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Facility networks can be disrupted by, for example, power outages, poor weather conditions, or natural

disasters, and the probabilities of these events may be difficult to estimate. This could lead to costly recourse

decisions since customers cannot be served by the planned facilities. In this paper, we study a fixed-charge

location problem (FLP) that considers disruption risks. We adopt a two-stage robust optimization method,

where facility location decisions are made here-and-now and recourse decisions to reassign customers are

made after the uncertainty information on the facility availability has been revealed. We implement a column-

and-constraint generation (C&CG) algorithm to solve the robust models exactly. Instead of relying on

dualization or reformulation techniques to deal with the subproblem, as is common in the literature, we use

a linear programming-based enumeration method that allows us to take into account a discrete uncertainty

set of facility failures. This also gives the flexibility to tackle cases when the dualization technique cannot

be applied to the subproblem. We further develop an approximation scheme for instances of a realistic size.

Numerical experiments show that the proposed C&CG algorithm outperforms existing methods for both the

robust FLP and the robust p-median problem.
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1. Introduction

Decisions about facility locations are often strategic: the impact is long-lasting, and the decisions

are difficult to reverse. During the lifetime of a facility the environment where it operates may

experience dramatic changes. Events such as power outages, industrial accidents, or transportation

infrastructure issues will disrupt the facility’s operations. Natural disasters could leave the facility

unable to function. The probability and impact of such events are often difficult to estimate because

of a lack of high-quality historical data. Thus, it is important to consider uncertainties at the design

phase to ensure that the facility location decisions are sufficiently robust to avoid high recourse

costs at the operational stage.

Many probabilistic models have been developed for the facility location problem under disrup-

tions, where the failure probability of each facility is known in advance. The sum of the facility

location cost and the expected transportation cost is minimized (Snyder and Daskin 2005, Cui

et al. 2010, Chen et al. 2011, Xie et al. 2015). However, for rare events, it may be impossible to

obtain or predict precise probability information because of insufficient historical data or inaccu-

rate forecasting methods. In such circumstances, robust optimization (RO) methods can be used

to find a solution that protects the decision-makers against parameter ambiguity and stochastic

uncertainty, without depending on probability information (Gabrel et al. 2014). RO uses uncer-

tainty sets to represent the random data; therefore, any identified solution is immune to all the

possible realizations within an uncertainty set. In addition, whereas the static RO method deter-

mines only here-and-now decisions, the two-stage adjustable RO method is capable of generating

less conservative solutions, because it allows wait-and-see decisions that can adapt to the real-

ized observations. However, this flexibility comes with significant computational challenges. Several

solution methods, such as the Benders decomposition (BD) method (Jiang et al. 2012, Bertsimas

et al. 2013, Billionnet et al. 2014, Bertsimas and Shtern 2018, Simchi-Levi et al. 2019b) and the

column-and-constraint generation (C&CG) algorithm (Zeng and Zhao 2013, Ayoub and Poss 2016),

have been developed to solve two-stage RO models exactly. Approximation schemes, such as affine
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decision rules (Ben-Tal et al. 2011, Simchi-Levi et al. 2019a) and piecewise affine decision rules

(Ardestani-Jaafari and Delage 2017), are also used.

Our contributions. In this paper, we develop two-stage RO models for the reliable uncapaci-

tated/capacitated fixed-charge location problem (UFLP/CFLP). In the first stage we make location

decisions, and in the second stage we make recourse decisions (i.e., we reassign customers to the

surviving facilities or leave them unmet). The goal is to guarantee the system’s performance under

disruptive scenarios. The contributions of our work are as follows: (1) We solve a fixed-charge loca-

tion problem (FLP) under disruptions using the two-stage RO method together with a budgeted

uncertainty set. We illustrate that for this class of problems, the adjustable robust models are

necessary to produce less conservative solutions in comparison with the static RO method. (2) We

compare the numerical efficiency of exhaustive scenario search to the usual mixed-integer linear

programming (MILP) reformulation when solving the NP-hard adversarial problem that arises in

a step of the C&CG algorithm. (3) We validate the numerical efficiency and quality of solutions

obtained when employing affine decision rules on this class of problems. (4) To illustrate the use

of a bi-objective approach to better trade off the reliability cost and the nominal cost, we impose

an upper bound on the nominal cost when robustifying the system. The results demonstrate that

the bound constraints can further reduce the conservativeness of the robust solutions and serve as

a decision support tool indicating the trade-off between reliability and nominal cost.

The rest of this paper is organized as follows. Section 2 reviews previous work on facility location

problems under uncertainty. Section 3 presents the deterministic and adjustable robust models,

and Section 4 describes the solution methods. Section 5 discusses the numerical results, and Section

6 provides concluding remarks.

2. Literature Review

This section reviews papers on stochastic and robust facility location problems; for deterministic

problems, see Daskin (2011). Table 1 presents a summary of the papers.

Most studies consider uncertain demand and transportation costs in the context of facility loca-

tion. For early work, see the review paper by Snyder (2006). Baron et al. (2011) study a multi-period



Cheng, Adulyasak, and Rousseau: Robust Facility Location Under Disruptions
4 Article submitted to INFORMS Journal on Optimization; manuscript no. (Please, provide the manuscript number!)

facility location problem with uncertain demand. They compare the solutions generated by two

uncertainty sets: box and ellipsoid. Mǐsković et al. (2017) study a two-echelon capacitated facil-

ity location problem with uncertain transportation costs in both echelons. They use a budgeted

uncertainty set and propose a memetic algorithm. Zetina et al. (2017) study a robust uncapaci-

tated hub location problem, where interval uncertainty occurs in the demand, the transportation

cost, and both simultaneously. They use a budgeted uncertainty set to control the level of con-

servativeness and propose a branch-and-cut algorithm. Atamtürk and Zhang (2007) are the first

to apply the two-stage RO approach to a location-transportation problem under demand uncer-

tainty. They compare the solutions generated by the two-stage RO method with those provided by

the stochastic programming model, and they find that the former approach offers a compromise

between stochastic programming and a static RO approach. Ardestani-Jaafari and Delage (2017)

study a multi-period robust location-transportation problem (MRLTP) with uncertain demand.

They develop six approximation models using affine policies.

Facility and transportation network failures are also forms of supply-chain uncertainty. If the

potential for such failures is ignored at the design stage, it could result in costly recourse decisions.

Drezner (1987) is the first to consider disruptions in facility location models, introducing the

unreliable p-median problem (PMP) and the (p, q)-center problem. In the former, each facility has a

given probability of being inactive; in the latter, p facilities must be built to minimize the maximum

cost when at most q facilities are disrupted. Snyder and Daskin (2005) introduce the reliable

PMP and UFLP, where all the facilities have the same disruption probability. They minimize the

weighted sum of the nominal cost and the expected transportation cost of disruption scenarios. Cui

et al. (2010) relax the constraint that all the facilities have the same disruption probability and

consider site-dependent probabilities in the UFLP. They propose a mixed integer program (MIP)

formulation and a continuous approximation model. The MIP is solved by Lagrangian relaxation.

Chen et al. (2011) study a reliable inventory-location problem. They assume that each facility has

an equal probability of disruption. Each customer may receive service from a sequence of R ≥ 1
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facilities, i.e., in the normal scenario a customer is serviced by its level-1 facility, and when its level-r

facility fails, it will be assigned to its level-(r+1) facility. If all R facilities fail, the customer will not

be serviced, and there is an associated penalty. Xie et al. (2015) present a reliable location-routing

problem. Their problem setting is similar to that of Chen et al. (2011), except that they make

routing decisions instead of forming inventory control policies. Shen et al. (2011) study a reliable

UFLP. The problem is first formulated as a two-stage stochastic program and then as a nonlinear

integer program. They propose a four-approximation algorithm for the case where the facilities

have identical failure probabilities. Xie and Ouyang (2019) study a reliable service network design

problem, where customers must pass certain network access points to reach facilities for services.

They assume that each network access point is associated with a site-dependent failure probability

and minimize the expected system cost.

Most studies of the facility location problem with disruptions assume that the probability infor-

mation is known perfectly a priori; only a few papers consider RO approaches. An et al. (2014)

propose a two-stage RO scheme for the reliable PMP. They use a budgeted uncertainty set to char-

acterize disruptions and develop C&CG algorithms. Lu et al. (2015) propose a distributionally RO

(DRO) model for the UFLP with correlated disruptions. They assume that the exact probability

distribution of disruption scenarios are unknown but lies in a distributional uncertainty set, such

that the marginal disruption probability of a site is equal to a given value. The expected cost under

the worst-case distribution is minimized. For more details about the facility location problem under

disruptions, see the review by Snyder et al. (2016).

Our work differs from the two related papers cited above as follows. An et al. (2014) study the

reliable PMP and explore the modeling capability of two-stage RO by taking into account demand

variation. Specifically, they introduce a parameter ϑ (not a random variable) to denote demand

change and study its effect by setting it to a negative value, 0, and a positive value in numerical

tests. Note that they assume the facility set J and the customer set I be the same, which makes it

possible to incorporate ϑ into the model, because there should be a link between disruptions and
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Table 1 Summary of the literature
Authors Problem Uncertainty type SP RO (Uncertainty set) Objective function Solution method

Baron et al. (2011) Multi-period facility location Demand Static (Box/ellipsoidal) Max worst-case profit Mixed integer program
Mǐsković et al. (2017) Two-echelon facility location Transportation cost Static (Budgeted) Min WOC Memetic algorithm

Zetina et al. (2017) Hub location
Demand; transportation
cost; and both

Static (Budgeted) Min WOC Branch-and-cut

Atamtürk and Zhang (2007) Location-transportation Demand Two-stage (Budgeted) Min WOC Mathematical analysis
Ardestani-Jaafari and Delage (2017) MRLTP Demand Multi-stage (Budgeted) Max worst-case profit Affine polices

Drezner (1987) PMP, (p, q)-center Facility disruption Static Min ETC Heuristics
Snyder and Daskin (2005) PMP, UFLP Facility disruption Static Min weighted NOC and EFC Lagrangian relaxation
Cui et al. (2010) UFLP Facility disruption Static Min location cost and ETC Lagrangian relaxation, CA
Chen et al. (2011) Inventory-location Facility disruption Static Min location cost and EITC Lagrangian relaxation
Xie et al. (2015) Location-routing Facility disruption Static Min location cost and ETC Lagrangian relaxation, CG
Shen et al. (2011) UFLP Facility disruption Two-stage Min location cost and ETC Three heuristics
Xie and Ouyang (2019) Service system design Facility disruption Two-stage Min location cost and ETC Lagrangian relaxation
An et al. (2014) PMP Facility disruption Two-stage (Budgeted) Min weighted NOC and WOC C&CG
Lu et al. (2015) UFLP Facility disruption Distributionally Min expected cost BD, search-and-cut
This paper UFLP, CFLP Facility disruption Two-stage (Budgeted) Min WOC C&CG, affine policy

SP: stochastic programming; CA: continuous approximation; CG: column generation; WOC: worst-case cost; NOC: nominal cost;
ETC: expected transportation cost; EFC: expected failure cost; EITC: expected inventory and transportation costs.

demand variations. In their setting, since J = I, disruptions may occur at a customer site (which

is also a facility site), resulting in demand variation. They evaluate their C&CG algorithm by a

comparison with the BD method. We study the reliable FLP and propose two solution methods.

