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Jaime E. Gonzáleza, Andre A. Cireb, Andrea Lodia, Louis-Martin Rousseaua

aDepartment of Mathematics and Industrial Engineering, Polytechnique Montréal
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Abstract

The quadratic stable set problem (QSSP) is a natural extension of the well-

known maximum stable set problem. The QSSP is NP-hard and can be for-

mulated as a binary quadratic program, which makes it an interesting case

study to be tackled from different optimization paradigms. In this paper, we

propose a novel representation for the QSSP through binary decision diagrams

(BDDs) and adapt a hybrid optimization approach which integrates BDDs and

mixed-integer programming (MIP) for solving the QSSP. The exact framework

highlights the modeling flexibility offered through decision diagrams to handle

nonlinear problems. In addition, the hybrid approach leverages two different

representations by exploring, in a complementary way, the solution space with

BDD and MIP technologies. Machine learning then becomes a valuable com-

ponent within the method to guide the search mechanisms. In the numerical

experiments, the hybrid approach shows to be superior, by at least one order of

magnitude, than two leading commercial MIP solvers with quadratic program-

ming capabilities and a semidefinite-based branch-and-bound solver.

Keywords: Decision Diagrams, Hybrid Optimization, Quadratic Stable Set

Problem, Binary Quadratic Programs, Dynamic Programming
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1. Introduction

A stable set is a pairwise non-adjacent subset of vertices in a graph and

defines a fundamental structure in discrete optimization. Classical problems

associated with stable sets, such as the maximum stable (or independent) set

problem, have been extensively studied in the optimization literature and arise5

in applications such as social networks [1], data mining [2] and computational

biology [3], to name a few. We refer to Wu and Hao [4] for a survey of existing

methodologies and other applications.

Of growing interest in the optimization community is the quadratic stable set

problem (QSSP), a difficult variant of the maximum stable set problem where10

additional profits are associated with pairs of vertices. The QSSP is a key

component of modern applications (e.g., protein structure prediction [5] and

marketing [6]), but its related computational methodologies are still limited in

comparison to classical stable set problems. Moreover, given the natural rela-

tionship between stable sets and cliques (i.e., induced complete subgraphs) in15

a graph, the study of the QSSP can contribute to approaches for solving clique

related problems. To the best of our knowledge, the QSSP first appeared as

a subproblem when estimating the quality of cellular networks [7], later ad-

dressed through mixed-integer programming (MIP) reformulations [8]. Karimi

and Ronagh [9] also investigate Lagrangian methods and report experiments for20

instances of up to 30 vertices.

The QSSP can also be formulated as a binary quadratic problem (BQP) and

addressed via non-linear solvers. In this context, Furini and Traversi [10] de-

velop a semidefinite programming (SDP) relaxation that is used as a bounding

mechanism in a branch-and-bound search, solving instances with up to 100 ver-25

tices. In a related approach, another generic methodology for solving the QSSP

is BiqCrunch [11], a state-of-the-art semidefinite-based solver which has solved

instances having up to 150 vertices. The QSSP was also used as a benchmark in

a computational study of different linearization techniques for BQPs [12] using

a MIP solver, demonstrating that current generic methodologies are still lim-30
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ited to graphs with 150 vertices. Nevertheless, leading commercial MIP solvers

incorporate flexible quadratic programming (QP) capabilities that allow to di-

rectly tackle the BQP formulation of the QSSP through nonlinear programming

(NLP) based branch and bound. Such an alternative is worth being considered

as another benchmark for this problem.35

In this paper, we propose a novel QSSP solution approach based on deci-

sion diagrams (DDs). The theory and practice of DDs for optimization has

been gradually established as a fruitful research area in operations research

[13]. A variety of stand-alone methodologies, decomposition approaches, and

integrated techniques based on decision diagrams contributed to novel state-40

of-the-art methods in a large array of applications [14, 15, 16, 17, 18, 19]. In

particular, decision diagrams have been effective for non-linear integer optimiza-

tion problems [20, 21] as they provide a discrete type of relaxation which can

be leveraged as an alternative bounding mechanism.

Our exact methodology exploits the strength of both DD-based relaxations45

and QP capabilities in MIP technology to solve the QSSP more efficiently.

Specifically, we model and solve the QSSP via a hybrid approach which inte-

grates binary decision diagrams (BDDs), MIP, and machine learning, following

the generic framework proposed in [15]. The hybrid BDD-MIP algorithm is

based on a BDD-based search mechanism that branches on underlying equiv-50

alent classes of variable assignments, here represented as states in a dynamic

programming reformulation of the problem. We describe a novel BDD rep-

resentation for the QSSP and highlight the flexibility of the decision diagram

modeling framework to deal with quadratic problems. We also remark how

the hybrid approach leverages two different representations of a problem in a55

collaborative framework.

Moreover, supervised learning plays an important role within the hybrid

approach to guide the exploration of the solution space. In our algorithm,

we use traditional machine learning to train a classifier which dynamically se-

lects whether a branch should be explored either by MIP or BDD technol-60

ogy. We present computational experiments using the proposed BDD-MIP
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algorithm and compare its performance against general-purpose approaches;

namely, two leading commercial MIP solvers with QP capabilities and, a com-

petitive semidefinite-based solver. Numerical results show that the BDD-MIP

can significantly outperform such solvers in existing benchmarks.65

The remainder of the paper is organized as follows. Section 2 defines the

quadratic stable set problem and introduces relevant notation. Section 3 presents

the decision diagram representation for the problem, which relies on a novel

dynamic programming reformulation of the problem. Section 4 describes the

hybrid BDD-MIP optimization approach adapted for the QSSP. Finally, the70

experimental evaluation is presented in Section 5, while Section 6 contains con-

cluding remarks.

2. The Quadratic Stable Set Problem

Let G := (V, E) be an undirected graph where V := {1, . . . , n} is a set of

n vertices and E ⊆ V × V is a set of edges. A stable set of G is a subset of75

vertices S ⊆ V where no two vertices are connected by an edge in E . With each

vertex i ∈ V we associate a profit wi that is collected if vertex i is included in

S. Moreover, we consider a profit qij for each pair of vertices i, j ∈ V that is

collected if both vertices are included in S. We denote by Q = {qij}i,j=1,...,n ∈

Rn×n the profit matrix, here not restricted to be positive semidefinite.80

The quadratic stable set problem (QSSP) asks for the stable set in G with

maximum total profit. For a mathematical formulation, let us define xi as a

binary variable that takes value of 1 if vertex i ∈ V belongs to the stable set S

and 0 otherwise. The QSSP can be formulated as the following binary quadratic

program (BQP):

max
x

n∑
i=1

wixi +

n−1∑
i=1

n∑
j=i+1

2qijxixj (1)

subject to xi + xj ≤ 1, ∀{i, j} ∈ E , (2)

xi ∈ {0, 1}, ∀i ∈ V. (3)
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Note that x2i = xi for all i ∈ V then the linear profits wi can be easily

adjusted and consider the terms qii in Q, i.e., its main diagonal. An alternative

formulation for the QSSP is obtained by leveraging the concept of a clique cover,

i.e., a partition of the vertices of G into cliques. Namely, let K be any collection

of cliques that covers G. Since each stable set can contain at most one vertex in

a clique K ∈ K, the clique formulation for the QSSP is obtained by replacing

inequalities (2) with:∑
i∈K

xi ≤ 1, ∀K ∈ K, (4)

which is well-known to provide stronger relaxations when only linear costs are

considered [22]. The set K is typically constructed using maximal cliques that

can be computed efficiently, e.g., by a greedy procedure [13]. In particular,

a maximal clique K is obtained by initially selecting the vertex with highest

degree. Next, we iteratively include adjacent vertices (sorted by highest degree)85

to each vertex in K until no more inclusions are possible. We then add clique

K to set K and remove from G all the edges belonging to the included clique.

We update the vertices degrees, and repeat the procedure.

As an illustrative example, consider the QSSP instance defined by an undi-

rected graph with 5 vertices and 5 edges presented in Figure 1. Red numbers90

next to each vertex i ∈ V correspond to the vertex profit wi. We also provide

the matrix of quadratic profits Q. In the figure, vertices 1, 2 and 5 form a stable

set whose total profit is -3 yielded by w1 + w2 + w5 + 2 · q12 + 2 · q15 + 2 · q25.

The optimal stable set for the illustrative example consists of vertices 1 and 2

with optimal objective value of 9.95
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Q =



0 3 2 0 -4

3 0 -2 -5 -3

2 -2 0 0 1

0 -5 0 0 2

-4 -3 1 2 0



1

2 3

4

5

1

2 3

2

2

Figure 1: Undirected graph and matrix Q for an illustrative QSSP example

For notation purposes, we denote by z∗ the optimal objective value of the

QSSP. We also note in passing that the problem reduces to the classical max-

imum weighted stable set problem either when Q = 0, or when the quadratic

profits are non-positive, i.e., Q ≤ 0, the latter case requiring a non-trivial trans-

formation of the original graph [7]. In addition, we observe that when only100

quadratic profits are considered (i.e., wi = 0, i ∈ V), the resulting particu-

lar QSSP could be reformulated as a maximum edge-weighted clique problem

[23, 24, 25, 26] in the complement graph Ḡ where profits qij become the weights

on edges (i, j) ∈ Ē . Nevertheless, since the maximum stable set problem is NP-

hard in the strong sense [27], the same is true for the QSSP, which in turn is105

generally more computationally challenging than the classical linear version.

