.2	5548 1016 7670 596.6 1440	
		Gap	0.0 0.0 0.0	0.0	0.0	2.8	0.0	0.0	0.0	0.0	0.0	6 0.0 8 0.0 1 2.4	
		LB	$\begin{array}{c} 3133.6\\ 4740.7\\ 4557.8\\ 4392.7\\ 4526.0\end{array}$	7074.2 4399.8 5969.5 5492.8 7385.5	8287.7 9550.8 8819.3 6696.5 7784.5	10682.5 8638.9 10096.8 10148.8 10899.6	9835.3 12668.1 12077.9 12515.9 12020.0	5000.2 5827.1 5271.5 6158.6 5535.3	6871.8 8537.6 6614.5 8780.0 8780.0 8674.5	11425.(9733.1 10096.9 9495.5 8302.0	11439.1 12429.0 10976.2 12279.2 11790.5	15000.5 12797.1 12237.8 11590.6 12999.4	
		đ	133.6 740.7 557.8 392.7 526.0	074.7 399.8 970.1 385.9	287.7 550.9 819.3 697.0 785.3	0683.5 639.7 0097.8 0149.8 1209.3	836.3 2669.3 2435.7 2517.1 2090.4	000.2 827.1 271.5 158.6 535.3	871.8 537.6 614.5 780.2 674.8	1425.9 733.1 0096.9 495.5 302.2	1440.1 2430.0 0977.3 2279.3 1791.6	5002.0 2798.4 2239.0 1591.2 3323.6	
lers		5	α 44 44	164006	× 6 × 6 ×		61111	රා ව රා රා රා	60000	-6-6%			
ston		s Trip	ය ය ය ය ය	r 4 0 r 8	11 10 9 9 9	12 13 10 17 17 19 10 17	13 14 13 13	୧୦୦୦୦୦	8 0 0 8 0 1 0 8 0 1 0 0 0 0 0 0 0 0 0 0	9 11 10 9 11 10	13 13 14 14	17 14 14 13 13	
<u>U cu</u>		UAV	00000	00000	44400	40444	ഖഖഖഖ	00000	~~~~~	40040	44444	54544	
0-3		SECs	21 25 11 11	53 33 33 33 36 33 32 32	44 36 35 48	33 50 38 38 47	48 39 55 64	$^{15}_{8}$	25 29 32 33 29	31 42 42 42	30 27 39 34	$^{39}_{35}$	
ıth J		Sub	152 96 125 179 139	472 787 777 333 608	289 678 540 479 805	891 1495 1741 854 1429	1804 1113 2226 1829 2451	174 128 77 222 112	140 295 246 345 346	666 428 342 438 564	1216 1110 544 635	1232 1256 2277 1438 2876	
es w	e	Log	000	- 9 - 0 10	0	1 2 7 2 1	1 2 3 3	0000	0 - 0 4 6	0 0 0 0	ມ ອ ຕ ⊣ ມ	6 7 3 5	
tanc	E	RLB	187.0 313.1 303.9 252.6 288.8	452.2 255.0 291.8 319.2 402.7	552.7 554.8 525.3 379.5 481.9	636.3 496.1 562.4 581.5 614.9	554.2 734.0 706.7 755.7 729.8	292.5 378.7 323.6 311.9 309.0	428.6 446.4 398.6 463.7 508.1	643.6 540.8 577.3 595.0 463.9	646.2 707.5 601.7 778.8 668.3	852.0 701.9 660.5 645.4 739.8	
<u>A</u> InSi		CPU	0.8 0.4 0.5 1.9 1.1	18.0 18.5 318.3 22.9 35.6	6.2 35.4 93.6 141.4 84.9	76.9 10468.2 1244.2 736.1 10017.9	$\begin{array}{c} 3225.0\\ 942.4\\ 14400.0\\ 11981.8\\ 14400.0\end{array}$	$\begin{array}{c} 0.5 \\ 0.1 \\ 0.2 \\ 1.3 \\ 0.4 \end{array}$	1.2 7.6 3.1 6.5 2.1	57.1 36.4 21.1 4.6 67.2	570.9 186.4 668.6 24.4 54.8	$\begin{array}{c} 1125.6\\ 14400.0\\ 12470.0\\ 7057.4\\ 14400.0\end{array}$	
set F		$_{\rm Gap}$	0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0	0.0	0.0 0.0 2.9 2.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	$\begin{array}{c} 0.0\\ 3.1\\ 0.0\\ 0.0\\ 2.6\end{array}$	
tor		LB	$\begin{array}{c} 203.3\\ 314.6\\ 305.5\\ 287.4\\ 301.0\end{array}$	473.1 284.5 387.7 363.6 484.3	$\begin{array}{c} 566.0 \\ 638.2 \\ 596.9 \\ 459.2 \\ 505.4 \end{array}$	712.2 575.1 675.2 689.2 747.7	667.8 857.9 807.8 845.4 798.3	324.2 379.9 324.9 382.9 356.9	444.2 534.0 436.3 541.3 541.3	741.3 631.2 652.9 619.5 551.4	752.1 805.2 717.7 805.7 784.0	983.3 814.1 802.5 763.5 855.7	
ults		đD	203.3 314.6 305.5 287.4 301.0	473.1 284.5 387.7 363.6 484.3	566.0 638.3 597.0 459.2 505.5	712.3 575.1 675.2 689.2 747.8	667.9 858.0 831.8 845.5 814.7	324.2 379.9 324.9 382.9 356.9	$\begin{array}{c} 444.2 \\ 534.0 \\ 436.3 \\ 541.3 \\ 544.0 \end{array}$	741.3 631.2 652.9 619.5 551.4	752.2 805.3 717.8 805.7 784.1	983.4 840.2 802.6 763.6 878.7	
Res		di:											
:TT:		Vs D	ය යා යා ය	74877	11166	33333	21122	မလကလေ	*****	22226	33333	21 21 21 21 21 21 21 21 21 21 21 21 21 2	
ole C		Ds U∕	00000	00000	44400	4 6 4 4 4	ດດດດດດ	00000	~~~~~	4 6 6 4 6	4444	4 4 5 4 5	
Tab		SEC	17 17 13 13 44 16	38 29 32 33 33 33	38 33 34 34 27	2 37 22 23 39 39	2 42 3 40 45 51 51	$^{9}_{24}$	44 14 14 33 38	28 26 34 34 34	32 35 39 31	43 49 4 33 3 43 3 43	
		g Sub	130 24 68 148 91	363 155 686 202 597	118 404 162 454 611	136 100 509 852 852	192 484 124 949 126	62 44 26 24 24	88 337 40 180 116	243 181 240 244 387	394 52 769 333	525 572 117 117	
		Log	0 1 0 0 0	400100	0 0 0 5 0	5 3 0 ¹ 0	6 4 5 1 4 0 5 1 4	00000	1 6 2 3 0	505H0	8 8 7 7 8 7 7 8 8 7 7 8 8 8 7 7 9 7 9 7	$\begin{array}{cccc} 9 & 4 \\ 0 & 5 \\ 0 & 2 \\ \end{array}$	
	8)	RLB	2816.4 4337.4 4205.5 3692.5 4070.9	6286.3 3831.2 4816.1 4811.3 6210.1	7638.3 8574.7 8112.8 6073.8 6796.6	9814.6 7611.9 9182.2 9135.6 9786.8	8841.7 11564. 10932. 11281. 10924.	4475.2 5385.9 4910.0 5046.2 4785.7	6295.3 7072.5 6165.3 7249.5 7565.1	9677.3 8408.8 9046.6 8573.3 7341.9	10044. 11094. 9584.1 11015. 10415.	13082 11162 10552 10491 11561	AVs.
	R_{i}	CPU	$\begin{array}{c} 0.7 \\ 0.1 \\ 1.2 \\ 0.2 \end{array}$	14.7 6.2 761.0 31.3 70.0	2.3 44.1 18.2 29.3 717.3	$\begin{array}{c} 59.7 \\ 7817.4 \\ 609.4 \\ 443.8 \\ 14400.0 \end{array}$	2440.8 360.6 14400.0 2699.8 14400.0	$\begin{array}{c} 0.2 \\ 0.1 \\ 0.4 \\ 0.9 \\ 0.6 \end{array}$	1.9 10.9 5.5 6.0	46.5 20.0 14.5 41.6 41.6	182.1 78.7 609.9 44.4 96.7	$\begin{array}{c} 6400.9\\ 5707.0\\ 6124.3\\ 373.0\\ 13527.0 \end{array}$	l by U
		Gap	0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 1.8	0.0 0.0 2.1 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	formed
		LB	2930.4 4426.1 4252.3 4105.3 4225.0	6601.6 4114.7 5574.7 5125.4 6899.4	7720.1 8912.3 8219.7 6229.0 7268.7	9961.5 8063.8 9421.7 9459.8 10213.6	9164.9 11810.6 11289.6 11289.6 11669.7 11222.6	4668.6 5447.2 4946.7 5775.2 5178.5	6427.6 7995.4 6173.9 8238.9 8114.1	10684.6 9093.2 9444.0 8858.5 7750.4	$\begin{array}{c} 10666.2 \\ 11622.4 \\ 10243.0 \\ 11468.4 \\ 10985.3 \end{array}$	$\begin{array}{c} 14003.2\\ 11957.0\\ 11431.8\\ 10826.6\\ 12380.9\end{array}$	ips per.