First, we use a linear programming (LP)-based enumeration method for the subproblem in order to

evaluate the worst-case recourse scenario in the C&CG algorithm. This approach does not require

to set big-M values, and it also provides information for other potential worst-case scenarios, which

can be used to speed up the algorithm. Second, we introduce an approximation scheme based on

the affine policy for large instances, and we provide conditions under which this scheme produces

optimal solutions. We further introduce an enhancement to the robust formulations, which can

effectively reduce the conservativeness of solutions. We emphasize that our modeling scheme is also

able to incorporate demand variations for situations with J = I. Lu et al. (2015) consider the UFLP

with correlated disruptions, which are characterized by a joint distribution. Therefore, the DRO

instead of the two-stage RO framework is used. They first exploit the structural property of the

DRO model (supermodularity) and then reformulate it as a stochastic program, where standard

solution methods such as BD can be used. Their numerical tests focus on quantifying the benefits

of considering disruptions that are correlated rather than independent.

3. Mathematical Models

This section introduces the notation and presents the deterministic and the adjustable robust

models.
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Notation. We consider a two-echelon supply chain system, where I and J are the sets of

customer nodes and facility sites, respectively. The parameter fj is the fixed cost of locating a

facility at candidate site j ∈ J , and Cj is the capacity of a facility at candidate site j ∈ J if we build

a facility there. The parameter hi is the demand at customer i ∈ I, and dij is the distance from

demand node i∈ I to candidate location j ∈ J . For customer i∈ I, the unit penalty cost associated

with unmet demand is pi. We use yj = 1 to denote that a facility is located at site j ∈ J , and yj = 0

otherwise. The variable xij is the fraction of demand from node i∈ I that is satisfied by candidate

facility j ∈ J .

3.1. Deterministic UFLP and CFLP

The deterministic UFLP can be formulated as follows (Daskin 2011):

min
y,x

∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

hidijxij, (1a)

s.t.
∑
j∈J

xij ≥ 1 ∀i∈ I, (1b)

xij ≤ yj ∀i∈ I, j ∈ J, (1c)

yj ∈ {0,1} ∀j ∈ J, (1d)

xij ≥ 0 ∀i∈ I, j ∈ J. (1e)

The objective (1a) minimizes the total cost, which includes the fixed facility location cost and

the demand-weighted transportation cost. Constraints (1b) indicate that customer demand must

be fully satisfied. Since it is a minimization problem, the equality relationship always holds at the

optimum. Constraints (1c) impose that demand nodes can only be assigned to opened facilities.

Constraints (1d)–(1e) impose the integrality and non-negativity constraints.

The formulation for the deterministic CFLP is as follows:

min
y,x

∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

hidijxij, (2a)

s.t. (1b)–(1e) and (2b)∑
i∈I

hixij ≤Cjyj ∀j ∈ J. (2c)
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The objective functions of the deterministic UFLP and CFLP are the same. Constraints (2c)

ensure that once a facility is opened, its capacity is respected. They also ensure that customers

are allocated to opened facilities, so constraints (1c) become redundant. However, we retain them

because they can strengthen the linear programming relaxation (Daskin 2011).

3.2. Adjustable Robust UFLP and CFLP

In this section, we first introduce the uncertainty set and then present the two-stage adjustable

robust counterpart (ARC) models for the UFLP and CFLP under disruptions.

Uncertainty set. We use a budgeted uncertainty set to characterize facilities’ disruption risk

(An et al. 2014):

Z(k) =

{
z∈ {0,1}|J| :

∑
j∈J

zj ≤ k

}
, (3)

where random variable zj = 1 if facility j ∈ J is disrupted, and zj = 0 otherwise. The budget

constraint ensures that at most k (k is integer) facilities fail simultaneously in a disruptive scenario.

Before presenting the ARC models, we propose an extension to the deterministic models. Specif-

ically, we introduce a variable ui to the left-hand side of constraints (1b) for each i ∈ I, which

produces ∑
j∈J

xij +ui ≥ 1 ∀i∈ I.

Correspondingly, we modify the objective functions to

min
y,x,u

∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

hidijxij +
∑
i∈I

pihiui,

where each pi can be explained as a marginal penalty for violating constraints (1b) or leaving

demand unsatisfied. The introduction of u allows us to find a trade-off between reassigning demand

or leaving it unmet when considering the adjustable robust formulations. Moreover, it helps to guar-

antee the feasibility of the second-stage problem under any first-stage decision and any uncertainty

realization—a property termed as relatively complete recourse.

Adjustable robust UFLP. The ARC model for the reliable UFLP is formulated as follows:

min
y

∑
j∈J

fjyj + sup
z∈Z(k)

g(y,z) (4a)

s.t. yj ∈ {0,1} ∀j ∈ J, (4b)
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where g(y,z) is the optimal value of the second-stage problem, once location decisions y are made

and facility statuses z are revealed, and is defined as

g(y,z) = min
x,u

∑
i∈I

∑
j∈J

hidijxij +
∑
i∈I

pihiui (5a)

s.t.
∑
j∈J

xij +ui ≥ 1 ∀i∈ I, (5b)

xij ≤ yj(1− zj) ∀i∈ I, j ∈ J, (5c)

xij ≥ 0 ∀i∈ I, j ∈ J, (5d)

ui ≥ 0 ∀i∈ I. (5e)

The objective function (4a) minimizes the sum of the fixed location cost and the worst-case recourse

cost. The second-stage model finds the least costly recourse decisions (x,u) under a given loca-

tion decision y and a realized scenario z. Note that, besides x, the auxiliary variables u are also

adjustable over z. Constraints (5c) ensure that demand nodes are assigned to opened and surviving

facilities in a disruptive scenario.

Our ARC model can also incorporate disruption-caused demand deviations presented in An et al.

(2014). Specifically, we first assume that I = J and then change the objective function (5a) to

min
x,u

∑
i∈I

∑
j∈J

(1−ϑzi)hidijxij +
∑
i∈I

(1−ϑzi)pihiui.

That being said, we will still focus on the models with objective (5a), due to the fact that ϑ is

treated as a parameter instead of a random variable. Moreover, there are many applications, where

candidate facility sites and customers are not exactly the same. For example, in global supply

chains, upstream factories and downstream customers are normally located in different areas.

Adjustable robust CFLP. Similarly, we get the adjustable robust CFLP from (4a)–(4b), and

(5a)–(5e) with the constraints

∑
i∈I

hixij ≤Cjyj(1− zj) ∀j ∈ J. (6)
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In this robust CFLP, when facility j ∈ J is disrupted, its capacity becomes 0 and its service

capability is totally lost. We refer to this as complete disruption. Our framework is also able to

incorporate partial disruption, where a damaged facility can still satisfy part of the demand (Peng

et al. 2011, Liberatore et al. 2012). The reliable CFLP with partial disruption can be modeled with

(4a)–(4b), (5a)–(5b), (5d)–(5e), and the constraints

∑
i∈I

hixij ≤Cjyj(1−ωjzj) ∀j ∈ J,

where parameter ωj (0 < ωj ≤ 1) is the proportion of lost capacity at location j ∈ J when a

disruption occurs. We give the model here to demonstrate the strong modeling capability of the

two-stage RO approach, but in the following sections we focus on complete disruption, i.e., ωj =

1,∀j ∈ J , to demonstrate the applicability of our approach when dealing with a discrete uncertainty

set associated with this type of disruptions.

3.3. A Toy Example to Illustrate the Importance of the Adjustable Policy

We note that variables x and u must be adaptive to z, otherwise the non-adaptive (or static) RO

model always identifies solutions with yj = 0,∀j ∈ J at optimality when k≥ 1. A logical explanation

of this result is that when k ≥ 1, the adversary can always choose an opened facility to disrupt,

and thus rendering solutions with no opened facilities in the absence of recourse. A toy example

(refer to Figure 1) is given in this section to demonstrate the importance of the adjustable policy.

We assume that there are three uncapacitated candidate facilities in the system, among which

only facilities 1 and 2 are opened, i.e., y1 = 1, y2 = 1, y3 = 0. There are also three customers. In the

nominal disruption-free scenario, based on the distances between facilities and customers, customer

1 is served by facility 1, and customers 2 and 3 are served by facility 2. We further assume that

k= 1, i.e., one facility is disrupted in the worst-case scenario.

In disruption scenarios, the flow variable xij, i∈ I, j ∈ J is a function of random variables z. For

simplicity, we assume that the function is linear (see Section 4.2 for more details) and formally
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Figure 1 Illustration for the importance of the adjustable policy

define it as xij =
∑

j′∈JW
j′

ij zj′ +wij. According to constraints (5c) and (5d), the product flow x1j

at customer 1 can be expressed as

0≤W 1
11z1 +W 2

11z2 +W 3
11z3 +w11 ≤ y1(1− z1) ∀z∈Z(k), (7a)

0≤W 1
12z1 +W 2

12z2 +W 3
12z3 +w12 ≤ y2(1− z2) ∀z∈Z(k), (7b)

0≤W 1
13z1 +W 2

13z2 +W 3
13z3 +w13 ≤ y3(1− z3) ∀z∈Z(k). (7c)

Then, under the static policy (i.e., x1j = w1j,∀j ∈ {1,2,3}) and the given location decision, the

flow at customer 1 can be rewritten as

0≤w11 ≤ (1− z1) ∀z∈Z(k), (8a)

0≤w12 ≤ (1− z2) ∀z∈Z(k), (8b)

0≤w13 ≤ 0 ∀z∈Z(k), (8c)

Since constraints (8a)–(8c) should hold for any realization in the uncertainty set, then under

realizations (z1, z2, z3) = (1,0,0) and (z1, z2, z3) = (0,1,0), we will have

0≤w11 ≤ 0, 0≤w12 ≤ 1, 0≤w13 ≤ 0,

0≤w11 ≤ 1, 0≤w12 ≤ 0, 0≤w13 ≤ 0,
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respectively, which indicate that w11 =w12 =w13 = 0 and x11 = x12 = x13 = 0. That is, the demand

of customer 1 will be left unmet, leading to a penalty cost.

