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ABSTRACT
Robotic Mobile Fulfillment Systems (RMFSs) are a recent type of automated ware-
house deployed in e-commerce. In this parts-to-picker system, a fleet of small robots
is tasked with retrieving and storing shelves of items in the warehouse. Due to
the nature of the e-commerce market, and the high flexibility of RMFSs, there are
many opportunities to improve the productivity of the warehouse by optimising
operational decisions. Online retailers promise extremely fast deliveries, which re-
quires that new orders be included in the set of requests to fulfil as soon as they
are revealed. For this reason, and because of the very dynamic nature of the robots’
cycles, decision-making needs to be done in real time, in an uncertain environment.
Because such a problem often lacks a formal description, we propose a mathemat-
ical framework that models the operational decisions taking place in an RMFS as
a stochastic dynamic program. Our objective is to formalise optimisation oppor-
tunities, to allow researchers to develop more advanced methods in a well-defined
environment. Embedded in a discrete event simulator, this model is illustrated by
simulations to compare against standard storage decision rules.
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1. Introduction

Warehouses play a central role in any supply chain. Regarding the impact of ware-
housing activities on the economy, Tompkins and Smith (1998) suggest that the real
value of warehousing relies on having the right product in the right place at the right
time. According to Gu, Goetschalckx, and McGinnis (2007), a warehouse’s primary
purposes are to act as a buffer to adapt to the variability of production flow; to con-
solidate products which come from different sources and must be grouped for shipping
to customers; and to add marginal value to the product such as pricing, labelling
or customisation. Gu, Goetschalckx, and McGinnis (2007) divide the operations that
take place in a warehouse into four types: receiving, storing, picking, and shipping.
Picking operations are of critical importance, as emphasised by De Koster, Le-Duc,
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and Roodbergen (2007) and Shah and Khanzode (2017), who estimate that these op-
erations constitute roughly 55% of all warehouse operating expenses, 60% of which is
attributable to travelling within the warehouse.

In the business-to-consumer (B2C) segment, the growth of e-commerce in recent
years is revolutionising the full sector. In 2016 alone, e-commerce sales increased by
23%, representing 8.7% of the total retail market (Boysen, Stephan, and Weidinger
2019). More than the growth of the e-commerce market, its specificities are the biggest
challenge to warehousing operations. E-commerce involves enormous volumes of very
small orders (1.6 lines per order on average); requires an enormous assortment of
items; and faces uncertain demand with fast-changing trends, promotional events, etc.
Facing ample competition, online retailers cannot rely on customer loyalty; instead,
they operate under continuous pressure and need to fulfil orders as quickly as possible
(Ramanathan 2010), compelling them to offer differentiated services such as same-day
delivery from Amazon.

To deliver to customers ever faster, and because ‘adaptation is urgent’, new types
of automated warehouses have appeared (Davarzani and Norrman 2015). One of them
is the Robotic Mobile Fulfillment System, a parts-to-picker system where a fleet of
small robots move between the storage area, where they retrieve and store full shelves
of items, and picking stations, where human operators pick the required items from
the shelves. Such a system is particularly well-suited for e-commerce. First, it presents
great real-time decision-making opportunities, mainly because of its storage flexibility
and its fleet of robots operating simultaneously. Indeed, when returning a shelf of items
to the storage area, a robot can dynamically choose a new storage location to improve
the system’s general performance: this makes the full layout adaptable. Also, several
other decisions can be made online to improve the overall performance, such as the
scheduling of the incoming orders, the selection of a shelf, or which picking station to
use. This allows adapting quickly to a fast-changing trend. Then, the system is easily
expandable when the demand is higher, and because of the enormous number of small
orders, numerous robots can simultaneously retrieve items from the whole storage area
(which is, for instance, hardly done with a traditional crane system).

The contribution and foremost objective of this paper is to present a mathematical
framework to model the dynamic decision-making occurring during the storage and
retrieval operations in an RMFS. The nature of e-commerce orders, as well as uncer-
tain processing times and demands, justify online decision-making, without batching.
Because of the dynamic aspect and complexity of the operational decision-making,
most of the current practice and research relies on a combination of high-level deci-
sion rules evaluated through simulations or analytical models. Often, such real-time
problems lack a rigorous mathematical framework. We believe that formalising the
decision process with a stochastic dynamic model facilitates the development of more
advanced solution approaches.

This work is presented as follows. Section 2 describes the Robotic Mobile Fulfillment
System, as well as its optimisation opportunities, while Section 3 presents a literature
review of existing work on this storage system. Section 4 presents the mathematical
model, which formalises the problem under Powell’s unified framework of stochas-
tic optimisation (2019). Section 5 demonstrates a basic usage of the framework by
adapting typical decision rules in a simulation study. Finally, Section 6 offers some
conclusions and explores future research opportunities.
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2. Robotic Mobile Fulfillment Systems

The Robotic Mobile Fulfillment System, also called rack-moving mobile robot ware-
house or Kiva warehouse, was first introduced by Kiva Systems in 2006 (renamed Ama-
zon Robotics after acquired by Amazon in 2012) (Wurman, D’Andrea, and Mountz
2008; Azadeh, De Koster, and Roy 2017; Boysen, De Koster, and Weidinger 2019).
Similar systems using small robots to lift shelves of items have since been developed
by other companies, including Alibaba, Knapp, Swisslog, Locus Robotics, and others
(Banker 2016; Kirks et al. 2012; Boysen, De Koster, and Weidinger 2019).

As mentioned in the introduction, an RMFS is a parts-to-picker system in which
a fleet of small robots (sometimes called AGVs for automated guided vehicles) is in
charge of retrieving and storing shelves (also called pods or bins) of items in the
storage area. These robots move around following a system of waypoints organised as
a regular grid. Human operators stand at picking stations, ready to pick items from a
shelf to send them to the downstream system. The life cycle of a robot corresponds to
a dual command cycle, which defines an immediate succession of a storage task and a
retrieval task. When a robot leaves a picking station, any open storage location can be
selected. Once the shelf has been stored, the robot goes directly to the next retrieval
location to load another shelf and bring it to a picking station where it may wait in
line behind other robots while a human operator is picking items. Interestingly, when
a robot is loaded, it moves along the aisles, but when it is unloaded, it can pass under
the stored shelves to avoid conflicts.

