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Abstract

Drone delivery is known as a potential contributor in improving efficiency and alleviating last-mile
delivery problems. For this reason, drone routing and scheduling has become a highly active area
of research in recent years. Unlike the vehicle routing problem, however, designing drones’ routes
is challenging due to multiple operational characteristics including multi-trip operations, recharge
planning, and energy consumption calculation. To fill some important gaps in the literature, this
paper solves a multi-trip drone routing problem, where drones’ energy consumption is modeled as a
nonlinear function of payload and travel distance. We propose adding logical cuts and subgradient
cuts in the solution process to tackle the more complex nonlinear (convex) energy function, instead
of using the linear approximation method as in the literature, which can fail to detect infeasible
routes due to excess energy consumption. We use a 2-index formulation to model the problem and
develop a branch-and-cut algorithm for the formulation. Benchmark instances are first generated
for this problem. Numerical tests indicate that even though the original model is nonlinear, the
proposed approach can solve large problems to optimality. In addition, in multiple instances,
the linear approximation model yields routes that under the nonlinear energy model would be
energy infeasible. Use of a linear approximation for drone energy leads to differences in energy

consumption of about 9% on average compared to the nonlinear energy model.
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1. Introduction

In recent years, unmanned aerial vehicles (UAVs) or drones have attracted people’s attention,

especially since 2013 when Amazon announced their Prime Air UAV (Rose|2013)). Other companies,
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like DHL, Google, and Alibaba also began developing their own drones, because they believe
drones have the potential to reduce cost and waiting time for last-mile delivery. The development
of technology has made this idea possible. For example, carbon fiber manufacturing costs have
decreased dramatically during the past few years, which enable stronger and lighter air frames
(Morgan |2005)); lithium polymer batteries with high energy density are also now available, which
help extend drones’ flight range (Reddy|2010)). Different companies have designed different drone
models, notably, the multirotor drones used by UPS and DHL, and the hybrid drones developed
by Amazon and Alphabet. Being similar to the multirotor helicopters, multirotor drones are lifted
and propelled by rotors. Hybrid drones can take off and land vertically (like helicopters), but use
wing or wing-like surfaces to generate lift. Meanwhile they can also perform horizontal maneuvers
like airplanes. On October 18, 2019, Alphabet’s drone unit Wing launched the first commercial
drone delivery flight in the United States (Doherty|2019).

Compared to trucks, drones have some specific advantages: (i) They can save labor, because
no drivers (or pilots) are needed. (ii) They can often travel faster than trucks. (iii) They are not
restricted to road networks (Agatz et al.[2018). These merits enable logistics companies and on-line
stores to use drones for rapid parcel delivery. Humanitarian organizations are also considering using
drones in disaster scenarios. For example, in the immediate aftermath of a disaster, drones can
provide support with risk assessment, mapping, and temporary communication network creation
(Chowdhury et al.[2017)). In situations where the transportation network is severely compromised
by natural disasters, drones can deliver emergency supplies to affected regions. In addition, by
taking traffic off the roads, drone might reduce negative implications on congestion, safety, and
the environment (Heutger and Kiickelhaus|2014).

On the other hand, some unique characteristics of drones have presented new operational chal-
lenges. Limited battery capacity influences a drone’s flight duration, which can also be affected by
payload, speed, and weather conditions (Dorling et al.[2017). Therefore, how should we represent
the relationship between battery energy consumption and various factors which affect it? How to
route drones so that they can safely return after visiting designated sites? Furthermore, drones’

payload is also limited, which means that a drone can only visit a small number of customers



during a trip. Thus, how should we schedule drones to serve more demands to maximize their use?

In this paper, we use the term drone routing problem (DRP) to refer to the problem where
a fleet of drones visit a set of customer locations and each drone can visit multiple customers
in a trip. In this case, drones can only be dispatched once from the depot. When drones can
perform multiple trips (each trip starts and ends at the depot), this problem is referred to as
the multi-trip drone routing problem (MTDRP). Existing research on drone operations normally
assumes that drone flight duration is limited by a fixed amount of distance or time. However, flight
duration is actually influenced by several factors such as battery energy capacity, battery weight,
and payload. In addition, no benchmark instances and efficient exact algorithms are available for
the DRP, which poses a limitation on algorithm evaluation. To fill some gaps in this area, this
paper solves a MTDRP with time windows, where a fleet of homogeneous multirotor drones are
dispatched to deliver packages to customers within stipulated time slots. The main contribution
of this paper is to incorporate a nonlinear model of drone energy consumption that depends on
payload and travel distance. We use a 2-index formulation to model the problem and develop a
branch-and-cut algorithm to solve it. We also generate several benchmark instance sets, which are
available to the research community.

The rest of this paper is organized as follows. Section [2] reviews related literature and states
the contributions of our work. Section [3| describes our problem, presents the mathematical model,
and introduces valid inequalities to strengthen it. Section [4] presents techniques for the calculation
of energy consumption and provides details of our exact algorithm. Numerical tests and analyses

are presented in Section [5} This is followed by the conclusions in Section [6]

2. Literature Review

This section reviews related literature on the drone delivery problem and the multi-trip vehicle
routing problem. A summary of the papers on the drone delivery problem is given in Table[I] For

more details about drones’ civil applications, see the review paper by |Otto et al.| (2018).



2.1. Drone Delivery Problem

We divide literature on drone delivery problems reviewed here into two categories: drone-only
problems and truck-drone problems. For the former, only drones are used in the delivery system.
For the latter, both trucks (one or multiple) and drones are used simultaneously. A truck can
be used either as a tool to carry drones (i.e., the truck does not have delivery tasks) or for both
delivery tasks and as a temporary hub to launch/retrieve drones. Trucks and drones can also work
in parallel making deliveries.

Drone-only problems. Studies on drone-only delivery systems normally assume that there
are multiple drones and that each drone can cover one or several customers per trip. |Choi and
Schonfeld (2017) study an automated drone delivery system, where all customers’ demands are
the same. They use the relationship among battery capacity, payload, and flight range to optimize
the drone fleet size. San et al. (2016)) describe the implementation steps used to assign a fleet of
heterogeneous UAVs to deliver items to target locations. Each order placed by a customer can
include one or multiple items. Because of drones’ limited payload, one order may not be completely
fulfilled in one trip; thus, multiple deliveries might be required. They use a genetic algorithm to
solve the problem, where a multi-dimensional chromosome representation is introduced. |Dorling
et al. (2017) propose two vehicle routing problem (VRP) variants for drone delivery. The first one
minimizes the total operating cost subject to a delivery time limit, and the second one optimizes
delivery time subject to a budget constraint. The costs include drone fleet cost and energy cost.
Instead of dealing directly with the original form of the power function, which is nonlinear, they
use a linear approximation function to calculate the power consumption which varies linearly with
payload and battery weight. To save cost, each drone can perform multiple trips and visit multiple
customers per trip. They use a simulated annealing (SA) heuristic to solve the models. [Troudi
et al. (2018) study a drone delivery problem with time windows and a trip duration limit. They
minimize three different objectives: travel distance, the number of drones used, and the number of
batteries required. When imposing the linear energy constraints, the battery capacity is reserved
at 20% to be a buffer for unusual conditions.

Some works study the impacts of drone delivery on costs and carbon dioxide (CO;) emissions.



D’Andreal (2014) analyze the feasibility of using drones for package delivery in terms of energy
requirement and economics. They approximate power consumption as a linear function of payload
and velocity. Figliozzi (2017)) assess the potential of drones in reducing CO, emissions generated
by the electricity supply chain and provide a comparison of this system with delivery using diesel
vehicles and electric trucks/tricycles. They also consider the emissions from the vehicle production
and disposal phases. [Stolaroff et al.| (2018) use the same battery reservation policy as in|Troudi et al.
(2018) when studying the energy use and environmental impacts of drones for last-mile delivery
in comparison with medium-duty trucks. Their power function for hovering takes a similar form
as that in Dorling et al.| (2017).

There are also studies focusing on drone energy models, where drones’ flying status are con-
sidered. |Liu et al. (2017)) derive a theoretical model to calculate the multirotor drone’s power
consumption. They identify the model’s parameters by performing field tests. In their experi-
ments, they consider different drone statuses in a flight path: ascend/descend, hover, and straight
line fight. Kirschstein| (2020) compare the energy demands of drone-based and ground-based (diesel
trucks and electric trucks) parcel delivery services. Factors like drone weight, speed, head wind
speed, and other drone parameters are taken into account for energy calculation. [Zhang et al.
(2020) review energy consumption models for drone delivery. They identify key factors that af-
fect drone energy consumption and discuss similarities and differences among various models. For
cruising flight, drone power consumption can be modeled as a convex function of a drone’s total
weight (e.g., Liu et al. (2017)); Stolaroff et al.| (2018); |Kirschstein| (2020)), while for hovering it is
proportional to the weight to the power 1.5 (Dorling et al.|2017)).