3. A Decision Diagram Representation for the QSSP

Conceptually, a decision diagram is a compressed representation of the state-

transition graph of a dynamic programming (DP) model [13]. In this section,

we begin by deriving a novel problem representation for the QSSP through a110

DP formulation (Section 3.1). Next, we describe how to extract the resulting

decision diagram representation from such formulation (Section 3.2), which will

be central to our exact methodology.
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3.1. A dynamic programming model for the QSSP

Before introducing our DP formulation to QSSP, we first reformulate (1)-(3)

in order to reveal recursive structure. Namely, note that the quadratic model

max
x,s

n∑
i=1

wixi +

n−1∑
i=1

xisi (5)

subject to xi + xj ≤ 1, ∀{i, j} ∈ E , (6)

si =

n∑
j=i+1

2qijxj , ∀i ∈ V, (7)

xi ∈ {0, 1}, ∀i ∈ V. (8)

is also valid to QSSP, where the difference with respect to the original model is115

the introduction of variables si representing the inner sum within each quadratic

term i of the objective function (1).

Using model (5)-(8), we can now evaluate the marginal impact of adding a

vertex i ∈ V to a given stable set as follows. Suppose that variables x1, . . . , xi−1

are fixed to values that can be extended to a feasible solution (e.g., by appending

variables xi, . . . , xn and setting them to zero), thereby defining a stable set

S := {k ∈ {1, . . . , i− 1} : xk = 1}. This, in turn, leads to the eligible set

I := {j ∈ V : {j, k} 6∈ E for all k ∈ S}

of all vertices that can still be added to the stable set S; i.e., vertex i can be

added to S (i.e., xi set to one) only if i ∈ I. Furthermore, if i ≥ 2 is added

to S, we collect a profit wi + si (and only a profit of wi if i = 1). Thus, to120

evaluate whether i can be added to a (partial) stable set and the resulting profit,

it suffices to have the set I of eligible vertices and the partial sum si as defined

in (7).

This leads to the following DP reformulation of QSSP. Given a fixed vertex

ordering 1, . . . , n, we consider a system of n + 1 stages where, at each stage i,

we decide whether to add or not a vertex i ∈ V, as represented by the value

of variable xi ∈ {0, 1}. The state of the system at each stage i is a pair (I, s),

where I ⊆ V is the set of eligible vertices according to the assignment in stages
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1, . . . , i − 1 and s = (si, si+1, . . . , sn) is a vector of n − i + 1 elements with

the sums (7) indexed from i to n. We remark that the definition of state s

is related to the state information defined for unconstrained binary quadratic

programming in [28]. When assigning xi (i.e., deciding whether to include i or

not), we transition to a new state defined by the function

gi(I, s, xi) :=

 (I \Ni, (si+1 + 2qi+1 i, . . . , sn + 2qni)), if xi = 1,

(I, (si+1, . . . , sn)), otherwise.

where Ni = {i} ∪ {j ∈ V : {i, j} ∈ E} is the neighborhood of i including the

vertex itself. That is, we update the eligible set I according to xi and the sum

state s according to (7). The total profit in terms of xi is

hi(I, s, xi) := wixi + I(i ≥ 2)sixi,

where I(C) is an indicator function that evaluates to 1 if condition C is true and

0 otherwise. Finally, a vertex i can only be added if it belongs to the eligibility

set I, i.e., the set of feasible assignments at a stage i is

Fi(I) := {0} ∪ { I(i ∈ I) }.

Equipped with Fi(·), the transition function gi(·), and the profit function

hi(·), an optimal solution x∗ to QSSP solves the Bellman equations

Vi((I, s)) = max
xi∈Fi(I)

{hi(I, s, xi) + Vi+1(gi(I, s, xi))} , i = 1, . . . , n, (9)

Vn+1((I, s)) = 0, (10)

where V1((V,0)) yields the optimal solution value of the QSSP. In particular,

we denote (V,0) by root state of the system.125

3.2. Constructing the BDD representation for the QSSP

We now describe how to generate the decision diagram representation based

on the dynamic program presented above. For notation purposes, let S(G) be

the family of stable sets of G.
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A binary decision diagram for a QSSP instance is a layered directed acyclic130

graph B = (N ,A) where N is the node set and A is the arc set. The node set

N is partitioned into n + 1 layers L1, . . . , Ln+1, where the first and last layers

L1 and Ln+1 are singletons containing a root node r and a terminal node t,

respectively. We denote by l(u) the index of the layer of a node u ∈ N , i.e.,

u ∈ Ll(u). A BDD arc a ∈ A only connects nodes in adjacent layers and is135

equipped with a binary label da ∈ {0, 1} and a profit ha. We refer to arc a by

1-arc if d(a) = 1 and by 0-arc otherwise.

A BDD is a compact graphical representation of the state transition graph

of the DP (9)-(10). Specifically, each node in N represents a state (I, s) and the

layer Li contains the nodes associated with the states that are reachable at stage140

i, i = 1, . . . , n. In particular, the root node r is associated with the root state

(V,0). Arcs encode the transition gi(·), i.e., there exists an arc a = (u, u′) ∈ A

with label da iff, given the state (I, s) associated with u, we have da ∈ F(I)

and the state associated with u′ is gl(u)(I, s, da). The profit of such arc is

ha := hl(u)(I, s, da). The terminal node t, in turn, represents all terminal states145

of (9)-(10), i.e., they are perceived as merged into a single node.

In such a representation, we have a one-to-one mapping between stable sets

in G and paths of the BDD. Namely, for every arc-specified path (a1, a2, . . . , an)

starting from the root r and ending at the terminal t, the arc labels yield a

feasible assignment x := (da1 , . . . , dan) by validity of the DP. Conversely, every150

such feasible assignment must be encoded in some path of the BDD. This implies

that the QSSP now reduces to finding a longest-path problem over the BDD,

where arc lengths are the arc profits ha.

Figure 2 illustrates the exact BDD for the instance in Figure 1. States are

included on top of each of their corresponding nodes in each layer. Solid and155

dash arcs represent d(a) = 1 and d(a) = 0, respectively, and arc profits ha are

included (in blue) on top of each arc.
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r

u1 u2

u3 u4 u5 u6

u7 u8 u9 u10

u11 u12 u13

t

x1

x5

x2

x3

x4

1+0

2+0 2-8

2+0 2-6 2+6 2+0

3+0 3+4

2+0
2+4

{1, 2, 3, 4, 5},(0, 0, 0, 0, 0)

{2, 3, 4, 5},(0, 0, 0, 0) {2, 3, 5},(6, 4, -8)

{2},(0){2, 3, 4},(0, 0, 0) {2, 4},
(-6, 4)

{2, 3},
(6, 4)

{3, 4},(0, 0) ∅,∅{4},
(4)

{3},
(4)

{4},(0) ∅,∅{4},
(4)

∅,∅

Figure 2: Exact BDD for the QSSP instance of Figure 1

The variable ordering in the decision diagram of Figure 2 is established by

x1, x5, x2, x3, x4, i.e., these are the variables associated with outgoing arcs from

layers L1,L2, L3,L4,L5, respectively. To illustrate the BDD compilation, we160

observe that the root node r has state information ({1, 2, 3, 4, 5}, (0, 0, 0, 0, 0)).

Note that, at the beginning, all vertices are candidate to be added to the stable

set and, no matter the vertex associated with outgoing arcs of layer L1 only the

vertex weight wi is collected. Next, for instance, there is an outgoing 1-arc which

represents x1 = 1 and leads to node u2 with state information (I(u2), s(u2)) =165

({2, 3, 5}, (6, 4, -8)). The latter indicates that by including vertex 1 in the partial

stable set, we get to a state where we remove vertex 1 and 4 from the possible

vertices, updating states accordingly.

In addition, note that variable x5 is associated with L2. Consequently, the

weight of the outgoing 1-arc (u2, u6) is 2− 8, this is, the profit of vertex 5 (i.e.,170

w5 = 2) plus “-8” which is associated with the sum of quadratic contributions
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for vertex 5 in the state component s(u2).

In the BDD in Figure 2, the longest path is given by the arc-specified path

((r, u2),(u2, u5),(u5, u10),(u10,u13),(u13, t)) indicating that the optimal stable set

for the problem is {1, 2} with optimal objective value z∗ = 9.175

Compiling BDDs. We follow a typical top-down procedure for constructing an

exact BDD, which is equivalent to a forward recursion over the DP. The proce-

dure is defined as follows.