		đ	2930.4 1426.1 1252.3 1105.3 1225.0	3601.6 4114.7 5575.0 5125.9 900.0	7720.1 3912.6 3219.7 5229.5 7269.4	962.5 3064.6)422.6)460.6 .0398.1	9165.8 11811.4 11530.4 11670.9 1330.9	1668.6 5447.2 1946.7 5775.2 1178.5	3427.6 7995.4 3173.9 8238.9 3114.1	10684.6 9093.2 9444.0 8858.5 750.7	10667.2 11623.1 10243.9 11468.4 0986.4	14004.6 11958.2 11432.8 10827.6 2382.2	er of tri
		Inst	- 0.02470	- 0.040	- 0 8 4 5	10.040	1 2 8 4 8	10.040	10040	10.040	1 2 8 4 8	1 2 8 4 2	ıumbe
		Cust	01	15	50	52	8	01	15	8	55	08	the r
				1		1			1	A2 .			Trip:
					Set					Set			

Table C.11: Results for Set A instances with 10–30 customers

36

onlinear	lergy	5645 8740	8486	.8268 8363	3163	8314	0637	.0199 3246	5766	7824	6653	.2989 4156	0027	5615	8756	1425	8311	3834	3154	.3498 2805	0100	9212 0552	9024	0651	9913	2340	4447	5038	5575	0590	7775	2692	5466	1138	2431	9737	1856	7652	3338	2380	1209
near N	ergy ei	196 0. 7996 0.	751 0.	7475 0. 7638 0.	981 1.	7572 0.	0705 1.	813 131 1	1.127 1.	3202 1.	5148 1. 	2953 L	3249 2.	1240 1.	723	414 L. 9427 2.	668 1.	682 2.	094 2.	1395 2. 1724 2.		94.28 U. 9694 L	3400 0.	0888 1. 100 1	9139 0.	361 1.	500 I.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1349 1.	3916 2.	3296 1. 2000 1	0696 L 154 L	109	338 2.	0624 2.	3068 1.	916 2. 916 2.	6 0063	410 2.	414 2 .	9435 2.
Li Li	101 ED	0.0	0.7	0.0	1.1	0.7	0.0		1.4	1.6			1.8	1.1			1.6	2.1	2.1	2.0		0.0	0.8	0.0	0.0	1.1		12	1.4	1.8			-	1:0	2.0		1.0.0		2.1	2.(1.0
Trin V	v drit	ы ы ы	EL I	H F	L	T	E t	4 H	F	L 01	E C	- H	12 F	L 01	9 0 9 0	- H 2 II	13 T	l4 F	L4	е с н Г		ц (т	, E.	E I		ц I		- E	Ч. С	13 F	9 1 9 1		. F	12 T	L3 F	E E	5 F	L U	L4 F	13 T	13 F
TAVs 7	SVA			4. 62		7																							0.				. 0,				_ ,_,				
FCs 1	ECS	0 0 0	0	40	1	2	60	0.0	4	0	0 0		1	ى 10.	00	7 L-	4	-1		0 00 0 00	, ,		1 (1	. CI (-	5		0 m	9	0 4			, 	2	2		04		9 1 4	2 5	8
$E)_a$		2.2	3.0	L.4 8.2 1 3	6.9	3.0 2	0.1	9.7 7.7	0.8	0.0	2.0		30.3 5	8.0		70.7 4	7.0	30.8 3	5.5 3	29.1 33.8 27 3			6.9	6.0	3.5	6.6		0 c0 1 c1	2.6	54.5 E	0, 0	7.9		35.0 3	33.3 4	12.6	20.9 16.6 3	20.2	0 0.1.9 4	32.4 3	38.1 2
(R+	ULF RLF	2996 4675	4528	3891 4368	6714	4018	5244	0140 6635	8178	9140	8650	6495 7257	1046	8165	9800	9 1047	9475	1236	9 1165	1202	-	47773	5155	5384	2023	6836	37.97 87.15	3682	7957	1045	8901	97.78	7832	1073	1175	1024	211	1206	1192	1123	1113
CPII	OF0	$1.0 \\ 0.1$	0.4	$1.3 \\ 0.4$	10.4	9.8	196.8	38.U 17.1	1.7	26.8	9.9	23.6 240.6	63.3	56.1	522.4	12119.	330.1	403.7	11300.	1834.2 1573.8	0	2.0	0.2	0.8	0.4	0.7	4.0 7	5.0	7.1	22.2	31.7	8 1 8	24.3	161.4	76.5	39.5 	72.0 29.0	1 466 9	2617.0	1065.3	179.7
Gan	Cap	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0
E.B.		3117.4 4713.9	4531.3	4218.0 4499.9	6960.3	4373.0	5664.4	7165.5	8235.7	9357.1	8765.1	6652.8 7640.3	10619.5	8330.7	10039.0	11096.4	9691.3	12591.0	12288.5	12440.3 11967.3	0.0401	49/2.0 5796.1	5249.1	6131.1	5507.5	6836.6	8244.7 6577 1	8742.4	8630.6	11365.1	9679.0	10045.1	8216.4	11365.4	12365.5	10634.6	12211.3 11571.2	1 4009 0	12727.7	11878.2	115265
an	OF 	3117.4 4713.9	4531.3	4218.0 4499.9	6960.3	4373.4	5664.9	0401.2 7165.7	8235.7	9357.1	8765.1	6652.9 7640.7	10619.5	8330.7	10039.0	11097.5	9691.7	12592.0	12289.7	12441.4 11968.4	0.000	49/2.0 5796.1	5249.1	6131.1	5507.5	6836.6	8244.7 6577 1	8742.4	8630.6	11365.6	9679.9	10045.1 9440 1	8216.4	11366.1	12365.5	10634.6	12211.3	14000.4	12728.9	11878.9	115-07-2
onlinear	nergy	.5656 .8740	.8537	.8268 .8363	3284	.8389	0718	.02/3	5766	8091	.6814	.2989	.0027	5779	.8866	.1631	8374	3937	.3291	.3745 2881	0100	9212 0552	9136	.0714	.9913	.2340	4462	5068	5575	.0692	.7775	7899	5645	.1469	.2431	.9937	3022 2046	7066	.3643	.2413	1.011
near N	ergy e	5204 0 7996 0	7789 0	7475 0 7638 0	2070 1	7629 0	9765 1	3568 1 2568 1	1327 1	5400 1	5268 1	1762 1 3128 1	3249 2	1362 1	7205 1	9580 2	3714 1	1760 2	1197 2	1578 2 0783 2		5428 U 9694 1	8483 0	9934 1	9139 0	1361 1	5402 I 1361 1	1012 1	1349 1	3992 2	5296 1 5296 1	5753 I 3307 I	4241 1	9581 2	0624 2	8217 1	1005 2 2058 2 2	0 2022	1636 2	0439 2	0 2010
Li Li	en -	00	Ö.		H	0	0.0		–	Ē			1	i,			1	2.	5.	0. 0		56	0.0	0.0	0	Ξ.		i A	÷	1.			i Li	i.	2.		N N	c	101	2.0	-
- V	d l	¶ ⊾ ⊑	ц. Гц	◀ [+ ĭ4	F	H	E f	ц (н	ſ.,	H	ц	ΞĤ	ſΞ	Η	í, í	4 (H	H	ы	Εı	ъ (-	F	ı, fi	, Ľı	ы	бц.	Гц I	Ηp	i fi	ц	Ц	נה נ	r (r	. H	ſĿ,	ц	[− 6	÷ (-	E	- E	Η	F
/s T	LT S/	5 9	U.	4 v	2	4	NO I	- 9		10	10	იი	12	10	10	3 11	13	14	14	11 11 11 11	1	<u>ں</u> م	2	ນດີ	9	×	ກດ	n xo	6	13	10	11	6	12	13	12	14	16	14	13	¢.