However, under the adjustable policy, we will have the following results based on the aforemen-

tioned uncertainty realizations

0≤W 1
11 +w11 ≤ 0, 0≤W 1

12 +w12 ≤ 1, 0≤W 1
13 +w13 ≤ 0,

0≤W 2
11 +w11 ≤ 1, 0≤W 2

12 +w12 ≤ 0, 0≤W 2
13 +w13 ≤ 0.

Thus, under the uncertainty realization (z1, z2, z3) = (1,0,0), the flow variable x12 =W 1
12 +w12 can

be 0 or 1, depending on the transportation cost d12 and the penalty cost p1. Under the uncertainty

realization (z1, z2, z3) = (0,1,0), the flow variable x11 =W 2
11 +w11 can take a value of 1 as in the

nominal scenario. Therefore, we can conclude that under the adjustable policy, the system has

more flexibility in satisfying customers’ demand and controlling costs, instead of simply penalizing

the demand as does the static policy.

In addition, one may argue that we can use other models to produce here-and-now decisions

and then reoptimize the allocation decisions after a disruption, besides adopting the adjustable

robust models. However, in our case, the static robust models will generate first-stage solutions

with no opened facilities as illustrated in the toy example, which leave no space for reoptimization

after a disruption, i.e., all the demand will be penalized in a disruption scenario. We may also

consider taking the deterministic models’ solutions as the here-and-now decision. Nevertheless,

our experiments in Section 5.4.1 show that the deterministic solutions lead to significantly higher

post-disruption worst-case costs in comparison with the adjustable robust solutions.

3.4. Properties of the Adjustable Robust Formulations

In this section, we present two properties of the adjustable robust formulations, based on which

we develop the solution methods in next section.

Lemma 1. Given the facility location ŷ, the uncertainty set Z(k), and two potential worst-case

scenarios z1 ∈Z(k) and z2 ∈Z(k) with respective recourse costs B1 and B2, if the set of functional

facilities (i.e., those with ŷj = 1 and zj = 0) in scenario z1 is a subset of functional facilities in

scenario z2, then B1 ≥B2.
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Proof. See Appendix A.1.

Lemma 2. Given the facility location ŷ with
∑

j∈J ŷj =m and the uncertainty set Z(k), we have

that if m>k, the worst-case disruptions occur at opened facilities, i.e., those with ŷj = 1. If m≤ k,

the worst-case disruptions occur at all the opened facilities, and all the demand in the system will

be left unsatisfied.

Proof. This result follows from the proof of Lemma 1.

Lemma 2 indicates that when m>k, we can enumerate all the potential worst-case scenarios by

considering only the set of opened facilities instead of set J . This helps to reduce the number of

minimum cost flow problems to be solved in the subproblem of the C&CG framework.

4. Solution Methods

In this section, we introduce a new C&CG algorithm and an approximation scheme for the ARC

models. For both models, we also implement the duality-based C&CG algorithm (An et al. 2014)

and the BD method as benchmarks. We close this section by discussing potential extensions of our

modeling and solution schemes to other applications.

4.1. Column-and-Constraint-Generation Algorithm

We implement the C&CG algorithm in a master-subproblem framework. At each iteration, in the

master problem, we make location decision ŷ. In the subproblem, for a given first-stage solution

ŷ, we identify the worst-case scenario. If the relative gap between the upper and lower bounds

satisfies the optimality tolerance, the algorithm terminates; otherwise we create recourse variables

and the corresponding constraints for the identified scenario, add them to the master problem, and

continue to the next iteration. In this section, we first present the framework of the proposed C&CG

algorithm for the two adjustable robust models and then introduce an enhancement strategy to

improve the computational performance.

C&CG algorithm for adjustable robust UFLP. We use xl and ul to represent the allocation

variables associated with the lth disruption scenario, and zl is the status (disrupted or functional)

of the facilities in the lth scenario.
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The master problem for the adjustable robust UFLP is

φ= min
y,s,{xl}n

l=1
,{ul}n

l=1

s, (9a)

s.t. s≥
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

hidijx
l
ij +

∑
i∈I

pihiu
l
i ∀l ∈ {1, . . . , n}, (9b)

∑
j∈J

xlij +uli ≥ 1 ∀l ∈ {1, . . . , n}, i∈ I, (9c)

xlij ≤ yj(1− zlj) ∀l ∈ {1, . . . , n}, i∈ I, j ∈ J, (9d)

yj ∈ {0,1} ∀j ∈ J, (9e)

xlij ≥ 0 ∀l ∈ {1, . . . , n}, i∈ I, j ∈ J, (9f)

uli ≥ 0 ∀l ∈ {1, . . . , n}, i∈ I. (9g)

We use a LP-based enumeration method derived from Lemma 2 to solve the subproblem. The

details are as follows.

(a) For a given ŷ, when
∑

j∈J ŷi >k, we enumerate all the potential worst-case scenarios (when

k > 0, the uncertainty set has multiple extreme points, and each point is potentially the worst-case

scenario) and solve a minimum cost flow problem (MCFP) associated with each scenario to identify

the actual worst-case scenario. Let J̄ be the new facility set in a scenario, which includes only the

functional facilities. Then the following MCFP is solved for each scenario:

ψ= min
x,u

∑
j∈J

fj ŷj +
∑
i∈I

∑
j∈J̄

hidijxij +
∑
i∈I

pihiui, (10a)

s.t.
∑
j∈J̄

xij +ui ≥ 1 ∀i∈ I, (10b)

xij, ui ≥ 0 ∀i∈ I, j ∈ J̄ . (10c)

To solve the MCFP, we can use three methods: (i) Directly solving model (10) using an off-the-

shelf solver; (ii) Using the Python NetworkX 2.0 package (NetworkX 2015), which applies a primal

network simplex algorithm; (iii) Solving a set of separated models of model (10) by customer index

i. Specifically, for a customer i ∈ I, if its distance to the nearest surviving facility is equal to or
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smaller than pi (i.e., min
j∈J̄

dij ≤ pi), then it will be severed by that facility; Otherwise, a penalty

cost is incurred. We have tested these three methods on some randomly selected instances, and

results show that the average computing time of the second method is shorter than that of the first

one, but very close to that of the third method. Since method (iii) based on the separated models

can only be applied to the case when facilities are uncapacitated, we choose to use the NetworkX

package for solving the MCFPs.

(b) If
∑

j∈J ŷi ≤ k, in the worst-case scenario, all the opened facilities are disrupted and all the

customer demand is left unsatisfied.

C&CG algorithm for adjustable robust CFLP. The master problem for the adjustable

robust CFLP is defined by (9a)–(9g) and the constraints

∑
i∈I

hix
l
ij ≤Cjyj(1− zlj) ∀l ∈ {1, . . . , n}, j ∈ J. (11)

Being similar to the subproblem of the robust UFLP, when
∑

j∈J ŷj >k, we solve an MCFP for

each potential worst-case scenario; it is defined by (10a)–(10c) and the constraints

∑
i∈I

hixij ≤Cj ∀j ∈ J̄ . (12)

If
∑

j∈J ŷj ≤ k, in the worst-case scenario, all the opened facilities are disrupted and all the demand

is left unsatisfied.

For comparison purposes, we give the duality-based C&CG algorithm and the BD method in

Appendix B and Appendix C for the reliable UFLP and CFLP respectively. The subproblems of

both algorithms are obtained by applying duality theory. We note that our LP-based enumeration

method has two advantages over solving the dualized subproblem. First, we do not need to set

big-M values for the constraints, which helps to avoid numerical issues that can arise with large

parameter values. Second, we have cost information for all the potential disruption scenarios, not

just the actual worst-case scenario. Based on this advantage, we next introduce an enhancement

to improve the convergence of the C&CG algorithm.
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Multiple scenario generation. At each iteration we add multiple scenarios instead of just

one. Any replicated scenarios are eliminated before we solve the master problem. In Section 5.2.1,

we test four ways of adding the scenarios. An et al. (2014) add two scenarios at each iteration.

Specifically, after obtaining the worst-case scenario by solving the dualized subproblem, they create

another disruption scenario by changing the disrupted facility with the least demand to make

it non-disrupted and changing the non-disrupted facility with the greatest demand to make it

disrupted. Note that the method for generating the second scenario in An et al. (2014) applies

only to the case where I = J . However, our method can be used in any situation. Moreover, since

the LP-based enumeration method evaluates all the potential scenarios, no extra computational

effort is needed to produce and evaluate an alternative scenario in this framework. In addition,

when solving the subproblem of the duality-based C&CG via an optimization solver, we can also

extract scenarios associated with suboptimal solutions, and then add them to the master problem.

However, our preliminary tests show that it is more computationally efficient to use the LP-based

C&CG algorithm with the multiple-scenario generation technique for our problem.

Algorithm 1 describes the proposed C&CG algorithm.

4.2. Robust Reformulations with Affine Policy

Another common technique for adjustable RO models is the affine policy, also known as the linear

decision rule (LDR), which restricts the adjustable variables to be an affine function of the uncertain

parameters (Ben-Tal et al. 2004, Gorissen et al. 2015). This restriction often leads to tractable

robust models for realistically sized problems. The LDR is commonly used as a heuristic method

and to provide computational insights for exact algorithms. Before introducing the LDR for our

ARC models, we first present Lemma 3, which is a sufficient condition for the adoption of LDR.