A typical and more common Automated Storage and Retrieval Systems (ASRS) cor-
responds to a single unit-load (or mini-load if the load is a tote bin, possibly containing
multiple item types) aisle-captive system in which there is one crane per aisle that
moves both horizontally and vertically (Roodbergen and Vis 2009; Shah and Khan-
zode 2017). RMFSs have several advantages over such ASRSs (Wurman, D’Andrea,
and Mountz 2008). In particular, the operators located at picking stations can receive
shelves from all of (or most of) the storage area, so fewer operators are needed. There
is better accountability and accuracy because orders are generally fully processed by
one operator, which also reduces delays as it eliminates downstream dependencies.
Since any location is accessible by every robot, and there is a large fleet of robots,
there is no single point of failure. The system is easily implementable in any envi-
ronment, and it is easy to extend if needed. Finally, and this is of great interest in
terms of optimisation: RMFSs offer enormous storage flexibility. The allocation of a
shelf to a storage location can be modified after every picking operation, which allows
for the layout to be adapted in real time, whether in response to changing demand
or simply to leverage immediate opportunities. For a more detailed and technical re-
view on RMFSs, we refer the reader to the following papers: Wurman, D’Andrea, and
Mountz (2008); D’Andrea and Wurman (2008); Enright and Wurman (2011); Azadeh,
De Koster, and Roy (2017).

The logic employed by traditional warehouse management systems fails to accommo-
date the extremely fast delivery times necessary in the e-commerce sector. E-commerce
orders must be fulfilled as quickly as possible, necessitating what Banker (2018) calls
order streaming logic, which ‘drops these orders [...] to the floor as soon as they are
received’. This is of importance in optimisation because it limits the possibility of
processing orders in batches, but instead favours dynamic decision-making in which
new orders can be revealed at any time.
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3. Literature review

The literature on RMFSs includes research on ASRSs, automated warehouses that
were introduced in the 1970s (see Roodbergen and Vis (2009) for a survey of liter-
ature on the topic). While there are key differences between RMFSs and common
ASRSs, some features are similar. Dual command cycles and the question of block
(batching) sequencing versus dynamic sequencing are already central topics in ASRS
research. In the case of dynamic sequencing, most if not all works rely on decision
rules for storage allocation and sequencing of orders (van den Berg and Gademann
2000; Gagliardi, Renaud, and Ruiz 2014a). Common storage allocation rules include:
random storage; turnover-based storage (the higher the turnover of a bin, the closer to
the operator); closest open location; and shortest leg (select the open storage location
closest to the next retrieval location). Through simulations, van den Berg and Gade-
mann (2000) conclude that for dual command cycles, the shortest leg rule performs
the best. Gagliardi, Renaud, and Ruiz (2014b) present a discrete event simulator and
compare a random, a full turnover-based and a class-based storage policy (a bin is
assigned to a class based on its turnover rate; its location within the class is ran-
dom). Their results show that when realistic conditions are met, full turnover-based
storage performs much worse than the other two policies. Their takeaway is that for
real-world applications, theoretical results (such as analytical models) may be far from
reality. Careful simulation studies should be performed for every special case since it
is unlikely that a single simple rule could perform well in all conditions.

These earlier studies have greatly influenced more recent works on RMFSs. An
RMFS could even be seen as a special (and more complex) type of ASRS, designated
as a mini-load with dual command cycles system with a fleet of non-aisle-captive
robots. Several works such as Lamballais, Roy, and De Koster (2017) and Lamballais,
Roy, and De Koster (2020), focus on developing queueing networks to analytically es-
timate KPIs, such as maximum order throughput or average cycle time. Those models
facilitate quick estimates of the impact of strategic decisions such as layout design,
the number of shelves used to store an item, the ratio of the number of replenishment
stations to picking stations, etc. Zou et al. (2017) use a semi-open queueing network
to study assignment rules of robots to picking stations and demonstrate that their
proposed rule outperforms a random assignment.

Boysen, Briskorn, and Emde (2017) study the problem of sequencing the processing
of a set of orders at a picking station, to minimise the number of shelves that need
to be brought to fulfil these orders. With diverse methods, such as a mixed integer
programming (MIP) model, a decomposition method, and heuristics, they manage to
reduce the fleet of robots needed by half. Bozer and Aldarondo (2018) compare a tra-
ditional mini-load ASRS with an RMFS, to identify configurations that yield a similar
throughput. For a fixed set of parameters and defined decision rules, they conclude
that a mini-load system with four aisles and a conveyor belt has similar productivity
to an RMFS with 50 robots. They also find that carefully determining the number
of picking stations is essential to maintain a high picker utilisation while avoiding
congestion. Guan and Li (2018) derive association rules from historical demand data
to decide which items to store together on a shelf, to maximise item similarity (the
probability that items from the same shelf are ordered together) within the context
of scattered storage. They propose a non-linear MIP and a genetic algorithm to solve
it, and they obtain a higher item similarity of about 35%, but their results are not
converted to actual productivity gains through simulations. Weidinger, Boysen, and
Briskorn (2018) define a rack assignment problem for a batch of orders (static schedul-
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ing). Their objective is to assign each returning shelf to a storage location, with the
surrogate objective of minimising the total loaded distance travelled by the robots.
Because they consider the arrival time of each rack at the picking station as a known
variable, they do not need to account for robots individually. They devise a variant
of an adaptive large neighbourhood search to solve their model and evaluate their
approach in terms of total travelling time, for which they obtain better results com-
pared to their baseline. Like van den Berg and Gademann (2000), they note the good
performance of the shortest leg decision rule, which operates completely online and
presents an average cycle time that is only 3.5% higher than their method. In Mer-
schformann, Xie, and Li (2018), the authors introduce RAWSim-O, a very detailed
discrete event simulator that realistically reproduces operations taking place in an
RMFS. Merschformann et al. (2019) use this simulation framework to evaluate many
combinations of decision rules. They test decision rules for decision problems such as
picking and replenishment station assignment, pod selection, or storage assignment.
Their study yields significant performance differences between combinations, which
emphasises the importance of careful selection for each application. They also note
the importance of a proper picking station assignment rule. The cross-dependencies
existing between some rules suggests potential benefit in investigating integrated ap-
proaches.

Considering the variety of operational subproblems, the uncertainty about demand
and operations completion times, as well as the dynamic nature of the operations that
should respond in real time to new orders, we propose a mathematical framework that
formalises the operational decision-making in such a dynamic stochastic setting. We
follow the stochastic optimisation framework of Powell (2019) with the objective of
guiding future research on integrated approaches.

4. Formulation

Before presenting the complete dynamic model in Section 4.2, we first describe the
key elements considered in the framework and the types of operational decisions we
consider.

4.1. Modelling framework

As explained in the presentation of RMFSs in Section 2, the operations of a robot
consist of a succession of dual command cycles. These cycles require several decisions
that we describe here. Since the system is very dynamic and complex, any decision
policy needs to be tested through simulation. For this reason, our modelling has strong
similarities with a discrete event simulator. First, a decision needs to be made, not at
regular time steps, but when a robot becomes available for a new task. We refer to
this as an event.