TIAN	NAU 8	0 0	0	00	ę	2	010	20	4	4	4	იი	4	ю ·	4.4	44	r.	5	ιΩ.	ເດີເຊ		0 0	101	00	61	ŝ	n n	00	ŝ	4		ю 4	* က	4	4	4.	44	и	04	5	Y
SEC	3EC	12	15	$16 \\ 16$	22	34	31	25 25	42	29	44	33 27	31	26	4	⁴ 2	38	40	45	37 39		4 -	18	27	17	47	9 1 0	17	36	41	37	37 37	25	40	36	37	40 28	ct.	49 14	29	00
R_a BLB	RLB	2791.5 4385.3	4202.1	3655.7 4058.0	6276.7	3791.5	4861.4	4837.1 6196.3	7675.0	8546.9	8111.5	60785.5 6785.5	9.6676	7648.2	9191.1	91.20.1 9814.1	8845.7	11601.2	10938.3	11359.6 10897.0	0.444	44 (0.2 5447.2	4842.9	5053.4	4711.4	6424.2	7038.7	7277.4	7525.2	9689.7	8492.2	9167.5 8539.0	7323.1	10062.3	11028.5	9571.5	10465.3	12069.0	11183.9	10558.9	7 10/01
CPU	CFU	0.8 0.1	0.2	0.7 0.3	9.1	9.6	191.7	12.4	1.6	20.4	24.6	$\frac{48.8}{159.8}$	55.6	71.8	581.3	321.9 14287.6	544.5	356.3	14400.0	1537.7 2553.1	0	0.1	0.3	1.3	0.3	1.1	7.4	8.0 8.0	6.4	34.4	33.7	23.1 14.5	24.8	289.0	136.7	83.3	50.8 50.8	1 909 9	2828.7	1012.5	501 7
Gan	Cap	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.6	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
B		2930.4 4426.1	4252.3	3948.8 4225.0	6528.9	4100.2	5315.6	0120.9 6722.6	7720.1	8773.9	8219.7	6229.4 7173.7	9961.6	7817.4	9421.7 0450 <i>6</i>	10397.1	9091.0	11810.3	11358.3	11669.9 11220.7	0 0001	4005.0 5447.2	4946.7	5775.2	5178.5	6427.6	6172.0	8238.9	8114.1	10683.7	9092.7	9444.0 8858 5	7708.0	10666.4	11623.1	9984.1	11468.4 10853.4	1 2007 2	11957.2	11144.0	00001
dii	-0F	2930.4 4426.1	4252.3	3948.8 4225.0	6529.0	4100.2	5315.6	6722.6	7720.1	8773.9	8219.7	6229.5 7174.4	9962.5	7818.1	9422.6	3400.0 10398.1	9091.6	11811.4	11543.0	11670.9 11221.9	0 0001	4005.0 5447.2	4946.7	5775.2	5178.5	6427.6	7762.6 3172.0	8238.9	8114.1	10684.6	9093.2	9444.0 8858 5	7708.5	10667.2	11623.1	9984.1	11468.4 10854.2	12002 6	11958.2	11144.0	0 10001
Inst	Inst		ന	4 10	-	2	ю.	4 10		5	с,	4 10	-	5 5		4 10		5	ср.	4 vc	, ,	- 0	س	4.	2	1	, 1 0	4 د 2	5		0.0	4 cc 2	- - 10		2	ი. ო.	4 vo	-	- 0	د	
Cust	Cust		10				15				20				25				30				10	2				15				20				25				30	
					I				I		Set A_1		1				I								1					I		Set A_2		I				I			

 \blacktriangle : Whether there exist trips which violate the energy capacity constraint. If yes, a 'T' is used, 'F' otherwise.

		Trip	ର ପ ପ ମ ପ	r 4 9 r r	9 0 10 10 10 10 10 10 10 10 10 10 10 10 1	12 10 13 13	13 14 13 13 13	96 96	*****	9 11 9 11 9 11	12 13 14 14	17 13 14 13 13
		\mathbf{UAVs}	00000		44466	40444	ഖഖവവ	00000		40040	44444	N4N44
		$\rm SECs$	24 11 23 4	42 20 32 30 30	27 37 47 36	38 53 49 45	44 39 40 45	5 5 15 10	21 25 37 44	35 35 32 34 32	43 25 33 33	46 37 35 34
		Sub	152 51 77 210 45	291 120 441 446 446	281 707 725 646	226 1206 816 1638 1113	1496 1835 1419 2149 2029	32 51 84 84	115 190 178 256 246	163 277 732 314 438	819 374 609 358 358	1089 523 842 303 775
		Log	1 0 0 0 1	00004	0 0 0 0 4	- 10 - 10 10	-0808	o - o o - o	00000	0 - 0 - 0	9080-	0 - 0 4 0
	$(R + E)_e$	RLB	3169.0 4989.3 4425.9 4155.8 4433.1	6756.4 4001.6 5292.6 5248.2 6643.6	8277.3 9308.3 8726.1 6433.9 7304.7	$\begin{array}{c} 10470.6\\ 8110.6\\ 9840.3\\ 9732.4\\ 10455.0\end{array}$	9534.8 12559.7 11667.0 12060.5 11687.5	5527.3 6592.6 5997.5 6133.7 5824.9	6420.4 7921.5 6920.2 8604.5 8599.1	10794.8 9072.8 10542.4 9234.8 8105.9	10881.6 11962.1 10825.7 12037.1 11250.6	$\begin{array}{c} 14064.2\\ 11842.9\\ 11548.6\\ 11488.5\\ 11246.8\end{array}$
		CPU	0.5 0.4 0.3 0.1	7.1 1.5 146.9 13.7 39.5	$\begin{array}{c} 0.8\\ 175.3\\ 11.6\\ 11.6\\ 134.8\end{array}$	49.7 2700.7 1684.2 1866.6 9598.6	1503.5 710.3 14400.0 1113.3 14400.0	0.2 0.2 0.3 0.3	0.8 0.9 2.2 0.9	2.5 32.3 14.6 7.6 9.8	223.9 84.4 262.0 11.8 26.9	880.1 130.2 678.8 335.4 513.2
		$_{\rm Gap}$	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 1.8 0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0
		$_{\rm LB}$	3351.5 5864.5 4479.4 4615.9 4486.2	7105.8 4286.5 5981.6 5620.7 7467.0	8288.5 9931.4 8976.2 6876.0 7790.6	10713.7 8917.9 10338.6 10336.8 11254.8	9995.3 12969.3 12225.3 12232.5 12123.0	5642.9 6595.4 6034.4 6329.0 6026.1	6627.3 8301.2 7295.4 9207.1 8743.9	11282.8 9834.2 11279.4 9924.9 8502.9	$\begin{array}{c} 11639.5\\ 12793.6\\ 11874.6\\ 11874.6\\ 12341.0\\ 11980.5\end{array}$	15282.5 12493.1 12369.2 12178.2 12178.2 12844.1
SWC		UP	3351.5 5864.5 4479.4 4615.9 4486.2	7106.1 4286.5 5981.9 5620.9 7467.7	8288.5 9932.2 8976.2 6876.0 7791.2	10714.3 8918.8 10339.6 10397.8 11255.9	9996.3 12970.5 12452.0 12533.7 12333.8	5642.9 6595.4 6034.4 6329.0 6026.1	6627.3 8301.2 7295.4 9207.1 8743.9	11283.8 9834.2 11279.4 9925.9 8502.9	11640.6 12794.5 11875.6 12342.3 11980.5	15283.9 12493.1 12370.3 12178.5 12844.9
WIIIC		Trip	a a a 4 a	1-401-8	11066	10 10 13 10 12	13 14 13 13 13	9 1 9 9 1	8 6 6 6 ⁰	121113	12 13 13 13 13	17 14 14 13 13
TITE		UAVs	00000	00000	44400	40444	പറപാവവ	00000	~~~~	40040	44444	04044
E		$\rm SECs$	33 8 55 4	35 35 38 35 38 38	36 28 30 28 28 28 28 28 28 28 28 28 28 28 28 28 2	30 31 35 39	44 39 37 57	25 8 8 8 8 8	34 27 21 31	34 36 38 38 38 38 38 38 38 38	38 30 34 47	58 58 33 32 32
ugn		Sub	120 103 77 120 128	540 397 758 508 361	219 744 552 810 855	603 1328 979 1606 1969	2688 2205 1588 1756 1863	32 51 64 84	186 166 171 360 178	461 565 379 365 365	1445 882 494 703 718	856 1035 1742 1665 1395
IUI		Log	0 1 0 1 0	0 9 0 0 4	00000	8 II I 4 4	0 1 0 1	0 1 0 0 1	00101	10435	1036	- ∞ 10 m 10
