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Abstract. In this paper, we propose a Deep Reinforcement Learning algorithm to
find the best beam orientations for radiosurgery treatment planning and particularly
the Cyberknife system. We present a Deep Q-learning algorithm to find a subset of
the beams and the order to traverse them. A reward function is defined to minimize
the distance covered by the robotic arm while avoiding the selection of close beams.
Individual beam scores are also generated based on their effect on the beam intensity
and are incorporated in the reward function. The algorithm and the quality of the
treatment plan are evaluated on three clinical lung case patients. Computational
results show a reduction in the treatment time while maintaining the quality of the
treatment in comparison with the plan using all of the beams. This results in a more
comfortable treatment for the patients and creates the opportunity to treat a higher
number of patients in the clinics.
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1. Introduction

A high-quality radiation therapy treatment requires delivering a prescribed dose to the
target volume while sparing normal tissues and organs-at-risk (OARs). The deposited
dose needs to closely follow the clinical prescriptions without having a large dose gradient
within the tumor. To this end, selection of the best possible set of beams through which
the patient is treated with radiation is considerably important.

The problem targeted in this work is to find the best beam orientations for
the Cyberknife radiosurgery system (Accuray Inc., Sunnyvale, CA) with a multileaf
collimator (MLC). This system delivers noncoplanar beams towards the patient and
is used for Stereotactic Radiosurgery (SRS) or Stereotactic Body Radiation Therapy
(SBRT). While the Cyberknife system can deliver high-quality treatment plans in terms
of dose conformity, the long delivery times of certain Cyberknife plans have been cited
as a risk factor [1]. It should be pointed out that more than half of the overall treatment
time corresponds to the robotic arm movement between beams and not the beam-on time
(actual treatment) during which inadvertent patient movements diminish the treatment
quality. The total treatment time might take about one hour [2]. Finding the optimal
beam trajectory is challenging as it necessitates considering the total treatment time as
well as the final dose distributions.

Non-coplanar plans delivered on standard linear accelerators such as Volumetric
Modulated Arc Therapy (VMAT) or Intensity Modulated Radiation Therapy (IMRT)
tend to have reasonable treatment times because the treatment field is larger, and there
are not as many degrees of freedom as on the Cyberknife. However, the high flexibility
of the Cyberknife system requires the consideration of treatment time as a critical factor
through meticulously selecting beams and optimizing the trajectory.

In this paper, we propose to use Deep Reinforcement Learning (DRL) to optimize
beam orientations for the treatment plans delivered with the Cyberknife system. This
method has the benefit to exploit different geometric and dosimetric features to pick
the best beams and to simultaneously minimize the delivery time. This directly enables
us to consider numerous patient-specific features for beam selection, unlike the common
practice that uses a fixed trajectory [3]. The contributions of this paper are as follows:

(i) We propose a Deep Reinforcement Learning algorithm, namely deep Q-learning,
to optimize the beam orientations. Experimental results obtained show that this
approach can obtain a high-quality solution in a shorter amount of time compared
to a standard mixed-integer programming formulation. The final treatment quality
is also on par with the treatment using all the possible beams.

(ii) Our proposed solving process leverages both dosimetric and geometric features at
the same time. This directly leads to a realistic objective compared with individual
beam score methods. In addition, we consider another measure to distribute the
selected beams around the patient and avoid having clusters of beams in specific
positions around the patient.
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This paper is organized as follows. The next section introduces the related works to
this problem. Section 3 describes the methods used and the algorithm proposed in this
work. The characteristics of the Cyberknife systems and the deep Q-learning method
are also discussed in this section. The experimental results and the performance of our
proposed method are represented in Section 4 where the implementation, results, and
conclusion are discussed.

2. Related Works

Treatment Planning problems can be represented by two main subproblems: Beam
Orientation Optimization (BOO) problem and Fluence Map Optimization (FMO)
problem. The former finds the optimal subset of the beams to treat the patient through
them. The latter computes the amount of the dose delivered at each beam in different
organs.