Let us denote by (I(u), s(u)) the state associated with the BDD node u ∈ N .

Layers are compiled one at a time in the order L1, . . . , Ln+1. At each iteration180

i = 1, . . . , n, we calculate all state transitions from the states associated with

nodes in Li to generate nodes in Li+1, adding arcs as necessary. We also ensure

that no two nodes have the same state, i.e., either I(u) 6= I(u′) or s(u) 6= s(u′)

for any two nodes u, u′ at the same layer. Finally, all nodes in the last layer

Ln+1 are merged into a single terminal node t.185

3.3. Approximate decision diagrams for the QSSP

In general, exact BDDs grow exponentially large on the problem input and

are not computationally tractable. Because of this, we instead manipulate the

so-called approximate versions, i.e., relaxed and restricted decision diagrams.

Such diagrams are key as a bounding mechanism since they exploit discrete190

structure to relax the state space.

A DD is relaxed if it over-approximates the solution set of a problem, en-

coding all feasible solutions but also allowing infeasible ones. Relaxed BDDs

are obtained similarly as exact BDDs when using a top-down approach. In par-

ticular, if the number of nodes in a layer (i.e., the layer width) exceeds a given195

pre-specified limit W during its construction, two non-identical nodes u and u′

are heuristically selected and merged into a new node u′′. Next, the longest

(resp., shortest) path value in a relaxed BDD yields a dual bound for a maxi-

mization (resp., minimization) optimization problem. Note that the maximum

width W is then a relevant parameter because it allows to trade-off compu-200

tational effort and bound quality, i.e., the larger the W value, the better the
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bound that is obtained. More details on the experiments leading to a suitable

value of W are reported in Section 5.

For the QSSP, we propose a valid merging operator which guarantees that no

feasible solution is lost meanwhile keeping the relaxed BDD size under control.205

The state of the merged node u′′ is set as the pair (I(u′′), s(u′′)) where I(u′′) :=

I(u)∪I(u′) and s(u′′) := max{{s(u)}j , {s(u′)}j}j∈I(u)∪I(u′). The strategy used

to define which nodes are merged consists on selecting BDD nodes u and u′

with the partial longest path from the root node. Once nodes are merged, all

previous incoming arcs to u and u′ are directed to the new merged node u′′.210

The proposed merging operator assures that all valid stable sets are preserved

and that a longest path computation in the resulting relaxed BDD provides an

upper bound on the optimal objective value z∗.

Furthermore, we also manipulate restricted decision diagrams to obtain fea-

sible solutions. A restricted BDD under-approximates the solution set of a prob-215

lem i.e., it only allows feasible solutions but could miss the optimal one. They

can be also compiled through a top-down construction. In the restricted-version

case, when reaching the maximum width W in a layer, instead of merging nodes,

we heuristically select nodes to be removed from such a layer. A longest path

computation in this case provides a lower bound on z∗.220

4. A BDD-based Hybrid Optimization Approach for the QSSP

Given relaxed and restricted BDD representations as well as a BQP formula-

tion of the QSSP (presented in Sections 2 and 3), we propose to deploy a hybrid

BDD-MIP ([15]) algorithm as a solution methodology. The integrated BDD-

MIP method leverages two problem representations and BDD-based search225

mechanisms to exploit complementary strengths coming from the different op-

timization paradigms. In Section 4.1, we initially describe a typical BDD-based

exploration of the solution space. Next, we focus on the hybrid algorithm mech-

anisms considered for the QSSP (Section 4.2).
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4.1. BDD-based search scheme230

A key component of the combined framework is the BDD-based exploration

in which a relaxed binary decision diagram plays the role of a search tree in a

branch-and-bound scheme. In such a search mechanism, the solution space is

divided and explored by recursively branching on suitable BDD nodes (i.e., set

of partial solutions) instead of branching on variable-value pairs as in traditional235

linear programming-based branch and bound.

We now describe the general idea of a BDD-based search mechanism in the

context of a stand-alone decision diagram approach [14]. Consider a relaxed

binary decision diagram B̄ of the QSSP as the example provided in Figure 3, for

the illustrative instance in Figure 1, where the maximum width is set as W = 2.240

For every pair of nodes u, u′ ∈ B̄ such that l(u) < l(u′), let B̄uu′ be the binary

decision diagram induced by all the nodes and arcs that lie on directed paths

from u to u′, e.g., B̄rt = B̄. We say that a node u in B̄ is exact if all r−u paths

lead to the same state s(u), and is relaxed otherwise. In addition, a cutset of B̄

is a subset of nodes C such that any r − t path in B̄ contains at least one node245

in C. In specific, C defines an exact cutset if all nodes in C are exact. Several

strategies have been proposed for obtaining exact cutsets, such as the frontier

cutset (FC) and the last exact layer (LEL) (we refer the reader to [13]).

Figure 3 illustrates an exact cutset C defined by the LEL and formed, in

this case, by BDD nodes ū1 and ū2 (in orange). Note that nodes in blue, ū3250

and ū4, were forcefully merged to meet W using the merging operator proposed

in Section 3.3.
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ū5 ū6
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x1

x5
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{1, 2, 3, 4, 5},(0, 0, 0, 0, 0)

{2, 3, 4, 5},(0, 0, 0, 0) {2, 3, 5},(6, 4, -8)

{2, 3, 4},(0, 0, 4) {2, 3},(6, 4)

{3, 4},(0, 4) {3},(4)

{4},(4) ∅,∅

∅,∅

Figure 3: Relaxed BDD for the QSSP instance of Figure 1

Given an exact cutset C, a BDD-based branch and bound explores each BDD

node in C to find and prove the optimal solution. Let v∗(u) be the longest-path

value from r to u for each u ∈ C. Let z∗u be the optimal value of the subproblem255

for which its solutions are exactly encoded in But, therefore v∗(u) + z∗u is the

value of the best solution across all r− t paths that contain BDD node u. Since

all r − t paths of a decision diagram must contain some node in C, we search

the optimal value z∗ of the problem by solving the subproblems associated with

But. Such subproblems (every u ∈ C) are solved separately and each subproblem260

then leads to a smaller and hence more tractable binary decision diagram. This

procedure can be applied recursively for each u if the relaxed BDD rooted in u

is either not exact (i.e., if the maximum width is reached while its construction)

or cannot be implicitly pruned.

As an illustration of the BDD-based exploration scheme in Figure 3, we have265

to explore BDD nodes ū1 and ū2 further to continue searching for the optimal
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solution. In a stand-alone BDD-based search, such an exploration implies the

compilation of two different relaxed decision diagrams, each rooted in ū1 and

ū2, respectively.

4.2. Hybrid BDD-MIP mechanisms270

In the integrated approach, MIP technology is incorporated into the BDD-

based exploration scheme. Namely, a MIP solver can directly prune BDD nodes

by solving them up to optimality while also providing lower bounds. Meanwhile,

the incumbent solution found so far in the BDD-based branch and bound can

be used to define a lower cutoff in the objective function of the subproblems275

explored by the MIP solver.

4.2.1. MIP-based pruning strategy

We specifically propose to adapt the IP-based pruning strategy in [15]. Con-

sider a BDD-based branch and bound and a relaxed BDD which has to be

explored further. Once a cutset C is defined and selected, a node u ∈ C can280

be directly explored and pruned in advance by finding its optimal solution z∗u.

Along these lines, the strategy consists of solving the subproblem associated with

u using a MIP solver as opposed to recursively relax and explore But through

BDD technology. In addition, once the subproblem associated with node u is

solved, v∗(u) + z∗u also establishes a lower bound on z∗.285

For the QSSP, a subproblem encoded in a BDD node u corresponds to a

vertex-induced subgraph defined by the vertices considered in the state com-

ponent I(u). Note that such a subproblem also leads to a BQP model if it is

tackled with MIP technology. Thus, the mechanisms within the hybrid BDD-

MIP algorithm leads to an algorithm-selection decision during the exploration.290

There are three important aspects to be considered, (i) the subproblems (i.e.,

BDD nodes to be explored) are dynamically generated during search, (ii) solv-

ing a BQP subproblem up to optimality may be computationally too expensive,

and (iii) such an algorithm-selection decision is made based on the subprob-

lem features encoded by the state (I(u), s(u)). Determining whether to apply295
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the MIP-based pruning at each BDD node plays a central role in the hybrid

approach, and we cast this algorithmic question as a classification task.

In [15], when solving the maximum stable set problem, machine learning

(ML) is used to derive trained classifiers and a decision tree to determine when to

use the MIP-based pruning strategy. At the root node, a classifier automatically300

detects whether the related subproblem (i.e., the instance itself) is simply solved

by MIP technology. Then, at the remaining BDD nodes, a computationally

cheap decision tree determines if each BDD node is either pruned using a MIP

solver or the BDD continues the exploration further. In this paper, we take a

further step and propose using ML to guide the exploration within the hybrid305

BDD-MIP algorithm but at every BDD node subproblem.