Because we do not consider batching of orders, new orders are revealed online and
need to be included in the pool of orders to fulfil right away. Note that we consider
one-line orders only (one type of item, possibly several units of it) because most e-
commerce orders present very few lines. Dealing with multi-line orders would entail
additional considerations that are not accounted for in our model. If one wanted to
adapt our model to treat multi-line orders, we would suggest starting by splitting the
orders into single-line orders. Additional constraints and variables would be required,
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particularly to treat two key elements: if consolidation is done at the picking station,
the split orders need to be processed at the same station; regardless of where the
consolidation occurs, the different parts of a split order need to be retrieved in a short
time span, to avoid saturating buffers and to validate the fulfilment of the order.

Importantly, some papers like Merschformann et al. (2019) consider a constant order
backlog. Here, we do not assume a constant backlog size, but we assume that an order
is always waiting to be fulfilled. This situation makes the throughput of the system
entirely depend on the planning decisions. This assumption can be justified by a usual
high volume of orders in e-commerce, or for instance, the possibility to send a robot
for maintenance or recharge while idle. However, if this assumption was to be relaxed,
an event may be triggered by a new order entering the system, instead of an available
robot. In this case, it may become interesting to batch multiple robots to allocate one
or several orders. This consideration will remain out of the scope of the modelling in
this work.

Furthermore, we do not consider the path planning problem, which consists of defin-
ing the exact movement of robots within the warehouse. However, because the travel-
ling time taken by a robot may vary due to congestion, we consider stochastic travelling
times in the general case. As such, we cannot know in advance exactly when a task
will be completed. Like all the papers on real-time planning for RMFS reviewed in
Section 3, we assume all tasks to be non-preemptive, which means that when a robot
is assigned to a task it cannot be interrupted before completion, even if a better
opportunity occurs.

At a picking station, a human operator can only pick items from one shelf at a
time. When a robot arrives at a picking station, it may have to wait in a queue,
following a first-in, first-out procedure. Note that in the model, we do not explicitly
represent the replenishment of shelves, but we do consider a notion of stock levels.
Instead, we suggest that a replenishment task could be accounted for in our modelling
by considering orders of negative quantities. Since stations are typically fully dedicated
to either replenishment or retrieval tasks, simple constraints about which station can
process a specific order can be added, but those are not explicitly mentioned in the
model.

While dual command cycles (consecutive storage and retrieval tasks) are the stan-
dard sequences of tasks for a robot, we also define less frequent opportunistic tasks.
The purpose of an opportunistic task is to avoid a trip to the storage area if the shelf
carried by a robot could be used again to fulfil another order. We distinguish two
types of opportunistic tasks. First, when a robot is leaving a picking station, it can go
straight to the end of the waiting line of the same or another picking station. In this
case, the robot saves the travelling time to the storage area and back. The second type
of opportunistic task has the robot in place to deal immediately with another order.
In this case, the robot saves both the travelling time and waiting time at a picking
station.

Figure 1 presents the decision tree that guides decision-making when an event oc-
curs. If the robot is located at a picking station, two types of decisions can be made: a
storage task or an opportunistic task. On the other hand, if the robot is in the storage
area, the robot must perform a retrieval task, which consists of choosing which order
to fulfil, from which shelf, and to which picking station. To elaborate those decisions
and their consequences, we first define useful sets and parameters. We will then de-
scribe the state variables along with exogenous information (random variables), the
decisions that need to be made, the transition function, and the cost function.
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Figure 1. Decision tree

4.2. Sets

The following sets, as well as the parameters described in Section 4.3, are fixed and
determined by the warehouse design. They are not variables that will evolve over time.

I = set of items that can be found in the warehouse.
L = set of storage locations.
S = set of storage shelves.
Si = subset of shelves ⊂ S carrying item i ∈ I.
R = set of automated robots.
P = set of picking stations.

All item types stored in the warehouse are denoted by I. Storage locations L define
locations where a shelf can be stored in the warehouse. Those shelves are defined by
set S, and Si identifies the subset of shelves containing a specific item i ∈ I. Robots
R represent the small automated robots that can store and retrieve shelves. Human
operators are located at picking stations represented by set P.

4.3. Parameters

do = deadline of order o ∈ Ok (state variable, see Section 4.4.2).
costo = penalty cost for tardiness of order o ∈ Ok (expressed per late time unit).
timei,j = expected time for a robot to travel from point i to point j;

(i, j) ∈ (L ∪ P)2.
timeo = expected time required to pick all the items from order o ∈ Ok by an

operator.
io = item type ∈ I of order o ∈ Ok.
qo = quantity of units of item type io ∈ I of order o ∈ Ok.

Because of different levels of priority, such as with Prime vs Standard service for
Amazon, each order can be associated with distinct penalty costs for tardiness costo
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with respect to deadline do. timei,j represents the estimated, or expected time needed
by a robot to travel from location i to location j; these locations can either be stor-
age locations or picking stations. Depending on the application, if travelling times are
deterministic, this value is simply an estimated time. Otherwise, with stochastic trav-
elling times, the actual time taken by the robot is uncertain, but the expected value
timei,j may still be useful for decision-making. A human operator needs, on average,
timeo to pick the items of order o from a shelf; it may depend on the number of items
to pick, the weight of the item, etc. io denotes the item type of order o. While we
assume that orders are single-line orders, we still define qo as the quantity of units of
item type io to be picked. This allows for an order to contain more than one unit of the
same item but also, should an order be a replenishment task, we could have qo < 0.

4.4. State variables

The state of the warehouse at a given time step describes all of the relevant information
needed to make operational decisions: the location of shelves and robots, availability
of resources, orders to fulfil, etc. Following the framework of Powell (2019), the state
of the system at a given time step k is denoted by Sk and is decomposed into three
entities: the physical state variables Rk, the other information variables Ik, and the
belief state variables Bk. We detail the role and the components of these entities below.

Sk = (Rk, Ik, Bk)

4.4.1. Physical state

The physical state defines all physical characteristics of the warehouse, such as the
location and availability of the shelves, the robots, and others. We decompose the
physical state as Rk = (tk, LkS , T kS , stockkS, I , T kL , zk, LkR, SkR, T kR, OkR, RkP), of which
the components are described below.

Running time

tk = current time corresponding to time step k.

In our model, a time step k corresponds to an event when a decision must be made,
as in a discrete event simulation. The time interval between two such events can be
highly variable. We define the state variable tk as the time of event k.

Shelves

lks = location ∈ L of shelf s ∈ S; LkS = {lks | s ∈ S}.
τks = time at which shelf s ∈ S becomes available; T kS = {τks | s ∈ S}.
stockks,i = stock level of item type i ∈ I on shelf s ∈ S;

stockkS,I = {stockks,i | s ∈ S, i ∈ I}.