Truck-drone problems. The truck-drone tandem system is the most intensively studied
area in drone delivery problems. Most papers in this area assume that during each trip a drone
can visit only one customer. Murray and Chu (2015)) consider two types of truck-drone delivery
problems. The first is the flying sidekick traveling salesman problem (FSTSP), where one truck
carries one drone to deliver parcels to a set of customers. As the driver performs deliveries, the
UAV is launched from the truck, delivering a parcel for an individual customer, then the truck and

the drone rendezvous at a new customer location. The second problem in |Murray and Chul (2015)



is the parallel drone scheduling traveling salesman problem (PDSTSP), where multiple drones
make single-stop delivery trips from the depot while a single truck serves other customers without
carrying any drone. The objective of both problems is to minimize the time required to service all
customers and return to the depot. Simple heuristics are used to solve both problems. Ponza|(2016)
uses a SA heuristic to solve the FSTSP. |Agatz et al.| (2018]) use a route first-cluster second heuristic
to solve a variant of the FSTSP where the truck can wait at the start node for the drone to return.
Bouman et al. (2018) and [Poikonen et al.| (2019)) use a dynamic programming (DP) approach and
a branch-and-bound (B&B) algorithm for the same variant, respectively. |Marinelli et al.| (2017)
extend the FSTSP by allowing the launch and rendezvous operations to be performed not only at a
node, but also along a route arc. A greedy randomized adaptive search procedure is developed for
the problem. |Jeong et al.| (2019) extend the FSTSP by considering energy consumption and no-fly
zones. The authors use the power consumption linear approximation from Dorling et al.| (2017) and
propose an evolutionary-based heuristic solution algorithm that integrates constructive and search
heuristics. Moshref-Javadi and Lee (2017) use a truck-drone tandem system to minimize latency
in a customer-oriented distribution system. They compare the benefits of using drones for a single
trip versus multiple trips. Ham| (2018) extends the PDSTSP by assuming that drones can perform
two types of tasks: drop-off and pickup. A constraint programming method is applied. [Ulmer
and Thomas| (2018) study a same-day delivery problem with trucks and drones, where customer
orders come dynamically during a shift. The authors present a Markov decision model and an
approximate DP algorithm to solve the problem.

Some studies consider multiple trucks where each is equipped with one or multiple drones.
Wang et al. (2017) and [Poikonen et al.| (2017)) consider a fleet of homogeneous trucks with multiple
drones per truck. Their objective is to minimize the maximum duration of the routes, and they
focus on the worst-case analysis. [Pugliese and Guerriero| (2017) extend the problem by considering
time window constraints. [Wang and Sheu| (2019)) allow docking hubs where trucks can drop off, and
drones can pick up, parcels for delivery maintain backup drones. They present an arc-based model
and develop a branch-and-price (B&P) algorithm. Raj and Murray| (2020)) study the multiple

FSTSP with variable drone speeds. They assume that drone power consumption is a function of



Table 1: Summary of papers on drone delivery problem

Problem
Authors # truck  # drone # cust/trip  multi-trip  energy function  Solution method
Choi and Schonfeld|(2017] N/A multiple multiple Mathematical analysis
R N/A multiple 1 Vv Genetic algorithm
N/A multiple multiple Vv v Simulated annealing heuristic
. N/A multiple multiple Vv Vv Mixed-integer linear programming
1 1 1 TSP route and re-assign heuristic
' 1 multiple 1 \\? Partition and re-assign heuristic
1 1 1 4 Simulated annealing heuristic
1 1 1 4 Route first-cluster second
1 1 1 Vv Dynamic programming
1 1 1 v Branch-and-bound
Marinelli et al. 1 1 1 v Greedy randomized adaptive search procedure
Jeong et al.|(2019] 1 1 1 4 4 Evolutionary-based heuristic
1 multiple 1 Vv Mixed-integer linear programming
multiple  multiple multiple 4 Constraint programming, variable ordering heuristics
multiple  multiple 1 Vv Approximate dynamic programming
multiple  multiple 1 Vv Worst-case analysis
multiple  multiple 1 4 Worst-case analysis
W multiple  multiple 1 Vv Mixed-integer linear programming
multiple  multiple multiple 4 Branch-and-price
1 multiple 1 Vv Vv Three-phased iterative heuristic
1 1 1 4 Reduce to TSP, then use TSP solver
1 1 multiple v TSP route and split; route and re-assign
1 1 1 Vv Continuous approximation model
1 1/multiple 1 4 Continuous approximation model
This paper N/A multiple multiple Vv v Branch-and-cut

# cust/trip: number of customers per drone trip. N/A: trucks are not used in the system.

speed and payload, which affects flight endurance and range.

Sometimes the truck is only used for carrying drones and packages without making any de-

liveries itself (Mathew et al.|2015; Luo et al.|2017). Carlsson and Song (2017) use continuous

approximation techniques to derive the improvement of service quality (i.e., the completion time

of all deliveries) by using a truck-drone system. Unlike other studies, they do not restrict the

drone launch /retrieval locations to be customer sites. (Campbell et al.| (2017) also use a continuous

approximation approach to derive general insights from the aspect of cost.

In the aforementioned literature, we find that only a few papers explicitly consider energy
constraints, and many use an approximation that is linear in the payload. In addition, to the best
of our knowledge, no benchmark instance is available for algorithm evaluation, and no efficient

exact algorithm has been developed for the DRP.

2.2. Multi-trip Vehicle Routing Problem

The multi-trip vehicle routing problem (MTVRP) extends the classical VRP by allowing each

truck to perform multiple trips. Fleischmann| (1990) is the first to study this problem. The author

develops a modification of the saving algorithm and uses a bin packing heuristic to assign routes

to vehicles. Mingozzi et al| (2013) develop two set-partitioning-like formulations for the MTVRP.




Azi (2011)) develops a B&P algorithm for the MTVRP with time windows (MTVRPTW). Their
numerical tests focus on the type 2 instance sets in [Solomon| (1987)). Macedo et al.| (2011)) propose
a network flow model based on generated trips for the same problem. Hernandez et al. (2014)
develop an exact two-phase algorithm. In the first phase, they enumerate all feasible trips; in
the second phase, they use a B&P algorithm to select the best set of schedules. |Azi et al.| (2014))
and Wang et al| (2014)) develop an adaptive large neighborhood search and a route pool-based
metaheuristic for the same problem, respectively. |Hernandez et al. (2016]) develop two set covering
formulations for the MTVRPTW without the trip duration constraint and use B&P algorithms.
They compare the two models on instances with the first 25 customers of Solomon’s “C2”, “R2”,
and “RC2” instances.

In the review paper by |Cattaruzza et al. (2016)), they suggest that there are four ways to
formulate the MTVRP. The first one is the 4-index formulation, which uses both the vehicle index
and the trip index. Specifically, a binary variable 277 is defined to denote whether trip r of vehicle

v travels through arc (7, j). The second and the third ones are the 3-index formulations with either

v
ij

a trip index, or with a vehicle index, respectively. That is, a variable z7; (x¥.) is used to denote
whether trip r (vehicle v) travels through arc (4,j). And the last one is the 2-index formulation
using a variable z;;, i.e., neither a vehicle nor a trip index is used. For the 3-index formulation
with a trip index, since the number of trips performed by each vehicle is unknown, one has to set
a sufficiently large cardinality for the trip set, resulting in a weak model with a large number of
variables. Or, we can impose an upper bound on the maximal number of trips each vehicle can
perform. For the 3-index formulation with a vehicle index, symmetries resulting from identical
vehicles are introduced to the model, which make the formulation weak. Cattaruzza et al.| (2016)
indicate that the only compact formulation for the MTVRP is proposed by [Karaoglan| (2015)),
where a 2-index formulation is applied. |[Rivera et al. (2013) also use a 2-index formulation for
a multi-trip cumulative capacitated VRP, where the objective is to minimize the sum of arrival
times at required nodes. For our problem, as there is no limit on the number of trips that each

drone can perform, we do not consider the formulation with a trip index. Further, our preliminary

tests also indicate that the 3-index formulation with a drone index provides worse results than the



2-index formulation. Therefore, in Section [3.2] we present a 2-index formulation for our MTDRP.

