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Abstract The Radiotherapy Scheduling Problem (RTSP) fo-
cuses on optimizing the planning of radiotherapy treatment
sessions for cancer patients. In this paper, we propose a two-
phase approach for the RTSP. In the first phase, radiotherapy
sessions are assigned to specific linear accelerators (linacs)
and days. The second phase then decides the sequence of pa-
tients on each day/linac and the specific appointment times.
For the first phase, an Integer Linear Programming (IP) model
is proposed and solved using CPLEX. For the second phase,
a Mixed Integer Linear Programming (MIP) and a Constraint
Programming (CP) model are proposed. The test data is gen-
erated based on real data from CHUM, a large cancer cen-
ter in Montréal, Canada, with an average of 3,500 new pa-
tients and 40,000 radiotherapy treatments per year. The re-
sults show that in the second phase, CP is better at finding
good solutions quickly while MIP is better at closing opti-
mality gaps with more run time. Lastly, a simulation is con-
ducted to evaluate the impact of different scheduling strate-
gies on the outcome of the scheduling. Preliminary results
show that batch scheduling reduces patients’ waiting time
and overdue time.

Keywords Radiotherapy scheduling · Integer Program-
ming · Constraint Programming · Simulation · Operations
research

Highlights

– The paper proposes a two-phase approach for a Radio-
therapy Scheduling Problem arising at a cancer center
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in Montréal, Canada. Solving the problem helps reduce
waiting time to start treatments while considering tech-
nical constraints and patients’ preferences. The approach
successfully solves realistic-sized instances.

– The paper performs a simulation to evaluate different
scheduling strategies (sequential, daily, weekly, etc.) and
shows that batch scheduling improves waiting time as
well as overdue time of patients. These analyses can as-
sist hospital administrators by offering a novel strategy
for optimizing radiotherapy scheduling.

1 Introduction

According to the World Health Organization (WHO) 1, can-
cer is a leading leading cause of death worldwide. It ac-
counts for nearly 10 million deaths globally in 2020. The in-
cidence of cancer has been increasing sharply in the last few
decades. The number of treatment facilities and personnel,
however, have not grown proportionally. This not only puts
strain on the treatment facilities and their staff but also re-
sults in long waiting times for patients. Numerous studies [5,
14,4] have shown that increased waiting time for radiother-
apy treatment has a negative impact on clinical outcomes.
Therefore, better planning to reduce waiting time is crucial
in improving cancer treatment results.

There exist many options for cancer treatment, includ-
ing surgery, chemotherapy, and radiotherapy. Different treat-
ment methods are often combined and can be repeated as
needed. In this work, we aim to optimize the planning of
radiotherapy treatments, an effective form of cancer treat-
ment. Approximately 50% of all cancer patients require ra-
diotherapy as a part of their treatment [1,20]. In radiother-
apy treatment (RT), a patient receives a daily dose of radi-
ation to kill cancer cells. The treatment is most commonly

1 https://www.who.int/news-room/fact-sheets/detail/cancer
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delivered by a linear accelerator (linac). The Radiotherapy
Scheduling Problem (RTSP) consists of deciding the radio-
therapy treatment schedule for a set of patients, given a set
of linacs, within a planning horizon. The problem is compli-
cated due to several strategies and constraints that vary from
hospital to hospital, resulting in numerous variants of the
RTSP. In this paper, we consider a real-world variant arising
at CHUM (Centre hospitalier de l’Université de Montréal),
a large cancer center in Montréal, Canada.

Currently, at CHUM, scheduling is done manually by
scheduling staff. RT scheduling can be divided into two lev-
els: (1) assigning patients’ treatments to days and linacs (treat-
ment scheduling); and (2) assigning exact time slots for pa-
tients on each day/linac (appointment scheduling). Optimiz-
ing at the first level helps reduce patient waiting time while
optimizing at the second level helps accommodate patients’
preferences. Most existing work in the literature focuses solely
on treatment scheduling [6,7,19,13]. Other work addresses
both treatment scheduling and appointment scheduling opt-
ing for heuristics for large instances due to the intractabil-
ity of exact models [16,15,22,21]. In this work, we pro-
pose a two-phase approach to target both levels of schedul-
ing. Patients are assigned to specific linacs and days in the
first phase, and the sequence of patients on each day/linac
and their exact appointment times are decided in the second
phase. An Integer Programming (IP) model is proposed for
the first phase, whereas a Mixed Integer Linear Program-
ming (MIP), and a Constraint Programming (CP) model are
proposed for the second phase. Using these models, we are
able to solve larger instances compared to existing approaches
in the literature in terms of number of linacs, number of
patients, granularity of the schedules and planning horizon.
Notably, we demonstrate a successful implementation of CP
in the second phase of the RTSP. With an expressive mod-
elling language, CP is much more compact and flexible than
heuristic methods. Empirical results show that CP is able to
find high-quality solutions rapidly, which makes it suitable
for real-world applications. MIP, on the other hand, is better
at providing good lower bounds.

We evaluate the effect of the two-phase approach on pa-
tients’ waiting time and overdue time in a long-term, real-
world setting where scheduling decisions are made period-
ically. We do so by using the models within a simulation
where daily patient arrival follows a Poisson distribution.
We evaluate different scheduling policies: a greedy heuristic
currently used at CHUM, where appointments are booked
every time a patient is admitted; and batch scheduling poli-
cies where scheduling decisions are made periodically, i.e.
daily, bi-weekly or weekly. We combine those policies with
delaying patients’ appointments until a later time point. The
results show that batch scheduling improves patients’ wait-
ing time as well as overdue time. We note that batch schedul-
ing and delaying treatment affect patient groups differently.

These analyses can serve as guidelines to help healthcare
administrators improve their scheduling policy.

The structure of the paper is as follows. In Section 2, we
describe the problem and analyse related work. Section 3
describes our two-phase approach, while data generation is
presented in Section 4. Section 5 provides numerical results
for the two-phase approach. Section 6 presents the simula-
tion to evaluate the effect of different scheduling policies on
the waiting time and overdue time. Finally, Section 7 closes
the paper with conclusions and topics for future work.

2 Problem statement and related work

We herein describe the problem considered in this paper and
then discuss related work.

2.1 Problem statement

In this paper, we study a real variant of the RTSP in the con-
text of CHUM. In a one-year period spanning 2017-2018,
CHUM treated 3,500 patients and carried out 40,000 radio-
therapy treatments. The center is equipped with 10 linacs,
seven of which are often used at maximum capacity. The
remaining three linacs are specialized linacs required for
certain types of treatment. Cancer treatment is a compli-
cated process with many procedures involved. The treatment
workflow used at CHUM is illustrated in Figure 1. Once a
new consultation request is made, a (potential) patient first
undergoes a consultation session where the doctor explains
their cancer status and options. If the patient agrees to pro-
ceed with the treatment, he or she will go through prepara-
tion steps such as external consultation and exams, approv-
ing the care plan and booking the scans. The next step is
treatment planning, where a set of tests and imaging need to
be done, which could include x-rays, CT scans, MRI scans,
and PET scans. The treatment plan will need to be verified
and approved by a physicist before the treatments are pre-
pared. The radiotherapy treatments are then carried out, with
review and possibly revision during the course of treatment.
Finally, the treatment ends with post-treatments and follow-
ups.