Lemma 3. In the ARC models, the uncertainty set Z(k) has an integrality property when k is

integer, that is, the optimal value of the ARC models will not be affected if we replace Z(k) with

its convex hull

Z′(k) =

{
z∈R|J| : 0≤ z≤ 1,

∑
j∈J

zj ≤ k

}
.
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Algorithm 1: C&CG algorithm with LP-based enumeration method for subproblem

Step 1: Solve the deterministic model to find its optimal value c∗0 and optimal solution y∗0.

Let LB =−∞,UB =∞, n= 0. Set the initial solution to y∗0.

Step 2: Solve the subproblem with respect to y∗0 and obtain the cost information of all the

potential worst-case scenarios. Let ψ̂ be the worst-case cost. Update UB = min{UB, ψ̂}.

Set n= n+ 1. Create recourse variables and the corresponding constraints associated with

the selected scenarios; add them to the master problem.

Step 3: Iterate until the algorithm terminates:

Step 3.1. Solve the master problem to obtain ŷ and φ̂. Update LB = φ̂.

Step 3.2. Solve the subproblem to obtain the cost information of all the potential worst-case

scenarios and ψ̂. Update UB = min{UB, ψ̂}. Set n= n+ 1.

Step 3.3. if (UB−LB)/UB ≤ ε : an ε–optimal solution is found and the algorithm

terminates;

else: create recourse variables and constraints and add them to the master

problem; go to Step 3.1.

Proof. See Appendix A.2.

The proof process of Lemma 3 also indicates that when
∑

j∈J ŷj ≥ k, the worst-case scenario

always occurs at the extreme points. And if
∑

j∈J ŷj <k, all the opened facilities would be disrupted

as indicated in Lemma 2. Note that our proposed C&CG algorithm does not take advantage from

the integrality property here even though it does exist for both the UFLP and the CFLP. Thus,

the proposed C&CG framework can generally be applied to the problems where such property does

not hold (e.g., see Section 4.3).

Affine policy for adjustable robust UFLP. The integrality property of the uncertainty set

makes it possible to reformulate the ARC models based on the LDR. We set xij = WT
ijz +wij and

ui = AT
i z + ai, where Wij ∈ R|J|,wij ∈ R,Ai ∈ R|J|, and ai ∈ R. Thus, the affinely ARC (AARC)

model for the adjustable robust UFLP is

min
y,W,w,A,a,s

s (13a)

s.t. s≥
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

hidij(W
T
ijz +wij) +

∑
i∈I

pihi(A
T
i z + ai) ∀z∈Z′(k), (13b)
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∑
j∈J

(WT
ijz +wij) + (AT

i z + ai)≥ 1 ∀z∈Z′(k), i∈ I, (13c)

WT
ijz +wij ≤ yj(1− zj) ∀z∈Z′(k), i∈ I, j ∈ J, (13d)

yj ∈ {0,1} ∀j ∈ J, (13e)

WT
ijz +wij ≥ 0 ∀z∈Z′(k), i∈ I, j ∈ J, (13f)

AT
i z + ai ≥ 0 ∀z∈Z′(k), i∈ I. (13g)

To solve the AARC model, we can make use of two methods: (1) We apply duality to each robust

constraint (Gorissen et al. 2015), which produces an MILP model. We then feed the resulting

MILP model directly to an optimization solver. (2) We develop a BD method for an equivalent

reformulation of model (13) following the approach of Ardestani-Jaafari and Delage (2017). We

have implemented both methods, and our preliminary tests show that for our problem, the first

method is more efficient. The corresponding MILP reformulation with respect to this method is

provided in Appendix D.

Affine policy for adjustable robust CFLP. The AARC model for the robust CFLP is defined

by (13) and the constraints

∑
i∈I

hi(W
T
ijz +wij)≤Cjyj(1− zj) ∀z∈Z′(k), j ∈ J. (14)

After applying duality to each robust constraint, we get the MILP reformulation, which is given

in Appendix D.

According to Bertsimas and Goyal (2012), for linear adjustable RO models with only right-

hand-side uncertainty, an LDR is optimal if the uncertainty set is a simplex. Therefore, for our

problem, the AARC model gives the optimal solution when k = 1. When 2≤ k < |J |, it produces

an upper bound on the true optimal value of the ARC model. When k= |J |, the affine policy with

Wij = 0, wij = 0, Ai = 0, ai = 1, ∀i ∈ I, j ∈ J achieves the same worst-case cost as the optimal

worst-case cost. In this situation, both the exact algorithm and the approximation scheme identify

the solutions with no opened facilities.



Cheng, Adulyasak, and Rousseau: Robust Facility Location Under Disruptions
Article submitted to INFORMS Journal on Optimization; manuscript no. (Please, provide the manuscript number!) 19

4.3. Extension of Our Modeling and Solution Schemes for Other Applications

Multiple uncertainty sets. An and Zeng (2014) and Cheng et al. (2018) suggest that multiple

uncertainty sets can be used to further reduce the conservativeness of robust solutions. To be

specific, each uncertainty set with a different budget is assigned a weight to characterize decision

makers’ risk preference, and the overall cost of facility location and the weighted sum of the worst-

case cost is minimized. We note that our C&CG algorithm and the LDR can still be used in

this context. In the former method, one subproblem is solved using the LP-based enumeration

method for each uncertainty set. All the identified worst-case scenarios, recourse variables, and

corresponding constraints are added to the master problem in each iteration. In the latter method,

the constraints containing variables z in model (13) will be required to hold for all the uncertainty

sets. Duality theory can still be used to derive the reformulation.

Integer recourse. We emphasize that our proposed C&CG solution framework allows the

flexibility to tackle the problems when the dualization cannot be directly applied. For example,

suppose truckload shipping transportation is used to deliver products for a supply chain. Besides

facility location and customer allocation decisions, we also need to decide the number of visits

on each arc. Let vij be the number of visits to customer i ∈ I from facility j ∈ J . dij is the fixed

transportation cost of each visit to customer i∈ I from facility j ∈ J . Q is the truck capacity. Take

the robust UFLP for example, it is now formulated as

min
y,x(·),u(·),v(·)

sup
z∈Z(k)

∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dijvij(z) +
∑
i∈I

pihiui(z),

s.t. hixij(z)≤Qvij(z) ∀z∈Z(k), i∈ I, j ∈ J,

vij(z)≥ 0, integer ∀z∈Z(k), i∈ I, j ∈ J,

and (5b)–(5e).

For this variant, the recourse variables vij, i ∈ I, j ∈ J are integer, so the duality-based method

cannot be used. However, we can still use the LP-based enumeration method for the subproblem.
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5. Numerical Results

In this section, we present the instances and explore: (i) The efficiency of the multiple-scenario

technique and the performance of the proposed C&CG algorithm, compared to existing exact

algorithms. We also compare the C&CG algorithm with other variants of facility location problems

under disruptions (Section 5.2). (ii) The impact of the LDR on the computational complexity

and solution quality (Section 5.3). (iii) The trade-off between the nominal cost and worst-case

performance. We enhance our robust formulations with an additional set of constraints to evaluate

this trade-off (Section 5.4).

5.1. Instances

We consider a 49-site data set (Daskin 2011), available at https://daskin.engin.umich.edu/

network-discrete-location/. It is derived from 1990 census data. The 49 sites include the state

capitals of the continental United States plus Washington, D.C. Based on this set, we generate

other instances using the first 10, 15, . . ., 30 nodes as the candidate facility sites and the first

10, 15, . . ., 45 and 49 nodes as the customer sites. There are 35 instances in total. The demand

hi = bPi/105c, where Pi is the population at node i. The transportation cost dij = bEij × 20c,

where Eij is the Euclidean distance between nodes i and j. For simplicity, we use the same unit

penalty cost pi for all the customers, i.e., p= pi, i∈ I. To represent systems with different penalty

costs, we set two values for p. For each instance, we first calculate the transportation costs dij, i∈

I, j ∈ J and then rank them in nondecreasing order. The two values for p are the maximal value

and the (d0.8 × |I| × |J |e)th value in the order. For convenience, we denote these values pmax

and p0.8. For the capacitated models, we let the facility capacity Cj = dmax{hj, rj}e, where rj

is a randomly generated number between [D/10,3D/10], and D is the total demand of all the

customers. We label the instances Fy-Cx-pd to indicate that there are y candidate facility sites and

x customers, and the unit penalty cost is pd. The details of the instances and results are available

at https://sites.google.com/view/chengchun/instances.

All the algorithms and models are implemented in Python using Gurobi 7.5.1 as the solver.

The computations are executed on a cluster of Intel Xeon X5650 CPUs with 2.67 GHz and 24 GB

https://daskin.engin.umich.edu/network-discrete-location/
https://daskin.engin.umich.edu/network-discrete-location/
https://sites.google.com/view/chengchun/instances
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Table 2 Performance of multiple-scenario technique (p = p0.8)

Only worst-case
Worst-case
+ second-worst

Worst-case + second
+ third-worst

Worst-case
+ random scenario

Model Gap #Opt #Iter CPU Gap #Opt #Iter CPU Gap #Opt #Iter CPU Gap #Opt #Iter CPU

UFLP 2.0 54/70? 91.5 27904.6 1.7 54/70 66.5 24614.7 2.0 54/70 59.3 23984.4 2.1 54/70 69.2 24924.2
CFLP 1.2 59/70 42.6 17577.0 0.9 60/70 26.4 16658.2 0.8 60/70 20.1 15729.8 0.8 60/70 26.6 16137.7

? indicates the number of instances (out of 70) that are solved to optimality.

RAM under Linux 6.3. Each experiment is conducted on a four-core processor of one node. The

computational time limit is set to 24 hours, which is in line with other papers considering facility

location under uncertainty (48 hours in Ardestani-Jaafari and Delage (2017) and 96 hours in Zetina

et al. (2017)). The optimality tolerance ε is set to 0.01% for all the exact algorithms unless otherwise

specified.

5.2. Comparison of Exact Algorithms

In this section, we first evaluate the impact of the multiple-scenario technique and then compare the

performance of the exact algorithms for the UFLP and CFLP. In the tables, Gap is the percentage

difference between the best upper and lower bounds; #Opt is the number of instances solved to

optimality; #Iter is the number of iterations; CPU is the computing time in seconds to solve

the instance. Bold font is used to indicate the best results. Specifically, if an instance is solved

to optimality, the best computing time is in bold; otherwise, the best gap is in bold. If #Opt is

different for different algorithms, the largest value is in bold.