2.3. Our Contributions

The contributions of our study are fourfold. First, we explicitly represent drone’s energy
consumption as a nonlinear function of payload and travel time, instead of assuming that flight
range (maximum distance or time) is a fixed number. To tackle the nonlinear energy function,
instead of relying on a linear approximation (e.g., as in Dorling et al.| (2017))), we propose adding two
types of cuts in the solution process. Our results show that using a linear energy approximation can
lead to routes that are energy infeasible under the nonlinear energy consumption model. Second,
a 2-index formulation scheme is presented, which is solved by a branch-and-cut (B&C) algorithm.
To the best of our knowledge, this paper is the first to formulate a MTDRP and use an exact
algorithm for drone routing problems. Third, we generate several benchmark instance sets based
on the realistic parameters and known instance sets in the literature, which will be available to the
research community and allow for a better comparison of algorithms. Fourth, we provide extensive

computational results of the formulation and the algorithm.

3. Formulation

This section presents the problem, constructs the mathematical model, and introduces valid

inequalities to strengthen the model.

3.1. Problem Definition

The problem is defined on a directed graph G' = (N, A), where N = {0,...,n+ 1} is the set of
nodes. Node 0 represents the starting depot, and node n + 1 is a copy of node 0 and it represents
the returning depot. N’ = {1,...,n} is the set of customers. For notational convenience, we
denote N* = {0,...,n} and N~ ={1,...,n+1}. A={(,j):i€{0},j€ N andi e N',j €
N~,i # j} is the set of arcs. Sets 07 (i) and 0% (i) represent node i’s predecessor and successor
nodes, respectively.

Each customer is associated with a non-negative demand d;, and a hard time window [a;, b;].

For the depots, [ag,bo] = [@nt1,bnt1], Where ag and by are the earliest possible departure time



and the latest possible arrival time, respectively. A fleet of K homogeneous multirotor drones are
based at the depot. @) is the maximum payload of a drone and we assume that d; < Q,Vi € N'.
Each drone can perform several trips and during a trip it can visit several customers. Drone speed
is assumed to be a constant number, and with each arc (7, ) is associated a travel time ¢;; and
a travel cost ¢;;. Further, it is assumed that the triangle inequality is satisfied for t,;. Without
loss of generality, here we assume the service time at each customer is 0, because we can set ¢;;
to be the sum of travel time on arc (,7) and the service time at node i. We consider multirotor
drones in the study as these have been often used in drone delivery analyses and we use data from
Dorling et al.| (2017)). Hybrid drones may have different performance characteristics and require a
different energy model.

The problem consists in designing a set of drone routes, such that the objective function is
optimized and the following constraints are satisfied: (1) Each route starts at depot 0 and ends at
depot n+ 1. (2) Every customer is visited exactly once. (3) The sum of duration of trips assigned
to the same drone does not exceed b, 1. (4) The drone weight capacity constraint, battery energy

constraint, and customers’ time windows must be respected.

3.2. Mathematical Model

Decision variables. There are two sets of binary variables: x;; = 1 if arc (7, j) is traversed
by a drone, 0 otherwise. z;; = 1 if a trip finishing with customer 7 is followed by another trip
visiting j as the first customer (performed by the same drone), 0 otherwise. There are four sets
of continuous variables: ¢;; is the product weight carried through arc (¢, j) (kg). 7; is the start of
service time at node i € N~ (second). f; is the accumulated energy consumption of a drone upon
arrival at node i (kWh). e;; is the energy consumption on arc (4, j) (kWh).

Constraints. We organize the constraints into five groups:

(i) Route feasibility:

10



Z Toj = Z Ljn+1- (3)

j€ST(0) j€I— (n+1)

Constraints and guarantee that each customer is visited exactly once. Constraints
indicate that the number of trips leaving the starting depot is equal to the number arriving at the
ending depot.

(ii) Weight related constraints:

Z Qij — Z ¢ji = d; Vjie N, (4)

i€~ (4) €67 (5)
qij S Qxi]’ V(Z,]) € Aa (5)
Gin+1 =0 Vie N (6)

Equations impose that each customer’s demand must be satisfied, and also eliminate subtours.
Constraints guarantee that drone weight capacity is respected. Equations @ indicate that
drones cannot carry any product from a customer to the ending depot.

(iii) Drone energy constraints:

We only consider drones’ energy consumption during level flight in this study. |Dorling et al.
(2017)) suggest that the average power during hover is an upper bound on the average power during
flight. Since there are not available field tests of small drones making multiple deliveries or of actual
delivery drones in production mode, in this study, we use the theoretical power consumption during
hovering to approximate the horizontal power consumption for a delivery drone making multiple-
stop trips. |Leishman| (2006) describes the energy consumption, P(q), of a single rotor helicopter
in hover as a convex function of payload ¢q. Based on the assumption that each rotor shares the

total weight of a drone equally, |Dorling et al.| (2017 derive the power consumption equation for a

s | g3
Play) = W +m + a5 ©

where W is the frame weight (kg), m is the battery weight (kg), ¢;; is the payload (kg), g is the

h-rotor drone as

force due to gravity (), p is the fluid density of air (kg/m?), ¢ is the area of spinning blade disc

(m?), h is the number of rotors, and the unit of P is Watt. In the experiments of Liu et al. (2017),

3
2

the power consumption in hover also takes a similar form, i.e., P(g;j) = ¢,[(W +m+¢;;)g]2, where

11
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Figure 1: Energy calculation from linear and nonlinear functions (Figure 1 in [Dorling et al.| (2017))

¢p is a parameter. We rewrite Equation as
3

where k depends on the details of the drone and the environmental parameters and it is a constant
in our model. Based on field tests, Dorling et al.|(2017]) propose to approximate power consumption

P(qij) = a(lm + qi;) + B, (9)

where a(kW/kg) and S(kW) are two constant numbers obtained by a linear approximation.

As shown in Figure [T, when the sum of the battery weight and payload is smaller than A, the
linear approximation function overestimates the energy consumption from the nonlinear model,
and therefore drone routes calculated with the linear approximation will be “energy feasible” if
the nonlinear model is used to calculate energy consumption. However, when the battery and
payload weight is larger than A, then the linear approximation function underestimates the en-
ergy consumption from the nonlinear model. In this case, drone routes calculated with the linear
approximation may be “energy infeasible” (i.e., exceed the battery’s energy capacity) if the non-
linear model is used to calculate energy consumption. We use Equation to compute power

consumption in this study, and drones’ energy consumption constraints are written as

fO :()7 (1())

12



Fi+ KW +m+ )7ty < My(1— i) + f; ¥(i,5) € A, (11)
for1 <o (12)

Equations indicate that at the beginning of each trip the accumulated energy consumption
is 0, that is, every time a drone begins a new trip we swap it with a fully charged battery. This
assumption is common in the literature (Murray and Chu|2015;|Chowdhury et al.|2017; Ham/[2018)).
Equations (11)) establish the energy relationship between node i and its immediate successor j,
where k" is a constant that includes k from earlier and the conversion from Watt-second to kWh
and M;; is an arbitrary large constant. We can observe that, when z;; = 0, according to Equations
, ¢;; also equals 0, then we can set M;; = k:’(W—I—m)%tij +0 (o is the battery energy available for
a drone trip (kWh)). When z;; = 1, the second term of the left-hand side of Equations is the
energy consumption on arc (7, j). Constraints mean that battery’s energy capacity constraint
must be respected. Since constraints are nonlinear, the model cannot be solved directly by a
mixed-integer linear programming (MILP) solver. In Section [4.1} we introduce different types of
cuts to tackle this group of constraints implicitly.

We also give the linear approximation version of constraints :
fi 4 la(m + qiz) + Blti; /3600 < My (1 —xi5) + f;  Y(i,4) € A, (13)

where Mj; = (am + B)t;;/3600 + 0. In numerical tests, we will compare the difference in solution
construction when using these two versions of the energy expressions.

(iv) Time and trip related constraints:

"

Tl—i_tlj_Ml](l_xl]) STJ’ VZ'EN/,jENi, (14)
a; STleZ V?JENi, (15)
Tt (tinsr +10)) S 75+ (L= 2y)My] Vi, j € N'i (16)
Z Zij S Toj \V/] < N/, (17>
iEN’
i#]
Z Zij < Xjpgl Vie N, (18)
JEN'
J#

13



Zxoj—ZZzing. (19)

JEN' €N’ jEN'

J#i
Constraints establish the time relationship between customer ¢ and its immediate successor
j. We set the large constants MZ'; = max{b; + t;; — a;,0} (Desaulniers et al.[2014). Constraints
denote that the time window constraint must be respected. Here we impose the time window
constraint instead of the deadline constraint, because the latter is a special case of the former with
a; = 0,Vi € N. This model fits best when drones land at customer sites for delivery, as we assume
that drones can wait at customer locations until the opening of the time window and the energy
consumption during this period is negligible. Note that in the case where the energy consumption
during that period must be taken into account (e.g., in case when drones are equipped with
cameras and sensors on to actively detect dangerous situations such as package or drone theft, or
for a hovering while waiting), we can also incorporate the energy consumption of performing these
activities in our model and our solution scheme can still be directly used. The detailed description
on the modifications is presented in Equations establish the time relationship
between consecutive trips performed by the same drone, where MZ/;/ = tint+1 + toj + b;. These
constraints take into account the time to return to the depot and replace the battery. Constraints
(L7)—(18) connect variables x and z (Karaoglan/2015). Constraints limit the number of drones

that can be used in the system.