In radiotherapy treatment, a patient receives a high dose
of radiation to kill cancer cells. The radiation is divided into
small doses called fractions. A series of fractions is deliv-
ered using a linac during the course of several consecutive
days, with breaks on the weekend. Currently, the schedul-
ing is done manually. Once a treatment plan is approved,
linacs and staff are booked. Patients are classified according
to four different categories, each requiring different treat-
ment deadlines. Palliative patients (categories P1 and P2)
need urgent care to relieve intense pain, hence the treatment
deadline is set to one and three days, respectively. Curative
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Fig. 1: Radiotherapy treatment workflow at CHUM2.

Category Proportion (%)
Treatment deadline

(days)
Percentage of

overdue treatment (%)
Average

waiting time (days)
P1 0.44 1 14.29 1.09
P2 27.14 3 79.89 6.91
P3 41.36 14 74.55 18.11
P4 31.06 28 29.89 22.59

Table 1: Waiting time targets, percentage of overdue treatment and average waiting time of cancer patients at CHUM in 2017-2018 by patient
category.

patients (categories P3 and P4) have their deadline set to 14
and 28 days, respectively. A patient’s waiting time is cal-
culated based upon the time elapsed between his or her ad-
mission date and the date of the first treatment. Currently,
CHUM is under-capacity and hence faces difficulty meeting
treatment deadlines for many patients. Table 1 shows patient
categories along with their proportion, percentage of over-
due treatments and average waiting time at CHUM in the
period between November 2017 and July 2019. As can be
seen from the table, more than 70% of patients in category
P2 and P3 are treated after their due dates. The objective
of our problem is hence minimizing waiting time, i.e. treat-
ments should start as soon as possible once the patient is
ready. The treatment deadline is treated as a soft constraint.

Based on a patient’s diagnosis, doctors will propose a
treatment plan, which determines how many fractions the
patient will receive and the length of each fraction. At CHUM,
fraction lengths range from 10 to 165 minutes. The majority
of patients have fraction lengths of 25 to 30 minutes. Since
fraction lengths at CHUM are always multiples of 5 minutes,
we set the granularity of our schedules to 5-minute blocks.
For example, a fraction length of 15 minutes is equivalent to
3 time blocks. A fine-grained schedule makes our problem
substantially more difficult compared to other works in liter-
ature, which either assume a fixed duration of treatment for
all patients or use larger time blocks, e.g. 10 or 20 minutes.

Once the treatment starts, it needs to be carried out daily,
with breaks only on the weekend. Each patient has a ready
date and a due date and the patient can only start treatment
after the ready date. When a patient is scheduled after his
or her due date, we call this overdue treatment, which is pe-

nalized heavily. Although undesirable, patients can switch
between linacs during the course of treatment. At CHUM,
some patients have to be treated on a specialized linac. To
simplify the problem, we do not consider those special cases
and assume that all patients can switch between all linacs.
However, the total number of linacs assigned to a given pa-
tient should be minimized, for several reasons: (1) each linac
is usually associated with a set of technicians who famil-
iarize themselves with the patient’s condition prior to treat-
ment; and (2) there might be some patient-specific setup re-
quired before each treatment. Changing treatment rooms of-
ten will lengthen the process. We also note that some part
of linac capacity is reserved for emergency patients. For pa-
tients’ convenience, appointment times should be consistent
throughout the course of treatment. We allow for movement
of some fixed appointments to make room for or to better ac-
commodate new patients. However, those changes should be
minimized. Some patients, especially those living far from
the treatment center, have a time window preference within
which they wish to have their appointments.

The most important objectives of the problem are reduc-
ing waiting time and overdue time. Other objectives deal
with appointment time consistency, patient-linac consistency,
respecting time window preferences, and minimizing changes
to fixed appointments. The following terms hence need to be
minimized: (1) deviations in appointment times during treat-
ment; (2) the number of linacs assigned to each patient; (3)
the violation of time window preferences; and (4) changes
to fixed appointments. Preliminary experiments using a MIP

2 Figure provided by CHUM.
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formulation show that using an exact model to solve all ob-
jectives directly is intractable. In addition, from a practical
point of view, reducing waiting time and overdue time are
the most important goals in RT scheduling and hence should
not be compromised to suit other objectives. Therefore, we
propose a two-phase approach for the problem. In the first
phase, the starting dates of treatments are decided, along
with the linac for each treatment. The most important ob-
jectives, i.e. reducing waiting time and overdue time, along
with patient-linac consistency are handled in this phase. The
second phase, which decides the sequence of patients and
the exact appointment times on each day and each linac, re-
solves the remaining objectives.

2.2 Related work

Radiotherapy scheduling is a relatively young research field.
In 1993, Larsson [12] introduces the first software for a ra-
diotherapy patient scheduling system as a replacement for
the conventional paper-based system, and predicts that it
will support the use of sophisticated mathematical models
for the problem in the future. However, it is not until 2008
that the first two mathematical models for the Radiother-
apy Scheduling Problem are published by Conforti [6]. The
models maximize the number of treated patients within a
given horizon with identical treatment times and a single
linac. The models are then extended to tackle more realis-
tic instances where the treatment times of patients vary [7].
The first models are based on lots of assumptions and sim-
plification. Later work focuses more on dynamic scheduling
to tackle stochastic factors in radiotherapy treatments. Saure
et al. [19] model the radiotherapy scheduling problem as a
discounted Markov Decision Process (MDP), to provide a
dynamic policy that takes into account future events. A sim-
ilar approach is also utilized by Gocgun [9], which addition-
ally allows for cancellation of treatments.

In [13], Legrain et al. propose a hybrid method combin-
ing stochastic optimization and online optimization to solve
the problem in an online fashion, while taking into account
information on the distribution of future arrivals of patients.
All of the aforementioned work focuses solely on the first
scheduling level, i.e. assigning treatments to dates, while ne-
glecting the sequence of patients on each linac for each day.
They focus on taking into account stochastic future arrivals
of patients in a dynamic setting to reduce waiting time. Our
work, in contrast, persues a different goal: building a com-
plete scheduling system which takes into account patients’
preferences. We therefore focus on both phases of schedul-
ing. In addition, we target larger instances. The aforemen-
tioned models are very costly and hence are limited to rel-
atively small instances. In [19], their practical example has
an arrival rate of 8.25 requests per day, with 120 appoint-
ment slots which is equivalent to three linacs. Legrain et al.

[13] consider a 20-minute time slot for each patient and tests
the algorithm on instances with up to two linacs and arrival
rate λ less than 3.5. In addition, they address the scheduling
problem in an online setting where patients leave the center
with their appointments scheduled, in constrast to our batch
scheduling setting. Those models hence cannot be applied
to the problem that we consider at CHUM.

In [8], the authors propose two CP models and one IP
model to solve both treatment scheduling and appointment
scheduling for RT treatment. They compare the performance
of those models and come up with a conclusion similar to
ours, namely that CP models find feasible solutions earlier.
They minimize violation of treatment deadlines as the pri-
mary objective and deviation in appointment times as the
secondary objective. However, they assign patients to time
windows of 1.5 to 4 hours instead of deciding the exact ap-
pointment times, which reduces the complexity of the prob-
lem. Their test instances have three linacs and arrival rates
ranging from four to eight patients, with four to six time
windows per day.