≥ S	E_e	RLB	191.0 317.7 291.2 291.5 298.6	426.1 262.1 298.6 303.3 402.9	536.5 549.8 533.7 377.3 424.3	690.5 460.0 566.7 591.9 614.2	603.5 755.2 691.7 710.3 734.4	355.2 415.1 354.2 381.3 351.7	424.9 506.5 422.7 499.5 544.0	672.8 545.0 654.4 606.5 492.5	658.0 722.4 648.4 759.8 758.0	859.6 771.2 691.1 679.4 731.8
ISUALIC		CPU	0.6 0.2 0.6 0.1	5.2 9.7 186.7 25.4 11.9	3.5 333.0 27.4 68.8 101.5	37.5 14400.0 1121.3 1636.5 14400.0	8464.1 3270.8 14400.0 2229.4 14400.0	04 01 03 02	0.8 1.1 1.1 2.7 0.7	2.8 54.7 11.4 9.7 17.7	865.1 132.7 158.0 26.5 21.2	2835.6 345.3 2257.1 3828.6 3026.2
H H		$_{\rm Gap}$	0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 5.6 0.0 2.3	$\begin{array}{c} 0.0\\ 0.0\\ 3.4\\ 2.0\\ 2.0\end{array}$	0.0 0.0 0.0 0.0	0.0	$0.0 \\ 0.0 $	0.0 0.0 0.0	$0.0 \\ 0.0 $
Jec To		$_{\rm LB}$	212.7 364.6 304.2 296.6 300.8	469.8 292.1 398.2 383.0 481.7	559.0 666.3 603.7 446.1 506.4	714.4 568.2 695.2 698.5 726.6	680.1 871.1 803.8 852.1 808.4	355.7 415.1 358.4 385.1 370.1	429.1 533.1 470.2 565.3 544.7	732.4 648.7 713.9 644.7 562.7	768.2 833.8 754.9 812.6 801.5	1004.8 834.4 818.2 810.2 843.0
nırs ıc		UP	212.7 364.6 304.2 296.6 300.8	469.8 292.1 398.3 383.1 481.7	559.0 666.4 603.7 446.2 506.4	714.5 601.9 695.2 698.5 744.0	680.2 871.2 831.8 852.2 824.8	355.7 415.1 358.4 385.1 370.1	429.1 533.1 470.2 565.3 544.7	732.4 648.7 714.0 644.7 562.7	768.3 833.9 754.9 812.7 801.5	1004.9 834.5 818.3 810.3 810.3 843.1
res		Trip	a a a 4 a	N 4 9 N N	11 10 10 10 0 9	12 13 13 13 13	13 14 13 13	9 1 9 9 1	× × ~ × ~	9 11 10 12 0	12 13 14	17 13 14 13 13
CT.)		UAVs	00000	00000	44466	40444	ഖെവവവ	00000	~~~~~	40040	****	7047044
DIG		SECs	17 12 34 6	3 3 3 3 3	24 33 31 31 31	25 28 49 49	40 38 38 56	$^{10}_{10}$ $^{10}_{10}$ $^{10}_{10}$ $^{10}_{10}$	8 8 5 5 8 8	$^{22}_{23}$	$ \begin{array}{c} 34 \\ 38 \\ 38 \\ 38 \\ 34 \\ 34 \\ $	47 40 38 33
Гa		Sub	72 26 36 18	393 215 353 300 300	42 565 728 404	465 1276 797 1157 1075	$1684 \\ 1145 \\ 697 \\ 1191 \\ 2249 \\ 2249$	20 21 84 84	48 132 148 148 140	378 112 256 384 614	760 553 225 468 719	741 687 1074 508 822
		Log	0 1 0 0	00004	000-0	40000		0 - 0 0 -	-000-	80411	10 0 0 0 0 0	3 5 1 2 2 2
	8)	RLB	2952.4 4679.7 4118.3 3956.9 4177.9	6335.3 3777.1 4955.7 4816.9 6248.5	77177 8741.4 8166.9 6049.3 6868.7	9824.5 7616.0 9246.8 9129.2 9848.1	8936.0 11784.0 10922.5 11337.4 11019.1	5239.2 6161.0 5596.2 5775.4 5473.3	6022.9 7415.4 6524.9 7999.3 8035.0	10058.5 8489.8 9821.2 8655.4 7610.9	10101.1 11302.5 10176.9 11161.8 10622.9	$\begin{array}{c} 13189.4\\ 11115.2\\ 10869.4\\ 10839.6\\ 11581.4\end{array}$
	R,	CPU	$\begin{array}{c} 0.2 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.1 \end{array}$	$\begin{array}{c} 6.9 \\ 1.8 \\ 109.7 \\ 13.1 \\ 29.5 \end{array}$	$\begin{array}{c} 0.7 \\ 62.6 \\ 16.7 \\ 199.5 \\ 131.1 \end{array}$	44.1 2566.6 1034.5 2054.5 6189.6	$\begin{array}{c} 1912.9\\ 1022.8\\ 14400.0\\ 1092.6\\ 14400.0\end{array}$	$\begin{array}{c} 0.1\\ 0.1\\ 0.2\\ 0.2\\ 0.1\end{array}$	0.7 1.0 1.7 0.7 0.7	2.9 15.4 13.5 9.1 9.7	432.8 52.5 163.4 16.8 35.8	$\begin{array}{c} 1636.5\\ 132.5\\ 697.8\\ 526.9\\ 239.0\\ \end{array}$
		$_{\rm Gap}$	0.0 0.0 0.0 0.0	0.0	0.0	0.0 0.0 0.0 0.0	$\begin{array}{c} 0.0\\ 0.0\\ 1.4\\ 0.0\\ 1.6\end{array}$	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$
		LB	3135.3 5499.8 4175.2 4315.4 4184.3	6636.2 3994.4 5583.0 5237.6 6956.5	7729.5 9252.9 8363.5 6429.4 7284.1	9991.1 8310.9 9643.4 9698.3 10501.6	9313.2 12098.1 11403.8 11677.9 11330.3	5287.2 6180.3 5675.9 5943.9 5656.0	6198.2 7759.7 6825.2 8627.0 8187.3	$\begin{array}{c} 10542.8\\ 9184.3\\ 10565.5\\ 9278.4\\ 7929.8\end{array}$	10859.6 11956.9 11106.8 111529.3 11173.3	$\begin{array}{c} 14269.5\\ 11650.3\\ 11547.2\\ 11356.8\\ 11356.8\\ 11997.4 \end{array}$
		UP	3135.3 5499.8 4175.2 4315.4 4184.3	6636.2 3994.4 5583.5 5237.8 6956.9	7729.5 9253.7 8363.5 6429.8 7284.8	9992.0 8311.8 9644.4 9699.3 10502.7	9314.1 12099.3 11560.9 11679.0 11508.9	5287.2 6180.3 5675.9 5943.9 5656.0	6198.2 7759.7 6825.2 8627.0 8187.3	$\begin{array}{c} 10542.8\\ 9184.3\\ 10565.5\\ 9278.4\\ 7929.8\end{array}$	10860.4 11957.9 11106.8 11529.3 11174.2	$\begin{array}{c} 14270.9\\ 11651.3\\ 11548.4\\ 11357.9\\ 11998.2\end{array}$
		Inst	2 4 3 5 1	10040	10040	10040	1 0 0 4 2	10040	- 0 0 4 0	2 4 3 5 1	10840	0.430
		Cust	10	15	50	25	30	10	15	20	25	30
					Set A ₁					Set A ₂		

Table C.13: Results for Set A instances with tighter time windows

		Trip	0.00040	6 4 5 4 4	$^{11}_{9}$	13 13 10 15 13 10 15	13 14 13 13	00 4 C Q Q	8 7 6 7 6	$^{9}_{10}$ 10 $^{10}_{10}$	12 13 13 13	16 13 12 12
		UAVs	0000-		44466	46444	5 7 7 7 2	00000		4 6 6 4 6	4 4 4 4 4 4	04044
		SECs	27 36 32 30	39 32 31 30	33 35 48 30 30	35 48 32 43	41 37 37 35	9 118 24 25	48 45 44 28 25	34 23 34 44	47 46 33 34 36	35 39 29 29
		$_{\mathrm{Sub}}$	158 96 155 145 76	619 558 347 1025 753	731 1163 283 849 675	1808 1950 1117 1418 1491	2514 2799 1061 1680 2763	78 96 195 140	253 422 154 585	552 514 559 907 325	877 819 827 774 863	1732 1236 2012 1485 1089
		Log	0 1 0 0 1	$\begin{array}{c}4\\4\\0\\1\end{array}$	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}$	0 3 3 1 1	0 1 2 2	10157	0 0 0 0 0 0	0 5 2 4 5	$1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 3 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	5 5 7 0 3