A shelf s ∈ S is currently assigned to location lks ∈ L∪P and became or will become
available by time τks , as known by time tk. In this context, ‘available’ means the shelf
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(or location, robot, etc.) can be used right away. At time tk, even if lks ∈ L, shelf s may
not be available yet, but will be at time τks > tk, because it may not have reached its
storage location. By convention, we set τks = +∞ when the arrival time has not been
revealed yet or if the shelf is currently not assigned to a location. Note that in the
case of stochastic travelling times, τks is only known when the shelf has been replaced,
so its value will remain set to +∞ until then. However, in a deterministic setting, the
arrival time can be anticipated as soon as the storage decision is made. The stochastic
case is presented here, but the details around the belief state variables will be similar
to a deterministic setting. The variable stockks,i denotes the level of stock of item type
i currently available on shelf s at time tk (the current stock level may differ if the shelf
was allocated to an order but not yet processed at the picking station). Depending on
the number of items of type i required by an order, a shelf which contains this item
may not be usable. Indeed, we consider that all items from an order must be retrieved
from a single shelf. To relax this assumption and similar to multi-line orders, one may
look into splitting the order into single-item orders (see Section 4.1).

Locations

τkl = time at which location l ∈ L is available for storage; T kL = {τkl | l ∈ L}.

A location l is available for storage by time τkl . This means that if τkl ≤ tk, the
location is currently free. If τkl = +∞, the location is not available for any planned
horizon or a robot is on its way but has not yet retrieved the shelf.

Robots

zk = robot ∈ R available for a task.
lkr = location ∈ L ∪ P of robot r ∈ R; LkR = {lkr | r ∈ R}.
skr = shelf ∈ S carried by robot r ∈ R; SkR = {skr | r ∈ R}.
τkr = time at which robot r ∈ R is available; T kR = {τkr | r ∈ R}.
okr = order ∈ O that is currently processed by robot r ∈ R; OkR = {okr | r ∈ R}.

Robot zk ∈ R denotes the robot currently available for a task (defining an event). A
robot r ∈ R is currently located at location lkr , is carrying shelf skr and will be available
next at time τkr . Finally, okr denotes which order robot r is currently processing.

Picking stations

Rkp = set of robots ⊂ R assigned to picking station p ∈ P; RkP = {Rkp | p ∈ P}

Because a human operator needs timeo to pick the items of an order o, the robots
wait in a queue. Robots that are assigned to picking station p, and will thus wait in
the same queue, are identified by Rkp.

4.4.2. Other information variables

An essential aspect of dynamic operations in e-commerce comes from new orders con-
tinuously entering the system. At a given time step, a set of orders to fulfil is known,
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but new orders can arrive at any moment. We represent this set of revealed orders as
a state variable Ok of type other information as it evolves exogenously even if still
influenced by the previous selection of orders to fulfil. Since it is the only variable of
this type, we have: Ik = (Ok).

Orders

Ok = orders yet to be fulfilled by time step k.

4.4.3. Belief state variables

Depending on the application, some extra information about distributions of random
variables may be known and useful to make decisions. As such, they can be stored in
the belief state Bk. As mentioned above, since we consider stochastic travelling times,
we do not know in advance when a robot will reach its destination. However, we can
use expected values while making decisions. We define such estimations, as well as

information about demand distributions with Bk = (T kR∪S∪L, T
k
R,P , λ̄

k
I), described

below.

τ̄kj = believed (e.g., expected) time of availability of component j ∈ R ∪ S ∪ L;

T kR∪S∪L = {τ̄kj | j ∈ R ∪ S ∪ L}.
τ̄kr, p = believed time of arrival of robot r at picking station p;

T kR,P = {τ̄kr, p | r ∈ R, p ∈ P}.
λ̄ki = average demand rate of item i, can be a Poisson average or any other

distribution information; λ̄kI = {λ̄ki | i ∈ I}.

τ̄kj represents the believed, or estimated, time of availability of component j, which
can be a robot, a shelf, or a location. This estimation can be useful when the true time
of availability τkj has not been revealed yet. It can be computed based on past data or
on an expected travelling times model. For example, if component j represents a shelf,
and if tk < τ̄kj < τkj = +∞, it means that shelf j is currently being brought back to a

storage location, will be available at an estimated time τ̄kj , but its exact arrival time

is yet unknown. Similarly, τ̄kr, p designates the estimated time of arrival of robot r at
picking station p. This information can be useful to estimate the order of the robots
in the waiting queue at the picking station, to determine the processing order. Finally,
orders are arriving online, but it is reasonable to consider that some statistics about
future orders are available based on current trends, forecasts, planned promotions,
etc. As such, we consider here that the arrival of new orders can be reasonably well-
modelled with Poisson distributions and that we have an estimate of their current
averages λ̄ki that may evolve over time.

4.5. Exogenous information

Between stochastic travelling times and new orders entering the system, new in-
formation is continuously revealed, comprising most of the challenge of dynamic
decision-making. We represent the exogenous information as a list of random variables
Wk+1 = ((r̂k+1, τ̂k+1), T̂ k+1

L , T̂ k+1
R,P , Θ̂k+1) that are revealed during the operations:
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(r̂k+1, τ̂k+1) = robot becoming available at the next time step and its time of
availability. Those information are linked as r̂k+1 = argmin

r∈R
(τ̂k+1
r ),

but only the time of availability of robot r̂k+1 is revealed by time
step k + 1.

τ̂k+1
l = arrival time of a robot at retrieval location l. Between two decision

time steps, a robot may have arrived at a retrieval location to
retrieve a shelf, the storage location then becomes available;
T̂ kL = {τ̂kl | l ∈ L}.

τ̂k+1
r, p = arrival time of a robot r to picking station p. Between two decision

time steps, a robot may have arrived at a picking station, in this
case, its arrival time is revealed. Note that such a robot can very
well be the next available robot r̂k+1; T̂ kR,P = {τ̂kr, p | r ∈ R, p ∈ P}.

Θ̂k+1 = new orders that entered the system between time step k and k + 1.
Realisation of a random variable Θtk→τ̂k+1 of newly revealed orders
between time tk and τ̂k+1.

In our framework, an event k is defined by the need for a decision, corresponding to
a robot requesting a new task. Because of stochastic travelling and processing times,
this event is uncertain and is represented by the pair of random variables (r̂k+1, τ̂k+1),
which designates the robot asking for a decision and the time at which it happens. The
availability of other robots is governed by distinct random variables τ̂k+1

r , r ∈ R, but
only the realisation of the earliest available robot is revealed. Between two events, other
relevant episodes (events that do not require a decision) may happen. One such episode
is a robot reaching a retrieval location l at time τ̂k+1

l . This information is important
because it frees the location for another storage task. Another similar episode is the
arrival of a robot at a picking station τ̂k+1

r, p because it determines the order in the
waiting queue. By convention, if such time has not been revealed during the two
decision steps, its value τ̂k+1 is set to +∞. Finally, between the times of two events,
new orders may be revealed in the system. This set of new orders, which arrive between
times tk and tk+1, is represented by a random variable Θtk→tk+1 for which a realisation
is denoted by Θ̂k+1.