Another form of radiotherapy treatment using a particle
beam is studied by two research groups in Vienna [16,15,
22]. In particle beam treatment, a single centralized beam
serves different treatment rooms. Hence it is important to
have a detailed schedule with exact appointment time of pa-
tients to utilize the beam most efficiently. Therefore, even
though their setting is different, their problems share many
characteristics with ours. Their problems consider both dates
of treatments and sequence of treatments. They also aim to
minimize inconsistencies in appointment time. As shown in
[16], their exact model for the problem is highly intractable.
All of the aforementioned papers propose metaheuristics for
scheduling particle beam radiotherapy treatment. In phase 2
of our problem, we propose a CP approach to solve the ra-
diotherapy appointment scheduling problem. Even though
optimal solutions are not obtained for real-world size in-
stances, we show that our approach provides high-quality
solutions in a short run time. Our CP approach also has the
advantages of a compact model which is easy to adapt to
other variants and additional constraints.

In [22], Volg et al. describe how problem instances are
generated. However, their instances are generated in such a
way that optimal solutions can be calculated, i.e. there exist
“beautiful” schedules with no idle times, and no violation of
side constraints. In our experience, realistic instances have
more irregularities in the schedule due to the stochastic na-
ture of healthcare. Those irregularities cause numerical diffi-
culty in algorithms, both exact and metaheuristic. Our paper
focus on generating and solving such realistic instances.

In [18,17] and [2], the authors consider a problem which
arises at the Nottingham University Hospitals. The first two
publications present several constructive approaches and a
GRASP-based algorithm. The third one proposes an IP model



A two-phase approach for the Radiotherapy Scheduling Problem 5

assigning patients to days and linacs, which corresponds to
our first phase. Those papers investigate whether delaying
the scheduling decision can lead to better schedules. This is
similar to our simulation in Section 6 of the paper. The au-
thors also use a subset of the data to partially fill the sched-
ule to create test instances. However, the details on how it
is done are not presented. Kapamara et al. [10] develop four
heuristic methods to schedule patients in both pre-treatment
and treatment stages. Pre-treatment for radiotherapy patients
is also considered in [3]. The authors model the problem as
an optimization problem with hierarchical multiple objec-
tives and solve it as a series of single-objective optimization
problems. Each subproblem is formulated as a mathematical
programming model.

In yet another work, the authors consider a real prob-
lem taken from the Netherlands Cancer Institute (NKI) [21].
Similar to our problem, they consider two phases of the
scheduling process and focus on satisfying patient prefer-
ences on appointment time. An exact model and a heuristic
pre-assigning patients to linacs to break down the problem
into many sub-problems are proposed. With the MIP model,
they obtain optimal solutions for instances up to 66 patients
and two linacs with a planning horizon of five days, i.e. one
working week, which is significantly shorter than the plan-
ning horizon we consider in this paper (60 days). In addition,
the authors do not describe how they generate problem in-
stances, which has a significant effect on the difficulty of the
instances, as proven by the numerical results in Section 5.2.

3 A two-phase approach

The RTSP consists of finding the best treatment schedule for
a set of patients P over a planning horizon T , given a set of
linacs K. The sets of palliative patients and curative patients
are denoted as PP and PC respectively, P = PP ∪ PC .
Each instance consists of a set of fixed patients with appoint-
ments made from the previous scheduling decisions. This set
is denoted as P̄ , while the set of new patients is denoted as
P̂ , P = P̄ ∪ P̂ . Each patient i ∈ P has a ready date ri
when the patient is ready for treatment, and a due date di,
before which the treatment must start. Each patient i is as-
sociated with a treatment plan, which specifies the number
of fractions Ii that the patient needs to receive and the dura-
tion of each fraction (pi). Each linac k has a capacity (Ct

k)
measured in blocks of 5 minutes. Ĉt

k represents the avail-
able capacity of linac k in day t after deducting the fixed
appointments from the previous scheduling decisions. The
set of parameters is presented in Table 2.

The approach consists of two phases. Phase 1 determines
the assignment of fractions to days and linacs. Phase 2 de-
cides the sequence of patients and the exact appointment
times given the assignment fraction-day-linac. For phase 1,

Parameter Explanation
P set of patients
PP set of palliative patients
PC set of curative patients
P̂ set of new patients
P̄ set of fixed patients

from the previous scheduling decisions
T set of days in the horizon
S set of time blocks each day
K set of linacs
Ct

k total capacity of linac k in day t
Ĉt

k available capacity of linac k in day t
ri ready date of patient i
di due date of patient i
pi fraction duration for patient i
Ii number of fractions of patient i

Table 2: Problem parameters

we propose an IP model. For phase 2, we propose a MIP and
a CP model.

3.1 Phase 1: Assigning fractions to days and linacs

The following variables are defined on the set of new pa-
tients P̂ .

– xtik = 1 if the new patient i ∈ P̂ is assigned to day t on
linac k, 0 otherwise.

– zti = 1 if the new patient i receives his or her first treat-
ment on day t, 0 otherwise.

– wik = 1 if the new patient i is assigned to linac k during
his or her treatment.

Model:

minimize ω1

∑
i∈P̂

∑
t∈T

(t− ri)2zti

+ ω2

∑
i∈P̂

∑
t∈T ,t>di

(t− di)2zti + ω3

∑
i∈P̂

∑
k∈K

wik

(1)

subject to∑
k∈K

xtik ≤ 1 ∀i ∈ P̂, t ∈ T (2)∑
k∈K

∑
t∈T

xtik ≤ Ii ∀i ∈ P̂ (3)∑
k∈K

(xtik − xt−1
ik ) ≤

∑
k∈K

xnik ∀i ∈ P̂, t ∈ T , x−1
ik = 0,

n = t+ 1, . . . ,min{|T | − 1, t+ Ii − 1} (4)

xtik = 0 ∀i ∈ P̂, k ∈ K, t ∈ {0, . . . , ri − 1} (5)∑
i∈P̂

pix
t
ik ≤ Ĉt

k ∀t ∈ T , k ∈ K (6)

∑
i∈PC

pix
t
ik ≤ Ĉt

k − γCt
k ∀t ∈ T , k ∈ K (7)
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t∈T

zti = 1, ∀i ∈ P̂ (8)

zti ≥
∑
k∈K

xtik −
∑
k∈K

xt−1
ik , ∀i ∈ P̂, t ∈ T , x−1

ik = 0 (9)∑
k∈K

xtik ≥ zti , ∀i ∈ P̂, t ∈ T (10)

wik ≥ xtik ∀i ∈ P̂, t ∈ T , k ∈ K (11)

xtik, z
t
i , wik ∈ {0, 1} ∀i ∈ P̂, t ∈ T , k ∈ K (12)

Objective function (1) consists of three terms which min-
imize (1) the squared number of waiting days; (2) the squared
number of overdue days; and (3) the total number of linacs
assigned to a patient during his or her treatment. We min-
imize the squared value of waiting days and overdue days
to make sure the violation is distributed evenly between pa-
tients, i.e. no patient has to wait much longer than the others.
ω1, ω2 and ω3 are the weights of the three terms, respec-
tively. The values of the weights can be decided by practi-
tioners, depending on how much they consider one objec-
tive more important than the others. To analyse the weight
setting, we first look into the value ranges of the individual
terms in the objective function. The first two terms in the
objective function (1) are the squared values of the waiting
time and overdue time respectively, which are typically less
than 30 days. The value range of the first two terms for each
individual patient is hence from 0 to 900 (approximately
speaking). The value range of the third objective term is the
total number of linacs, which is less than 7 in our test in-
stances. We consequently set ω1 = ω3 = 1 and ω2 = 1000

to prioritize minimizing overdue time over minimizing wait-
ing time and linac consistency. Constraints (2) ensure each
patient is scheduled on at most one linac per day. Constraints
(3) limit the number of sessions delivered to each patient.
Constraints (4) ensure daily treatment. Constraints (5) en-
sure no patients are scheduled before their ready date. Con-
straints (6) ensure the capacity of each linac is not exceeded.
Constraints (7) save γ percent of linac capacity for pallia-
tive patients. Constraints (8) make sure all new patients are
scheduled. Constraints (8, 9, 10) define the first day of treat-
ment. Constraints (11) keep track of which linac a patient is
assigned to during his or her course of treatment. Constraints
(12) are integrality constraints.