i	$(R + E)_e$	RLB	3008.9 4509.0 4288.2 3749.1 4449.2	6649.8 3730.7 5184.9 5121.0 6455.3	8001.3 8973.3 8604.2 6346.0 7054.8	$\begin{array}{c} 10277.1\\ 8039.9\\ 9731.1\\ 9576.4\\ 10366.7\end{array}$	$\begin{array}{c} 9140.5\\ 12216.2\\ 11375.2\\ 11934.3\\ 11406.5\end{array}$	4780.3 5810.7 4866.4 5137.7 5024.2	6327.2 7477.0 6363.8 7261.0 7996.7	10386.7 8771.2 9633.2 9058.6 7560.0	$\begin{array}{c} 10592.1\\ 11504.2\\ 10021.5\\ 11717.7\\ 11007.6\end{array}$	$\begin{array}{c} 13634.9\\ 11717.8\\ 11066.1\\ 10632.9\\ 11933.6\end{array}$
		CPU	$\begin{array}{c} 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.3 \end{array}$	35.0 55.8 13.6 521.1 22.1	22.5 154.1 12.6 307.5 941.0	989.1 8181.0 837.8 899.9 14400.0	$\begin{array}{c} 4740.8\\ 14400.0\\ 14400.0\\ 14400.0\\ 14400.0\\ 14400.0\end{array}$	$\begin{array}{c} 0.1\\ 0.2\\ 2.9\\ 1.4\\ 0.4\end{array}$	2.7 21.4 1.1 7.3 15.7	31.7 112.1 68.7 120.5 34.2	$\begin{array}{c} 49.0 \\ 4017.2 \\ 81.2 \\ 810.7 \\ 74.9 \end{array}$	$\begin{array}{c} 14400.0\\ 3026.4\\ 11014.3\\ 6351.6\\ 151.6\end{array}$
		Gap	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 4.0\end{array}$	$\begin{array}{c} 0.0 \\ 0.6 \\ 0.2 \\ 0.2 \\ 1.9 \end{array}$	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	$2.6 \\ 0.0 $
		ΓB	$\begin{array}{c} 3011.9 \\ 4736.3 \\ 4288.9 \\ 3806.0 \\ 4463.1 \end{array}$	6876.4 4076.0 5283.7 5464.3 6598.0	8201.7 9406.3 8698.1 6607.7 7402.3	$\begin{array}{c} 10511.1\\ 8372.0\\ 9887.3\\ 10085.9\\ 10673.9\end{array}$	9668.7 12554.2 11882.8 12414.6 11798.3	$\begin{array}{c} 4782.4 \\ 5822.3 \\ 5265.4 \\ 5321.6 \\ 5171.7 \end{array}$	6437.2 7870.5 6454.6 7590.8 8673.0	10785.5 9294.1 9977.7 9484.7 7764.8	$\begin{array}{c} 10937.0\\ 12200.9\\ 10352.9\\ 12278.1\\ 11226.3\end{array}$	14535.8 12271.2 11869.9 11467.1 12355.7
ß		UP	3011.9 4736.3 4288.9 3806.0 4463.1	6877.1 4076.3 5284.2 5464.7 6598.5	8201.7 9407.2 8698.5 6608.2 7403.0	10512.2 8372.8 9888.3 10086.9 11123.4	9669.6 12635.6 12005.2 12444.3 12022.3	4782.4 5822.3 5265.4 5321.6 5171.7	6437.2 7870.8 6454.6 7590.8 8673.0	10786.6 9294.8 9978.5 9485.4 7764.8	10937.0 12202.1 10353.5 12279.3 11296.8	14930.1 12272.4 11871.0 11468.2 12356.8
indow		Trip	00040 0	74579	11 10 9 9 9	12 13 13 10 12	13 14 13 13	ග හ අහ	8 9 10	13 10 11 10	12 13 14 13	17 13 12 12 12 12
ne w		UAVs	-0000	0 0 0 0 0	44466	4 6 4 4 6	വവവവ	00000	0 0 0 0 0 0	4 6 6 4 6	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	N W N 4 4
t tir		SECs	26 14 32 32	39 33 45 45	30 50 40	48 46 29 36	41 24 36 34	7 31 19 28	27 26 33 37 36	68 27 37 39	39 35 39 39 41	40 33 40 44
thou		Sub	181 221 355 288 169	621 751 999 829 655	567 1162 1165 1304 1864	1463 2533 1687 1034 1604	3209 2242 1638 1860 1884	80 162 151 142 136	253 302 198 311 371	296 421 1146 436 917	907 734 781 1020 819	1746 1714 2279 2168 1696
S W.	83	Log		$^{2}_{0}$	40100	3 1 3 12 2	0 0 11	0-	00000	-020	0 2 2 3 3	0 1 6 1 2
ance	Ε	RLB	191.6 284.3 276.6 246.9 267.2	440.2 243.7 337.8 326.7 413.5	506.9 551.2 562.8 381.8 464.4	660.2 468.1 574.6 600.1 646.7	576.1 723.2 747.0 740.0 705.5	306.8 372.0 290.8 292.5 313.4	395.7 457.3 412.5 450.6 508.9	684.0 518.3 619.6 588.1 464.9	628.8 697.5 643.4 762.5 717.2	851.3 751.6 661.8 617.5 777.8
A inst		CPU	$\begin{array}{c} 0.6\\ 0.9\\ 1.0\\ 0.7\end{array}$	20.0 69.6 31.4 70.4 31.5	22.4 214.4 38.9 470.3 257.5	$\begin{array}{c} 791.1 \\ 11311.1 \\ 459.7 \\ 1246.0 \\ 14400.0 \end{array}$	14400.0 14400.0 8639.3 9215.6 14400.0	$\begin{array}{c} 0.2\\ 0.4\\ 2.1\\ 1.7\\ 0.4\end{array}$	2.4 8.0 4.4 6.3	$8.2 \\ 46.3 \\ 113.0 \\ 15.8 \\ 52.7 \\ $	59.0 375.0 26.2 107.8 28.2	$\begin{array}{c} 5019.4 \\ 1709.8 \\ 14400.0 \\ 14400.0 \\ 1316.1 \end{array}$
Set		Gap	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 2.1\end{array}$	2.9 1.2 0.0 2.2 2.2	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	$\begin{array}{c} 0.0\\ 0.0\\ 0.8\\ 0.8\\ 0.0\end{array}$
for ,		ΓB	$\begin{array}{c} 193.7\\ 310.2\\ 284.0\\ 258.0\\ 258.0\\ 298.4\end{array}$	458.8 268.8 356.1 358.0 444.1	547.9 628.5 583.8 430.5 485.4	703.8 558.3 658.2 674.2 719.2	635.2 845.6 804.4 831.9 782.0	307.2 375.1 318.7 341.8 341.8	414.0 499.9 412.6 479.6 543.2	703.5 601.2 644.5 610.9 515.3	717.8 785.8 675.2 804.4 750.4	971.5 812.5 767.6 741.8 826.0
esults		Π	193.7 310.2 284.0 258.0 298.4	458.8 268.8 356.2 358.0 444.2	547.9 628.6 583.9 430.6 485.5	703.8 558.3 658.2 674.2 734.5	653.8 856.1 804.5 831.9 799.6	307.2 375.1 318.7 341.8 326.5	414.0 499.9 412.6 479.6 543.3	703.5 601.2 644.5 610.9 515.3	717.8 785.8 675.2 804.4 750.4	971.6 812.6 781.7 747.8 826.1
l4: R6		s Trip	0.9040 0	6 4 5 4 4	11 01 9 9 9	12 13 13 10 10 12	13 14 13 13	0.054 U	8 7 6 7 8	$^{10}_{9}$	12 13 13 13	16 13 12 12 12
<u>.</u>		UAV	0000-	00000	44400	00404	ខ 4 ខ ខ ខ	00000	0 0 0 0 0 0	40040	4444	04044
able		SECs	$ \begin{array}{c} 38\\50\\14\\31\\31\end{array} $	36 33 32 33	39 24 38 34	31 35 45 47	37 44 38 35	6 21 28 28 28	23 81 25 40	30 33 35 35	31 40 43 44	36 44 30 32 32
Г		Sub	118 36 46 89	260 138 534 785 288	246 612 478 939 878	762 1361 784 780 1291	1071 1299 631 1360 1415	82 54 208 97 67	88 287 80 32 213	224 160 362 471 123	257 461 544 444 388	1237 920 1172 1364 594
		Log	000-	40135	$\begin{array}{c} 0 \\ 1 \\ 1 \\ 14 \end{array}$	15100	0 100 100	0-	5 0 0 1 0		12240	2 - 5 4 4