4.6. Decisions

For a given state of the system Sk, a decision, or action, xk must be made. Two options
are possible, depending on the location of the available robot zk.

If robot zk is currently located at a picking station (state: lkzk ∈ P, see Eq. 1), it is
carrying a shelf, so its first option is to store the shelf back into the warehouse (storage
task, xk ∈ X1

k). A decision about which location l to store the shelf at must be made
(Figure 2, (1)). Of course, this location needs to be available at the decision time:
τkl ≤ tk. If travelling times were deterministic, one could anticipate the availability of
a storage location and verify that l will be available by the time the robot reaches it:
τ tl ≤ tk + timel(zk)k,l.

The other option is called an opportunistic task. Instead of storing its shelf, a robot
can reuse it right away to fulfil another order o at picking station p (xk ∈ X2

k). We
distinguish two cases of such an opportunistic task. First, the robot can bring its shelf
to the end of the waiting queue of either the same (Figure 2, (3)) or a different (Figure
2, (2)) picking station (case p ∈ P). Second, the robot can remain at its current
position (Figure 2, (4)) to deal immediately with another order o (case p = lk∗zk which
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Figure 2. Possible decisions when a robot is located at a picking station

designates the current picking station of the robot with an * as an exponent).

if lkzk ∈ P :

xk ∈ X1
k ∪X2

k

X1
k = {l ∈ L | τkl ≤ tk} (storage task)

X2
k = {(o, p) | o ∈ Ok, p ∈ P ∪ {lk∗zk}, szk ∈ Sio , stock

k
szk ,io

≥ qo}
(opportunistic task)

(1)

If robot zk is available but located at a storage location (state: lkzk ∈ L, see Eq.

2), it is waiting for a retrieval task. The decision is threefold: which order o ∈ Ok
to fulfil, from which shelf s ∈ S, and by which picking station p ∈ P. Of course,
candidate shelves must contain the item of the order (s ∈ Sio), have a sufficient stock
level (stockks,io ≥ qo), and must be available at decision time (τks ≤ tk).

if lkzk ∈ L (retrieval task) :

xk ∈ X3
k

X3
k = {(o, s, p) | o ∈ Ok, s ∈ S, p ∈ P, τks ≤ tk, s ∈ Sio , stockks,io ≥ qo}

(2)

4.7. Transition function

The transition function SM describes how the state variables are modified from Sk to
Sk+1 when a decision xk is made and exogenous information Wk+1 is revealed.

Sk+1 = SM (Sk, xk, Wk+1)

Note that to slightly lighten the notation, state variables that do not change between
two consecutive time steps are not detailed. In this case, one must understand that
these variables keep the same value at the next step.

First, for all states and decisions, the transition function starts with Algorithm 1.
This part is straightforward: the robot available for a task is set to the newly revealed
available robot (line 1, Alg. 1), the running time to the time at which this robot
becomes available (line 2, Alg. 1), and the newly revealed orders between times tk
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and tk+1 are added to the pool of orders to fulfil (line 3, Alg. 1). Then, if a location
has been freed up during the time interval, its true and believed times of availability
are updated (lines 4-6, Alg. 1). Similarly, if a robot has reached a picking station, its
believed reaching time is updated (line 7-10, Alg. 1).

Algorithm 1 Transition function - general update

1: zk+1 = r̂k+1

2: tk+1 = τ̂k+1

3: Ok+1 = Ok ∪ Θ̂k+1

4: for l ∈ L do
5: if τ̂k+1

l < +∞ then

6: τk+1
l = τ̄k+1

l = τ̂k+1
l

7: for r ∈ R do
8: for p ∈ P do
9: if τ̂k+1

r, p < +∞ then

10: τ̄kr, p = τ̂k+1
r, p

The rest of the transition function depends, again, on the location of the available
robot.

Transition - robot located at picking station (lkzk ∈ P, Algorithm 2)

When a robot is located at a picking station, it can either perform a storage task or
an opportunistic task.

If a storage task is chosen (line 1, Alg. 2), then the decision concerns a storage
location xk = l. First, the locations of both the robot zk and its shelf skzk are set to
location l (line 2, Alg. 2). Location l is now reserved with no information about when
it will become available again, so its true and believed times of availability are both
set to∞ (line 3, Alg. 2). Because of uncertain travelling times, the time of availability
of robot τk+1

zk is unknown and set to ∞ (line 3, Alg. 2). However, its believed time
of availability (and the one of its shelf) can be estimated as the current time plus
the expected travelling time from the picking station to the storage location (line 4,
Alg. 2). The robot is leaving picking station lkzk so its estimated time of arrival at this
picking station is set to ∞ (line 5, Alg. 2), and the robot is removed from the robots
assigned to the station (line 6, Alg. 2).

If the robot performs an opportunistic task instead, a new order o and a picking
station p are selected (line 7, Alg. 2). The locations of the robot and its shelf are set to
the picking station p (line 8, Alg. 2). The new order will pick items from the shelf, so
the stock level of the shelf in items io is updated (line 9, Alg. 2). Order o is removed
from the list of remaining orders to fulfil (line 10, Alg. 2) and the robot is assigned to
this order (line 11, Alg. 2). By the next time step, if the same robot zk has not yet
arrived at station p and the decision was to send the robot at the end of a waiting
queue (p 6= lk∗zk ), its estimated time of arrival to station p is set to the running time
plus the average travelling time between the two stations (line 14, Alg. 2). Then, if
the new picking station is different from the current one, robot zk is removed from
the robots assigned to station lkzk (line 16, Alg. 2) and added to the ones of station p

(line 18, Alg. 2); its estimated time of arrival to station lkzk is also set to +∞ (line 17,
Alg. 2).

Finally, in both cases, if more robots are still assigned to station lkzk (line 19, Alg. 2),
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one can identify the next robot to be processed as the robot r that arrived the earliest
(line 19, Alg. 2). If this robot r is not the one available at next time step (which would
already be revealed), its believed time of availability is set to the running time plus
the average time needed by the human operator to pick the items of its assigned order
timeok(r) (line 22, Alg. 2).