5.2.1. Performance of Multiple-Scenario Technique. Each time, after solving the sub-

problem, we consider four options for adding the scenarios, corresponding variables, and constraints:

(i) only the worst-case scenario; (ii) both the worst-case scenario and the second-worst scenario;

(iii) the worst-case, the second-worst, and the third-worst scenarios; (iv) the worst-case scenario

and a randomly chosen scenario. The experiments are performed on instances with k= 2 and k= 3,

and the average results are reported in Table 2.

Table 2 shows that for the robust UFLP, adding the worst-case and second-worst scenarios gives

the best optimality gap. For the robust CFLP, the multiple-scenario technique can solve one more

instance to optimality, and the average gap generated by the three implementations of the technique
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is relatively close. Our tests for the robust PMP also give similar conclusions; therefore, in the

following sections, we use the worst and second-worst option to enhance the C&CG algorithm.

5.2.2. Exact Algorithms for Adjustable Robust UFLP. In the following sections,

C&CG-E indicates the proposed C&CG algorithm (where the LP-based enumeration method is

applied for the subproblem) and C&CG-D indicates the C&CG algorithm with the dualized sub-

problem. Table 3 presents the average results.

Table 3 Average results for the adjustable robust UFLP

C&CG-E C&CG-D BD

k p Gap #Opt #Iter CPU Gap #Opt #Iter CPU Gap #Opt #Iter CPU

2 p0.8 0.0 35/35 38.5 5298.8 0.0 35/35 61.5 9479.7 14.1 18/35 2731.0 49430.9
pmax 0.0 35/35 24.8 1299.9 0.0 35/35 45.7 3815.5 15.9 16/35 3247.7 56230.1

3 p0.8 3.4 19/35 94.6 43930.6 4.0 19/35 121.3 44616.9 N/A
pmax 3.3 18/35 87.3 46206.2 3.9 17/35 120.6 46726.7 N/A

4 p0.8 9.8 14/35 153.2 57359.4 10.9 13/35 165.0 58191.8 N/A
pmax 11.0 17/35 122.9 52245.8 10.4 17/35 150.0 53551.9 N/A

N/A: No further experiments are performed.

When k= 2, both the C&CG algorithms significantly outperform the BD method, solving more

instances to optimality in a shorter time. Specifically, both C&CG algorithms can solve all the

instances to optimality, while the BD method can solve only 18 and 16 instances for p= p0.8 and

p= pmax respectively. Therefore, no experiments are performed for k = 3 and k = 4 with the BD

method. Compared to C&CG-D, the average CPU time of C&CG-E is shorter and there are fewer

iterations. Figure 2(a) plots the convergence curves of the three algorithms for F10-C49-p0.8. It

shows that C&CG-E finds the optimal solution after 13 iterations and that C&CG-D takes 22

iterations. However, the optimality gap of BD is significant (around 12%) and it actually requires

364 iterations. When k= 3, one more instance can be optimally solved by C&CG-E. Moreover, the

average gap is smaller, there are fewer iterations, and the CPU time is shorter. For k= 4 and p=

pmax, C&CG-D provides a smaller optimality gap while the CPU time and the number of iterations

are greater. Table 3 also indicates that the value of p has an influence on the computational

efficiency. In general, for the UFLP, the instances with p= p0.8 are more complex.



Cheng, Adulyasak, and Rousseau: Robust Facility Location Under Disruptions
Article submitted to INFORMS Journal on Optimization; manuscript no. (Please, provide the manuscript number!) 23

1 2 4 8 16 32 64 128
#Iter

0.0

0.2

0.4

0.6

0.8

1.0

Co
st

×106

Iter = 13 Iter = 22

Optimal value
UB (C&CG-E)
LB (C&CG-E)
UB (C&CG-D)
LB (C&CG-D)
UB (BD)
LB (BD)

(a) Robust UFLP

1 2 4 8 16 32 64 128
#Iter

0.0

0.2

0.4

0.6

0.8

1.0

Co
st

×106

Iter = 8 Iter = 12

Optimal value
UB (C&CG-E)
LB (C&CG-E)
UB (C&CG-D)
LB (C&CG-D)
UB (BD)
LB (BD)

(b) Robust CFLP

Figure 2 Convergence curves after 128 iterations for F10-C49-p0.8 with k = 2

5.2.3. Exact Algorithms for Adjustable Robust CFLP. We present the summarized

results in Table 4. It shows that when k= 2, all the instances can be solved to optimality by both

C&CG algorithms. However, C&CG-E consumes less time on average. Similarly to the results for

the robust UFLP, BD takes the most time, and only a small number of the instances can be solved

to optimality. Figure 2(b) displays the convergence curves of the three algorithms. It shows that

for the robust CFLP, C&CG-E has the lowest number of iterations and BD has the highest.

Table 4 Average results for the adjustable robust CFLP

C&CG-E C&CG-D BD

k p Gap #Opt #Iter CPU Gap #Opt #Iter CPU Gap #Opt #Iter CPU

2 p0.8 0.0 35/35 17.4 3308.4 0.0 35/35 28.7 4060.2 19.5 11/35 3303.6 62286.2
pmax 0.0 35/35 15.9 4653.4 0.0 35/35 27.0 5979.5 31.5 9/35 3455.8 64683.6

3 p0.8 1.7 25/35 35.5 30008.0 2.2 25/35 57.5 31516.5 N/A
pmax 2.4 25/35 31.4 28919.8 4.1 24/35 48.0 29649.4 N/A

4 p0.8 4.4 20/35 42.3 41172.4 4.7 20/35 64.9 42041.0 N/A
pmax 6.4 21/35 38.6 39382.0 7.6 21/35 57.6 40966.4 N/A

The results for k = 3 and k = 4 further demonstrate the superiority of C&CG-E, i.e., one more

instance can be solved when k= 3 and p= pmax, and the average gap and CPU time are better for

both budgets.

We present the statistical results of the CPU time spent on the master and sub problems in

Appendix E. It shows that the main time reduction of the C&CG-E comes from the computing time

for the master problem, which indicates that the cuts generated from the second-worst scenarios
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can help to improve the convergence of the C&CG algorithm. We also apply the C&CG-E algorithm

to the adjustable robust uncapacitated/capacitated PMP (UPMP/CPMP) and the detailed results

are presented in Appendix F. The results demonstrate that for both the reliable UPMP and CPMP,

the C&CG-E shows better performances in terms of the average optimality gap and the number of

iterations. On the other hand, from Tables 3 and 4, we observe that the CPU times of both exact

algorithms increase quickly with the uncertainty budget. When k = 4, both algorithms consume

around 15 hours on average; therefore, approximation algorithms are expected to be used for cases

with a large value of k.

Conclusions: (i) For both the UFLP and the CFLP, C&CG-E is the most efficient of the three

exact algorithms. (ii) For both the UPMP and the CPMP, C&CG-E generates solutions with

better optimality gaps. (iii) The computational complexity is influenced by several factors: problem

size, budget of uncertainty, and unit penalty cost. The bottleneck of the C&CG algorithm is the

resolution of the master problem.

5.3. Evaluation of Linear Decision Rule

We evaluate the LDR in terms of the computational efficiency and the optimality gap. Before

presenting the results, we give the following definitions.

• Achieved worst-case cost f∗C(y∗L): The actual worst-case cost achieved by the LDR. For a

location decision y∗L generated by the LDR, we calculate f∗C(y∗L) by fixing the location decision and

solving the subproblem of the C&CG algorithm.

• Optimal worst-case cost f∗C: The best worst-case cost that can be achieved for an instance,

which is obtained by using exact algorithms to solve the ARC models.

• Relative suboptimality (Opt. gap): The relative difference between f∗C(y∗L) and f∗C , com-

puted as (f∗C(y∗L)− f∗C)/f∗C(y∗L)× 100%.

We consider all the instances with k= 1, . . . ,4 and p= p0.8, pmax, which are solved to optimality

by C&CG-E. There are 208 instances for the UFLP and 231 instances for the CFLP. The average

results are reported in Table 5.
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Table 5 Average results of the linear decision rule for the instances solved to optimality by C&CG-E

CPU time

Opt. gap

CPU time

Opt. gapModel p k #Opt C&CG-E LDR Model p k #Opt C&CG-E LDR

UFLP p0.8 1 35 16.2 41.5 0.00 CFLP p0.8 1 35 46.9 127.4 0.00
2 35 5298.8 10831.8 3.69 2 35 3308.4 5111.0 4.25
3 19 7313.0 269.9 3.27 3 25 6659.8 943.4 4.43
4 14 12533.1 110.0 4.81 4 20 5394.0 452.7 3.59

pmax 1 35 14.5 41.0 0.00 pmax 1 35 52.6 174.0 0.00
2 35 1299.9 21361.7 7.10 2 35 4653.4 12416.6 8.23
3 18 6771.5 295.9 3.86 3 25 5194.2 2012.4 7.16
4 17 14613.3 387.8 4.34 4 21 6645.0 485.1 6.52

Table 5 shows that for both models, the average time of C&CG-E is shorter for instances with

k = 1 and k = 2. For k = 2, the average CPU time of LDR is significantly higher because the

MILP model based on the LDR is not solved to optimality within the time limit for some large

instances, making the average CPU time longer (note that we considered only the instances solved

to optimality by C&CG-E here). The LDR, however, could efficiently solve the instances when

k = 3 and k = 4 and the average computing times are much shorter than those of the C&CG-E.

From the detailed solutions, we find that the budget of uncertainty has a significant influence on

the CPU time of C&CG-E, while this is not the case for the LDR model. In terms of relative

suboptimality, when k= 1, the gaps are 0 since the LDR is optimal for k= 1. When k varies from

2 to 4, the average gap varies between 3.27% and 4.81% for p = p0.8 and 3.86% and 8.23% for

p= pmax. In general, the LDR generates solutions with smaller gaps for the robust UFLP and for

instances with p= p0.8.

5.4. Trade-Off between Reliability and Nominal Cost

In this section, we first evaluate the impact of considering disruptions on a system’s nominal cost,

i.e., the price of robustness. We then introduce an enhancement to the robust formulations that

allows the decision-makers to control the trade-off between the reliability and the nominal cost.