		RLB	2815.8 4228.5 4001.6 3491.5 4162.6	6282.6 3803.2 4839.1 4707.2 6059.8	7470.0 8389.1 7990.0 5864.3 6589.7	9631.9 7505.2 9084.6 8975.4 9704.5	8618.5 11479.2 10742.4 11258.2 10710.9	4464.8 5438.8 4582.0 4710.4 4654.7	5828.4 6910.5 5967.4 6863.5 7525.6	9573.2 8233.3 9018.6 8500.1 7106.9	9801.4 10767.5 9364.0 10935.8 10322.4	$\begin{array}{c} 12783.9\\ 10988.3\\ 10368.7\\ 10147.1\\ 11299.8\end{array}$
,	R_{ϵ}	CPU	$\begin{array}{c} 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \end{array}$	30.3 1.1 15.5 2578.8 11.4	23.2 349.4 11.5 636.0 915.4	642.7 11970.3 423.5 2303.5 14400.0	$\begin{array}{c} 4096.4 \\ 14400.5 \\ 14400.0 \\ 14400.1 \\ 14400.1 \\ 14400.0 \end{array}$	0.1 0.4 3.9 2.4 0.6	2.1 22.3 1.3 3.9 14.7	54.7 104.0 141.9 160.4 26.0	84.7 4947.9 62.0 54.4	14400.0 1507.8 14400.0 13811.0 127.8
		Gap	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 3.5\\ 3.5\end{array}$	$\begin{array}{c} 0.0 \\ 0.2 \\ 0.8 \\ 0.2 \\ 1.5 \end{array}$	0.0 0.0 0.0 0.0	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	$3.8 \\ 0.0 $
		LB	2816.4 4426.1 4002.2 3547.3 4164.7	6417.0 3805.2 4925.5 5106.2 6153.8	7652.6 8773.1 8113.2 6177.0 6909.3	9806.6 7809.9 9227.7 9410.5 10016.5	9013.1 11758.9 11114.0 11584.3 11584.3 11077.3	4475.2 5447.2 4946.7 4978.5 4845.3	6023.2 7368.8 6042.0 7111.2 8113.6	10078.9 8693.6 9333.2 8857.8 7249.3	$\begin{array}{c} 10218.2\\ 11415.1\\ 9677.8\\ 11467.2\\ 10544.7\end{array}$	$\begin{array}{c} 13418.9\\ 11458.7\\ 10992.3\\ 10716.3\\ 11526.7\\ \end{array}$
		Π	$\begin{array}{c} 2816.4 \\ 4426.1 \\ 4002.2 \\ 3547.3 \\ 4164.7 \end{array}$	6417.5 3805.2 4925.5 5106.7 6153.8	7652.9 8773.9 8113.2 6177.6 6909.9	9807.5 7810.7 9228.6 9411.5 10383.3	$\begin{array}{c} 9014.0 \\ 11779.5 \\ 11199.9 \\ 11606.9 \\ 11249.0 \end{array}$	4475.2 5447.2 4946.7 4978.5 4845.3	6023.2 7368.8 6042.0 7111.2 8114.1	$\begin{array}{c} 10078.9\\ 8693.6\\ 9334.0\\ 8858.5\\ 7249.3\end{array}$	$\begin{array}{c} 10219.2\\ 11416.2\\ 9677.8\\ 11468.4\\ 10545.5\end{array}$	$\begin{array}{c} 13944.2\\ 11459.8\\ 11088.6\\ 10717.3\\ 11527.6\end{array}$
		Inst	- 0 0 4 0	- 0 8 4 9	1 2 8 4 3	- 0 8 4 9	10843	- 0 6 4 5		- 0 6 4 5	1 2 8 4 3	0 4 3 5 1
		Cust	10	15	20	25	30	10	15	20	25	30
					Set A ₁					Set A ₂		

Table C.14: Results for Set A instances without time windows

	4 -1 00 00					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0000					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7 61 3 41 6 40 40					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	237 237 247 247					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.7 7 2.9 2 8.9 0 8.1 0					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0 1600 1598 1598					
	43200.0 39338.5 43200.0 7961.0					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$1.6 \\ 0.0 \\ 0.9 \\ 0.0 \\ 0.0$					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 1629.2 \\ 1663.7 \\ 1628.9 \\ 1629.7 \\ 1639.7 \end{array}$					
A CALCOLOL ALLOCALLO ALL CALLLO ALLOCAL OL	1655.4 1663.8 1643.9 1639.8					
LADIC CLUC INCLUDING INTERCEDING TO TALE Colspan="5">10. Colspan="5" 30. Colspan="5" 10. Colspan="5" <th <="" colspan="5" td=""><td></td></th>	<td></td>					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18 18 18 18					
LADIC OLION OF ALCOLLOD OLION	୦୦୦୦					
LADIC OLOLOL ALCOLOL OLOLIDAD A Sub SEC IADIC CALLOL ALCOLOL OLOLIDAD A Sub SEC UNs Trip UP LB Gap CPU RLB Les Sub Sub <th< td=""><td>$40 \\ 44 \\ 42 \\ 42 \\ 42 \\ 41 \\ 42 \\ 42 \\ 42$</td></th<>	$40 \\ 44 \\ 42 \\ 42 \\ 42 \\ 41 \\ 42 \\ 42 \\ 42$					
LADIC C.110. LICOLUD ALL CAULUA OF LIGATION INCLUDENTIAL ALL ALLAR ALLA DI ALLAR A	2668 2676 3426 1044					
LADIC C.1.0. LICCULG IOI CAUCHAGU DOI Sub SECs UANs Trip UP LB CAUCHAGU DOI Sub SECs UANs Trip UP LB CPU RLB Sub SECs UANs Trip UP LB CPU RLB Sub SECs UANs Trip UP LB CD Sub SECs UANS Trip UP LB COLOCALICA IOL CAUCHAGU Sub SECS UANS Trip UP LB C Sub	4 0 0 0					
LADIC C.L.D. LICCULUD AD CACULACU Sub SECs UMs Thip UP LB Gap CPU 309 26 4 10 44.4 44.4 0.0 11.5 309 26 4 10 43.5 43.0 0.0 56.5 451 35 4 10 43.5 43.0 0.0 240.5 303 35 4 10 43.4 43.4 0.0 240.5 377 47 4 10 43.4 43.4 0.0 240.8 377 38 3 10 43.3 43.0 0.0 240.8 377 38 4 12 54.2 0.0 37.4 47.9 381 4 12 52.9 52.9 0.0 24.8 47.9 383 47 4 12 52.9 52.9 0.0 24.9 3815 07 41.1 67.7	91.4 93.8 90.1 97.0					
Sub SECs UMs Thip UP LB Gap 300 26 4 10 444 40.0 0 310 25 4 10 444 40.0 0 311 35 4 10 443 444 0.0 323 35 4 10 443 444 0.0 353 35 4 10 443 444 0.0 353 35 4 10 443 4.0 0.0 353 35 4 10 443 4.0 0.0 353 4 12 533 52.9 0.0 0.0 316 4 12 52.9 52.9 0.0 0.0 316 4 12 52.9 50.0 0.0 0.0 316 4 12 52.9 52.9 0.0 0.0 316 4 12 52.9<	$\begin{array}{c} 43200.0\\ 43200.0\\ 43200.0\\ 237.6\end{array}$					
LADIC OLLOP. LEGULOS LUX Sub SECs UMs Thip UP LB 309 26 4 10 444 444 430 36 4 10 444 444 2332 42 4 10 444 444 2332 45 4 10 435 433 434 2593 37 4 10 433 434 434 434 2579 47 10 434 </td <td>$13.6 \\ 10.4 \\ 1.1 \\ 0.0$</td>	$13.6 \\ 10.4 \\ 1.1 \\ 0.0$					
LADIC C.L.D. LCD. LCD. LCD. LCD. LCD. LCD. L	96.7 100.7 109.6 110.6					