(v) Variable domains:

z;; € {0,1}, gij,ei; >0 V(i,j) € A, (20)
fi>0 VieN, (21)
>0 VieN, (22)
zi; € {0,1} Vi,j € N'. (23)

Objective function. We consider the applications of logistics companies who use drones
for last-mile delivery, in order to reduce an overall transportation cost. Therefore, we consider a

general form of the objective function which also incorporates the energy consumption

min Z (c,-jxij + (561']'), (24)
(i,5)€eA

14



where ¢ is the battery-related cost ($/kW h) which includes the cost of electricity and the amorti-
zation of lithium-ion battery. We will show how variables e;;, V(i,j) € A are incorporated in the
constraints and linked to variables f; and f; in following sections. Note that the energy cost could
be negligible in realistic applications, and we add it here for two reasons: First, to keep consistent
with some existing works, which also include the energy cost in the objective function to incorpo-
rate the depreciation and operating cost of battery as a function of energy usage (Mathew et al.
2015; Dorling et al.[2017)); Second, to demonstrate that our objective function is quite flexible. The
model and approach can be used to solve a traditional VRP objective which minimizes the travel
cost by dropping the second term, or a green supply chain related objective that minimizes the
energy consumption/cost by dropping the first term. We analyze the impact of different objectives
on computational efficiency and solution configurations in Section[5.3] For notational convenience,
in the following sections we use R, E, and R+ E to represent the model that minimizes travel cost
(0 = 0), energy cost (c¢;; = 0,V(z,7) € A), and both travel and energy costs (as in the objective
function (24))), respectively. For the energy calculation, we use a subscript e if the nonlinear energy
function is used, and a subscript a if the linear approximation method is used.

We note that constraints in group (i), (ii), (iv), and (v) are adopted from studies on VRP
and MTVRP (Desaulniers et al.|2014; Karaoglan 2015; |Cattaruzza et al.|2016). However, the
nonlinear energy constraints and the objective function are newly introduced. Moreover, the time-
window constraints, which are not considered in Karaoglan| (2015) and Dorling et al. (2017), are
also considered in our study. Thus, our model generalizes the other models in the literature, such
that it can capture important practical constraints. We further emphasize that our modeling and
solution schemes (introduced in next section) simultaneously optimize multi-trip drone routing
operations and energy consumption under time windows constraints. We also include a more

complex nonlinear energy function.
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3.3. Valid Inequalities

We use constraints to indicate the least number of trips needed to visit all the customers

(Semet et al.|[2014; Santos et al.|2014)).

J%;/ Toj 2 [%-‘ : (25)

Constraints are derived from Equations using the constant d; to replace the variable g;;,
which yields linear equations and a lower bound of P(g;;) since ¢;; > d; when z;; = 1. Constraints
mean that if arc (i, j) is traversed by a drone, the energy consumption is at least equal to the

value of the right-hand side.

4. Solution Method

In this section, we introduce the techniques to handle the nonlinear energy consumption, and
develop a B&C algorithm for our model. We note that our solution method can also be applied

to other applications with nonlinear energy functions.

4.1. Cuts for Nonlinear Energy Function

Logical cut (infeasibility cut). We first solve the model without constraints (10)—(12).
When a feasible solution is generated, we check whether it satisfies the energy capacity constraint

for each trip. For any violated trip {0,4y,...,4,n+ 1}, we add the logical cut
Tiyig + Tigis + -+ Ty <1 —2, (27)

where 4;_; is the (I — 1)th customer in the trip, and there are [ customers in total in the trip.
Equation means that the customer sequence is not allowed to be performed.
Subgradient cut. In Equation , P(g;;) is a convex function in ¢;;. Thus, the tangent line

at point (g, P(q;;)) (we use a bar ‘-’ to represent known values) is
P(aij) = P(a@ij) + Bij (a5 — @iy) (28)
where Bij = %k(W +m 4+ cjij)%, and it is the derivative. Figure [2|is an illustration of the tangent

line. Therefore, the subgradient cut derived for constraints can be added using a conditional
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form as follows:

eij > [P(Gi)wi; + Bij(qi; — @;;)]/1000 x (t;5;/3600) V(i,5) € A. (29)
When z;; = 0, the right-hand side of Equation is a negative number (¢;; = 0 because of
constraints ) and the cut is inactive. When z;; = 1, the cut is added and the right-hand side of
underestimates the energy from Equation ().

A

Slope = B_ij

P(qy)

v

qij

Figure 2: The tangent line of the power function

Remarks: (i) Being different from the logical cuts, constraints and are necessary when
applying the subgradient cuts, and constraints become f;+e;; < M;;j(1—x;;)+ f;,V(i,j) € A.
(ii) For the models with energy costs in the objective, i.e., the £ and R + F models, we must
apply the subgradient cuts to ensure the involvement of energy cost. However, logical cuts are
optional because the subgradient cuts can also guarantee that the energy capacity constraints are
respected. (iii) For the models without energy costs, i.e., the R model, we can implement the cuts
in three ways: only add logical cuts, only add subgradient cuts, or add both together. If there
is only one customer in a trip, we do not add either logical or subgradient cuts for the R model,
because we can guarantee that each customer is eligible to be serviced by a drone when generating
the instance sets. Moreover, when only the logical cuts are used for model R, we do not need valid
inequalities .

Our techniques can be applied for any energy function that is convex or piecewise convex in
payload. If it is not a convex function, then our logical cut can be used. In other words, our

method generalizes the ones presented in the literature.
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4.2. Branch-and-Cut Algorithm

The B&C algorithm has been extensively used to solve MILP problems, and it is a combination
of a cutting plane method with a B&B algorithm (Mitchell 2002). In our B&C scheme, we first
add valid inequalities to the formulations at the root node of the search tree. We then solve the
linear programming (LP) relaxation problem at each node of the tree. Each time a fractional
solution is obtained, we detect and generate violated cuts in a cutting-plane fashion and the LP
relaxation at the current B&B node is re-optimized. If all the cuts are respected and the solution
still has fractional-valued integer variables, the branching process continues. If an integer solution
is obtained and no cuts are generated, we consider updating the incumbent solution and pruning

some nodes. This process continues until all nodes of the tree are evaluated.

4.2.1. Separation of Subtour Inequalities
Although constraints can eliminate subtours, we introduce another group of subtour elimi-

nation constraints (SECs) which can help improve computational efficiency for the B&C scheme.

The SECs are as follows (Laporte |1986):

D3 w <18 —q(S) VST NS =2, (30)

i€S jes
where ¢(S5) = P:?Tsd-‘ is the minimum number of trips needed to visit customers in set S. The

separation algorithm is performed by using the CVRPSEP package of [Lysgaard et al.| (2004).

4.2.2. Implementation of Cuts and SECs

For the logical and subgradient cuts, they are applied when an integer solution is obtained. For
the SECs, we only generate them at the root node since they are redundant for our models due
to the fact that subtours are eliminated by constraints and it is time consuming to solve the

separation problems at all nodes of the B&B tree.

5. Numerical Experiment

In this section, we present the instances and discuss our numerical tests for the MTDRP with
the energy function presented in this paper. The B&C algorithms are coded in Python on Pycharm

2.7 using Gurobi 7.5.1 as the solver. All the parameters are set to their default values in the solver.
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The experiments are performed on a cluster of Intel Xeon X5650 CPUs with 2.67 GHz and 24 GB
RAM under Linux 6.3. Each experiment is conducted on a single core of one node unless specified.

The computing time limit is set to four hours.

5.1. Instance Sets

We introduce two sets of benchmark instances. The first set, named Set A, is created based
on the instance generation frameworks presented in [Solomon (1987) and Dorling et al. (2017).
The second set, named Set B, is an extension of Solomon’s instances, taking into account drones’
specific characteristics. For Set A instances, we further consider two types of instances and each
has 10-50 customers. For type 1 instances, named Set A;, the depots are located at the lower
left corner of the region. For type 2 instances, named Set Ay, the depots are in the middle of the
region. We use Set A instances for preliminary tests and performance comparisons. We conduct
experiments on Set B instances. The detailed instance generation procedures are presented in
[Appendix B| All the instances and solutions are also available at the following URL: https:
//sites.google.com/view/chengchun/instances.