5.4.1. Impact of Reliability. We conduct experiments as follows. (i) Worst-case cost of the

deterministic model : We solve the deterministic model and obtain the location decision. Then we fix

the location decision and solve the subproblem of the C&CG algorithm to identify the worst-case

scenario and its corresponding cost. (ii) Nominal cost of the ARC model : We solve the ARC model

and get the location decision. Then we fix the location decision and solve an MCFP to find the
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Table 6 Impact of reliability

Nominal cost Worst-case cost Cost gap (%)

Model Instance p k Deterministic ARC ARC Deterministic Nominal Worst-case

UFLP F10-C49 p0.8 1 469866 491532 688065 700000 4.4 1.7
2 469866 602896 785576 1358803 22.1 42.2
3 469866 701430 880912 1630340 33.0 46.0
4 469866 691679 953512 1630340 32.1 41.5

pmax 1 469866 491532 689301 724356 4.4 4.8
2 469866 522163 827587 1718571 10.0 51.8
3 469866 636200 928582 2756563 26.1 66.3
4 469866 692915 1018168 2756563 32.2 63.1

F15-C35 p0.8 1 449828 560906 632464 637819 19.8 0.8
2 449828 573660 711992 1176328 21.6 39.5
3 449828 658643 792141 1372400 31.7 42.3
4 449828 697187 863341 1372400 35.5 37.1

pmax 1 449828 469557 657668 691751 4.2 4.9
2 449828 518018 774758 1646822 13.2 53.0
3 449828 676307 868055 2626438 33.5 66.9
4 449828 715603 939255 2626438 37.1 64.2

CFLP F20-C49 p0.8 1 525896 539788 699197 849150 2.6 17.7
2 525896 578284 824165 1196629 9.1 31.1
3 525896 793530 935123 1444697 33.7 35.3
4 525896 1006888 1016404 1639981 47.8 38.0

pmax 1 525896 616558 709395 1085727 14.7 34.7
2 525896 584478 865055 1775142 10.0 51.3
3 525896 641227 995549 2312389 18.0 56.9
4 525896 758230 1094096 2854152 30.6 61.7

F25-C35 p0.8 1 492289 542154 658623 762498 9.2 13.6
2 492289 616750 772713 1039998 20.2 25.7
3 492289 653531 858800 1304999 24.7 34.2
4 492289 680005 680005 1467994 27.6 53.7

pmax 1 492289 643908 667030 986188 23.5 32.4
2 492289 629601 791860 1606012 21.8 50.7
3 492289 635840 916247 2150413 22.6 57.4
4 492289 779098 779098 2645538 36.8 70.6

system’s nominal cost. Table 6 presents the results for four randomly selected instances, where the

penultimate column is the increase in the nominal cost compared to the result of the deterministic

model. The last column is the increase in the worst-case cost compared to the solution of the ARC

model.

From Table 6, we can make the following two observations: (a) Sometimes the reliability of a

system can be substantially improved with only a slight increase in the nominal cost. This shows

that considering disruptions indeed increases the system’s nominal cost. However, this increase is

generally less than the increase in the worst-case cost when disruptions are ignored at the design

phase but must be handled when they occur. For example, in F20-C49, when p= p0.8 and k = 2,

the nominal cost generated by the ARC model has a 9.1% increase, whereas the worst-case cost
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produced by the deterministic solution increases by 31.1%. (b) The improvement over the worst-

case cost is even greater for systems with a higher penalty cost. When p= pmax, the difference in

the worst-case cost is larger than that for p= p0.8. This indicates that for systems with a higher

penalty cost, where the customer demand must be met to the greatest extent under disruptive

scenarios, it is worth considering disruptions at the design stage. This observation can provide

guidelines for the location of public facilities, such as fire stations, where recourse operations are

related to the safety of life and property.

5.4.2. An Enhancement for Trade-Off between Reliability and Nominal Cost. Some-

times, decision-makers may want to both reduce the recourse cost under disruption scenarios and

control the increase in the nominal cost when robustifying the system. To reflect this, we introduce

another group of constraints:

fjyj +
∑
i∈I

∑
j∈J

hidijx
0
ij +

∑
i∈I

pihiu
0
i ≤ (1 + q)c∗0,

∑
j∈J

x0
ij +u0

i ≥ 1 ∀i∈ I,

x0
ij ≤ yj ∀i∈ I, j ∈ J, (15)∑
i∈I

hix
0
ij ≤Cjyj ∀j ∈ J,

x0
ij ≥ 0 ∀i∈ I, j ∈ J,

u0
i ≥ 0 ∀i∈ I,

where c∗0 is the optimal objective value of the nominal scenario, obtained by solving the determin-

istic model. Correspondingly, x0 and u0 are the allocation decisions. The parameter q≥ 0 indicates

the decision-makers’ tolerance of increased nominal cost when robustifying the system.

We study the impact of constraints (15) by varying the value of q. The experiments are conducted

on two randomly selected instances, and the results are presented in Table 7, where the penultimate

column is the increase in the nominal cost compared to that of the deterministic model. The last

column is the increase in the worst-case cost compared to the solution of the ARC model without
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the bound constraints. Note that the value of q does not vary with an equal step length, because

we report only the value where the location decision changes. In addition, the first row for each

instance corresponds to the result of the deterministic model, and the last row is the result for the

ARC model without bound constraints.

Table 7 Impact of imposing an upper bound on the nominal cost (k = 2, p = p0.8)

ARC model with constraints (15) Deterministic model Cost gap (%)

Model Instance q Location decision Worst-case cost Nominal cost Nominal cost Nominal Worst-case

UFLP F10-C30 0.00 [1, 5, 6] 1208972 435528 435528 0.00 39.99
0.06 [1, 3, 5, 6] 892768 459163 5.15 18.74
0.08 [1, 5, 6, 8] 759502 466159 6.57 4.48
0.26 [1, 5, 6, 7] 743641 475435 8.39 2.44
0.30 [3, 5, 6, 8] 725463 555996 21.67 0.00

F10-C49 0.00 [1, 5, 6] 1358803 469866 469866 0.00 42.19
0.06 [1, 3, 5, 6] 957321 491532 4.41 17.94
0.08 [1, 5, 6, 8] 828318 500497 6.12 5.16
0.10 [1, 5, 6, 7] 821814 508753 7.64 4.41
0.12 [1, 3, 5, 6, 8] 816383 522163 10.02 3.77
0.28 [1, 3, 5, 6, 7] 811487 530419 11.42 3.19
0.30 [3, 5, 6, 8] 785576 602896 22.07 0.00

CFLP F10-C30 0.00 [1, 3, 6, 7, 9] 1043678 548704 548704 0.00 19.97
0.02 [1, 3, 5, 6, 8, 9] 925575 555901 1.29 9.76
0.04 [1, 3, 5, 7, 8, 9] 898898 569228 3.61 7.09
0.06 [1, 3, 6, 7, 8, 9] 869826 580916 5.55 3.98
0.30 [1, 5, 6, 7, 8, 9] 862084 588988 6.84 3.12
0.32 [3, 4, 5, 6, 7, 8, 9] 835208 718517 23.63 0.00

F10-C49 0.00 [1, 3, 4, 8, 9] 1141237 571443 571443 0.00 21.03
0.02 [1, 4, 5, 8, 9] 1052860 581790 1.78 14.40
0.04 [1, 3, 4, 5, 8, 9] 969084 590197 3.18 7.00
0.06 [1, 4, 5, 6, 8, 9] 932736 594405 3.86 3.38
0.30 [1, 3, 4, 5, 6, 8, 9] 901229 612904 6.76 0.00

Table 7 shows that imposing an upper bound on the nominal cost impacts the location decision

of the ARC models, i.e., different facilities are chosen or different numbers of sites are opened.

We also observe that the bound constraints can help the decision-makers to further control the

conservativeness of the robust solutions. For the given instances, sometimes the nominal cost can

be significantly decreased with a slight increase in the worst-case cost. For example, for the UFLP

with F10-C49, when q changes from 0.30 to 0.08, the increase in the nominal cost drops from

22.07% to 6.12%; however, the worst-case cost increases by only 5.16%. Similarly, for the CFLP

with F10-C30, when q changes from 0.32 to 0.30, the increase in the nominal cost drops from

23.63% to 6.84%, and the worst-case cost increases by only 3.12%. Managers can also use the
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bound constraints as a decision support tool to see the trade-off between reliability and nominal

cost, and to decide the extent to which the nominal cost can be controlled when robustifying the

system.

6. Conclusions

We have solved a reliable fixed-charge location problem, where each facility is exposed to the risk

of disruptions. We use a budgeted uncertainty set to characterize the risk and apply a two-stage

RO method. To solve the ARC models exactly, we develop a C&CG algorithm where a LP-based

enumeration method is used for the subproblem. This approach can tackle cases with integer

recourses where the dualization technique cannot be applied. We also use the LDR to approximate

the ARC models to solve large instances in a reasonable time. Our numerical experiments show that

the proposed C&CG algorithm outperforms the C&CG algorithms in the literature and that the

LDR is capable of providing good first-stage solutions in a shorter time. The results also indicate

that the robust models are able to improve the system’s reliability without significantly increasing

the nominal cost, and that imposing an upper bound on the nominal cost can further control the

conservativeness of the robust solutions.

One potential future research direction is to apply the technique in Iancu and Trichakis (2014) to

determine Pareto robustly optimal solutions for the two-stage FLP. This technique can be applied

to the AARC formulations in case of partial disruptions (i.e., random parameters can be fractional),

which can potentially improve the quality of the (heuristic) solution determined by the AARC

models.
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Appendix A Proofs of Lemmas
A.1 Proof of Lemma 1

Suppose the number of opened facilities is m, i.e.,
∑

j∈J ŷj = m. Since the worst-case scenario

always occurs at the extreme points, there will be exactly k disrupted facilities in a worst-case

scenario. Figure A1 gives an example where m>k. We index the facilities so that the first m are

opened and the rest are closed. Without loss of generality, we assume that the first k facilities are

disrupted in scenario z1 and that facilities 2, . . ., k and m+ 1 are disrupted in scenario z2. Since

more opened facilities are disrupted in scenario z1, the customers have more options in scenario

z2, leading to B2 ≤B1. Therefore, we have B1 ≥B2 for m> k. When m≤ k, all the demand will

be left unsatisfied and we have B1 =B2.