Sub SECs UAVs Trip Sub SECs UAVs Trip 309 26 4 10 451 36 4 10 2332 42 4 10 268 35 4 10 2671 46 4 12 2673 37 4 12 2715 46 4 12 2716 46 4 12 2716 46 4 12 2716 46 4 12 2716 46 4 12 2716 46 4 12 2716 46 4 12 281 26 4 11 265 5 4 12 274 4 12 2 2076 55 5 15 2193 56 5 11 260 <	$\begin{array}{c} 111.9 \\ 1112.4 \\ 1110.8 \\ 1110.6 \end{array}$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8 8 1 1					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Sub SE Sub SE 309 252 309 253 309 253 451 365 453 355 353 375 365 37 375 37 385 593 385 593 385 593 385 443 371 385 373 385 385 443 386 467 387 388 481 41 774 456 571 485 383 447 712 565 383 47 384 47 1953 36 1953 36 1953 36 1953 37 1954 47 1953 47 1954 47 1955	0000					
$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & $	32 38 26 53 72 41 3 46					
201	22 14 80 80					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.9 0 7.2 1 5.4 0 8.3 0					
RLL RLL 5898 5898 5998 5898 5998 5898 5998 5898 5998 5898 5998 5898 5998 5898 5998 5898 5998 5998 5998	5 1490 1522 1490 1490					
CPU L14 6644 6644 6644 6644 6644 13321 13321 13321 13321 13321 13321 13321 13321 13426 15573 33554 6544 6504 13611 15573 33729 20112 20110	27642. 4719.6 43200. 1684.8					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.4 \\ 0.0 \end{array}$					
(603.1) (603.1	$\begin{array}{c} 1543.4 \\ 1551.1 \\ 1527.7 \\ 1527.7 \\ 1527.7 \end{array}$					
UP 0.1 0.03.1 603.1	$\begin{array}{c} 1543.5\\ 1551.2\\ 1533.6\\ 1527.7\end{array}$					
Imst 201 1mst 201 201 202 202 203 202 203 202 203 203 203 204 203 205 203 205 203 206 203 207 203 208 203 209 203 201 1203 1203 1210 1210 1210 1211 1210 12120 1210 1211 1211 12205 1210 12205 1210 12206 1210 12207 1203 12208 1203 12209 1203 12201 1203 12202 1203 12203 1203 12204 1203 12205 1203 12206 1203 1207 <td< td=""><td>rc205 rc206 rc207 rc208</td></td<>	rc205 rc206 rc207 rc208					
25 Cust 40						

Table C.15: Results for extended Solomon's instances of type 2

	Trip	1551135	$^{18}_{20}$	22 22 23 23 23 23 23 23 23 23 23 23 23 2	$^{14}_{16}$	$^{10}_{16}$	28 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22 23 23 23 25 25 25 26
	UAVs	වෙයයෙය	91-91-9	91-1-1-8	තලනාලන	210-100	∞c∞~-1∞	∞~1~1∞∞
	SECs	48448 48448	555555 564 595	55 55 56 56 56 56 56 56 56 56 56 56 56 5	82,854 82,854	43348	448884 8	26688
	Sub	$3485 \\ 1695 \\ 2637 \\ 4865 \\ 1495 \\ $	$5103 \\ 3204 \\ 4583 \\ 4185 \\ 4185$	5690 7054 4837 5617 4315	$\begin{array}{c} 2912\\ 3099\\ 3204\\ 1778\\ 2594\end{array}$	$\begin{array}{c} 3197\\ 2304\\ 3058\\ 5158\\ 4235\\ 4235\end{array}$	$\begin{array}{c} 2824\\ 2576\\ 2111\\ 2342\\ 3652\\ 3652 \end{array}$	$3907 \\ 4361 \\ 4128 \\ 4748 \\ 1800 \\ $
	Log	$^{1000}_{100}$	3530 ¹³	$^{461.34}$	$^{12}_{969158}$	$^{10}_{6}$	3-4514	023440
$(R + E)_{\epsilon}$	RLB	$\begin{array}{c} 11693.5\\ 12218.1\\ 12706.7\\ 13305.6\\ 12709.6\end{array}$	$\begin{array}{c} 14608.2\\ 16156.1\\ 13238.9\\ 15563.0\\ 14965.9\end{array}$	$\begin{array}{c} 13817.3\\ 13817.3\\ 18942.6\\ 17974.2\\ 15398.8\\ 15398.8\\ 17850.3\end{array}$	$\begin{array}{c} 13108.8\\ 16138.0\\ 16138.0\\ 13828.6\\ 16599.0\\ 15740.4\end{array}$	$\begin{array}{c} 16050.1\\ 16900.3\\ 17039.1\\ 17526.7\\ 12651.4\end{array}$	$\begin{array}{c} 17684.0\\ 18204.9\\ 19205.3\\ 16154.7\\ 22998.6\end{array}$	$\begin{array}{c} 23646.8\\ 20476.4\\ 18708.9\\ 19078.5\\ 22417.4\end{array}$
	CPU	$\begin{array}{c} 43200.0\\ 43200.0\\ 43200.0\\ 43200.0\\ 20446.6\end{array}$	$\begin{array}{c} 43200.0\\ 43200.1\\ 43200.0\\ 43200.0\\ 43200.0\end{array}$	$\begin{array}{c} 43200.0\\ 43200.0\\ 43200.0\\ 43200.0\\ 43200.0\end{array}$	$\begin{array}{c} 43200.0\\ 3397.5\\ 11645.0\\ 25076.3\\ 18041.8\end{array}$	$\begin{array}{c} 21628.1\\ 41897.4\\ 5495.7\\ 43200.0\\ 43200.0\end{array}$	$\begin{array}{c} 8093.6\\ 43200.0\\ 7452.0\\ 43200.0\\ 43200.0\end{array}$	$\begin{array}{c} 43200.0\\ 43200.0\\ 43200.0\\ 43200.0\\ 43200.0\end{array}$
	Gap	$ \begin{array}{c} 3.2 \\ 0.0 \\ 0.2 \\ 0.0 $	2.3 ± 0.6 2.3 ± 0.6 2.3 ± 0.6	2.3 2.5 2.3 2.3 2.3	0.0000	0.0 1.8 2.2 0.0 0.0 0.0 0.0	$\begin{array}{c} 0.0\\ 1.3\\ 1.0\\ 1.0\end{array}$	25.0 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7
	LB	$\begin{array}{c} 12104.5\\ 12663.3\\ 13106.4\\ 13838.5\\ 13285.7\\ 13285.7\end{array}$	$\begin{array}{c} 14931.9\\ 16787.9\\ 13648.1\\ 16229.3\\ 15264.1\\ 15264.1 \end{array}$	$\begin{array}{c} 14175.2\\ 19340.7\\ 18434.2\\ 15826.7\\ 15826.7\\ 18307.2\end{array}$	$\begin{array}{c} 13909.9\\ 17449.3\\ 14695.1\\ 17693.2\\ 16815.8\end{array}$	$\begin{array}{c} 17007.3\\ 17952.9\\ 18083.4\\ 18164.3\\ 13218.2\end{array}$	$\begin{array}{c} 18660.4\\ 19337.3\\ 20212.5\\ 16859.6\\ 24075.2\end{array}$	$\begin{array}{c} 24141.0\\ 21112.5\\ 19170.5\\ 19707.0\\ 23252.5\\ 23252.5\\ \end{array}$
	UP	$\begin{array}{c} 12510.2\\ 13025.5\\ 13236.1\\ 13286.2\\ 13286.7\\ 13286.7\end{array}$	$\begin{array}{c} 15546.0\\ 16887.0\\ 14183.7\\ 16292.1\\ 15625.8\\ 15625.8\end{array}$	14760.2 19747.2 18899.1 16341.1 18736.6	$\begin{array}{c} 14287.9\\ 17450.5\\ 14696.5\\ 17694.9\\ 16817.4\end{array}$	$17008.8\\17954.7\\18085.0\\18565.5\\13886.7$	$\begin{array}{c} 18662.0\\ 19596.7\\ 20214.0\\ 17322.9\\ 24318.9\end{array}$	$\begin{array}{c} 24723.8\\ 21947.0\\ 19707.0\\ 19849.8\\ 23729.1\end{array}$
	Trip	15 15 15 13	12 18 19 19 19 19 19 19 19 19 19 19 19 19 19	82222	15 20 18 18 16	20 21 20 17	2692324 2692325	82238
	UAVs	ංශයෙය	91-91-9	91-1-1-8	හමනමන	ග අග අග හ	∞c∞~1∞	x-1-1 x x
	SECs	883383	$^{40}_{59332}$	$^{32}_{42}$	34 34 34 34 34 34 34 34 34 34 34 34 34 3	$^{35}_{2577755}$	50338850 20338820	8233047 8233047