We assume that 4-cell 14.8V lithium polymer batteries are used for drones. According to
the field tests in |Dorling et al.| (2017), we set a = 0.217 kW /kg, = 0.185 kW, m = 1.5 kg,
W =15kg, Q=15kg, g=9.81 N/kg, p=1.204 kg/m3, ¢ = 0.0064 m?*, h =6, § = 360 $/kWh.
For Set A instances, we set the battery energy capacity o = 0.27 kW h; For Set B instances, we
set o = 0.027 kW h.

5.2. Enhancement Strategy Fvaluation

This section analyzes the effect of valid inequalities and SECs. We conduct all the tests on
instances with 10-30 customers in Set A. First, we only apply subgradient cuts to the model to
evaluate the valid inequalities and SECs. After knowing the performances, we further compare
different implementations of cuts. Results are provided in Table For each model, we present
detailed results of the largest instances (i.e., those with 30 customers) in the first six rows, and
the results of all instances in the last two rows. The column None gives the results without any

enhancement strategy. The remaining columns indicate that one (or all) valid inequalities or SECs
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are added to the model. Opt is the number of instances solved to optimality. UP, LB, and RLB are
the best upper bound, the best lower bound, and the lower bound at the root node, respectively.
Gap is the percentage difference between the best upper and lower bounds. CPU is the time in

seconds consumed to solve the instance.

Table 2: Average results with different valid inequalities and SECs for Set A instances

Only subgradient Only logical iliggg;;?lcnt
(125)+(26) (25)) -+ (26))
Cust None 1} 1) + EC +SECS EC
30 Opt  7/10* 7/10 5/10 7/10 7/10 7/10 8/10
UB 11604.97 11608.23 11604.97 11616.74  11604.97 11604.97 11611.46
LB 11539.12  11544.82 11520.78 11541.28  11553.25 11558.07 11575.70
Gap  0.56 0.53 0.72 0.63 0.44 0.39 0.31
R. CPU 6810.79  6038.29  10041.20 7436.01 6501.20 6033.06 6643.34
RLB  11013.32 11041.65 11013.31 11033.22  11037.09 11055.78 11039.42
All Opt  46/50* 45/50 43/50 45/50 46/50 46/50 47/50
Gap 0.14 0.16 0.22 0.19 0.13 0.11 0.10
30 Opt  0/10 0/10 3/10 3/10 4/10 6/10
UB 833.62 836.92 828.35 828.63 828.25 828.63
LB 597.37 611.69 810.58 812.01 819.55 819.65
Gap  28.24 26.82 2.24 2.07 1.05 Not Applicable 1.07
E. CPU  14400.00 14400.00 1151546 12046.49  11437.83 9440.20
RLB  123.92 80.82 705.74 704.07 708.00 708.00
All Opt  31/50 31/50 41/50 41/50 43/50 46/50
Gap 883 8.06 0.54 0.50 0.22 0.22
30 Opt  6/10 5/10 6/10 6/10 7/10 7/10
UB 12451.89 12471.68 12437.36  12437.36  12437.36 12450.29
LB 12321.26  12293.59 12343.51 12365.55  12369.68 12374.19
Gap  1.03 1.40 0.75 0.57 0.54 Not Applicable 0.60
(R+ E)e CPU 11631.34 9808.45  8577.97  8623.99 8512.23 8270.53
RLB  11015.17 11181.01 11709.88 11742.26  11766.60 11766.70
All Opt  44/50 43/50 45/50 45/50 46/50 46/50
Gap  0.30 0.38 0.19 0.18 0.16 0.18

* indicates the number of instances (out of 10 and 50) that are solved to optimality.

Table |2 shows that different implementations of cuts yield different performances. In general,
the simultaneous application of logical cuts, subgradient cuts, valid inequalities f, and the
SECs, gives the best performance for the three models. Specifically, a few more instances can be
solved to optimality for the R, and E. models. For the (R + E). model, the number of optimally
solved instances is the same when only using the subgradient cut or using both cuts together;
however, the average optimality gap is relatively close. We can also observe that, for instances
with 30 customers, the average RLB is improved from 123.92 to 705.74 for model E, when the valid
inequalities based on the energy function (i.e., constraints ) are used. In addition, the £, model
consumes the most computation time on average, because its average RLB is not as tight as those

of the other two models. In particular, RLB/LB= 0.86 for the E. model whereas RLB/LB= 0.95
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for the other two models. In the following sections, we use the 2-index formulation constructed in
Section , together with constraints 7, SECs, and both logical and subgradient cuts, to

perform our tests for each model.

5.8. Details of Solutions for Set A Instances With Size 10-30

Tables give a summary details of results. Cust is the number of customers. Log, Sub, and
SECs are the number of generated logical cuts, subgradient cuts, and SECs, respectively. In Table
M UAVs is the number of drones used, and Swap represents the average number of battery swaps.
When calculating Swap, we do not count the first trip performed by a drone. For example, if a
drone has conducted 3 trips, then the value of Swap would be 2. T/d indicates the average number

of trips performed by each drone. The last column in Table [4] is the proportion of energy cost to

total cost. More detailed results for each instance are presented in

Table 3: Average results on cuts for Set A instances with size 10-30

Re Ee (R+E)e
Cust Opt Gap CPU Log Sub SECs Opt Gap CPU Log Sub SECs Opt Gap CPU Log Sub SECs
10 5/5 0.0 0.5 02 922 21.4 5/5 0.0 0.9 0.4 138.2 31.4 5/5 0.0 0.6 0.0 1348 25.2
15 5/5 0.0 176.6 34 400.6 27.6 5/5 0.0 82.6 2.6 5954 33.2 5/5 0.0 306.2 2.8  518.6 32.6
Set A, 20 5/5 0.0 162.2 1.6 349.8 35.4 5/5 0.0 72.3 1.6 558.2 39.4 5/5 0.0 224.0 0.6  615.6 35.6
25 4/5 04 4666.1 3.0  552.4 34.2 5/5 0.0 4508.6 4.8 1282.0 39.8 4/5 0.6 4945.6 4.4  1512.0 38.2
30 3/5 0.6 6860.3 3.8 1172.8 424 3/5 1.0 8989.8 3.4 1884.6  47.8 3/5 0.7 8865.7 2.8 1759.0 47.0
10 5/5 0.0 0.4 0.0 408 16.6 5/5 0.0 0.5 0.4 142.6 13.8 5/5 0.0 0.3 0.0 714 9.8
15 5/5 0.0 5.0 2.4 152.2 34.0 5/5 0.0 4.1 1.4 274.4 27.6 5/5 0.0 5.7 1.8 297.8 29.4
Set Ay 20 5/5 0.0 27.0 2.0  259.0 34.6 5/5 0.0 37.3 1.6 487.6 40.0 5/5 0.0 33.1 1.4 500.8 36.4
25 5/5 0.0 202.3 2.2 469.4 36.6 5/5 0.0 301.0 4.0  921.0 37.2 5/5 0.0 313.1 2.4 853.0 39.4
30 5/5 0.0 6426.4 3.2 927.2 41.2 3/5 1.2 9890.6 5.0 1815.8 35.4 4/5 0.5 7675.3 4.0 14374 39.6

Table 4: Average results on drones for Set A instances with size 10-30

Re Ee (R + E)e
Cust UAVs Swap T/d UAVs Swap T/d UAVs Swap T/d Coste (%)
10 2.0 3.2 2.6 2.0 3.2 2.6 2.0 3.2 2.6 6.6
15 2.2 4.0 2.9 2.2 4.2 3.0 2.2 4.0 2.9 6.6
Set A; 20 3.6 6.2 2.8 3.6 6.2 2.8 3.6 6.2 2.8 6.8
25 3.8 7.4 3.0 3.8 7.6 3.0 3.8 7.6 3.0 6.8
30 5.0 8.4 2.7 5.0 8.4 2.7 5.0 8.2 2.6 6.8
10 2.0 3.4 2.7 2.0 3.6 2.8 2.0 3.4 2.7 6.4
15 2.8 5.6 3.1 2.8 6.2 3.3 2.8 5.6 3.1 6.4
Set Ao 20 3.4 7.2 3.2 3.4 7.4 3.2 3.4 7.2 3.2 6.6
25 4.0 8.6 3.2 4.0 9.2 3.3 4.0 8.6 3.2 6.7
30 4.4 9.6 3.2 4.4 10.0 3.3 4.4 9.6 3.2 6.6
Average 3.3 6.4 2.9 3.3 6.6 3.0 3.3 6.4 2.9 6.6

Table |3[ shows that the number of subgradient cuts is much larger than that of the logical cuts.

This is because the subgradient cuts are produced for edges while the logical cuts are generated
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for trips. For the largest problems (30 customers), the R, model consumes the least computing
time and the E, model consumes the most computing time. Further, instances in Set A; require
more time than those in Set A,, because the locations of the depot and customers are more
geographically dispersed in Set Aj.