…… k+1k21 m…… m+1 …… |J|

disrupted facilities

opened facilities

Scenario 𝐳!:

…… k+1k21 m…… m+1 …… |J|

disrupted facilities

opened facilities

Scenario 𝐳":

disrupted facility

Figure A1 Illustration for the proof of Lemma 1

A.2 Proof of Lemma 3

To prove Z′(k) is equivalent to Z(k), we need to show that even though we relax the variables z

to be continuous, the optimal values of z in a worst-case scenario still take integer values (0 or 1).

This can be proved through the subproblems of the duality-based C&CG algorithms (refer to B.1

and C.1). Specifically, for the UFLP, we can rewrite the objective function (B1) as

ψ= max
z,λ,β

∑
j∈J

fj ŷj +
∑
i∈I

λi−
∑
j∈J

(∑
i∈I

ŷjβij(1− zj)

)
. (A1)
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Constraints (B2)–(B7) indicate that variables z are not linked to other variables (i.e., λ and β).

Since the subproblem is a maximization problem, the third term subtracted from Equation (A1) is

expected to be as small as possible. To achieve this, we can rank
∑

i∈I ŷjβij(≥ 0) for each j, and for

the first k largest values, zj would take the value of 1 (even though zj is relaxed to be continuous)

at optimum. For other values, zj would be 0. Similarly, for the CFLP, we can rewrite the objective

function (C1) as

ψ= max
z,λ,β,γ

∑
j∈J

fj ŷj +
∑
i∈I

λi−
∑
j∈J

((∑
i∈I

βij −Cjγj

)
ŷj(1− zj)

)
. (A2)

If
(∑

i∈I βij −Cjγj
)
ŷj ≤ 0, zj would be 0 at optimum. For those with

(∑
i∈I βij −Cjγj

)
ŷj > 0, the

same method describe above for the UFLP applies.

Appendix B Duality-Based C&CG Algorithm and Benders
Decomposition Method for Adjustable Robust UFLP

B.1 Duality-Based C&CG Algorithm

Master Problem. The master problem is defined by Equations (9a)–(9g).

Subproblem. Let λ and β be the dual variables of constraints (5b) and (5c), respectively. The

dual problem of the inner minimization problem can be written as

ψ= max
z,λ,β

∑
j∈J

fj ŷj +
∑
i∈I

λi−
∑
i∈I

∑
j∈J

ŷj(1− zj)βij, (B1)

s.t. λi−βij ≤ hidij ∀i∈ I, j ∈ J, (B2)

λi ≤ pihi ∀i∈ I, (B3)∑
j∈J

zj ≤ k, (B4)

zj ∈ {0,1} ∀i∈ I, (B5)

λi ≥ 0 ∀i∈ I, (B6)

βij ≥ 0 ∀i∈ I, j ∈ J. (B7)
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Since the nonlinear term zjβij is the product of a binary variable zj and a continuous variable βij,

we can linearize it by introducing a new variable πij = zjβij and adding the following constraints:

πij ≥ 0 ∀i∈ I, j ∈ J,

πij ≤ βij ∀i∈ I, j ∈ J,

πij ≤Mijzj ∀i∈ I, j ∈ J,

πij ≥ βij +Mij(zj − 1) ∀i∈ I, j ∈ J,

(B8)

where Mij = max{hi(p′i− dij),0}. Therefore, the full subproblem is

ψ= max
z,λ,β,π

∑
j∈J

fj ŷj +
∑
i∈I

λi−
∑
i∈I

∑
j∈J

ŷj(βij −πij), (B9)

subject to constraints (B2)–(B8).

B.2 Benders Decomposition Method

Master problem. The master problem of the Benders decomposition method is

φ= min
y,s

s,

s.t. s≥
∑
j∈J

fjyj +
∑
i∈I

λ̂li−
∑
i∈I

∑
j∈J

β̂lijyj(1− ẑlj) ∀l ∈ {1, ..., n},

yj ∈ {0,1} ∀j ∈ J,

(B10)

where λ̂l, β̂l, and ẑl are obtained at the lth iteration by solving the subproblem.

Subproblem. The subproblem is defined by Equations (B2)–(B9).

Appendix C Duality-Based C&CG Algorithm and Benders
Decomposition Method for Adjustable Robust CFLP

C.1 Duality-Based C&CG Algorithm

Master problem. The master problem is defined by Equations (9a)–(9g) and (11).
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Subproblem. Let γ be the dual variable of constraints (6). The resulting dual problem can be

written as follows:

ψ= max
z,λ,β,γ

∑
j∈J

fj ŷj +
∑
i∈I

λi−
∑
i∈I

∑
j∈J

ŷj(1− zj)βij −
∑
j∈J

Cj ŷjγj(1− zj), (C1)

s.t. λi−βij −hiγj ≤ hidij ∀i∈ I, j ∈ J,

γj ≥ 0 ∀j ∈ J,

and (B3)–(B7).

(C2)

There are two nonlinear terms in the objective function (C1), i.e., zjβij and γjzj. We can use the

technique in B.1 to linearize the term zjβij. For the term γjzj, we introduce a new variable ζj = γjzj

and add the following constraints:

ζj ≥ 0 ∀j ∈ J,

ζj ≤ γj ∀j ∈ J,

ζj ≤Mjzj ∀j ∈ J,

ζj ≥ γj +Mj(zj − 1) ∀j ∈ J,

(C3)

where Mj = max{maxi(pi− dij),0}.

Therefore, the full subproblem is

ψ= max
z,λ,β,γ,ζ

∑
j∈J

fj ŷj +
∑
i∈I

λi−
∑
i∈I

∑
j∈J

ŷj(βij −πij)−
∑
i∈J

Cj ŷj(γj − ζj), (C4)

subject to constraints (B8) and (C2)–(C3).

C.2 Benders Decomposition Method

Master problem. The master problem of the Benders decomposition method is

φ= min
y,s

s,

s.t. s≥
∑
j∈J

fjyj +
∑
i∈I

λ̂li−
∑
i∈I

∑
j∈J

yj(1− ẑlj)β̂lij −
∑
j∈J

Cjyj γ̂
l
j(1− ẑlj) ∀l ∈ {1, ..., n},

yj ∈ {0,1} ∀j ∈ J,

(C5)

where λ̂l, β̂l, and ẑl are obtained at the lth iteration by solving the subproblem.

Subproblem. The subproblem is defined by Equations (B8) and (C2)–(C4).
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Appendix D Reformulation of the AARC Models

The AARC model for the robust UFLP can be reformulated as

min
y,W,w,A,a,s,δ,
α,ξ,η,θ,µ,σ,ς,π,ν

s,

s.t. s≥
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

hidijwij +
∑
i∈I

pihiai + kδ+
∑
e∈J

αe,

δ+αe ≥
∑
i∈I

∑
j∈J

hidijWije +
∑
i∈I

pihiAie ∀e∈ J,

∑
j∈J

wij + ai− kξi−
∑
e∈J

ηie ≥ 1 ∀i∈ I,

ξi + ηie ≥−
∑
j∈J

Wije−Aie ∀i∈ I, e∈ J,

− kθij −
∑
e∈J

µije ≥−yj +wij ∀i∈ I, j ∈ J,

θij +µije ≥Wije + yj ∀i∈ I, j ∈ J, e∈ J, e= j,

θij +µije ≥Wije ∀i∈ I, j ∈ J, e∈ J, e 6= j,

wij − kσij −
∑
e∈J

ςije ≥ 0 ∀i∈ I, j ∈ J,

σij + ςije ≥−Wije ∀i∈ I, j ∈ J, e∈ J,

− kπi−
∑
e∈J

νie + ai ≥ 0 ∀i∈ I,

πi + νie ≥−Aie ∀i∈ I, e∈ J,

yj ∈ {0,1} ∀j ∈ J,

δ,αe, ξi, ηie, θij, µije, σij, ςije, πi, νie ≥ 0 ∀i∈ I, j ∈ J, e∈ J.

(D1)

The AARC model for the robust CFLP can be reformulated with (D1) and the constraints

kρj +
∑
e∈J

Γej +
∑
i∈I

hiwij ≤Ciyj ∀j ∈ J,

ρj + Γej ≥
∑
i∈I

hiWije +Cjyj ∀e∈ J, j ∈ J, e= j

ρj + Γej ≥
∑
i∈I

hiWije ∀e∈ J, j ∈ J, e 6= j

ρj,Γej ≥ 0 ∀e∈ J, j ∈ J.

(D2)
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Appendix E Statistics of CPU Time for Master and Sub Problems

Table E1 presents the statistical results of the CPU time spent on the master and sub problems

respectively. The time reduction factor is calculated as the time spent by the C&CG-D algorithm

divided by the time spent by the C&CG-E algorithm. A time factor equals to 2 indicates that the

problem spends only half the time using the C&CG-E compared to using the C&CG-D. Table E1

shows that the main time reduction comes from the computing time for the master problem, which

indicates that the cuts generated from the second-worst scenarios can improve the convergence

of the C&CG algorithm. When k = 3 and k = 4, the time factor of the master problem is only a

bit larger than 1, this is because some instances are not solved to optimality and the time limit

is reached. We also notice that the solution process of the subproblem of the C&CG-E consumes

little time although we need to solve a large number of MCFPs. This process is efficient because

we use the network simplex algorithm (via the NetworkX package) which works well for the MCFP

model (Király and Kovács 2012).

Table E1 Statistics of average CPU time for master and sub problems

C&CG-E C&CG-D
Time reduction
factor

C&CG-E C&CG-D
Time reduction
factor

Model k p Master Sub Master Sub Master Sub Model k p Master Sub Master Sub Master Sub

UFLP 2 p0.8 5295.7 0.5 9463.1 12.2 1.79 23.76 CFLP 2 p0.8 3306.0 1.6 4050.0 9.0 1.23 5.82
pmax 1298.4 0.4 3803.0 10.1 2.93 23.37 pmax 4650.7 1.9 5967.4 10.8 1.28 5.67

3 p0.8 43919.4 1.1 44583.3 21.2 1.02 18.55 3 p0.8 29998.2 6.7 31490.8 21.6 1.05 3.21
pmax 46193.4 1.8 46689.0 24.6 1.01 13.89 pmax 28908.2 8.9 29623.3 22.7 1.02 2.56

4 p0.8 57341.0 1.0 58148.3 24.9 1.01 24.18 4 p0.8 41155.5 13.1 42011.5 24.6 1.02 1.88
pmax 52229.5 1.7 53508.4 26.5 1.02 15.80 pmax 39355.7 22.7 40930.1 31.7 1.04 1.39

Appendix F Results of Adjustable Robust UPMP and CPMP

In this section, we apply the C&CG-E to the adjustable robust uncapacitated/capacitated PMP

(UPMP/CPMP). We first introduce the models and then report the numerical results.