3.2 Phase 2: Order of patients on linacs - MIP model

In phase 2, three objectives are considered: (1) consistency
in appointment times; (2) time window preferences; and (3)
changes to fixed appointments. The first two objectives are
applied for new, curative patients only. The last objective
is applied for fixed appointments regardless of patient cate-
gory.

The input for phase 2 consists of the assignments of pa-
tients to days and linacs. Let P t

k be the set of patients sched-
uled on linac k, day t, P t

k = P̄ t
k ∪ P̂ t

k where P̄ t
k is the set

of fixed patients from the previous scheduling decisions and
P̂ t
k is the set of new patients. Each fixed patient i ∈ P̄ t

k

has an appointment time slot from the previous scheduling
period, denoted as s̄ti. The model allows for changes to the
appointment times of fixed patients, but tries to minimize
those changes. We define variables and constraints only on
the set of linacs and days where there exist new assignments
of treatments.

Variables:

– ytkis : binary variables indicating patient i is scheduled for
time block s on day t, linac k.

– ∆̄t
i and ∆t

i: representing the deviation (earlier or later)
from the time window for new, curative patient i ∈ P̂C
on day t.

– θ̄i and θi: representing the earliest and latest appoint-
ment time slots for new, curative patient i ∈ P̂C .

– φ̄ti and φti: representing changes in appointment times
(to earlier or later) of fixed patient i ∈ P̄ on day t.

Model:

minimize ω4

∑
i∈P̂C,t∈T

(∆̄it +∆it) + ω5

∑
i∈P̂C

(θ̄i − θi)

+ω6

∑
i∈P̄,t∈T

(φ̄ti + φti)

(13)

subject to∑
s∈S

ytkis = 1 ∀t ∈ T , k ∈ K, i ∈ Pt
k (14)∑

i∈Pt
k

ytkis ≤ 1 ∀t ∈ T , k ∈ K, s ∈ S (15)

ytkis ≤ 1− ytki′s′ ∀t ∈ T , k ∈ K, i, i′ ∈ Pt
k, i 6= i′

s = 0, . . . , |S| − pi
s′ = s+ 1, . . . , s+ pi − 1 (16)

ytkis = 0 ∀t ∈ T , k ∈ K, i ∈ Pt
k,

s = |S| − pi + 2, ...|S| − 1 (17)

∆̄t
i ≥ ytkis (tmin

i − s) ∀t ∈ T , k ∈ K,

∀i ∈ P̂Ctk , s ∈ S (18)

∆t
i ≥ ytkis (s− tmax

i ) ∀t ∈ T , k ∈ K,

∀i ∈ P̂Ctk , s ∈ S (19)

θ̄i ≤
∑
s∈S

sytkis ∀t ∈ T , i ∈ P̂Ct, k = kti (20)

θi ≥
∑
s∈S

sytkis ∀t ∈ T , i ∈ P̂Ct, k = kti (21)
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φ̄ti ≥ s̄ti −
∑
s∈S

sytkis , ∀t ∈ T , k ∈ K,∀i ∈ P̄t
k (22)

φti ≥
∑
s∈S

sytkis − s̄ti ∀t ∈ T , k ∈ K,∀i ∈ P̄t
k (23)

ytkis ∈ {0, 1} ∀t ∈ T , k ∈ K, i ∈ Pt
k (24)

∆̄t
i, ∆

t
i, θ̄i, θi ∈ [0, Ct

k] ∀t ∈ T , i ∈ P̂C (25)

φ̄ti, φ
t
i ∈ [0, Ct

k] ∀t ∈ T , i ∈ P̄ (26)

Objective function (13) minimizes the deviation from
time windows, inconsistency in appointment times, and changes
to appointments of fixed patients with the respective weights
ω4, ω5, and ω6. Similarly to phase 1, those weights can be
adjusted by practitioners to reflect the treatment center’s pri-
orities. The value ranges of the three terms in the objective
function (13) for each patient is the deviation from time win-
dows, inconsistency in appointment times, and change to ap-
pointment times, which are all less than or equal to the num-
ber of time slots per day, e.g. 120 in our problem setting.
We therefore set ω4 = ω5 = 1 and ω6 = 60 to prioritize not
changing fixed appointments over time preferences and con-
sistency in appointment times. Constraints (14) ensure each
patient is assigned to exactly one block on treatment day.
Constraints (15) make sure each slot is assigned to at most
one patient. Constraints (16) ensure the number of required
blocks for each patient by blocking the next time blocks on
the linac. Constraints (17) ensure no patients are scheduled
on the last time block(s) of the day which would be insuf-
ficient for their sessions. Constraints (18) and (19) define
any deviation from the time preferences. Constraints (20)
and (21) define the earliest and latest appointment time of a
patient during the course of treatment. Constraints (22) and
(23) define changes in appointment times for fixed patients.
The rest are domain constraints.

3.3 Phase 2: Order of patients on linacs - CP model

As an alternative to the MIP model, a Constraint Program-
ming (CP) model is proposed for phase 2. The model uses
variables and constraints supported by IBM CP Optimizer
[11]. CP Optimizer supports two main types of decision vari-
ables, namely integer and interval variables. An interval
variable consists of a start point and an end point, repre-
senting an interval of time. Another type of variable used
in this model is a sequence variable. A sequence variable
consists of a set of interval variables. CP Optimizer offers
many built-in constraints which makes it convenient mod-
elling scheduling constraints.

In this model, the parameters are similar to the ones in
the MIP model in Section 3.2. We hereby introduce the vari-
ables and constraints.

– The interval variable ytki represents the appointment du-
ration of patient i on day t, linac k. ytki has a start point

Fig. 2: An illustration of constraint span(x, [y1, y2, y3])), which im-
plies s(x) = min{s(y1), s(y2), s(y3)} and
e(x) = max{e(y1), e(y2), e(y3)}

.

s(ytki) and an end point e(ytki). The duration of ytki (d(ytki) =

e(ytki) − s(ytki)) is equal to the fraction length pi of the
corresponding patient. Recall that Ct

k is the capacity of
linac k on day t. The domain of ytki is defined as follows:

∀t ∈ T ,∀k ∈ K, i ∈ Pt
k :


s(ytki) ∈ [0, Ct

k − pi]
e(ytki) ∈ [Ct

k − pi, Ct
k]

d(ytki) = pi
(27)

– The sequence variable seqtk contains all interval vari-
ables ytki corresponding to all fractions performed on
linac k, day t. The specialized constraint noOverlap is
imposed on seqtk to ensure that a fraction must end be-
fore the next one starts.

∀t ∈ T , k ∈ K :

{
seqtk = {ytki|i ∈ Pt

k}
noOverlap(seqtk)

(28)

– The interval variable xi represents the time span of all
appointments for patient i. xi starts at the earliest ap-
pointment time and ends at the latest appointment end
time of patient i. The longer the duration of xi, the more
inconsistency there is in appointment times for the cor-
responding patient during his or her course of treatment.
This is imposed by the specialized constraint span of
CPOptimizer. This constraint is only applied for new,
curative patients. An illustration of the span constraint
can be found in Figure 2.

i ∈ P̂Ctk :


s(xi) ∈ [0, Ct

k]

e(xi) ∈ [0, Ct
k]

span(xi, [y
t
ki|∀t ∈ T ,∀k ∈ K])

(29)

– ∆̄t
i and ∆t

i represent the deviation (to earlier or later)
from the preference time windows of new, curative pa-
tients. They are defined by constraints (31).