Table [4] indicates that more drones are used with an increasing number of customers and that,
in most cases, each drone performs 2 or 3 trips. For the (R + FE). model, the energy cost only
accounts for a small portion (around 6.6%) of the total cost. The average results seem similar for
the three models; however, with different objectives, different schedules are indeed generated for
some instances. An example is given in Table [f] It shows that two more trips are performed for
the F. model, leading to a greater travel distance and a lower energy consumption. Moreover, we
find that for this instance the schedules generated by the R, and (R+ E). models are quite similar,
except that the travel direction of the second and fifth trips are opposite. Since we perform our
tests on an undirected network, travel direction influences energy consumption because of different
payloads on arcs. However, as the (R 4+ E). model includes the energy cost in the objective, it
can always guarantee that drones travel in directions with minimal energy consumption. Thus, in
realistic applications, for undirected networks, even though decision makers favor a VRP objective
which minimizes the travel cost, they can still add energy cost in the objective and set a small

value for energy price to save battery energy consumption and further reduce the recharging time.

Table 5: Schedules generated by different objectives for instance Set_A2_Cust_15_2

Re E. (R+ E)e

Trips Energy (kWh) Trips Energy (kWh) Trips Energy (kWh)
[0,3,1,16] 0.1585 [0, 3, 1, 16] 0.1585 [0, 3, 1, 16] 0.1585
[0,4,2,16] 0.2389 0,4,2,16]  0.2389 [0, 2, 4, 16] 0.2344
[0, 5, 10, 15, 16] 0.2099 0, 10, 5, 16]  0.0937 0, 5, 10, 15, 16]  0.2099
[0, 6, 12, 16] 0.2530 [0, 12, 16] 0.1645 [0, 6, 12, 16] 0.2530
[0,7,8,16] 0.1733 (0,8, 7,16  0.1637 [0, 8, 7, 16] 0.1637
0,9, 11, 16] 0.2418 [0, 9, 16] 0.1354 [0, 11, 9, 16] 0.1835
[0,13,16] 0.1690 [0, 13, 16] 0.1690 [0, 13, 16] 0.1690
(0,14, 16] 0.1341 [0, 14, 16] 0.1341 [0, 14, 16] 0.1341

[0, 11, 16] 0.0462

[0, 15, 6, 16]  0.1794
Total energy (kWh) 1.5785 1.4834 1.5061
Total travel distance  7995.39 8153.26 7995.39
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5.4. Performance Comparison Between Models with Nonlinear and Linear Energy Functions

In this section, we compare the model performance with our nonlinear and linear energy models.
Table [0] presents a summary of results, with some detailed results in [Appendix C| For solutions
generated by the linear approximation models, after obtaining the trips, we calculate the energy
consumption using the nonlinear model for each trip and report the average results in the last
two rows of Table [0l Infeasible is the number of instances for which the linear approximation
models yield trips that when energy is calculated with exceed the energy capacity. Energy

gap is the percentage difference in energy calculation, which is computed as (energy from (@ —

energy from (9))/energy from (9.

Table 6: Statistics of solutions generated by models R and R 4+ E with nonlinear and linear energy functions

model R model R+ E
Energy function Nonlinear Linear Nonlinear  Linear
Opt 47/50 49/50 46/50 50/50
Optimality gap 0.10 0.04 0.18 0.00
CPU 1852.69 911.59 2236.96 743.95
Travel distance 8276.33 8227.72 8278.71 8227.68
Infeasible 0/50 20/50 0/50 18/50
Energy gap (%) 0.00 9.45 0.00 9.32

From Table |§|, we get two observations: (1) Computational efficiency. For both models,
the computational efficiency with the linear approximation (Equation @) is better than that of
the nonlinear method (Equation ) By using the approximation method, more instances can be
solved in a shorter time frame. For the R and R+ £ models with the nonlinear energy function, the
average computation times are 1852.69 and 2236.96 seconds, respectively. Thus, we can conclude
that, even though our original models are nonlinear, the use of logical and subgradient cuts can help
solve large problems to optimality. (2) Feasibility and solution quality. In multiple instances,
the approximation models yield “energy infeasible” trips when energy is calculated based on the
nonlinear model . For the R and R+ E models, the approximation method produces infeasible
trips for 20 and 18 instances respectively. In addition, the energy gap is around 9% on average
between the two methods.

To further display the importance of how energy is calculated, we give an example in Table
to show the different schedules generated by the two methods. It demonstrates that the first trip

given by the two approximation models consumes 0.2925 kWh energy, which violates the battery’s
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Table 7: Detailed solutions of models with nonlinear and linear energy functions for instance Set_A1_Cust_25_2

Nonlinear energy function

Linear energy function

Energy consumption

Trips Energy Trips Linear Nonlinear Energy gap(%)
[0, 1, 14, 2, 6, 26] 0.2685 [0, 1, 14, 2, 6, 16, 26]  0.2656  0.2925 10.13
[0, 4, 7, 8, 26] 0.1348 [0, 7, 8, 26] 0.1147  0.1240 8.11
[0, 5, 20, 26] 0.2056 [0, 5, 20, 26] 0.1857  0.2056 10.72
[0, 13, 11, 26] 0.1501 [0, 13, 11, 26] 0.1378  0.1501 8.93
[0, 15, 3, 26] 0.1471 [0, 15, 3, 26] 0.1346  0.1471 9.29
R [0, 17, 10, 24, 12, 25, 26]  0.2528 [0, 12, 24, 10, 17, 4, 26] 0.1965  0.2175 10.69
[0, 18, 9, 16, 26] 0.2138 [0, 25, 18, 9, 26] 0.1944  0.2146 10.39
[0, 19, 21, 26] 0.1551 [0, 21, 19, 26] 0.1320  0.1447 9.62
[0, 22, 26] 0.0134 [0, 22, 26] 0.0127  0.0134 5.51
[0, 23, 26] 0.0684 [0, 23, 26] 0.0622  0.0684 9.97
[0, 1, 14, 2, 6, 26] 0.2685 [0, 1, 14, 2, 6, 16, 26]  0.2656  0.2925 10.13
[0, 4, 7, 8, 26] 0.1348 [0, 8, 7, 26] 0.1099  0.1177 7.10
[0, 20, 5, 26] 0.2039 [0, 20, 5, 26] 0.1845  0.2039 10.51
[0, 13, 11, 26] 0.1501 [0, 13, 11, 26] 0.1378  0.1501 8.93
[0, 15, 3, 26] 0.1471 [0, 15, 3, 26] 0.1346  0.1471 9.29
R+E 0,17, 10, 24, 12, 25, 26]  0.2528 [0, 4, 17, 10, 24, 12, 26]  0.1903  0.2091 9.88
[0, 18, 9, 16, 26] 0.2138 [0, 25, 18, 9, 26] 0.1944  0.2146 10.39
[0, 21, 19, 26] 0.1447 [0, 21, 19, 26] 0.1320  0.1447 9.62
[0, 22, 26] 0.0134 [0, 22, 26] 0.0127 0.0134 5.51
[0, 23, 26] 0.0684 [0, 23, 26] 0.0622  0.0684 9.97

energy capacity (0.27 kWh). However, if the linear approximation method is used, it will consider

these trips as feasible ones. Therefore, care is needed when modeling energy consumption to ensure

energy feasibility of routes.

5.5. Impact of Time Windows

Here, we first consider new instances with tighter time windows at customers. We generate

the width of customers’ time windows according to a new normal distribution whose mean is

0.15(bp+1 — tjn+1 — to;), and keep other data unchanged. Next, we remove the time constraints

— and solve a multi-trip drone routing problem. Summary results are reported in Table
and detailed results are presented in [Appendix C]