Algorithm 2 Robot located at a picking station (lkzk ∈ P)

1: if xk = l ∈ X1
k ⊂ L then . Storage task

2: lk+1
zk = lk+1

sk(zk) = l

3: τk+1
l = τ̄k+1

l = τk+1
zk = +∞

4: τ̄k+1
zk = τ̄k+1

sk(zk) = tk + timel(zk)k,l

5: τ̄k+1
zk, lk(zk) = +∞

6: Rk+1
lk(zk) = Rklk(zk) \ z

k

7: else if xk = (o, p) ∈ X2
k ⊂ (Ok,P ∪ {lk∗zk}) then . Opportunistic task

8: lk+1
zk = lk+1

sk(zk) = p

9: stockk+1
sk(zk),io

= stockksk(zk),io
− qo

10: Ok+1 = Ok \ o
11: ok+1

zk = o

12: if τ̂k+1
zk, p = +∞ then

13: if p ∈ P then
14: τ̄k+1

zk, p = tk + timelk(zk), p

15: if p ∈ P \ lkzk then

16: Rk+1
lk(zk) = Rklk(zk) \ z

k

17: τ̄k+1
zk, lk(zk) = +∞

18: Rk+1
p = Rkp ∪ zk

19: if Rk+1
lk(zk) 6= ∅ then . Common to both tasks

20: let r = argmin
r′∈R

(τ̄k+1
r′, lk(zk))

21: if r 6= r̂k+1 then
22: τ̄k+1

r = tk + timeok(r)

Transition - robot located in storage area (lkzk ∈ L, Algorithm 3)

When a robot is available at a storage location, it needs to perform a retrieval task
which consists in making a decision xk = (o, s, p) of an order o to fulfil, from shelf s,
at picking station p.

First, both the true and believed times of availability of the shelf just dropped by
the robot are now set to the running time (line 1, Alg. 3). The robot is now carrying
the selected shelf s (line 2, Alg. 3). The true and believed times of availability of this
shelf, as well as the true time of availability of the robot, are all set to +∞ (line 3,
Alg. 3) because the estimated time of when the items will be picked is hard to obtain
at this stage (even if a rough estimate could be considered). The locations of the robot
and shelf s become station p (line 4, Alg. 3) and the robot is added to the set of robots
assigned to the picking station (line 5, Alg. 3). The stock level of the shelf in item type
io is updated (line 6, Alg. 3). The order o is removed from the set of orders to fulfil
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(line 7, Alg. 3) and the order is assigned to robot zk (line 8, Alg. 3). If the robot has
not reached the retrieval location by time step k+1, the believed time of availability of
storage location lks is estimated to be the running time plus the travelling time between
the drop-off and retrieval locations (lines 9-10, Alg. 3). Finally, if the robot has not
arrived at the picking station by time step k + 1, the believed time of arrival of robot
zk at station p is calculated as the running time plus the travelling time from drop-off
to retrieval locations and retrieval location to picking station (line 11-12, Alg. 3).

Algorithm 3 Retrieval task (lkzk ∈ L, xk = (o, s, p) ∈ X3
k ⊂ (Ok,S,P))

1: τk+1
sk(zk) = τ̄k+1

sk(zk) = tk

2: sk+1
zk = s

3: τk+1
s = τ̄k+1

s = τ̄k+1
zk = +∞

4: lk+1
zk = lk+1

s = p

5: Rk+1
p = Rkp ∪ zk

6: stockk+1
s,io

= stockks,io − qo
7: Ok+1 = Ok \ o
8: ok+1

zk = o

9: if τ̂k+1
lks

= +∞ then

10: τ̄k+1
lks

= tk + timelk(zk), lks

11: if τ̂k+1
zk, p = +∞ then

12: τ̄k+1
zk, p = tk + timelk(zk), lks

+ timelks , p

4.8. Cost function

The cost function defines the cost contribution of a decision to the global objective
that needs to be optimised. While the previous parts of the model are quite universal,
the objective function depends on the Key Performance Indicator (KPI) the decision-
maker favours most. Merschformann et al. (2019) present several relevant KPIs, such
as the order throughput rate, the order turnover time, the travelling time, the fraction
of late orders and others. To illustrate, we present here two objective contributions
related to travelling times and deadlines. The first one considers the full cycle time in
a fully stochastic setting (as the rest of the model). The second one only considers the
travelling time of the robots in a setting where travelling times are deterministic. The
reason for this double illustration is that to truly assess the complete cycle time of a
robot in the fully stochastic case, we need to wait for the robot to have finished its
cycle, which makes the contribution of each decision less perceptible. In both cases,
Figure 3 illustrates the time components that compose a complete cycle.

4.8.1. Complete cycle time – stochastic travelling times

In this case, the time taken by a robot to perform a complete cycle is considered in
the objective, which includes the travelling time as well as any waiting time spent in a
queue at a picking station. Because the real time taken by a robot to complete a task
is only revealed once the task has been completed, its contribution to the objective
function is likewise delayed. For this reason, we add a physical state variable for each
robot, representing the time at which it started its task:
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ϕkr = time at which robot r ∈ R started its new task; ϕkR = {ϕkr | r ∈ R}

And we update this state variable every time a robot is assigned to a new task. We
add at the end of Algorithm 1, line 11:

Algorithm 4 Extra line in Algorithm 1

11: ϕk+1
zk = tk

Now, in every state, the time taken to perform the previous task can be computed
by taking the difference between the current time tk and the time the robot started
this task ϕkzk (Eq. 3). Also, if the robot is located at a picking station, an order was
just completed, , and a penalty cost is applied to penalize, if necessary, a violated
deadline: costok(zk) ×max[0, tk − dok(zk)].

For a given state, decision and exogenous information, we denote the objective
contribution by: C(Sk, xk,Wk+1)

if lkzk ∈ P (Robot located at a picking station) :

C(Sk, xk,Wk+1) = tk − ϕkzk + costok(zk) ×max[0, tk − dok(zk)]

if lkzk ∈ L (Robot located at a storage location) :

C(Sk, xk,Wk+1) = tk − ϕkzk

(3)

4.8.2. Travelling time only – deterministic travelling times

We present the objective of the deterministic travelling time to have a more intuitive
representation of the objective contribution. In Eq. 4, we distinguish the different types
of decisions. In the case of a storage task or an opportunistic task, the costs are similar:
the travelling time from the current picking station to either the storage location or
another picking station (if the robot stays in place to deal immediately with another
order, this cost is 0), and a penalty cost for violated deadlines. If the robot performs a
retrieval task, the cost corresponds to the interleaving time between the drop-off and
the retrieval locations plus the time between the retrieval location and the picking
station.

if lkzk ∈ P and xk = l ∈ X1
k ⊂ L (Storage task) :

C(Sk, xk,Wk+1) = timel(zk)k, l + costok(zk) ×max[0, tk − dok(zk)]

if lkzk ∈ P and xk = (o, p) ∈ X2
k ⊂ (Ok,P ∪ {lk∗zk}) (Opportunistic task) :

C(Sk, xk,Wk+1) = timel(zk)k, p + costok(zk) ×max[0, tk − dok(zk)]

if lkzk ∈ L and xk = (o, s, p) ∈ X3
k ⊂ (Ok,S,P) (Retrieval task) :

C(Sk, xk,Wk+1) = timelk(zk), lks
+ timelks , p

(4)

4.8.3. Global objective

Finally, the global objective is, for every state, to make the decision that minimises the
global cost of operations. This is defined recursively by Eq. 5, equivalent to Bellman
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Figure 3. Illustration of the cost components in the complete cycle time

equations.