∀t ∈ T , i ∈ P̂C :

{
∆̄t

i ∈ [0, Ct
k]

∆t
i ∈ [0, Ct

k]
(30)

∀t ∈ T , k ∈ K, i ∈ P̂C :

{
∆̄t

i ≥ tmin
i − StartOf(ytki)

∆t
i ≥ StartOf(ytki)− tmax

i

(31)
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The objective function (32) consists of three parts which
minimize the following objectives, respectively: (1) the vio-
lation of the time window preference of patients; (2) incon-
sistency in appointment times; and (3) changes in appoint-
ments for fixed patients. The corresponding weights ω4, ω5

and ω6 take up the same values with those in the MIP model
in Section 3.2.

minimize ω4

∑
t∈T

∑
i∈P̂Ct

(∆̄t
i +∆t

i)

+ω5

∑
i∈P̂C

LengthOf(xi)

+ω6

∑
t∈T

∑
k∈K

∑
i∈P̄t

k

abs(StartOf(ytki)− s̄ti) (32)

4 Data generation

Test data is generated based on the real data from CHUM.
In general, each type of cancer is associated with a generic
treatment plan, which defines the number and duration of
fractions. However, those generic treatment plans are used
as a guideline, based on which doctors decide a personal
treatment plan specific to each patient’s condition. In this
paper, we use treatment plan to refer to a personal, individ-
ual treatment plan. A personal treatment plan sets patient’s
category (palliative or curative, which type), number of frac-
tions, and duration of fractions. Each patient has an admis-
sion date (the date on which the patient decides to start treat-
ment or their information becomes available in the system),
a ready date and a due date, which are together referred
as timeline information. The following are some key defi-
nitions for data generation.

– A treatment plan pool consists of a large number of
personal treatment plans taken from real data from CHUM
by omitting the information of patients and their timeline
information. The pool consists of 5000 treatment plans,
which corresponds to more than one year of data.

– A patient flow represents the flow of new patients ad-
mitted to the hospital daily. The number of patients arriv-
ing daily follows a Poisson distribution. The parameter
of the Poisson distribution is λ (the event rate), which
represents the average number of new patients per day
(arrival rate). Each patient flow instance is hence pa-
rameterized by λ and the number of days of simulation,
denoted by l. The expected total number of patients P is
decided by λ and l. Given a λ, a set of l numbers is gen-
erated respecting the Poisson distribution. For each day
of the simulation period (d0 to dl−1), a corresponding
number of virtual patients are generated and the corre-
sponding date is set as their admission date. Each pa-
tient is assigned to a treatment plan selected randomly

from the treatment plan pool. The distance between the
admission date and the ready date is then generated ran-
domly in a range defined by the patient category as listed
in table 3. The due date is calculated from the admission
date and the patient’s category as listed in table 1.

– An instance scenario is a partially-filled schedule. Given
a number of linacs and a patient flow, an instance sce-
nario is generated as follows. For each patient in the pa-
tient flow, a start date is generated randomly within the
range [−10, 24]. The start date of a patient being nega-
tive means that the patient starts his/her treatment before
the first day of the considered instance. The patient is
then assigned to a series of free slots in the schedule, i.e.
a set of appointments in several consecutive days with
identical appointment times. The process is repeated un-
til the desired occupancy rate of linacs is met. In our
instances, the generating process is terminated when the
occupancy of the first day reaches 90% of linacs’ capac-
ity. The layout of an instance scenario has strong impact
on the difficulty of an instance. Therefore, we aim to
generate instances as realistic as possible. To reflect a
real scenario, stochastic factors are introduced by ran-
domly swapping some appointments and moving some
appointments to other slots on the same day.

– A complete test instance consists of an instance scenario
and a patient flow. Each instance is hence parameterized
by several parameters as listed in table 4.

Category Duration (days)
P1 0
P2 0 ∼ 2
P3 5 ∼ 7
P4 5 ∼ 7

Table 3: Duration between admission date and ready date by patient
category.

Parameter Meaning
λ average number of new patients per day
l number of days of simulation
|P| number of patients (decided by λ and l)
|K| number of linacs

Table 4: Instance parameters.

All datasets used in this paper can be found at http://
hanalog.polymtl.ca/wp-content/uploads/2020/10/RTSP dataset.
zip.

5 Evaluation of the two-phase approach

To evaluate our models, we conduct two experiments in pur-
suit of two different goals. The first experiment aims at eval-

http://hanalog.polymtl.ca/wp-content/uploads/2020/10/RTSP_dataset.zip
http://hanalog.polymtl.ca/wp-content/uploads/2020/10/RTSP_dataset.zip
http://hanalog.polymtl.ca/wp-content/uploads/2020/10/RTSP_dataset.zip
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uating the performance of the two-phase approach, while
the second experiment focuses on evaluating an instance’s
difficulty by its characteristics. All experiments are carried
out on an Intel Core i7-7800 3.50GHz running Oracle Linux
Server 7.9. IBM ILOG CPLEX and CP Optimizer version
20.1 are used as the solvers.

5.1 Evaluating the two-phase approach

To evaluate the two-phase approach, 20 instances are gen-
erated. In order to cover the target instance sizes, we first
choose the number of linacs, which ranges from one to seven.
Those linacs are filled with fixed patients as described in
Section 4. For a given number of linacs, the number of fixed
patients can vary slightly from instance to instance due to
the stochastic nature of the procedure. The number of fixed
patients in our instances ranges from 26 to 272 patients. To
choose the number of new patients for an instance, we first
carry out a preliminary analysis to choose a reasonable range
of new patients that the given number of linacs can accom-
modate without resulting in extremely overdue treatments.
We then choose several values within the resulting accept-
able range to represent different crowding levels. In our in-
stances, the number of new patients (P̂) ranges from 10 to
82 patients while the total number of patients (P), including
fixed patients from the previous scheduling periods, ranges
from 36 to 347 patients. The planning horizon is set to 60
days. We test two versions of the two-phase approach: the
MIP and the CP version, where the MIP and CP models are
applied to phase 2, respectively. Both phases are given a time
budget of one hour each.

We first analyze the results of phase 1, shown in Table 5.
For each instance the number of linacs, number of patients
and number of new patients by category are present. The av-
erage waiting time and overdue time overall and by patient
category are reported. As one can observe, we are able to
obtain solutions with an optimality gap of less than 5% for
instances up to 7 linacs and 82 new patients, within 1 hour.
The model therefore can be used for real-size instances at
CHUM. The waiting time is distributed properly according
to a patient’s category, which is lowest at P1 and P2. Over-
due time occurs mostly at category P3, which is in line with
the real-world situation. We would like to highlight that the
average waiting time and overdue time depend on the ratio
of total number of patients and total linac capacity.