4.2.2. ML-driven exploration

We rely on the recent connection between ML and discrete optimization

(see, e.g., [29] for a survey). Specifically, we cast the algorithm-selection decision

within the hybrid BDD-MIP algorithm as a classification task which is addressed310

by ML. We employ traditional supervised ML techniques and learn a classifier

to decide which technology should be used (i.e., a BDD relaxation or a MIP

representation) to explore, on-the-fly, a BDD subproblem.

In a supervised classification problem, the objective is to learn a function

which assigns a discrete class label to an unseen instance, given a set of already315

classified examples (i.e., the training data). Each example in the training set is

described by a set of features (attributes) and an associated label. The learned

function (classifier) then maps the features to the available classes revealing

a possible hidden structure of the training dataset. In our case, an example

corresponds to a QSSP instance and we define two class labels that represent320

the BDD and MIP technology.

We perform the learning experiments offline to train the classifier which

is later incorporated in the hybrid BDD-MIP algorithm. Thus, we proceed to

describe the supervised learning methodology and the experiments to learn such

a classifier. The methodology comprises five main steps, (i) the generation of325
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instances, (ii) the feature design, (iii) the label definition for the learning task,

(iv) the dataset composition, and finally, (v) the learning experiments.

Instances generation. As previously mentioned, a QSSP instance mainly cor-

responds to both an undirected graph and a symmetric matrix of quadratic

profits. We randomly produce examples for the training dataset by generating330

graphs following the Erdös-Rényi (ER) [30] model where we vary the number

of nodes (n) and graph density (p). Moreover, for each instance, we generate a

symmetric matrix Q where we define its percentage of positive coefficients (v).

Feature design. Since we label an instance between two different problem rep-

resentations (i.e., BDD and MIP), the prediction should be a function of only335

problem-specific features. For the QSSP, we rely on the graph properties as well

as attributes associated with the symmetric matrix Q. As the trained classifier

is a component of the BDD-MIP algorithm and it is potentially invoked sev-

eral times during search, we target features that can be efficiently computed for

new instances that will be dynamically generated when exploring the solution340

space. For the graph properties, we select 10 features, namely, number of nodes

(n), number of edges (|E|), density (p), and seven features derived from node

degrees, specifically, their mean, median, standard deviation (SD), maximum,

minimum, the interquartile range (IR), and the variability score (SD/mean).

Conversely, for the features associated with Q, we select the percentage of345

positive coefficients in Q (v) and also characteristics associated with its main

diagonal which is related to the linear profits wi. For features coming from wi,

we define the mean, median, standard deviation (SD), minimum and maximum.

Finally, we use a total of 16 features for the learning experiments.

Label definition. Since we cast the algorithmic question as a binary classification350

problem, we now define a procedure to binarize the label, which is a function

on the performance of the two optimization technologies. Each QSSP instance

is solved with both the MIP and a stand-alone BDD solver based on the repre-

sentation proposed in this paper. For MIP, each QSSP example is solved with
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CPLEX version 12.8 (5 times with a different random seed to deal with per-355

formance variability issues [31]) using its nonlinear programming-based branch

and bound to get the MIP solving time MIPtime as the average of the five runs.

Next, each instance is also solved with the stand-alone BDD solver (by setting

W = 128 for all instances) to obtain the BDDtime. Finally, for each example,

we assign the label MIP if the MIP solver is α times faster than the BDD solver360

(i.e., if MIPtime · α ≤ BDDtime), otherwise we assign the label BDD.

Dataset composition. We assess the distribution of solving times and binariza-

tion parameter α to generate a dataset that is meaningful for the learning task.

The dataset is composed of 12, 500 QSSP instances where n ∈ {20, 30, 40, 50, 60,

70, 80, 90, 100, 120}, p ∈ {10, 15, 20, 25, 30, 40, 45, 50, 60, 65, 70, 75}, v ∈ {25, 50, 75},365

and label binarization parameter α = 5. Finally, the number (resp., percentage)

of instances labeled as MIP and BDD in the dataset is 9110 (72.88%) and 3390

(27.12%), respectively.

Supervised learning experiments. We construct the classifier using a Support

Vector Machine (SVM) with RBF kernel [32], a classical supervised learning370

algorithm. We randomly split the dataset into training (75%) and test set

(25%). To obtain features in the same range, we apply feature scaling and

mean normalization so, each feature is normalized to have a mean of 0 and a

standard deviation of 1. Each experiment consists of a training phase with 5-

fold cross validation and grid search method for hyperparameter tuning, as well375

as a test phase on the neutral test set. We compare the SVM versus a dummy

classifier (DUM), which follows a stratified strategy, i.e., it makes predictions

based on the class distribution of the training set. The benchmark with DUM is

a good practice as a measure of baseline performance for the trained classifier.

The learning methodology is implemented using Python with Scikit-learn380

[33]. Table 1 presents the standard performance measures of binary classifica-

tion, namely, accuracy, precision, recall, and f1-score.

We highlight that the SVM classifier achieves high performance metrics.

It compares favorably versus a dummy classifier corroborating that there is a
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Table 1: Performance measures for the classifiers when predicting MIP/BDD

DUM SVM

Accuracy 0.607 0.976

Precision 0.257 0.953

Recall 0.289 0.954

F1-score 0.272 0.953

statistical pattern to be learned when discriminating either a MIP or BDD solver385

for tackling a QSSP instance. We remark that, for this particular application,

false positives are computationally expensive, even more once a classifier is taken

to production within the hybrid BDD-MIP. In this case, metrics different than

accuracy could provide a better insight on the classifier performance. Precision,

which is defined as the true positives divided by all positive predictions can390

be a good metric to analyze. A high precision indicates a low number of false

positives, and we observe that the classifier presents a very good precision.

The classifier is able to capture enough about the discrimination from the

selected features on training set to make meaningful predictions on test set. We

conclude that the learning experiments support the selection and inclusion of395

the trained classifier within the BDD-MIP optimization algorithm.

4.2.3. BDD-MIP cutoff

Moreover, we incorporate another strategy used in [15]. We let LB denote

a global incumbent solution obtained from the hybrid BDD-MIP exploration.

Next, when each subproblem (associated with BDD node u) is explored through

a MIP solver, i.e., the trained classifier predicts MIP, the corresponding BQP

subproblem is modified by including the following constraint:∑
i∈I(u)

wixi +
∑

i∈I(u)

∑
j∈I(u)|i6=j

2qijxixj ≥ LB − v∗(u). (11)
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Constraint (11) establishes a lower bound on the objective function for the

subproblem, considering the global incumbent solution and the longest-path

value from r to u. The lower-cutoff procedure already proved effective in [15] to400

speedup a hybrid BDD-MIP algorithm. In such a case, subproblems terminate

significantly earlier the solving procedure, sometimes with the proof that no

feasible solution meets the modified BQP conditions, also leading to prune the

BDD node.

Algorithm 1 describes the hybrid BDD-MIP algorithm for the QSSP. At the405

beginning, the list of nodes to be explored consists of only the root node r. In

line 2, while either L is not empty or the best bound is not less than or equal

to the best incumbent solution we have to search for the optimal solution value.

We take a BDD node u from L and evaluate in line 4, if the MIP-based pruning

strategy should be applied to by calling, on-the-fly, the trained MIP/BDD SVM410

classifier described in Section 4.2.2. If the classifier predicts MIP, we use the MIP

representation of the BDD subproblem and a MIP solver to prune the node in

advance, updating the best incumbent if necessary. Otherwise, in line 9, we

create a relaxed decision diagram rooted in u.

Next, if the BDD is exact we have found a feasible solution, update the415

incumbent solution if necessary and no further exploration is needed from the

generated BDD. On the contrary (line 15), if the BDD is relaxed because the

maximum width was reached when constructing any layer, we check if the node

can be pruned by bound. If the best bound yielded by the relaxed BDD is

greater than the incumbent solution, we must explore further by identifying an420

exact cutset C, and including the BDD nodes in C to L. The algorithm keeps

exploring the solution space until the stopping criterion is met and the optimal

solution is provided.
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Algorithm 1 Hybrid BDD-MIP solver for the QSSP

Input: QSSP instance

Output: Optimal value

1: Initialize list of nodes to be explored (L) with BDD root node

2: while stopping criteria not met do

3: take node u from L

4: if MIP-based pruning strategy applied to u then

5: if best incumbent found then

6: update incumbent

7: Prune node u

8: continue

9: create relaxed BDD rooted in u

10: if BDD is exact then

11: if best incumbent found then

12: update incumbent

13: Prune node u

14: continue

15: if BDD is not exact then

16: if Best bound greater than incumbent then

17: Identify an exact cutset C

18: for all nodes in C do:

19: Add node to L

20: create restricted BDD rooted in u

21: if best incumbent found then

22: update incumbent

23: return optimal value

Note that depending on the subproblem properties and hence the MIP/BDD

classifier prediction, it may occur that no complementarity is identified by the425

algorithm, i.e., the MIP solver is never called to prune a BDD node (step 4 of
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Algorithm 1). In such a case, the behavior of the hybrid algorithm actually

reduces to a stand-alone decision diagram solving procedure.