min
π

ES0
EW1...W+∞|S0

{
+∞∑
k=0

αk Ck(Sk, X
π
k (Sk), Wk+1) | S0

}
, (5)

where α is a discount rate ∈ ]0 ; 1[ and:

Sk+1 = SM (Sk, X
π
k (Sk), Wk+1) (6)

More precisely, the objective is to define a policy π that minimises the expected
infinite sum of discounted cost contributions Ck(Sk, X

π
k (Sk), Wk+1), considering the

recursive relationship between two consecutive states defined by Eq. 6.
We may also prefer to not consider any discount rate in the objective function,

for instance to properly minimise the expected average cycle time. In this case, we
can define the global objective as in Eq. 7, which averages the infinite sum of cost
contributions.

min
π

lim
h→+∞

ES0
EW1...Wh|S0

{
1

h

h∑
k=0

Ck(Sk, X
π
k (Sk), Wk+1) | S0

}
(7)
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5. Simulation study

Because the subproblem of storage allocation is recurrent both in traditional ASRSs
and also in RMFSs, we propose illustrating a simple usage of our framework by com-
paring the performance of the four most common storage decision rules. The objective
of this section is neither to propose a new method, nor a fully integrated simulation
study, but to compare storage policies that should be considered as baselines when
developing new methods. We study the performance of those baselines in terms of the
two KPIs presented in Section 4.8: the travelling time and the full cycle time. The
baselines are tested in isolation under simplification assumptions that are presented
below.

5.1. Assumptions

To study storage allocation baselines in isolation, we make several simplifications.
First, we consider a single picking station. A type of item is stored on exactly one
shelf, which only contains this item, and replenishment is ignored. Both travelling and
picking times are deterministic. Revealed orders are processed following their dead-
lines, with the condition that the required item is on a shelf that is not currently being
carried by another robot. Because this online scheduling is not optimised, delay penal-
ties in the objective functions presented in the model are removed. Only opportunistic
tasks of type 1 (where the robot goes straight to the end of the waiting queue at a
picking station) are considered, and they are enforced as often as possible (if the next
order needs the same shelf that the robot is currently carrying). Also, because the next
order assigned to a robot is an external decision, we can use this information at the
time when a storage decision is made. To do so, we add an other information variable
to the ones defined in Section 4.4.2, representing this order. Let us denote this state
variable by oknext. Note that the only event that requires a decision is when a robot is
available at the picking station: lkzk ∈ P, we can then omit the case of a retrieval task

when lkzk ∈ L in Eq. 2.

5.2. Storage allocation baselines

In this section, we express the storage decision rules within our modelling framework.
Because we enforce opportunistic tasks of type 1 whenever possible, an actual storage
task only occurs when skzk 6= Si(oknext) (here Si only designates one shelf instead of a
set), which means that the robot is not carrying the shelf containing the required item.
Otherwise, the opportunistic task is performed by default, which consists of processing
the next order oknext at picking station p = 1 (because there is only one picking station):
xk = (oknext, p = 1). We only represent this second case in the random storage policy.

Random storage

In random storage, the storage decision xk is randomly drawn from the uniform dis-
tribution over the set of available locations at time tk.
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if skzk 6= Si(oknext) :

xk ∼ U(X1
k)

where X1
k = {l; l ∈ L, τkl ≤ tk}

else:

xk = (oknext, p = 1) ∈ (Ok,P) ⊂ X2
k

(8)

Closest open location

The closest open location policy consists of selecting the available storage that is closest
to the picking station as defined by Eq. 9.

if skzk 6= Si(oknext)
:

xk = argmin
l

(
timep=1, l | l ∈ L, τkl ≤ tk

) (9)

Class-based storage

In class-based storage, a shelf is randomly stored within a class based on its turnover
rate. Classes are distributed by increasing distances from the picking station and
shelves with the highest turnovers are assigned to the closest classes. Because here
a shelf contains exactly one item type, which can only be found on this shelf, the
turnover rate of a shelf s corresponds to that of its item type (λ̄ki ; s = Si). Eq. 10 ran-
domly draws the storage location from a uniform distribution over the set of available
locations within the class of shelf skzk . The item contained on the shelf is i(ok(zk)),

which gives the turnover rate of the shelf Class(skzk).

if skzk 6= Si(oknext)
:

xk ∼ U(Class(skzk))

where Class(skzk) defines the open locations of the class associated with

shelf skzk based on its turnover rate λ̄ki(ok(zk))

(10)

Shortest leg

For the shortest leg decision rule, Eq. 11 selects the open location that minimises the
travelling time to the storage location plus the time from the storage location to the
next retrieval location. The next shelf to retrieve for the robot at hand is Si(oknext), and
its location is l′ = l(Si(oknext)

). So, the selected location xk is the one that minimises
timep=1, l + timel, l′ .

if skzk 6= Si(oknext)
:

xk = argmin
l

(
timep=1, l + timel, l′ | l ∈ L, τkl ≤ tk, l′ = l(Si(oknext))

) (11)
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Figure 4. Simulation study - storage area

5.3. Simulation study

In this section, we run simulations to evaluate the four decision rules presented above
with the two cost functions of Section 4.8: full-cycle time and travelling time with the
average cost global objective (Eq. 7). We define a reasonably small warehouse storage
area since we consider only one picking station, and we keep the setting parameters
constant except the skewness parameter of the demand distribution that we describe
below. Multiple picking stations could be considered without major changes, except
for the class-based storage, which would require a careful zones definition, see, for
instance, Yuan, Graves, and Cezik (2018).

The storage area contains 108 storage locations for 103 shelves, and 8 robots are
deployed. The speed of the robots is set to 0.6 m/s, accounting for acceleration, decel-
eration, loading, and unloading times. The picking time taken by the human operators
is set to 5 seconds. The number of classes for the class-based storage policy is set to
6. Figure 4 gives a plan view of such a warehouse.

As in regular warehousing, some items are much more popular than others, which
translates into skewed demand distributions. We generate orders following the prin-
ciple of an ABC curve proposed by Hausman, Schwarz, and Graves (1976): G(x) =
xs, for 0 < s ≤ 1, represents the ranked cumulative % demand versus % (x) of item
types. The smaller the s, the more skewed the demand distribution. To every item
type i a Poisson distribution of average λ̄i =

((
i
m

)s − ( i−1
m

)s)× n
N is assigned, where

m is the number of item types, n the expected total number of orders over the time
horizon and N the number of discretized periods. Orders are then generated online
at each discretized period, for each item. Then, for every generated order k, a com-
pletion time δk (time before deadline) is randomly drawn from a uniform distribution
of interval [1;α × T ], where α defines the tightness of the completion times. In this
simulation study, we run the simulation for 24 hours with time steps of 60 seconds
to generate new orders. Several values of skewness parameter s are tested and the
tightness parameter α is set to 0.4. We also set m = 103, n = 30, 000 and N = 1440
(24h / 60 sec).