Table 8: Average results for models with tighter time windows and without time windows

model Re

model E

model (R + E),

Tighter time windows

Without time windows

Tighter time windows

Without time windows

Tighter time windows

Without time windows

Cust Opt Gap CPU Opt CPU Opt Gap CPU Opt Gap CPU Opt Gap CPU Opt Gap CPU
10 5/5 0.0 0.2 5/5 0.5 5/5 0.0 0.3 5/5 0.0 1.0 5/5 0.0 . 5/5 0.0 0.4
15 5/5 0.0 32.2 5/5 527.4 5/5 0.0 47.8 5/5 0.0 44.6 5/5 0.0 41.7 5/5 0.0 129.5
Set Ap 20 5/5 0.0 82.1 5/5 387.1 5/5 0.0 106.8 5/5 0.0 200.7 5/5 0.0 87.8 5/5 0.0 287.5
25 5/5 0.0 2377.8 4/5 5948.0 3/5 1.6 6319.1 4/5 0.4 5641.6 5/5 0.0 3179.9 4/5 0.8 5061.6
30 3/5 0.6 6565.7 1/5 12339.4 3/5 1.1 8552.8 2/5 1.3 12211.0 3/5 0.7 6425.4 1/5 0.8 12468.2
10 5/5 0.0 0.1 5/5 1.5 5/5 0.0 0.2 5/5 0.0 0.9 5/5 0.0 5/5 0.0 1.0
15 5/5 0.0 1.0 5/5 8.8 5/5 0.0 1.3 5/5 0.0 4.4 5/5 0.0 . 5/5 0.0 9.6
Set Ay 20 5/5 0.0 10.1 5/5 97.4 5/5 0.0 19.3 5/5 0.0  47.2 5/5 0.0 13.4 5/5 0.0 73.4
25 5/5 0.0 140.2 5/5 1183.1 5/5 0.0 240.7 5/5 0.0 119.2 5/5 0.0 121.8 5/5 0.0 1006.6
30 5/5 0.0 646.5 3/5 8849.3 5/5 0.0 2458.6 3/5 0.5 7969.1 5/5 0.0 507.5 4/5 0.5 6988.8

From Table 3| and Table [8| when the time windows are tighter, one more instance can be solved
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to optimality for the R, model, and two more instances for the (R 4+ E). model. Moreover, for
problems of the same size, the average computation time is generally reduced for the three models.
However, when the time constraints are absent, instances become much more difficult to handle.
Fewer instances can be solved to optimality within the time limit and the average computation
time also increases. These observations are consistent with the results provided by |Azi (2011)),

where a B&P algorithm is used for the MTVRPTW.

5.6. Algorithm Performance on Ezxtended Solomon’s Instances

In this section we test our algorithm on Set B instances based on the well-known Solomon’s
instances. All the experiments are performed on 4 core processors with a 12-hour (43200 seconds)

time limit. Summarized results are shown in Table [0 and detailed results on each instance are

provided in [Appendix C| In Table[9] column Inst is the instance label.

Table 9: Algorithm performance on Solomon’s instances of type 2

25 customers 40 customers

model Re model E. model (R+ E)e model Re model E. model (R+ E)e
Inst Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU
c201 0.00 1.4 0.00 11.5 0.00 2.5 0.00 48.3 0.00 229.9 0.00 43.8
c202 0.00 13.4 0.00 48.5 0.00 19.7 0.00 372.9 0.00 14073.8 0.00 955.4
c203 0.00 56.4 0.00 86.5 0.00 74.8 0.00 3881.6 0.95 43200.0 0.00 10685.1
c204 0.00 48.2 0.00 240.8 0.00 78.6 0.20 43200.0 1.55 43200.0 0.00 16940.6
c205 0.00 13.0 0.00 29.5 0.00 9.0 0.00 871.2 0.00 23630.3 0.00 881.7
c206 0.00 21.1 0.00 40.8 0.00 21.7 0.00 2011.9 1.83 43200.0 0.00 8368.8
c207 0.00 32.0 0.00 55.3 0.00 43.4 0.00 5757.3 0.00 5567.9 0.00 8358.9
c208 0.00 23.2 0.00 34.7 0.00 34.3 0.00 1936.7 0.63 43200.0 0.00 3547.3
r201 0.00 4.0 0.00 8.7 0.00 5.6 0.00 437.7 0.00 2730.5 0.00 348.1
r202 0.00 32.9 0.00 26.9 0.00 29.2 0.00 11666.6 1.22 43200.0 0.00 8183.1
r203 0.00 132.1 0.00 40.2 0.00 58.0 0.00 33302.4 0.00 17013.0 0.00 40920.9
1204 0.00 134.2 0.00 125.4 0.00 120.3 0.58 43200.0 0.00 37471.4 1.22 43200.0
r205 0.00 38.5 0.00 21.8 0.00 27.1 0.00 5921.7 0.00 7086.4 0.00 8098.5
r206 0.00 54.8 0.00 29.8 0.00 84.6 0.96 43200.0 0.00 5167.2 0.42 43200.0
r207 0.00 83.5 0.00 37.4 0.00 87.8 1.18 43200.0 0.00 22529.7 0.00 39388.0
r208 0.00 75.7 0.00 47.9 0.00 106.7 0.96 43200.0 0.36 43200.0 0.67 43200.0
1209 0.00 42.8 0.00 41.5 0.00 50.0 0.00 42044.0 5.91 43200.0 1.40 43200.0
r210 0.00 46.0 0.00 24.8 0.00 60.2 0.00 14821.3 0.00 2832.5 0.68 43200.0
r211 0.00 136.1 0.00 53.4 0.00 102.5 1.44 43200.0 0.62 43200.0 1.16 43200.0
rc201 0.00 28.0 0.00 31.7 0.00 60.0 0.00 959.5 7.42 43200.0 0.00 2540.3
rc202 0.00 366.9 0.00 315.0 0.00 125.1 0.79 43200.0 2.86 43200.0 0.62 43200.0
rc203 0.00 15.7 0.00 29.9 0.00 56.8 0.00 1542.6 0.00 509.2 0.00 5064.3
rc204 0.00 5.4 0.00 64.3 0.00 952.8 0.00 110.3 0.00 2663.9 0.00 9900.8
rc205 0.00 63.4 0.00 269.0 0.00 100.6 0.00 27642.5 13.59 43200.0 1.58 43200.0
rc206 0.00 65.4 0.00 59.5 0.00 755.0 0.00 4719.6 10.42 43200.0 0.00 39338.2
rc207 0.00 1253.2 0.00 58.3 0.00 7306.9 0.39 43200.0 1.10 43200.0 0.91 43200.0
rc208 0.00 207.4 0.00 23.0 0.00 157.5 0.00 1684.8 0.00 237.6 0.00 7961.0
Average 0.0000  110.9 0.0000  68.7 0.009)  390.0 0.24(®  18716.0 1.80(13)  26049.8 0.32(9) 222343

(=) indicates the number of instances (out of 27) that are not solved to optimality.

We can observe that all instances with 25 customers are solved to optimality within the time

limit. When the number of customers increases to 40, 19 out of 27 instances are optimally solved
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for model R., and this number decreases to 14 and 18 for model E. and model (R + E),, re-
spectively. The CPU time also varies widely, ranging from a few minutes to many hours. In
terms of computational performance as opposed to the MTVRPTW which is relatively similar to
the MTDRP considered in this paper, our algorithms could generally solve larger instance sizes
compared to those considered in exact algorithms for the MTVRPTW despite the fact that our

original models are nonlinear and more complex.

5.7. Results for Large Instances of Set A

Here, we report the results of Set A instances with 35-50 customers in Table [0} More detailed
results are given in [Appendix C| All the experiments are performed on 4 core processors with
a 12-hour time limit. The instances with 10-30 customers that were not optimally solved in
previous experiments are also solved again with the longer time limit. Our results show that all
the previous instances, except Set_A1_Cust_30_5 for model E., are solved to optimality under the
new experiment setting. The optimality gap of this instance for model E, is 1.77%. For some
instances, when we directly solve the E, model or the (R+ E). model, we find that the optimality
gap is over 5% within the time limit, mainly resulting from the poor lower bound. Considering
the R, model is relatively easier than the other two models, for these specific instances, we first
solve the R, model to get a feasible solution and then use this solution as a start for the other two
models. The results of these instances are marked by a square in Table [10}

Table |10 shows that the average gap ranges from 1.81% to 2.28% for instances in Set A; and
from 1.29% to 1.50% for instances in Set A,, which further confirms our previous observation
that generally instances in Set A, are easier than those in Set A;. For the R, model, 13 out of 35
instances are solved to optimality. For the E, and (R+ E). models, the number of optimally solved
instances are 12 and 10 respectively. We also note that it is effective to use the first solution of
the R, model as a start for the other two models. In particular, for the E, model, 5 instances can
be solved to optimality by using this method. We further use this idea to model E, for Solomon’s
209, rc201, rc205, and rc206 instances with 40 customers (i.e., instances whose optimality gap is

over 5% in Table E[) The results show that all these instances can be solved to optimality now.
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Table 10: Results using multicore processors for Set A instances with 35-50 customers

model R model E, model (R+ E).
Cust Inst Gap CPU Gap CPU Gap CPU

1 4.11  43200.0 4.558  43200.0 3.2459  43200.0
2 1.80  43200.0 3.588  43200.0 2.78 43200.0
35 3 0.00  20642.0 0.005  21866.9 0.98 43200.0
4 0.00 30214.8 0.005  36895.7 0.21 43200.0
5 0.00 29126.0 0.00 15121.7 0.00 20446.6
1 3.38  43200.0 2.92 43200.0 3.95 43200.0
2 0.00 13947.5 0.90 43200.0 0.59 43200.0
Set A1 g 3 3.74  43200.0 4.74 43200.0 3.78Y  43200.0
4 0.44  43200.0 0.008  23208.1 0.39 43200.0
5 0.73  43200.0 1.308  43200.0 2.32 43200.0
1 4.24  43200.0 3.655  43200.0 3.96 43200.0
2 2.15  43200.0 2.665  43200.0 2.065  43200.0
45 3 1.51  43200.0 3.76 43200.0 2.469  43200.0
4 3.05  43200.0 4.429  43200.0 3.155  43200.0
5 1.95  43200.0 1799 43200.0 2.29 43200.0
Average 1.81 37942.0 2.28 38152.8 2.14 41683.1
1 2.53  43200.0 0.008  31873.4 2.65 43200.0