5. Computational experiments on the QSSP

In this section, we benchmark the hybrid BDD-MIP algorithm against other430

general-purpose solvers coming from different optimization paradigms. In par-

ticular, we compare the hybrid approach versus two leading commercial MIP

solvers with QP capabilities and a competitive SDP-based solver. We use

IBM-CPLEX 12.8 and Gurobi 9.0.0 as the MIP solvers and we refer to them as

CPLEX and Gurobi, respectively. We also implement the hybrid BDD-MIP ap-435

proach in C++ and solve the MIP subproblems with CPLEX. All experiments

are run on a Linux machine, Intel(R) Xeon(R) Gold 6142 CPU @ 2.60GHz and

512 GB of RAM.

As it is described in [34], CPLEX can solve a BQP, such as the QSSP, in dif-

ferent ways. Let us denote the QSSP relaxation as the continuous problem where440

the integrality constraints (3), in Section 2, are relaxed. The semi-definiteness

of matrix Q determines whether the QSSP relaxation is convex and therefore,

the way CPLEX can tackle the problem.

In case the QSSP relaxation is convex, i.e., Q is positive semi-definite (Q �

0), the problem can be solved by NLP-based branch and bound where a BQP445

relaxation is solved at each node of the search tree. Also in the convex case,

CPLEX can linearize the BQP by transforming it into a MIP model by means of

the McCormick inequalities and tackle the resulting formulation with standard

MIP techniques. On the other hand, if the problem is not convex (Q � 0),

CPLEX has two alternatives. First, the problem can be convexified through450

the augmentation of the main diagonal of Q and then be solved by NLP-based

branch and bound. Finally, CPLEX can also linearize the BQP and tackle the

resulting larger MILP model via a traditional branch and bound. In the nu-

merical experiments, we solve the QSSP using both alternatives i.e., linearizing

and not linearizing the QSSP which can be simply selected through the CPLEX455
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parameter QToLin1. The linearization mode allows us to evaluate the perfor-

mance of a generic linearization technique (aiming at considering this approach

as proposed in [12] where different linearization techniques are used to solve

the QSSP). In addition, we tackle the instances using the CPLEX’s NLP-based

branch and bound algorithm whose performance has not been evaluated for the460

QSSP in the literature. For both modes, all internal CPLEX’s capabilities (i.e.,

presolving, heuristics and cuts) and remaining default parameter settings are

enabled.

We also solve the QSSP instances using Gurobi as MIP solver. The Gurobi

version used in this experiments, like CPLEX, allows to solve to global optimal-465

ity both convex and non-convex binary quadratic programmming models. As

reported in its technical documentation, Gurobi implements a MIP solver where

simplex and barrier algorithms tackle continuous BQPs. In addition, Gurobi’s

presolve may either convexify a problem by using bilinear constraints or lin-

earize the problem so it can be solved by standard MIP techniques. Gurobi is470

also used with the default parameter settings and all internal capabilities (i.e.,

presolve, heuristics and cuts) enabled to make the comparison even more sound.

In addition to MIP solvers, BiqCrunch [11] becomes an interesting and nat-

ural alternative to be considered. This SDP-based branch and bound has also

been used for the QSSP [35]. BiqCrunch is executed in the generic problem475

setup enabling internal heuristics 1, 2, and 3.

Regarding the Hybrid BDD-MIP solver, we use the MIP-based pruning strat-

egy. The trained SVM classifier is invoked to label each BDD node subproblem

as either MIP or BDD to define if the MIP-based pruning is performed. In addi-

tion, we implement the lower cutoff procedure and when the MIP solver is called480

to prune a BDD node, we solve the equivalent BQP subproblem using the clique

formulation and CPLEX as MIP solver without any time limit. The variable or-

dering and exact cut selection strategies used are the minimum number of states

(MIN) and the last exact layer (LEL), respectively. We refer the reader to [13]

1Recently, CPLEX version 12.10 incorporates a ML algorithm to make this decision.
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for details on different variable ordering heuristics and exact cutset strategies.485

As mentioned before, the decision diagram width (W ) is a critical param-

eter when manipulating limited-size DDs. Moreover, the mechanisms within

the hybrid BDD-MIP approach generate an interesting dynamic between the

DD-based branching scheme, the width, the bound quality, the size of the exact

cutsets, the MIP-based pruning strategy, and the classifier predictions guiding490

the exploration. For instance, a very small width can dramatically deteriorate

the bound quality, lead to a greater number of DD nodes to explore, and in-

crease the computing time of the whole optimization process, up to one order

of magnitude slower in the denser instances. Conversely, a very large width

can improve the bounds and lead to a smaller number of DD nodes to explore.495

However, it can also trigger a greater computational effort when compiling each

relaxed DD in the procedure which might not payoff when observing the whole

computing time. Nevertheless, the effect of selecting a wrong value of W could

be mitigated and indeed exploited in the hybrid BDD-MIP algorithm by calling

more or less frequently the MIP-based pruning strategy. After exploring and500

exploiting this trade-off, the maximum width W for all instances is set to 64.

The testbed presented in these computational experiments corresponds to

the dense instances used in the computational experiments in [12] plus, a set

of sparser (and hence harder) instances which are also considered in [35]. The

set of instances has number of nodes n = {100, 150}, density p = {25, 50, 75}%,505

and percentage of positive coefficients in Q, v = {25, 50, 75}%. The testbed

considers 3 instances per combination (n, p, v) for a total of 54 instances. Every

instance is processed five times by solving it with: BiqCrunch, CPLEX for the

clique formulation (linearizing and not linearizing the BQP), Gurobi for the

clique formulation, and finally, the proposed hybrid BDD-MIP solver. Each510

solver run uses only one thread with a time limit of 7, 200 seconds.

Table 2 compares the performance of the different solvers for the testbed

instances. We present the average performance by combination (n, p, v) for a

total of 18 different group of instances. Column 1 corresponds to the group id for

the three instances of each combination (n, p, v). Columns 2, 3, and 4 present, for515
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each group, the number of nodes, density, and percentage of positive coefficients

in Q. Each solver is represented by a column where the base number corresponds

to the average computational time employed for solving the 3 instances of the

corresponding group. An exponent, in case it appears, indicates how many of

those instances could not be solved to optimality within the time limit. In this520

way, column 5 is associated with BiqCrunch. For such an SDP-based solver, we

generated the model from both MIP formulations, the edge and clique models.

The edge formulation presents slightly better results and it is the one reported in

these experiments. Columns 6 and 7 correspond to the performance of CPLEX

solving the clique formulation of the problem both linearizing and not linearizing525

the QSSP, respectively. Next, column 8 corresponds to Gurobi’s performance.

For the MIP solvers, we use the clique formulation which reported 4% better

results than the edge formulation. Column 9 relates to the performance of the

hybrid BDD-MIP solver. Finally, column 10 shows the average speedup reached

by the hybrid BDD-MIP solver with respect to the most competitive benchmark530

for each instance of the group. For example, the value in the seventh column

“6555.89(2)” of group #10 indicates that, within the time limit, CPLEX (when

non linearizing the BQP) solved only 1 of the instances of the group n = 150,

p = 25, v = 25, and the average solving time of the 3 instances is 6555.89

seconds. We present the detailed computational experiments for each instance535

in Appendix A.

We can observe from Table 2 that the hybrid solver outperforms all the

benchmarks. The hardest instances are the sparsest ones (p = 25) where the

speedups obtained with the hybrid solver are the smallest ones but greater than

1x. In addition, for group 12 (n = 150 − p = 25 − v = 75), the hybrid solver540

is the only one able to solve the 3 instances to optimality. On the other hand,

when the instance is denser (p = {50, 75}) the BDD-based approach achieves

remarkable speedups of at least one order of magnitude faster than the MIP

solvers and the SDP-based solver.