The results of phase 2 are presented in Table 6. To exam-
ine the quality of the solutions, for each instance, in addition
to the objective value, optimality gap and lower bound, we
also report the violation of soft constraints, including the av-
erage violation of time preferences; the average deviation of
appointment time during the treatment of new curative pa-
tients; and the average change in appointment time of fixed
patients, all measured in time blocks. As can be seen from

the table, for small instances, both MIP and CP give good
results. Out of the first ten instances, MIP closes the opti-
mality gap in seven instances, and gives worse result than
CP in only in one instance. CP does not fall far behind with
the objective values not too far away from the optimal so-
lution obtained by MIP. However, it appears to be incompe-
tent at providing good lower bounds. In the remaining ten
instances, CP gives better solutions in nine instances com-
pared to those generated by MIP. When considering the vi-
olation of patients’ preferences, one can see that the solu-
tions generated by MIP in large instances violate patients’
preferences to a large extent, especially in changing fixed
appointments. CP, on the other hand, provides good solu-
tions in term of patients’ preferences. In the largest instances
with seven linacs, the violation of time window is less than
three time blocks (e.g., 15 minutes) per section while the
average change to fixed appointments is less than two time
blocks per fixed patient. The average deviation of appoint-
ment time is less than 43 time blocks, which appears to be
high. However, this is inevitable since we favor not changing
fixed appointments over having stable appointment times
for patients. Comparing these results with optimal solutions
for small instances, where the average deviation in appoint-
ment times ranges from 16 to 50 time blocks, we conclude
that this violation is acceptable given the instances’ layout.
There are two conclusions from this experiment. First, MIP
is better at closing the optimality gap in some instances but
fails to provide good solutions in others, while CP is better
at finding good solutions in all instances. Second, CP pro-
vides good solutions for instances with up to seven linacs,
the same number of linacs at CHUM.

To take a closer look at how MIP and CP perform given
a short run time, we examine the results of both solvers on
the second phase after five minutes of run time, in Table
7. MIP finds optimal solutions in two out of 20 instances
while CP obtains an optimal solution in only one instance.
For the remaining instances, CP gives better solutions than
MIP to a great extent. In large instances, the changing of
fixed appointments is high (up to 20 time blocks or 100 min-
utes per patient). The remaining violation seems reasonable
compared to solutions obtained after one hour of run time.
This violation, however, is still acceptable. Meanwhile, MIP
gives very bad solutions and fails to give any incumbent
in three instances. These results suggest that if obtaining a
good solution with a short run time is the priority, then CP
is a better approach compared to MIP.

5.2 Evaluating instance difficulty by instance
characteristics

To confirm our speculation that instance difficulty is highly
affected by the way the partial schedules are filled, we con-
duct an experiment on two instance sets, namely orderly (O)
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Average waiting time (days) Average overdue time (days)
Instance K P P̂ P̂1 P̂2 P̂3 P̂4 runtime gap P1 P2 P3 P4 overall P1 P2 P3 P4 overall

ins01 1 36 10 0 2 4 4 0.09 0.00% - 1 8.25 12.25 8.4 - 0.00 0 0 0
ins02 1 55 15 0 4 6 5 0.47 0.00% - 1.25 12.83 19.00 11.8 - 0.00 1.83 0 0.73
ins03 1 54 17 1 6 6 4 0.62 0.00% 3 3 12.5 19.25 10.18 2 1.00 0.33 0 0.59
ins04 2 96 15 0 5 5 5 0.78 0.00% - 1 9.8 15.80 8.87 - 0.00 0.2 0 0.07
ins05 2 94 16 0 4 11 1 0.99 0.00% - 1.25 9.64 16.00 7.94 - 0.00 0.27 0 0.19
ins06 3 121 30 0 4 20 6 6.63 0.00% - 1.75 8.5 9.50 7.8 - 0.00 0 0 0
ins07 3 137 33 0 8 13 12 81.00 0.00% - 1 11 13.67 9.55 - 0.00 0.08 0 0.03
ins08 3 147 35 0 8 17 10 25.66 0.00% - 1 10 13.00 8.8 - 0.00 0 0 0
ins09 4 172 42 0 13 19 10 57.21 0.00% - 0.69 10 13.70 8 - 0.00 0.26 0 0.12
ins10 4 226 47 0 20 15 12 1157.21 0.01% - 1.65 10.33 16.00 8.09 - 0.05 0.33 0 0.13
ins11 4 191 52 0 12 21 19 3601.29 0.20% - 1.33 10.24 15.63 10.15 - 0.00 0.29 0 0.12
ins12 5 259 55 0 22 18 15 3601.15 0.06% - 1 8.67 12.93 6.76 - 0.00 0.06 0 0.02
ins13 5 228 57 0 20 18 19 3600.02 0.16% - 0.95 8.44 13.42 7.47 - 0.00 0.11 0 0.04
ins14 5 242 62 0 12 33 17 3600.03 0.04% - 1.33 11.09 14.88 10.24 - 0.00 0.18 0 0.1
ins15 6 296 67 0 17 30 20 3600.06 2.57% - 1.12 9.7 14.50 8.96 - 0.00 0.23 0 0.1
ins16 6 283 70 0 18 34 18 3600.36 4.80% - 1.06 10 14.94 8.97 - 0.00 0.21 0 0.1
ins17 6 301 72 0 25 23 24 3600.05 1.04% - 1.2 9.26 14.17 8.1 - 0.00 0.13 0 0.04
ins18 7 347 75 0 23 38 14 3605.05 3.21% - 1.26 10.45 13.79 8.25 - 0.00 0.18 0 0.09
ins19 7 316 78 0 32 31 15 3600.06 0.36% - 1.06 9.9 13.07 6.88 - 0.00 0 0 0
ins20 7 332 82 0 23 39 20 3600.05 0.45% - 1.13 10.59 14.20 8.82 - 0.00 0.28 0 0.13

Table 5: Results of phase 1.

MIP CP

Instance K P P̂ obj. gap bound
avg.

TW violation
avg.

deviation
avg.

changes obj. gap bound
avg.

TW violation
avg.

deviation
avg.

changes
ins01 1 36 10 328 0.00% 328.00 1.50 16.13 0.00 328 0.00% 328.00 1.50 16.13 0.00
ins02 1 55 15 1,147 0.00% 1147.00 2.58 32.73 0.00 1,147 78.47% 247.00 2.58 32.73 0.00
ins03 1 54 17 2,209 0.00% 2209.00 1.43 32.70 0.68 2,209 100.00% 0.00 1.43 32.70 0.68
ins04 2 96 15 2,325 0.00% 2325.00 0.98 25.00 0.40 2,992 100.00% 0.00 0.99 19.60 0.54
ins05 2 94 16 3,081 0.00% 3081.00 4.56 49.17 0.27 3,501 100.00% 0.00 4.34 44.08 0.38
ins06 3 121 30 2,629 24.44% 1986.58 2.52 40.19 0.04 2,437 100.00% 0.00 2.35 36.31 0.04
ins07 3 137 33 5,912 0.00% 5912.00 2.95 47.92 0.52 7,128 100.00% 0.00 2.86 47.92 0.72
ins08 3 147 35 3,167 0.00% 3167.00 1.90 27.81 0.25 3,379 99.73% 9.00 1.84 27.59 0.29
ins09 4 172 42 6,331 7.68% 5844.84 2.94 38.24 0.45 11,102 99.95% 6.00 2.87 38.45 1.07
ins10 4 226 47 24,407 43.63% 13758.93 3.18 42.15 1.99 36,585 100.00% 0.00 2.86 37.81 3.16
ins11 4 191 52 1,742,662 99.77% 4033.42 14.41 56.63 207.25 19,394 100.00% 0.00 2.82 39.53 1.86
ins12 5 259 55 39,575 69.14% 12211.87 2.01 47.94 3.00 30,871 100.00% 0.00 1.74 36.91 2.33
ins13 5 228 57 25,362 53.07% 11901.97 2.42 54.57 2.08 31,657 100.00% 0.00 1.62 41.92 2.80
ins14 5 242 62 11,504 53.97% 5295.58 2.49 42.78 0.64 24,383 100.00% 0.00 1.90 34.54 1.93
ins15 6 296 67 2,897,823 99.77% 6694.22 12.80 67.22 209.59 33,247 100.00% 0.00 2.42 47.86 2.04
ins16 6 283 70 290,391 94.93% 14723.17 6.16 67.40 21.98 35,862 99.94% 21.00 2.25 39.73 2.47
ins17 6 301 72 340,997 95.48% 15404.76 4.56 62.23 24.30 68,576 100.00% 0.00 2.65 42.00 4.67
ins18 7 347 75 105,778 87.04% 13711.29 3.09 54.75 6.12 37,538 99.99% 2.00 1.81 42.15 2.06
ins19 7 316 78 155,149 91.35% 13423.60 3.79 59.50 10.42 29,414 100.00% 0.00 1.60 31.13 1.85
ins20 7 332 82 267,168 95.81% 11204.17 2.89 64.75 17.33 31,719 99.97% 8.00 2.29 36.76 1.79