Table 1 presents the performance of the four decision rules in terms of travelling
time for 8 values of the skewness parameter s. Note that, because of the stochasticity
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Table 1. Travelling times
Storage

policy
Random COL Class-based SL

t(s) σ(s) t(s) σ(s) g(%) t(s) σ(s) g(%) t(s) σ(s) g(%)
s=0.4 46.85 0.75 44.74 0.78 4.51 39.87 0.70 14.89 41.51 0.68 11.40
s=0.5 50.52 0.85 48.08 0.81 4.83 44.40 0.73 12.12 44.81 0.68 11.29
s=0.6 52.67 0.67 50.00 0.73 5.06 47.92 0.70 9.01 46.79 0.64 11.15
s=0.7 53.79 0.64 51.15 0.60 4.91 50.63 0.63 5.88 47.85 0.59 11.04
s=0.8 54.26 0.57 51.70 0.57 4.70 52.62 0.59 3.01 48.30 0.52 10.97
s=0.9 54.59 0.57 51.92 0.53 4.90 54.39 0.57 0.37 48.60 0.45 10.97
s=1.0 54.69 0.56 51.98 0.59 4.95 55.60 0.58 -1.67 48.68 0.47 11.00

Table 2. Full cycle times
Storage

policy
Random COL Class-based SL

t(s) σ(s) t(s) σ(s) g(%) t(s) σ(s) g(%) t(s) σ(s) g(%)
s=0.4 55.60 0.64 53.51 0.66 3.76 50.06 0.56 9.96 50.77 0.51 8.70
s=0.5 58.65 0.78 56.11 0.71 4.32 53.43 0.61 8.90 53.20 0.57 9.29
s=0.6 60.50 0.61 57.63 0.66 4.75 56.23 0.60 7.06 54.69 0.54 9.60
s=0.7 61.46 0.58 58.64 0.55 4.58 58.54 0.56 4.76 55.55 0.52 9.61
s=0.8 61.86 0.54 59.12 0.52 4.44 60.29 0.53 2.54 55.94 0.47 9.57
s=0.9 62.18 0.52 59.29 0.49 4.65 61.90 0.52 0.44 56.20 0.40 9.62
s=1.0 62.26 0.52 59.33 0.54 4.71 62.97 0.54 -1.15 56.25 0.42 9.65

in the simulation process, each value presented in the table corresponds to the aver-
age over 100 runs. For each decision rule, one column presents the average travelling
time, another one the corresponding standard deviation σ (over the 100 runs), and
finally the relative gain compared to the random storage policy. First, we notice that
the travelling time, for all storage policies, increases with the increase of parameter
s. This is explained by the greater number of opportunistic tasks that can be per-
formed with skewed distributions. Indeed, when an item is ordered much more often
relative to others, the chances that two consecutive orders will require the same item
are greater. Overall, the best-performing policy is the shortest leg (SL), with per-
formance gains ranging from 10.97% to 11.40%. The only exception is for extremely
skewed distributions (s = 0.4 and 0.5), for which class-based storage performs best
with an improvement of 12.12% and 14.89%. However, the performance of class-based
storage declines sharply when the value of s increases; it even becomes worse than ran-
dom when s = 1. Interestingly, SL’s performance remains reasonably constant, with
some extra performance gains for smaller s. This can be explained by the fact that
often-required shelves are frequently moved and may end up occupying, by chance,
locations closer to the picking station, which results in shorter cycle times. We note
the poor global performance of the closest open location (COL) method that remains
independent of the value of parameter s, with performance gains around 5%.

Table 2 presents the same type of information but in terms of full cycle time,
considering the waiting time spent by robots at the picking station as well. We note
some relevant differences. First, as expected, all policies result in longer full-cycle
times compared to travelling times only (which is a lower bound); robots take on
average 10 seconds more to complete a full cycle. This simply means that robots are
losing time waiting in the waiting queue. Then, while the cycle time for all policies
still benefits from lower s values, the differences are less significant. This can come
from opportunistic tasks that do not result in significant performance gains due to
the waiting time at the picking station. The best-performing policies dependent upon
s remain essentially the same as before. Interestingly, SL, the best overall policy,
does not seem to benefit from smaller s values, compared to random. It may be that
conveniently-located, high-turnover shelves do not result in faster cycles, once again
because of robots waiting to be processed at the picking stations.

While this study remains simple, with an illustrative objective only, we can draw
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some relevant insights from the results. First, considering the performance of class-
based and SL policies on the travelling time only, we understand the existence of
a trade-off between strategically locating shelves based on the turnover rate of the
items, to favour future accessibility, and minimising immediate cycle times. Then,
with regards to the waiting time spent in the picking station’s queue, we understand
that time saved in travelling can be wasted.

6. Conclusions and future work

In this work, we presented a dynamic stochastic optimisation framework that models
real-time operational decisions within a Robotic Mobile Fulfillment System. This new
system of automated warehouses was developed specifically for the challenges of the
e-commerce market. Among those challenges, online retailers need to fulfil orders ex-
tremely fast in a highly competitive environment. Thus, the necessity of considering
orders as soon as they are revealed to the system. Coupled with the great flexibility of
storage allocation of RMFSs, as well as the diverse operational decisions that need to
be made, the global process results in a stochastic dynamic problem that is typically
tackled by high-level decision rules. By formalising such a problem with a model, even
though there is no obvious solving mechanism to be proposed, it will assist researchers
in the development of more advanced methods to improve the performance of either
specific subproblems in isolation or the integrated problem. Essential elements of the
model are: stochastic demand (orders are revealed online); stochastic travelling and
picking times for the robots and operators; irregular decision-making time steps that
follow times at which events occur, similar to a discrete event simulation; definition of
opportunistic tasks that model the possibility of combining two compatible orders to
save travelling time; a waiting queue for robots at picking stations. To illustrate the
model, we propose a simple simulation study using storage allocation decision rules
from the literature. We transcribe these rules following the model’s proposed notation
and run experiments to evaluate their performance and gain insights about improve-
ment opportunities. In particular, the Shortest Leg storage policy demonstrates its
good performance in terms of travelling time. When the cycle time includes the wait-
ing time at the picking station, distributing the arrival of the robots to avoid idle times
appears to be essential to benefit from a good storage policy entirely.

In the future, based on the assessment of the storage decision rules illustration,
we wish to build on the modelling framework to develop new storage policies other
than traditional decision rules. We think that methods coming from approximate dy-
namic programming or reinforcement learning could be applicable here, to learn from
repeated experiences and demand trends in order to improve performance. While con-
sidering storage allocation only, we understand that there exists a trade-off between
minimising travelling times and avoiding saturation at picking stations. Finally, fu-
ture research could also aim at proposing a systematic approach on how to model
and consider multi-line orders, as well as path planning to avoid traffic congestion and
collision, along with the real-time task allocation presented in this work.
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