Note that the percentage of positive coefficients v is related to the definite-545

ness of matrix Q and evidently seems to be a very important feature of the
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Table 2: Comparison between the hybrid BDD-MIP algorithm and other optimization paradigms for the QSSP

Instances BiqCrunch
CPLEX

Gurobi
Hybrid

Speedup

Linearize Non Linearize BDD-MIP

Group n p v CPU time (s) CPU time (s) CPU time (s) CPU time (s) CPU time (s) vs. best benchmark

1 100 25 25 1139.31 272.65 113.13 84.75 24.50 3.50

2 100 25 50 7200.00(3) 728.37 138.56 287.55 36.16 4.03

3 100 25 75 7200.00(3) 1009.52 1388.85 184.00 167.02 1.10

4 100 50 25 829.49 18.28 9.67 11.09 0.72 13.53

5 100 50 50 4832.11 54.55 13.50 11.63 0.83 13.94

6 100 50 75 6677.62 89.59 30.51 14.37 0.74 19.50

7 100 75 25 461.94 3.89 4.18 1.03 0.06 18.34

8 100 75 50 1356.93 17.33 4.26 1.57 0.06 27.86

9 100 75 75 1162.46 30.49 6.12 1.71 0.05 32.28

10 150 25 25 7200.00(3) 4776.18 6555.89(2) 1607.86 560.80 2.87

11 150 25 50 7200.00(3) 7200.00(3) 7200.00(3) 6918.76(2) 888.37 7.92

12 150 25 75 7200.00(3) 7200.00(3) 7200.00(3) 7200.00(3) 2958.74 2.47

13 150 50 25 6901.33(2) 130.06 135.64 46.01 7.45 6.19

14 150 50 50 7200.00(3) 1184.23 182.24 96.15 7.39 13.03

15 150 50 75 7200.00(3) 1752.94 582.37 91.46 6.83 13.38

16 150 75 25 2895.55 40.35 23.09 16.18 0.21 54.63

17 150 75 50 7160.97(2) 79.11 26.49 43.05 0.19 139.37

18 150 75 75 7200.00(3) 87.21 38.58 48.94 0.21 179.39

Geom. Mean 3763.68 210.96 100.49 55.55 3.95 12.74



instance. Let us observe instances with n = 150 and p = 50 (i.e., groups 13,

14, and 15 in Table 2) to analyze this behavior. In such instances, if we observe

the performance of the hybrid algorithm, no matter the value of v, the solving

time is almost equivalent for the three groups. However, this is not the case for550

CPLEX and Gurobi where the v value greatly impacts how the model is solved

and hence the resulting performance. Noteworthy, the proposed BDD represen-

tation for the QSSP embeds the problem nonlinearity making no difference in

the performance with respect to the semi-definiteness of matrix Q.

Figure 4 presents a performance profile to benchmark each solver in terms555

of the percentage of instances solved (out of the total 54 instances) within the

execution time which ends at the time limit of 7, 200 seconds. Each of the five

lines corresponds to one of the solvers considered in the comparison.
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Figure 4: Performance profile for different solvers when tackling the QSSP

The performance profile shows the considerable dominance of the hybrid

BDD-MIP solver with respect to the other solvers. The hybrid approach is the560
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only method able to solve all instances long before the time limit is reached,

solving each of the 54 instances within 3, 300 seconds.

Figure 5 compares the solution time of the hybrid BDD-MIP solver versus

the solution time of the best benchmark across the different solvers (BiqCrunch,

CPLEX linearizing, CPLEX non-linearizing, and Gurobi). We color instances565

by density value so that, green, red, and gray points correspond to p = 25, p =

50, and p = 75 instances, respectively. In a similar way, shapes are associated

with the problem size n. Triangle and circle markers are related to n = 100

and n = 150 instances, respectively. A point located above the diagonal means

that the hybrid BDD-MIP approach outperforms the best benchmark in such570

an instance for the corresponding n− p group. As we use log scale to be able to

represent all instances in one chart, some group of instances are represented by

superimposed points, e.g., instances with n = 150− p = 50 (red circles) appear

represented by one red point to the most left side. Such a point indicates that

the hybrid performs much better than the best benchmark.575
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Figure 5: Hybrid BDD-MIP solver versus the best benchmark in terms of

solution time per instance in log scale

Nevertheless, Figure 5 allows us to focus on the hardest instances, i.e., the

sparsest ones with p = 25 (green markers). All but one instance are above

the diagonal indicating that even for the hardest cases, the hybrid algorithm

achieves a better performance than the benchmarks. For a fix density value,

circle markers appear above triangle markers indicating in that case that larger580

instances are naturally harder.

Although, the BDD representation is one of the contributions in this paper,

we evaluate the global effectiveness of the hybrid framework in comparison with

a stand-alone BDD solver. We continue focused on the hardest (i.e., sparsest)

subset of 18 instances with p = 25. Figure 6(a) and Figure 6(b) compare the585

solution time of the hybrid method versus a pure BDD solver but considering as

well the best benchmark. As we analyze instances of the same density, solving

times have the same magnitude and we generate the scatter plot not using the
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log scale. Figure 6(a) and Figure 6(b) are related to n = 100 and n = 150

instances, respectively. In both cases, instances related to the best benchmark590

are associated with filled markers, while those related to the stand-alone BDD

solver correspond to markers with no fill.
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Figure 6: Hybrid BDD-MIP solver versus both stand-alone BDD solver and the best bench-

mark for the sparsest instances

We can observe that the hybrid method consistently outperforms the stand-

alone BDD solver. This is even more evident for large instances (n = 150) where

the hybrid method really pays off. For some instances, we go from hitting the595

time limit with the pure BDD solver, to getting the best performance using the

hybrid algorithm.

In a last computational experiment, we evaluate the performance of the

BDD-based optimization approach on larger QSSP instances. We compare

Gurobi, which is the best benchmark in the set of instances from the literature600

(Table 2), versus the hybrid BDD-MIP. The new set of instances has number of

nodes n = {175, 200}, density p = {25, 50, 75}%, and percentage of positive co-

efficients in Q, v = {25, 50, 75}%. Similarly to the previous dataset, we consider

3 instances per combination (group) (n, p, v) for a total of 54 instances and 18

groups. Table 3 shows the computational experiments. The first four columns605

correspond to the instance information for each group. Column 5 and 6 report

the performance of Gurobi and the hybrid BDD-MIP, respectively. Once again,

if an exponent appears, it indicates how many of those instances were not solved
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to optimality within the time limit. Finally, column 7 presents the speedup by

group. We present the detailed computational experiments for each instance in610

Appendix A.

For experiments reported in Table 3, the hybrid BDD-MIP uses the same

trained classifier and maximum width W than in the previous experiment.

Gurobi is also employed with the default parameter settings enabling all its

internal capabilities to make the comparison more stringent. For n = 175, we615

note that Gurobi can solve only 1 out of 9 of the sparsest (p = 25) instances

within time limit, whereas the Hybrid approach struggles with 2 (i.e., it solves

7 out of 9). When we increase the number of vertices to 200, we observe that

neither Gurobi nor the Hybrid BDD-MIP can solve the challenging sparse in-

stances. However, the lower and upper bounds obtained within time limit are, in620

general, better for the Hybrid BDD-MIP. Gurobi obtained slightly better lower

bounds for only 3 out of the 81 instances, and this corresponds to the group

(200, 25, 25). Then, as the percentage of positive coefficients in Q increases, the

bounds are more favorable for the Hybrid approach. For denser instances, no

matter the size, the speedups show that BDD-based technology is significantly625

superior. It reaches, in some cases, more than 2 orders of magnitude faster

computing times than a state-of-the-art commercial MIP solver. Instances of

size 200 seem to be the current limit the Hybrid algorithm can reach within

a 2-hour time limit on sparser instances. Instead, the method scales very well

for instances of size 250 (and bigger) on denser graphs (see Table A.9 in the630

appendix).

Different elements of the hybrid BDD-MIP solver, such as the BDD-based

branching scheme and, mainly, the black-box classifier guiding the exploration,

make getting insights from the method’s performance and evolution a complex

task. However, we observe that the mechanisms of the hybrid BDD-MIP are635

mainly exploited for the sparsest (hardest) instances. On average, for instances

with p = 25, the MIP solver prunes 91.56% of the total number of BDD nodes

explored. In such a case, the MIP solver is frequently invoked indicating that

the classifier possibly identifies a special pattern in sparse instances that leads
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Table 3: Comparison between the hybrid BDD-MIP and Gurobi for QSSP instances with

n ∈ {175, 200, 250}

Instances Gurobi Hybrid BDD-MIP Speedup
Group n p v CPU time (s) CPU time (s)

19 175 25 25 6821.25(2) 4132.60 1.70

20 175 25 50 7200.00(3) 4686.14 1.55

21 175 25 75 7200.00(3) 6733.51(2) 1.08

22 175 50 25 117.35 14.97 7.89

23 175 50 50 223.18 24.01 9.31

24 175 50 75 260.92 19.90 13.14

25 175 75 25 58.07 0.35 166.56

26 175 75 50 75.74 0.35 216.22

27 175 75 75 83.60 0.37 222.73

28 200 25 25 7200.00(3) 7200.00(3) 1.00

29 200 25 50 7200.00(3) 7200.00(3) 1.00

30 200 25 75 7200.00(3) 7200.00(3) 1.00

31 200 50 25 263.15 37.91 6.92

32 200 50 50 576.81 54.58 10.39

33 200 50 75 504.95 44.11 11.65

34 200 75 25 107.89 0.53 203.68

35 200 75 50 128.78 0.53 245.02

36 200 75 75 161.21 0.56 290.24

Geom. Mean 581.01 42.74 13.64

32



to the complementarity leveraged by the hybrid method. As the graph density640

increases, the MIP calls drastically decrease to the extent that the MIP-based

pruning strategy is not employed in very dense instances. We can infer that

calling the MIP solver for such instances could be a computationally expensive

strategy. Nevertheless, the ML-based exploration seems to detect such a pattern.