2 0.00 1755.4 0.00 18306.0 0.00 3397.5
35 3 0.00 8732.7 2.83 43200.0 0.00 11645.0
4 0.00 9765.1 0.00 38648.4 0.00 25076.3
5 0.00 9491.5 0.00 42292.8 0.00 18041.8

1 0.00 32162.3 0.00 6219.5 0.00 21628.1
2 1.12  43200.0 1.44 43200.0 0.00 41897.4

40 3 0.00 3298.6 0.00 30554.3 0.00 5495.7
4 2.13  43200.0 0.008  7308.4 2.16 43200.0
5 5.05  43200.0 6.395  43200.0 4.81 43200.0

Set Ao

1 0.00 6142.2 0.00 1802.5 0.00 8093.6
2 0.00 41018.0 1.30 43200.0 1.32 43200.0

45 3 1.20  43200.0 2.15 43200.0 0.00 7452.0
4 2.02  43200.0 1.85H  43200.0 2.68 43200.0
5 0.00  37956.5 2.11 43200.0 1.00 43200.0
1 1.80  43200.0 0.748  43200.0 2.36 43200.0
2 3.81  43200.0 2.248  43200.0 3.80 43200.0
50 3 2.92  43200.0 4.208  43200.0 2.72 43200.0
4 1.32  43200.0 3.29 43200.0 0.7259  43200.0
5 1.80  43200.0 1558 43200.0 2.01Y  43200.0
Average 1.29 31276.1 1.50 34770.27 1.31 30896.4

U We use the first feasible solution of the R model as an initial solution for this model.
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6. Conclusions

This paper solves a MTDRP with time windows. A 2-index formulation is introduced and a
B&C algorithm is developed. We propose two types of cuts to tackle the nonlinear energy function.
We demonstrate the differences between using a complex nonlinear energy consumption function
and a linear approximation, which can result in higher energy use and energy infeasible drone
routes. We generate benchmark instances for the drone routing problem and conduct extensive
numerical experiments to evaluate the effects of valid inequalities and user cuts. The effectiveness
of our modeling scheme and the B&C algorithm is confirmed by solving generated instances and
Solomon’s type 2 instances.

The limitations of the energy function used in our work include: (1) We did not consider the
energy consumption of other flight status like taking off and landing. (2) Some other factors such as
drone speed and wind speed were neglected in our power function. (3) The parameters associated
with the drones considered in our paper are small drones with limited payloads and a low travel
speed; however, the recently developed drone models by Amazon and UPS can carry payloads
of up to five pounds and fly at speeds up to 50 mph. Thus, we consider future research which
can extend this work in the following aspects: (1) More complex power models with additional
influence factors can be used for drone energy calculation. In this case, the energy consumption
of other flight status should also be explicitly incorporated into the mathematical model. (2)
Numerical tests can be conducted by using the parameters collected from production level delivery

drones to provide operational insights for decision-makers.
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Appendix A. Drone Energy Consumption for Waiting Time at Customer Locations

We can incorporate a non-zero energy consumption for waiting time at customer locations in
our model. Specifically, we introduce new variables w;, Vi € N’ to represent the waiting time for
the opening of the time window at customer ¢ € N’. Variables 7;,Vi € N~ now denote drones’
arrival time at node ¢ € N~. Correspondingly, constraints f are modified as follows to

include w; in the model

T+ wi+t;— My(l—ay) <7 VieN,jeN, (A1)
a; <1 +w; < b Vie N, (A.2)
nt1 < Tpy1 < bpya, (A.3)
T+ Wi+ (tigsr +toy) S 7+ (L—25)My;, Vi j e N'i#j, (A.4)
w; >0  Vie N (A.5)

Now we set le; = b; + t;;, and MZ/;/ take the same values as before. We assume the unit energy
consumption for waiting (e.g., performing sensing activities, hovering, etc.) as v (kWh/s). Then,

constraints are replaced by
fo+ KW +m+qy)2te; < Moj(1 — z0;) + f; Vi €N, (A.6)
fiywi + KW +m+qi)2ty; < My(1—a5)+ f; Yie N,je N, (A.7)
where constraints establish the energy relationship between the starting depot 0 and customer
i, and constraints (A.7)) are the energy relationship between customer ¢ and node j (which can be

a customer node or the ending depot n + 1). M;; take the same values as before. The objective

function becomes

min Z (Cijxij + 561'3') + Z 5’)/’(1)1 (AS)

(i.)eA el

Then, our solution schemes can be directly applied for this extension.
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Appendix B. Instance Generation Procedures

This section presents the detailed procedures for instance generation.

Appendiz B.1. New Benchmark Instances (Set A)

In this set, we consider two types of instances and each has 10-50 customers. For type 1
instances, named Set A;, the depots are located at the lower left corner of the region. For type
2 instances, named Set A, the depots are in the middle of the region. For a fixed number of
customers in each type, we generate 5 instances. Our instances are labeled as Set_ A, _Cust_Y_Z,
which represents that this is the Zth instance of Y customers in Set A,.

Based on the size of drones, we consider the delivery of relatively lightweight items (including
those like medicines). The demand of the first 40% of customers is drawn uniformly from [0.1,0.7]

and the demand of the remaining customers is drawn uniformly from [0.1,1.5]. We set K =

|'ZieN’ d;

) 1, that is, we expect that each drone can perform 3 or more trips on average. For Set

A4, the coordinate of the depot is (0, 0). The x—coordinate and y—coordinate of each customer
is drawn uniformly from [0, 480]. Since we assume travel distance and travel time are the same,
if a customer is located at (0, 480), then the travel time from the depot to this customer would
be 480 seconds. Meanwhile, we let ¢;; = t;; V(i,j) € A. For the depots, we set ag = @41 = 0
and generate the right-hand side of the time window as follows: We first compute the travel time
between the depot and each customer, i.e., ¢y;, and rank them in a non-increasing order; we then
sum up the first Ath numbers in order, where h = (%} and the sum is denoted as s. Finally, we
set bg = b,y 1 = [2s]|. This generation scheme is based on the idea that, in an extreme situation,
each drone trip only involves one customer and each drone performs at most h trips. And all the
deliveries can be finished within [2s] time limit. As travel time satisfies triangle inequality, the
earliest time that a customer j can be serviced is #y;, and the latest time that a drone must leave
J 18 bpy1 — tjny1. To create customers’ time windows, we refer to the method in [Solomon| (1987).
We first randomly generate the center of the time window o; from [ty;, b1 — ;41| using uniform
distribution, then we generate the time window’s width w; as a normally distributed random

number whose mean is 0.25(b,41 — t;,41 — to;) and standard deviation is 0.05(bp41 — tjnt+1 — tos)-

We set a; = max([to;],0; — 0.5w;]), bj = min{|byt1 — tjns1], [0; + 0.5w;|}. For Set A, the
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coordinate of the depot is (480, 480). The z-coordinate and y-coordinate of each customer is
drawn uniformly from [0,960]. The method of generating the time windows is the same as that of

Set Al-

Appendiz B.2. Instances Eztended From Solomon’s Instances (Set B)

We generate this set of instances based on the principle of minimal modifications to the original
data. To fit Solomon’s instances, we need to add a service time s;,Vi € N’ to constraints
and when conducting our numerical tests. We also make some modifications to customers’
demands to fit the drone’s payload and to allow multi-trip operations. In particular, for type C2
and RC2 instances with the first 25 and 40 customers, demands are multiplied by 0.03, because the
minimal and the maximal demands are 10 and 40, respectively. For type R2 instances, demands
are multiplied by 0.05 for those with the first 25 customers, because the minimal and the maximal
demand are 2 and 29, respectively; demands are multiplied by 0.045 for those with the first 40
customers, because the maximal demand now becomes 31. We determine the number of drones as

described in the former section.

Appendix C. Detailed Results

This section provides the detailed results of our numerical tests in Section |5, which are also

available at https://sites.google.com/view/chengchun/instances.
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