Table 6: Results of phase 2 by CP and MIP with one hour of run time. The table reports (1) objective value; (2) optimality gap; (3) lower bound;
(4) the average violation in time preferences of new curative patients per section (in time blocks); (5) the average deviation of appointment time
during the treatment of new curative patient (in time blocks); and (6) the average changes to appointment times of fixed patients (in time blocks).

and stochastic (S). The two sets are generated as follows.
Given a patient flow, two instances are created for each set,
following the procedure in Section 4. The only difference
is that for the instance in set O, no stochastic factors are
introduced when creating the instance scenario, i.e. no ap-
pointments are swapped or shifted. Therefore, the scenarios
of instances in set O are more “orderly”, with patients hav-
ing identical appointment times every day, while those in set
S are more stochastic, with inconsistency in their partially-
filled schedules. Instances in set S, hence, are closer to re-
alistic instances. The number of fixed patients each day, for
each linac, are the same for both instances. Therefore, there
is no difference for phase 1 in solving the two instances. We
evaluate the performance of phase 2 in the two instance sets.
From 40 instance flows, 80 instances are generated, divided

into two sets. All instances consist of one linac. The number
of patients ranges from five to eight patients. The planning
horizon is set as seven days. Similar to Section 5.1, two al-
gorithms with MIP and CP for phase 2 are tested. Each al-
gorithm is given five minutes of run time. The amount of
time taken to obtain optimal solutions is compared. If run
time exceeds five minutes, it means that the optimality gap
is not closed given the time budget. The results are plotted
in Figure 3. If a dot is located in the upper half of the graph,
the algorithm takes more time to obtain the optimal solution
for the corresponding instance from set S compared to set O,
i.e. the stochastic instance is more difficult to solve. As can
be seen from the figure, stochastic instances are significantly
more difficult for both solvers (MIP and CP) to solve than
orderly instances. This observation is confirmed by a paired
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MIP CP

Instance K P P̂ obj. gap
avg.

TW violation
avg.

deviation
avg.

changes obj. bound
avg.

TW violation
avg.

deviation
avg.

changes
ins01 1 36 10 328 0.00% 1.50 16.13 0.00 328 0.00% 1.50 16.13 0.00
ins02 1 55 15 397,564 99.90% 15.98 75.45 163.28 1,150 100.00% 2.53 34.36 0.00
ins03 1 54 17 22,996 96.37% 6.65 70.00 9.24 2,389 100.00% 1.43 32.70 0.76
ins04 2 96 15 2,325 0.00% 0.98 25.00 0.40 2,992 100.00% 0.99 19.60 0.54
ins05 2 94 16 13,433 91.40% 6.28 58.17 2.36 6,393 100.00% 4.38 39.17 1.01
ins06 3 121 30 - - - - -0.01 2,863 100.00% 2.36 36.38 0.12
ins07 3 137 33 1,197,944 100.24% 13.08 66.52 190.66 40,774 100.00% 1.69 39.56 6.24
ins08 3 147 35 1,267,286 100.24% 11.48 49.26 187.72 3,446 99.74% 1.91 29.07 0.29
ins09 4 172 42 1,605,072 100.20% 17.67 61.00 204.25 19,513 99.97% 2.85 39.38 2.15
ins10 4 226 47 1,723,898 100.18% 10.94 61.19 159.77 89,749 100.00% 2.31 36.41 8.14
ins11 4 191 52 1,742,662 100.26% 14.41 56.63 207.25 33,031 100.00% 2.76 38.30 3.50
ins12 5 259 55 2,378,546 100.16% 5.63 60.61 193.86 72,368 100.00% 1.49 32.24 5.75
ins13 5 228 57 2,223,679 100.19% 7.07 74.46 215.88 74,031 100.00% 1.49 40.30 6.95
ins14 5 242 62 2,190,090 100.26% 12.99 59.26 201.35 137,492 100.00% 1.34 31.16 12.47
ins15 6 296 67 2,897,823 100.20% 12.80 67.22 209.59 233,343 100.00% 2.22 38.16 16.66
ins16 6 283 70 2,877,519 100.20% 13.24 59.98 223.91 212,492 99.99% 2.78 41.25 16.25
ins17 6 301 72 2,823,252 100.19% 13.69 64.45 204.33 277,954 100.00% 2.61 34.70 19.93
ins18 7 347 75 - - - - - 280,244 100.00% 2.03 37.90 16.93
ins19 7 316 78 - - - - - 176,977 100.00% 1.03 25.13 12.24
ins20 7 332 82 3,024,708 100.19% 9.61 61.20 199.72 251,682 100.00% 1.97 38.02 16.48

Table 7: Results of phase 2 by CP and MIP with 5 minutes run time.

Fig. 3: Comparison of run time (in seconds) in phase 2 for orderly and stochastic instances.

t-test (p-value is 0.00005 for MIP and 0.00024 for CP). We
therefore conclude that the presence of stochastic factors in
an instance scenario, i.e. the way the partial schedules are
filled, strongly affects algorithm performance in phase 2.

6 Simulation to evaluate scheduling policies

In this section, we put the models into use in a simulation
where patients arrive at the center daily following a Pois-
son distribution. We aim to evaluate the effect of different
scheduling policies on the waiting time of patients in a long-
term, real-world setting. Currently, CHUM employs a se-
quential policy where appointments are made and linacs are
pre-booked once a patient’s treatment plan is approved. To
examine whether delaying the scheduling decision to get
more information for batch scheduling can offer better sched-
ules, the simulation mimics a patient flow of daily hospital

admissions and performs batch scheduling at different time
points following different policies. The final schedules at the
end of the simulation are then compared to evaluate the ef-
fect of batch scheduling.

At CHUM, once a patient is admitted, his or her appoint-
ments are scheduled manually by a scheduling clerk. For
palliative patients, the earliest available slots are selected.
For curative patients, the scheduling clerk will usually look
for an available slot about two weeks from the current date.
In this simulation, we want to compare CHUM’s current pol-
icy with batch scheduling, as well as evaluate the benefit of
delaying appointments for two weeks instead of scheduling
patients as soon as possible. With this goal in mind, we pro-
pose seven scheduling policies, shown in Table 8. Policy 1,
currently used at CHUM, is a greedy heuristic where pa-
tients are scheduled one by one at admission, and treatments
of curative patients are postponed until a later time. Delay-
ing treatments is enforced by altering the ready date of a
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Fig. 4: Simulation process. The previous scheduling decision was at day one. Day three is the current day when the scheduling decision takes
place. Thirteen patients admitted on day two and day three will be scheduled.