6. Conclusions645

We solved the quadratic stable set problem (QSSP) via BDD-based opti-

mization contributing with both a BDD representation and an adapted hybrid

BDD-MIP solver for the problem. We performed extensive computational ex-

periments to compare the proposed hybrid method with other general optimiza-

tion paradigms such as a semidefinite-based solver and two leading commercial650

MIP solvers with QP capabilities. We have shown that the hybrid BDD-MIP

provides state-of-the-art results for solving the QSSP.

In addition, the BDD-based optimization technology shows high flexibility

to represent quadratic problems. One important distinction of the proposed

BDD representation is that it does not assume any special structure for the655

quadratic cost matrix which is an usual assumption in quadratic programming.

Indeed, the proposed modeling to handle the quadratic profits in the state vari-

ables could be extended to any binary quadratic programming model where the

Markov property holds in the conceptual DP model used to compile the deci-

sion diagram. We also contribute with a machine learning application to cast an660

algorithmic question within the hybrid BDD-MIP into a classification task. In

an offline fashion, we train a classifier that is invoked, on-the-fly, by the hybrid

algorithm to guide the exploration.

Therefore, when tackling an optimization problem, if both a representation

from a different paradigm such as MIP or SDP and a mechanism to identify665

complementarity are available, a BDD-based hybrid approach could stand up

as an effective solving method. This work opens up more research avenues where

DD-based approaches, integrated methods, and machine learning are considered
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to tackle other quadratic combinatorial optimization problems.
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Appendix A. Extended computational experiments associated with

Table 2 and Table 3

Tables A.4, A.5, and A.6 present the extended computational experiments

associated with the summarized Table 2 which is discussed in Section 5. Columns

1, 2, and 3 are associated to the instance properties, size n, density p, and per-800

centage of positive coefficients in Q v, respectively. Columns 4 and 5 correspond

to the instance id for a given n−p−v and the optimal objective value. Columns

6, 7, 8, 9, and 10, present the solving time when using BiqCrunch, CPLEX

linearizing, CPLEX non-linearizing, Gurobi, and the Hybrid BDD-MIP, respec-

tively. The time limit is set to 7, 200 seconds. Finally, column 11 presents the805

speedup obtained by the BDD-MIP algorithm with respect to the best solving

time between all the benchmarks.

Similarly, Tables A.7, A.8, and A.9 present the extended computational

experiments on larger instances with size n ∈ {175, 200, 250} associated with

the summarized Table 3 which is discussed in Section 5. Columns 1, 2, and 3810

are associated to the instance properties, size n, density p, and percentage of

positive coefficients in Q (v), respectively. Column 4 corresponds to the instance

id for a given n− p− v. Columns 5, 6, 7, and 8 are associated with Gurobi and

present the best lower bound (LB), the best upper bound (UB), the optimality

gap (calculated as (UB-LB)/UB), and the computing time. Columns 9, 10, 11,815

12, 13, and 14 are related to the hybrid BDD-MIP. They present, in order from

9 to 14, the number of BDD nodes explored, the number of BDD nodes pruned

by the MIP solver, the best lower bound (LB), the best upper bound (UB),

the optimality gap, and the computing time, respectively. The time limit is

set to 7, 200 seconds. Finally, column 15 presents the speedup obtained by the820

BDD-MIP algorithm with respect to Gurobi.
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Table A.4: Comparison between the hybrid BDD-MIP algorithm and other optimization paradigms for the QSSP

Instance BiqCrunch
CPLEX

Gurobi
Hybrid

Speedups

Linearize Not Linearize BDD-MIP

n p v # Opt. Value CPU (s) CPU (s) CPU (s) CPU (s) CPU (s) vs. best benchmark

100 25 25 1 882 525.68 234.79 83.75 62.26 17.22 3.62

100 25 25 2 813 1106.77 318.86 130.86 97.60 25.49 3.83

100 25 25 3 792 1785.48 264.29 124.78 94.40 30.80 3.06

100 25 50 1 2576 7200.00 845.72 119.33 259.56 23.68 5.04

100 25 50 2 2468 7200.00 662.94 163.72 369.53 40.01 4.09

100 25 50 3 2509 7200.00 676.46 132.64 233.55 44.78 2.96

100 25 75 1 4758 7200.00 1257.45 1516.95 189.03 175.52 1.08

100 25 75 2 4877 7200.00 951.13 1606.76 218.82 168.34 1.30

100 25 75 3 5014 7200.00 819.99 1042.85 144.14 157.21 0.92

100 50 25 1 607 831.41 17.61 10.35 10.89 0.68 15.22

100 50 25 2 459 814.58 18.94 9.90 11.64 0.70 14.14

100 50 25 3 542 842.47 18.30 8.76 10.74 0.78 11.23

100 50 50 1 1163 4100.00 48.09 13.00 11.46 0.80 14.33

100 50 50 2 1138 4493.42 55.01 11.72 10.36 0.80 12.95

100 50 50 3 1002 5902.90 60.56 15.78 13.08 0.90 14.53

100 50 75 1 1829 7038.16 90.58 29.85 12.72 0.73 17.42

100 50 75 2 2047 5948.31 84.30 27.43 14.38 0.70 20.54

100 50 75 3 1748 7046.40 93.89 34.25 16.02 0.78 20.54



Table A.5: (Continued) Comparison between the hybrid BDD-MIP algorithm and other optimization paradigms for the QSSP

Instance BiqCrunch
CPLEX

Gurobi
Hybrid

Speedups

Linearize Not Linearize BDD-MIP

n p v # Opt. Value CPU (s) CPU (s) CPU (s) CPU (s) CPU (s) vs. best benchmark

100 75 25 1 267 527.32 5.04 4.68 1.01 0.05 20.20

100 75 25 2 378 440.87 3.19 3.86 0.97 0.06 16.17

100 75 25 3 273 417.62 3.45 4.00 1.12 0.06 18.67

100 75 50 1 483 1435.61 15.82 4.69 1.57 0.05 31.40

100 75 50 2 507 1335.20 18.28 3.96 1.52 0.06 25.33

100 75 50 3 525 1299.99 17.90 4.13 1.61 0.06 26.83

100 75 75 1 607 1255.21 29.69 5.95 1.66 0.05 33.20

100 75 75 2 757 1148.03 36.99 6.14 1.79 0.05 35.80

100 75 75 3 843 1084.15 24.79 6.28 1.67 0.06 27.83

150 25 25 1 1248 7200.00 5638.62 7200.00 1749.09 531.48 3.29

150 25 25 2 1229 7200.00 4117.49 5267.68 1726.29 585.53 2.95

150 25 25 3 1116 7200.00 4572.44 7200.00 1348.20 565.40 2.38

150 25 50 1 3322 7200.00 7200.00 7200.00 7200.00 824.74 8.73

150 25 50 2 3016 7200.00 7200.00 7200.00 7200.00 1078.56 6.68

150 25 50 3 3225 7200.00 7200.00 7200.00 6356.28 761.80 8.34

150 25 75 1 6962 7200.00 7200.00 7200.00 7200.00 2490.08 2.89

150 25 75 2 6438 7200.00 7200.00 7200.00 7200.00 3295.71 2.18

150 25 75 3 6332 7200.00 7200.00 7200.00 7200.00 3090.42 2.33



Table A.6: (Continued) Comparison between the hybrid BDD-MIP algorithm and other optimization paradigms for the QSSP

Instance BiqCrunch
CPLEX

Gurobi
Hybrid

Speedups

Linearize Not Linearize BDD-MIP

n p v # Opt. Value CPU (s) CPU (s) CPU (s) CPU (s) CPU (s) vs. best benchmark

150 50 25 1 665 6303.99 133.97 123.42 46.13 7.29 6.33

150 50 25 2 627 7200.00 134.50 135.07 44.77 7.85 5.70

150 50 25 3 642 7200.00 121.71 148.43 47.13 7.22 6.53

150 50 50 1 1500 7200.00 1166.65 168.72 82.57 7.03 11.75

150 50 50 2 1317 7200.00 1134.84 188.60 108.58 7.20 15.08

150 50 50 3 1322 7200.00 1251.19 189.40 97.30 7.94 12.25

150 50 75 1 2377 7200.00 804.81 540.03 89.54 6.52 13.73

150 50 75 2 2053 7200.00 2937.07 633.60 102.46 7.26 14.11

150 50 75 3 2293 7200.00 1516.94 573.47 82.39 6.70 12.30

150 75 25 1 451 2235.84 40.68 20.91 4.67 0.21 22.24

150 75 25 2 384 2971.97 34.10 23.21 4.61 0.21 21.95

150 75 25 3 347 3478.83 46.26 25.14 39.25 0.21 119.71

150 75 50 1 787 7200.00 79.54 25.75 44.67 0.18 143.06

150 75 50 2 873 7082.92 69.25 24.54 39.15 0.19 129.16

150 75 50 3 663 7200.00 88.54 29.18 45.32 0.20 145.90

150 75 75 1 895 7200.00 94.96 38.96 36.14 0.20 180.70

150 75 75 2 877 7200.00 99.28 37.58 65.96 0.22 170.82

150 75 75 3 888 7200.00 67.40 39.20 44.73 0.21 186.67



Table A.7: Comparison between the hybrid BDD-MIP and Gurobi for QSSP instances with n ∈ {175, 200, 250}