F.1 The Adjustable Robust UPMP and CPMP Models

For both models, the objective function optimizes the weighted sum of the nominal cost and the

worst-case cost. The detailed models (An et al. 2014) are as follows.

Notation. The parameter % is the weight of the worst-case cost. The variable bij is the fraction

of demand from customer i ∈ I that is satisfied by facility j ∈ J in a disruptive scenario. The
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variable gi is the unsatisfied portion of demand at customer i ∈ I in a disruptive scenario. The

definitions of the other parameters and variables are the same as in Section 3.

The UPMP under disruptions can be formulated as

min
x,y

(1− %)
∑
i∈I

∑
j∈J

dijhixij + % max
z∈Z(k)

min
(b,g)∈S(y,z)

(
∑
i∈I

∑
j∈J

dijhibij +
∑
i∈I

pihigi), (F1)

s.t. xij ≤ yj ∀i∈ I, j ∈ J,∑
j∈J

xij = 1 ∀i∈ I,

∑
j∈J

yj = p, (F2)

xij ≥ 0, ∀i∈ I, j ∈ J,

yj ∈ {0,1} ∀j ∈ J,

where S(y,z) = {bij ≤ 1− zj ∀i∈ I, j ∈ J,

bij ≤ yj ∀i∈ I, j ∈ J,∑
j∈J

bij + gi = 1 ∀i∈ I, (F3)

bij ≥ 0, ∀i∈ I, j ∈ J,

gi ≥ 0, ∀i∈ I}

The CPMP under disruptions is

min
x,y

(1− %)
∑
i∈I

∑
j∈J

dijhixij + % max
z∈Z(k)

min
(b,g)∈SC(y,z)

(
∑
i∈I

∑
j∈J

dijhibij +
∑
i∈I

pihigi) (F4)

s.t. (F2) and
∑
i∈I

hixij ≤Cjyj, ∀j ∈ J, (F5)

where SC(y,z) = {(F3) and
∑
i∈I

hibij ≤Cjyj, ∀j ∈ J}. (F6)

F.2 Numerical Results of Adjustable Robust UPMP and CPMP

Since our preliminary experiments as well as those of An et al. (2014) have shown that C&CG-

D performs better than BD, we compare only the performance of C&CG-E and C&CG-D. The
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parameters, the optimality tolerance (ε = 0.1%), and the time limit (2 hours, and we allow the last

iteration before reaching the time limit to terminate) take the same values as in An et al. (2014).

The results for the two models are given in Tables F2 and F3, where J = I and % is the weight of

the worst-case cost.

Table F2 Results for uncapacitated p-median problem under disruptions

Unit penalty cost = 15 Unit penalty cost = pmax

C&CG-E C&CG-D in An et al. (2014) C&CG-E C&CG-D in An et al. (2014)

|J | % p k Gap #Iter CPU Gap #Iter CPU Gap #Iter CPU Gap #Iter CPU

25 0.2 8 1 0.0 1 0.3 0.0 4 2.6 0.0 1 0.3 0.0 4 2.0
2 0.0 5 3.7 0.0 5 2.8 0.0 5 7.6 0.0 5 3.2
3 0.0 21 58.8 0.0 58 578.2 0.0 35 322.5 0.0 70 1364.8

10 1 0.0 1 0.2 0.0 1 0.6 0.0 1 0.4 0.0 1 0.6
2 0.1 3 2.4 0.0 5 3.8 0.1 3 2.9 0.0 5 3.3
3 0.0 5 6.4 0.0 9 10.4 0.0 7 15.0 0.0 11 12.1

0.4 8 1 0.0 3 1.0 0.0 4 2.0 0.0 3 3.7 0.0 4 2.2
2 0.0 8 7.3 0.0 13 12.7 0.0 8 9.7 0.0 13 15.7
3 0.0 46 492.5 0.0 96 1718.8 0.0 64 4159.7 6.9 92 7359.1

10 1 0.0 1 0.3 0.0 1 0.5 0.0 1 1.0 0.0 1 0.6
2 0.0 4 3.3 0.0 6 3.5 0.0 4 16.4 0.0 6 4.4
3 0.0 13 27.2 0.0 22 36.3 0.0 14 55.6 0.0 25 59.5

49 0.2 8 1 0.0 1 1.2 0.0 3 4.9 0.0 1 3.8 0.0 3 9.1
2 0.0 6 22.4 0.0 9 29.0 0.0 27 4604.8 5.0 44 7429.3
3 1.6 38 7618.4 3.6 61 7426.4 9.0 33 7544.5 10.2 43 7661.3

10 1 0.0 1 0.9 0.0 1 1.5 0.0 1 1.4 0.0 1 2.2
2 0.0 6 36.3 0.0 11 71.9 0.0 6 58.9 0.0 11 110.0
3 0.0 27 4280.2 0.0 40 7241.1 7.1 28 7223.8 12.1 52 7272.8

0.4 8 1 0.0 2 4.1 0.0 3 4.8 0.0 2 5.5 0.0 3 11.2
2 0.0 17 747.0 0.0 29 1334.7 8.5 24 7661.8 17.5 46 7458.9
3 11.0 32 7227.2 15.6 44 7821.3 21.5 27 7507.7 23.1 33 7834.5

10 1 0.0 2 3.8 0.0 3 5.0 0.0 2 4.8 0.0 3 5.1
2 0.0 13 683.0 0.0 30 1468.7 0.0 13 788.0 0.0 30 3069.0
3 11.7 24 7355.0 10.4 39 7512.4 15.9 22 8057.3 18.4 44 7753.2

Average 1.0(3) 11.7 1190.9 1.2(3) 20.7 1470.6 2.6(5) 13.8 2002.4 3.9(7) 22.9 2393.5

(−) : indicates the number of instances (out of 24) that are not solved to optimality.

Tables F2 and F3 show that for both the UPMP and CPMP, C&CG-E has better performance,

in terms of the average gap and the number of iterations. In particular, for the UPMP, when the

unit penalty cost is pmax, two more instances can be solved to optimality by C&CG-E with less

than 4700 seconds; however, C&CG-D produces solutions with optimality gaps over 5.0% when

reaching the time limit. For the UPMP, the average CPU time of C&CG-E is also lower. For the

CPMP, the average CPU time of the two algorithms is quite close, while C&CG-E provides better

optimality gaps. From both tables, we observe that C&CG-E generally works better for instances

with a large budget. Take |J |= 25, %= 0.4, p= 8, k= 3 and unit penalty cost = 15 for example, for



Cheng, Adulyasak, and Rousseau: Robust Facility Location Under Disruptions
Article submitted to INFORMS Journal on Optimization; manuscript no. (Please, provide the manuscript number!) 41

Table F3 Results for capacitated p-median problem under disruptions

Unit penalty cost = 15 Unit penalty cost = pmax

C&CG-E C&CG-D in An et al. (2014) C&CG-E C&CG-D in An et al. (2014)

|J | % p k Gap #Iter CPU Gap #Iter CPU Gap #Iter CPU Gap #Iter CPU

25 0.2 8 1 0.0 2 1.5 0.0 3 3.4 0.0 2 3.5 0.0 3 3.0
2 0.0 5 7.2 0.0 7 9.4 0.0 10 51.5 0.0 20 104.1
3 0.0 25 236.5 0.0 41 354.4 15.4 43 7521.6 19.8 72 7296.4

10 1 0.0 1 0.4 0.0 1 0.5 0.0 1 0.3 0.0 1 0.5
2 0.0 2 2.2 0.0 3 4.0 0.0 3 5.4 0.0 4 4.1
3 0.0 7 17.9 0.0 12 23.2 0.0 13 111.4 0.0 19 82.9

0.4 8 1 0.0 3 3.2 0.0 4 4.3 0.0 3 3.4 0.0 4 3.9
2 0.0 8 19.2 0.0 15 39.8 0.0 12 99.0 0.0 23 168.0
3 0.0 37 1051.7 0.0 74 2451.2 28.4 43 7352.8 36.8 63 7272.3

10 1 0.0 1 0.8 0.0 1 0.6 0.0 1 0.4 0.0 1 0.6
2 0.0 4 5.5 0.0 10 13.8 0.0 5 9.8 0.0 10 17.7
3 0.0 12 51.9 0.0 21 63.7 0.0 21 398.2 0.0 35 460.6

49 0.2 8 1 0.0 1 1.5 0.0 3 7.5 0.0 2 6.2 0.0 3 9.3
2 0.0 10 310.5 0.0 15 414.4 5.8 22 7819.2 12.4 37 7370.9
3 9.0 25 7884.2 9.8 41 7676.8 24.4 16 8390.7 24.3 25 7396.5

10 1 0.0 1 1.9 0.0 2 5.1 0.0 1 2.1 0.0 2 4.9
2 0.0 8 213.0 0.0 21 840.2 0.0 11 1121.3 0.0 21 1307.6
3 2.2 23 7258.5 3.0 35 8083.0 14.6 17 7292.3 14.0 27 9613.7

0.4 8 1 0.0 2 8.0 0.0 3 6.2 0.0 2 7.0 0.0 3 9.6
2 0.7 26 7815.3 9.5 35 7858.8 18.3 18 8751.8 27.0 29 7295.0
3 20.5 18 8668.8 26.3 30 7347.6 44.1 15 7852.8 46.4 23 7379.5

10 1 0.0 3 17.2 0.0 4 11.5 0.0 3 16.5 0.0 4 14.1
2 4.6 21 8289.5 4.7 34 7257.8 10.9 19 7993.0 6.8 36 8071.1
3 16.2 22 8742.2 14.6 31 7343.0 28.7 17 8477.9 29.9 27 7410.8

Average 2.2(6) 11.1 2108.7 2.8(6) 18.6 2075.8 7.9(9) 12.5 3053.7 9.1(9) 20.5 2970.7

the UPMP, C&CG-E consumes 492.5 seconds while C&CG-D takes 1718.8 seconds. Similarly, for

the CPMP, the computing time is 1051.7 seconds versus 2451.2 seconds.
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