	Sub	$2734 \\ 3748 \\ 3273 \\ 4282 \\ 2687 \\ $	$5416 \\ 3824 \\ 4500 \\ 5721 \\ 4015$	$\begin{array}{c} 8605\\ 7610\\ 8810\\ 8422\\ 6849\\ 6849\end{array}$	$\begin{array}{c} 4738\\ 2471\\ 2328\\ 2774\\ 2774\\ 2742\end{array}$	$\begin{array}{c} 1930\\ 3376\\ 1955\\ 3392\\ 3425\\ 3425 \end{array}$	$\begin{array}{c} 2044 \\ 4237 \\ 3513 \\ 4761 \\ 4321 \end{array}$	5118 5673 5673 4313 2372 3312
	Log	$^{4}_{19}$	314 314 314	$^{14}_{29}$	$^{0}_{0}$	$^{10}_{170}$	36514	× 20 50
E_e	RLB	$\begin{array}{c} 691.9\\ 735.6\\ 762.9\\ 808.6\\ 752.6\\ 752.6\end{array}$	$\begin{array}{c} 899.9\\ 1036.8\\ 759.8\\ 984.3\\ 996.1\end{array}$	$\begin{array}{c} 840.5\\ 1203.8\\ 1053.9\\ 928.9\\ 1116.2\end{array}$	$\begin{array}{c} 804.1\\ 986.1\\ 822.4\\ 997.3\\ 946.2\end{array}$	$\begin{array}{c} 982.1\\ 1010.3\\ 1023.7\\ 1111.1\\ 763.2 \end{array}$	$\begin{array}{c} 1076.3 \\ 1085.5 \\ 1169.6 \\ 979.6 \\ 1403.6 \end{array}$	$\begin{array}{c} 1513.3\\ 1271.5\\ 1149.9\\ 1128.8\\ 1128.8\\ 1454.6\\ \end{array}$
	CPU	$\begin{array}{c} 43200.0\\ 43200.0\\ 21866.9\\ 36895.7\\ 15121.7\end{array}$	$\begin{array}{c} 43200.0\\ 43200.0\\ 43200.0\\ 23208.1\\ 43200.0\end{array}$	$\begin{array}{c} 43200.0\\ 43200.0\\ 43200.0\\ 43200.0\\ 43200.0\end{array}$	$\begin{array}{c} 31873.4\\ 18306.0\\ 43200.0\\ 38648.4\\ 42292.8\end{array}$	$\begin{array}{c} 6219.5\\ 43200.0\\ 30554.3\\ 7308.4\\ 43200.0\end{array}$	${}^{1802.5}_{43200.0}_{43200.0}_{43200.0}_{43200.0}_{43200.0}$	$\begin{array}{c} 43200.0\\ 43200.0\\ 43200.0\\ 43200.1\\ 43200.1\\ 43200.1\end{array}$
	Gap	$^{+4.6}_{-0.0}$	$^{2.9}_{0.0}$	$^{3.6}_{1.8}$	0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 6.4\end{array}$	$\begin{array}{c} 0.0\\ 1.3\\ 2.1\\ 2.1\\ 2.1\end{array}$	0.7 3.3 3.3 1.6
	ΓB	807.7 848.5 889.4 941.6 894.4	$1019.4 \\ 1133.8 \\ 915.4 \\ 1098.9 \\ 1042.4 \\ 10$	$\begin{array}{c} 955.6\\ 1307.2\\ 1236.2\\ 1055.9\\ 1232.0\end{array}$	$941.8 \\ 1158.4 \\ 954.6 \\ 1171.3 \\ 1108.7 \\ 110$	$1131.7 \\1172.6 \\1202.3 \\1233.4 \\861.2 \\861.2$	1242.9 1271.8 1326.3 1121.5 1583.3	1637.1 1429.1 1249.7 1266.1 1553.6
	UP	846.2 880.0 889.5 941.7 894.5	$\begin{array}{c} 1050.1\\ 1144.1\\ 960.9\\ 1099.0\\ 1056.1\end{array}$	$\begin{array}{c} 991.7 \\ 1343.0 \\ 1284.5 \\ 1104.8 \\ 1104.8 \\ 1254.4 \end{array}$	$\begin{array}{c} 941.9\\11158.5\\982.4\\1171.3\\1108.8\end{array}$	$\begin{array}{c} 1131.8\\ 1189.6\\ 1202.4\\ 1233.5\\ 920.0\\ \end{array}$	$\begin{array}{c} 1242.9\\ 1288.6\\ 1355.5\\ 1142.6\\ 1617.5\end{array}$	$\begin{array}{c} 1649.2 \\ 1461.9 \\ 1304.5 \\ 1309.1 \\ 1578.2 \end{array}$
	Trip	13 15 15 13	$^{18}_{20}$	$^{18}_{21}$	$^{14}_{16}$	$^{19}_{15}$	$^{23333}_{26}$	2230428 2330478
	UAVs	තතතත	94949	91-1-1-8	තලනාලන	ග අග අග හ	∞c∞~1∞	x-1-10x 0x
	SECs	54 37 37 48 37 48	$^{58}_{46}$	$64 \\ 65 \\ 65 \\ 65 \\ 65 \\ 65 \\ 65 \\ 65 \\ $	$^{+45}_{-45}$	47 36 50 41	50 57 57 57	43 44 44 43
	Sub	5471 3031 2866 3409 3409 1144	$1916 \\ 1370 \\ 3905 \\ 3179 \\ 2293 \\ $	$\begin{array}{c} 3065 \\ 1753 \\ 1768 \\ 3801 \\ 2274 \end{array}$	$ \begin{array}{c} 1607 \\ 759 \\ 1814 \\ 1233 \\ 1676 \\ 1676 \end{array} $	813 1167 1854 1771 3308	$\begin{array}{c} 2285\\ 1752\\ 1878\\ 1878\\ 3575\\ 1321\\ 1321 \end{array}$	3932 3064 3278 1269 1607
	Log	0511912	0 16 16	7 3 11 4 12 12	8 9 4 5 11 8 8 9 4 5 11	8 2 9 4 19 19	21.00	111 110 110
R_{e}	RLB	10962.9 11495.7 11955.2 12528.6	$\begin{array}{c} 13792.5\\ 15181.1\\ 12415.0\\ 14560.9\\ 14075.2\end{array}$	12999.7 17692.1 16809.4 14429.8 16781.1	$\begin{array}{c} 12340.2 \\ 15114.2 \\ 13091.3 \\ 15590.8 \\ 14796.8 \end{array}$	15050.8 15858.9 16156.7 11903.8	16659.3 17418.6 18056.7 15187.7 21613.6	22117.4 19248.1 17595.0 17778.0 20922.1
	CPU	43200.0 43200.0 20642.0 30214.8 29126.0	43200.0 13947.5 43200.1 43200.0 43200.0	43200.0 43200.0 43200.0 43200.0 43200.0	$\begin{array}{c} 43200.0\\ 1755.4\\ 8732.7\\ 9765.1\\ 9491.5\end{array}$	$\begin{array}{c} 32162.3\\ 43200.0\\ 3298.6\\ 43200.0\\ 43200.0\\ \end{array}$	$\begin{array}{c} 6142.2 \\ 41018.0 \\ 43200.0 \\ 43200.0 \\ 37956.5 \end{array}$	43200.0 43200.0 43200.0 43200.0 43200.0
	Gar	0.00 0.00 0.00 0.00 0.00 0.00 0.00	3.4 0.0 0.7 0.7	7 2:22 3.0 1.9 1.9	0.00000	2010 2010 2010 2010	0.0000	23.9 23.8 1.3 23.9 23.9 23.9 23.9 23.9 23.9 23.9 23
	LB	11237.1 11927.0 12345.5 12924.1 12383.5	14055. 15740.5 12735.5 15122.6 14448.5	$\begin{array}{c} 13245.\\ 18026.8\\ 17283.6\\ 14767.5\\ 17126.7\end{array}$	$\begin{array}{c} 13000.\\ 16285.\\ 13707.6\\ 13707.6\\ 16510.1\\ 15704.8\end{array}$	15865.0 16563.3 16866.9 16959.0 12333.8	17393.1 18298.0 18627.5 15830.5 22693.7	22630. 19945.(17942.(18293.1 21761.3
	UP	$\begin{array}{c} 11719.2 \\ 12145.5 \\ 12346.4 \\ 12925.3 \\ 12384.3 \\ 12384.3 \end{array}$	$\begin{array}{c} 14546.6\\ 15741.8\\ 13230.2\\ 15189.5\\ 14554.9\end{array}$	$\begin{array}{c} 13832.5\\ 18423.5\\ 17548.7\\ 17548.7\\ 15231.5\\ 17467.0\end{array}$	$\begin{array}{c} 13338.1\\ 16285.8\\ 13709.3\\ 15709.3\\ 15706.0\end{array}$	$\begin{array}{c} 15866.1\\ 16751.9\\ 16867.9\\ 17327.7\\ 12989.9\end{array}$	$\begin{array}{c} 17395.5\\ 18299.8\\ 18854.9\\ 16156.7\\ 22695.8\end{array}$	23045.5 20734.0 18482.6 18537.6 22160.8
	Inst	10040	0.400	0.400	0.400	10040	10.040	-0040
	Cust	35	40	45	35	40	45	50
			\mathbf{A}_1			A_2		