Policy
Delaying

appts.
Scheduling

palliative patients
Scheduling

curative patients
1 D at admission* at admission*
2 every day every day
3 every day every Tuesday & Friday
4 every day every Friday
5 D every day everyday
6 D every day every Tuesday & Friday
7 D every day every Friday

Table 8: Scheduling policies. The first policy is the greedy heuristic
currently used at CHUM.

(curative) patient to the midpoint of his or her ready date
and due date, i.e. seven days after admission for patients in
category P3 and 14 days after admission for category P4.
The remaining six policies apply batch scheduling using the
two-phase approach. Palliative patients are scheduled daily,
while curative patients are scheduled either daily or on some
pre-defined days of the week. The final three policies com-
bine batch scheduling with delaying treatments. In addition,
to avoid filling up linacs too quickly at the early schedul-
ing decisions, which may lead to a shortage of space for
emergency patients at later scheduling decisions, we reserve
a portion of linac capacity for emergency patients. Emer-
gency patients are either palliative patients or curative pa-
tients with due dates approaching within two days of the
current scheduling decision. Based on the fact that palliative
patients account for about 30% (see Table 1) of all patients,
we choose to reserve 40% of linac capacity for prioritized
patients.

At each scheduling decision, patients to be scheduled
include all patients admitted after the previous scheduling
decision until the current day. An illustration of the sim-
ulation can be found in Figure 4. The scheduling horizon
in this experiment is set to 60 days, which is large enough
to incorporate all patients admitted at each scheduling deci-

sion. Scheduling decisions are repeated until all patients are
scheduled.

Forty instances are generated. The arrival rate (λ) ranges
from three to ten patients per day and the number of linacs
ranges from two to eight linacs. The number of days of sim-
ulation (l) is set to 15 days or three work weeks. For each
policy, we report the average number of waiting time and
overdue time (in days), both overall and by patient category.
The results are shown in Table 9. The box plots of the av-
erage waiting time and overdue time are shown in Figure
5.

We first compare the greedy heuristic (policy 1) to batch
scheduling. As can be seen in the table and the boxplot, pol-
icy 1 results in higher waiting time and overdue time com-
pared to policies with batch scheduling. The average wait-
ing time for P4 patients in policy 1 is lower than the others,
but this leads to higher waiting times for P1 patients. The
average overdue time is likewise much higher compared to
the other policies, especially in P1 (3.31 days compared to
the lowest 0.41 days in policy 6) and P2 patients (6.42 days
compared to the lowest 1.14 days in policy 7).

The remaining policies are divided into two groups. The
first group consists of policies without treatment delays (poli-
cies 2 − 4) while the second group delays treatments to a
later time point (policies 5 − 7). From the data in the ta-
ble and the boxplot, there is virtually no difference in the
overall average waiting time between the two groups. How-
ever, differences do emerge in waiting time according to pa-
tient priority. The first group tends to schedule P4 patients
much ealier (about 12 days after admission) than the second
group (about 18 days). Consequently, palliative patients tend
to wait longer in the first group. The average waiting time for
P1 patients is around two to three days in the first group, but
only around 0.6 days in the second group. Similarly, P2 pa-
tients wait for five to eight days on average in the first group
and around three days in the second group. Also, the second
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Scheduling
policy

Waiting time Overdue time
Overall P1 P2 P3 P4 Overall P1 P2 P3 P4

1* 11.04 3.45 8.78 12.29 11.90 2.28 3.31 6.42 0.71 0.01
2 10.81 2.94 8.07 11.96 12.31 1.97 2.80 5.65 0.53 0.00
3 10.61 2.62 7.10 12.07 12.51 1.66 2.48 4.72 0.49 0.00
4 10.22 2.04 5.82 11.86 12.79 1.21 1.90 3.45 0.33 0.01
5 10.91 0.60 3.57 11.64 18.11 0.61 0.53 1.60 0.31 0.00
6 10.87 0.54 3.37 11.64 18.16 0.53 0.41 1.40 0.29 0.00
7 10.82 0.62 3.11 11.64 18.22 0.45 0.55 1.14 0.25 0.00

Table 9: Average waiting time and overdue time by scheduling policy and patient category (in days).

Fig. 5: Average waiting time and overdue time by scheduling policy.

group demonstrates less deviation in waiting time between
instances. Regarding overdue time, the second group obvi-
ously gives better schedules. Most overdue time occurs in
P1 and P2 patients, which can be easily explained by their
short treatment deadline. Within each group, batch schedul-
ing helps reduce both waiting time and overdue time. In
the first group, daily scheduling (policy 2) yields an aver-
age of 10.81 days of waiting time and 1.97 days of overdue
time. Batch scheduling once a week (policy 4) reduces those
numbers to 10.22 and 1.21 days, respectively. The reduction
in waiting time mostly occurs in P1 and P2 patients, while
waiting times for P3 and P4 patients are not similarly im-
pacted. Overdue time is most problematic for P2 patients
(5.65 days with daily scheduling and 3.45 days with weekly
scheduling). In the second group, waiting time seems to be
stable in all scheduling policies. Regardless, P4 patients ex-
perience virtually no overdue time in either group. Batch
scheduling in the second group also helps to reduce overdue
time, although to a lesser extent than in the first group. Daily
scheduling (policy 5) results in 0.61 days of overdue time,
while weekly scheduling (policy 8) results in 0.45 days of
overdue time.

On the numerical results from this experiment we have
two remarks. First, batch scheduling using our two-phase
approach improves the schedules compared to the greedy
heuristic currently used by CHUM. Second, these results
confirm our intuition that delaying the scheduling decision
to get more information extends the search space and hence
offers better schedules. This is an important indicator to help
the hospitals adjust their policy toward better treatment stan-
dards.

7 Conclusions and future work

In this paper, we introduced a two-phase approach for the
Radiotherapy Scheduling Problem. An IP model is proposed
for phase 1, which decides the most important information
of a schedule including patients’ starting dates and the linacs
for treatments. An MIP and a CP model are proposed for
phase 2, which decides the order of patients on each linac
and the exact appointment times. Numerical results show
that our approach provides good solutions for instances with
up to seven linacs, i.e. the instance size that we target in this
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paper. The comparison of results given by CP and MIP after
a 5-minute run time and one-hour run time shows that CP is
able to find good solutions much faster than MIP, but fails
to provide good lower bounds compared to MIP. We point
out that the versatility of the CP model and its ability to find
good solutions quickly make CP a promising approach for
real-world applications.

We also present a simulation to evaluate the effect of the
two-phase approach on waiting time and overdue time of pa-
tients in a long-term, real-world setting. Different schedul-
ing strategies are evaluated. The results show that batch schedul-
ing with different scheduling policies has an effect on the
total waiting time and overdue time of the final schedule.
These results suggest that the sequential scheduling policy
currently employed by CHUM could be replaced by a better
decision-making scheme. Further analysis in this regard is
one of our future directions.

In another contribution, we present how realistic instances
are generated based on real data from a cancer center in
Montréal. This contribution is important since the charac-
teristics of test instances strongly impact the performance of
the algorithms, which has also been proven in the paper by
numerical results.
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