Instances

Gurobi Hybrid BDD-MIP

SpeedupsBDD-nodes subMIPs

Group n p v Best LB Best UB Opt. Gap CPU time (s) explored solved Best LB Best UB Opt. Gap CPU time (s)

175 25 25 1 1298 1298 0 6063.74 100104 96669 1298 1298 0 2983.63 2.03

175 25 25 2 1118 2188 0.96 7200.00 136983 131702 1118 1118 0 4639.45 1.55

175 25 25 3 1043 2649 1.54 7200.00 138306 133879 1043 1043 0 4774.72 1.51

175 25 50 1 3207 9869 2.08 7200.00 117025 113546 3774 3774 0 4410.49 1.63

175 25 50 2 2803 9832 2.51 7200.00 109835 106377 2995 2995 0 5192.52 1.39

175 25 50 3 3671 9238 1.52 7200.00 114012 110094 3671 3671 0 4455.41 1.62

175 25 75 1 7680 15409 1.01 7200.00 83874 81458 7680 7680 0 5798.34 1.24

175 25 75 2 6349 16314 1.57 7200.00 45098 42883 6587 13787 1.09 7200.00 1.00

175 25 75 3 6482 16216 1.50 7200.00 53546 51560 6686 13022 0.95 7200.00 1.00

175 50 25 1 717 717 0 87.59 7771 0 717 717 0 15.29 5.73

175 50 25 2 895 895 0 119.58 5631 0 895 895 0 12.85 9.31

175 50 25 3 728 728 0 144.89 8112 0 728 728 0 16.77 8.64

175 50 50 1 1263 1263 0 227.98 15932 1 1263 1263 0 23.38 9.75

175 50 50 2 1351 1351 0 231.20 16065 6 1351 1351 0 23.79 9.72

175 50 50 3 1249 1249 0 210.36 17719 1 1249 1249 0 24.87 8.46

175 50 75 1 2298 2298 0 262.08 12384 9 2298 2298 0 19.13 13.70

175 50 75 2 2145 2145 0 251.34 14259 4 2145 2145 0 18.96 13.26

175 50 75 3 2335 2335 0 269.36 14161 3 2335 2335 0 21.62 12.46

175 75 25 1 371 371 0 53.68 255 0 371 371 0 0.34 157.88

175 75 25 2 402 402 0 61.77 246 0 402 402 0 0.33 187.18

175 75 25 3 409 409 0 58.75 260 0 409 409 0 0.38 154.61

175 75 50 1 642 642 0 88.12 373 0 642 642 0 0.36 244.78

175 75 50 2 621 621 0 62.12 308 0 621 621 0 0.35 177.49

175 75 50 3 713 713 0 76.97 285 0 713 713 0 0.34 226.38

175 75 75 1 900 900 0 102.81 528 0 900 900 0 0.40 257.03

175 75 75 2 917 917 0 72.70 387 0 917 917 0 0.35 207.71

175 75 75 3 1048 1048 0 75.28 376 0 1048 1048 0 0.37 203.46
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Table A.8: (Continued) Comparison between the hybrid BDD-MIP and Gurobi for QSSP instances with n ∈ {175, 200, 250}

Instances

Gurobi Hybrid BDD-MIP

SpeedupsBDD-nodes subMIPs

Group n p v Best LB Best UB Opt. Gap CPU time (s) explored solved Best LB Best UB Opt. Gap CPU time (s)

200 25 25 1 1233 5102 3.14 7200.00 98742 91409 1228 5495 3.47 7200.00 1.00

200 25 25 2 1229 5587 3.55 7200.00 91540 83594 1226 5651 3.61 7200.00 1.00

200 25 25 3 1255 5436 3.33 7200.00 89152 81142 1239 5612 3.53 7200.00 1.00

200 25 50 1 3171 16197 4.11 7200.00 72480 64032 3849 12251 2.18 7200.00 1.00

200 25 50 2 3136 16659 4.31 7200.00 63830 55759 3373 13135 2.89 7200.00 1.00

200 25 50 3 3001 15599 4.20 7200.00 73882 66552 3558 11944 2.36 7200.00 1.00

200 25 75 1 5850 25718 3.40 7200.00 20924 15712 7170 20751 1.89 7200.00 1.00

200 25 75 2 7556 24668 2.26 7200.00 33217 26997 7822 19175 1.45 7200.00 1.00

200 25 75 3 7448 25614 2.44 7200.00 35343 29168 7896 19121 1.42 7200.00 1.00

200 50 25 1 733 733 0 227.33 15466 0 733 733 0 36.39 6.25

200 50 25 2 755 755 0 252.20 14753 0 755 755 0 35.42 7.12

200 50 25 3 712 712 0 309.93 16279 0 712 712 0 41.92 7.39

200 50 50 1 1443 1443 0 813.54 30418 1 1443 1443 0 61.04 13.33

200 50 50 2 1433 1433 0 490.51 26524 0 1433 1433 0 52.33 9.37

200 50 50 3 1570 1570 0 426.39 25492 1 1570 1570 0 50.36 8.47

200 50 75 1 2550 2550 0 478.93 22468 9 2550 2550 0 46.65 10.27

200 50 75 2 2445 2445 0 522.66 19816 1 2445 2445 0 36.93 14.15

200 50 75 3 2410 2410 0 513.28 25190 8 2410 2410 0 48.76 10.53

200 75 25 1 484 484 0 106.55 351 0 484 484 0 0.52 204.90

200 75 25 2 390 390 0 100.98 394 0 390 390 0 0.54 187.00

200 75 25 3 546 546 0 116.14 251 0 546 546 0 0.53 219.13

200 75 50 1 905 905 0 129.93 374 0 905 905 0 0.54 240.61

200 75 50 2 956 956 0 112.08 367 0 956 956 0 0.53 211.47

200 75 50 3 714 714 0 144.32 399 0 714 714 0 0.51 282.98

200 75 75 1 1106 1106 0 158.00 558 0 1106 1106 0 0.61 259.02

200 75 75 2 1050 1050 0 153.22 539 0 1050 1050 0 0.56 273.61

200 75 75 3 1219 1219 0 172.42 339 0 1219 1219 0 0.51 338.08
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Table A.9: (Continued) Comparison between the hybrid BDD-MIP and Gurobi for QSSP instances with n ∈ {175, 200, 250}

Instances

Gurobi Hybrid BDD-MIP

SpeedupsBDD-nodes subMIPs

Group n p v Best LB Best UB Opt. Gap CPU time (s) explored solved Best LB Best UB Opt. Gap CPU time (s)

250 50 25 1 898 898 0 1149.65 34998 3 898 898 0 157.53 7.30

250 50 25 2 826 826 0 733.51 44231 1 826 826 0 192.68 3.81

250 50 25 3 874 874 0 1184.44 34912 1 874 874 0 164.12 7.22

250 50 50 1 1557 1557 0 2208.99 84926 3 1557 1557 0 428.82 5.15

250 50 50 2 1532 1532 0 2159.86 84933 4 1532 1532 0 463.70 4.66

250 50 50 3 1645 1645 0 2372.39 81951 8 1645 1645 0 432.17 5.49

250 50 75 1 2744 2744 0 2889.24 86741 77 2744 2744 0 476.84 6.06

250 50 75 2 2678 2678 0 2950.96 97142 77 2678 2678 0 427.36 6.91

250 50 75 3 2751 2751 0 2546.23 77539 30 2751 2751 0 416.00 6.12

250 75 25 1 560 560 0 447.82 429 0 560 560 0 1.27 352.61

250 75 25 2 446 446 0 356.40 723 0 446 446 0 1.42 250.99

250 75 25 3 426 426 0 369.74 775 0 426 426 0 1.50 246.49

250 75 50 1 771 771 0 422.91 1343 0 771 771 0 1.54 274.62

250 75 50 2 828 828 0 418.07 1135 0 828 828 0 1.41 296.50

250 75 50 3 709 709 0 670.93 2096 0 709 709 0 1.72 390.08

250 75 75 1 1103 1103 0 533.13 1543 0 1103 1103 0 1.52 350.74

250 75 75 2 1067 1067 0 501.15 2273 0 1067 1067 0 1.69 296.54

250 75 75 3 1176 1176 0 580.04 1367 0 1176 1176 0 1.40 414.31
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