Two major approaches exist to select the most favorable subset of beams. The first
approach optimizes the beam orientations and beam fluence maps simultaneously. The
beams having positive intensities (positive fluence) in the solution are thus selected in
the trajectory. This approach leads to an NP-hard Combinatorial Optimization (CO)
problem, meaning there are no known algorithm able to solve it in polynomial time [4].
Although this results in an optimal solution concerning the prescribed dose objectives
[5], it entails a major drawback: The computation time may be prohibitive [6]. A
partial solution to these issues is to find an approximate solution, instead of the optimal
one. This can be attained using local-search methods, such as simulated annealing
[7], or by controlling the execution time of mixed integer linear programming models
[8]. In addition, some researchers propose methods such as Benders Decomposition
[9] or Column Generation [10] to solve the mixed integer mathematical programming
formulation of this problem.

A second option is to decouple optimizing beam orientation and beam fluence
maps and solve them sequentially. Following this strategy, researchers can exploit some
information about the beams before the optimization of the beam intensities. To solve
the beam orientation problem, various quality measures of an individual or subsets of
beams can be generated [11, 12]. This reduces the computation time despite some
approximation errors. The selected beam orientations are then forwarded to another
optimization problem to find their respective fluence [13]. Numerous scores based on
geometric features of organs and dosimetric characteristics of the candidate beams are
defined. Beams are then ranked and selected based on their score. The focus of the
methods considering geometric measures is based on the premise that avoiding OARs is
essential for an acceptable plan [7, 11]. The overlap between the volumes of the target
and the OARs from every beam’s-eye-view gives a such metric [14] as well as the position
of the OARs with respect to the target value (background or foreground) due to the
physical characteristics of the photon beams [14]. The latter assumption neglects the
cases where the target volume is surrounded by the OARs as in lung tumors.
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Ranking beam orientations based on dosimetric effects have also been considered.
Bangert and Oelfke [13] generate locally ideal beam orientations for each target voxel
using radiobiological features and conclude that beam orientations typically cluster
around distinct positions. They use k-means clustering to select k beams from the
potential locally ideal set of beams. In addition to this metric, Yuan et al. [12] define a
similarity score for pairwise beam orientations to select more scattered beams iteratively,
starting from an empty set of selected beams.

Several researchers have incorporated beam fluence map optimization (FMO)
problems into the scalar beam scores to develop more advanced measures of quality.
Bangert and Unkelbach [6] have shown that an early stopping mechanism before reaching
the optimal solution of this problem is a surrogate for the optimal solution and can thus
be used as individual beam metrics. In another study, after selecting beam orientations
using solely geometric scores, Smyth et al. [15] run the beam fluence optimization for a
few iterations. They then perturb the couch angle for each selected beam and evaluate
the FMO to find the best objective function corresponding to the best beams. Starting
from every possible beam orientation around the patient, referred to as the 4π plan [16],
Langhans et al. [17] solve the FMO problem and eliminate the beams with the total
dose of less than the average and repeat this process until N = 20 beams are selected.
By assigning different geometric scores to every selected beam orientation, they solve
a pathfinding algorithm with a variation of A∗ algorithm and output a trajectory to
be traversed during the treatment delivery. Nonetheless, one disadvantage is that the
angular separation of the selected beams is such that the delivery would not be feasible
due to machine restrictions. Lyu et al. [18] follow a similar approach and activate a
subset of dosimetrically promising beams from an initial 4π plan. They assign FMO-
based individual and pairwise beam costs to find the optimal trajectory.

In this paper, we apply deep reinforcement learning (DRL) to solve the beam
orientation optimization (BOO) problem. We consider a number of measures in order
to optimize beam selection and thereby reduce the treatment time. Even though
we decouple BOO and FMO problems, our proposed method uses measures from
both geometric features of the beams and dosimetric features related to each patient.
Therefore, dose information is taken into account without further complicating the
problem. The subset of beams selected by our approach is then forwarded to the direct
aperture optimization (DAO) module [19] to obtain the intensities of the beams and
delivery sequence.

3. Materials and Methods

3.1. The Cyberknife system

The extra degrees of freedom in the Cyberknife system enable a non-coplanar delivery
with limited restrictions. The robotic arm can deliver radiation at a discrete set of
positions around the patient. Such positions are referred to as nodes. In this work, a
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node and a beam are used interchangeably as we assume that there is only one beam
orientation per node. These nodes are uniformly distributed on a sphere centered at the
imaging center of the Cyberknife system. Starting from the resting point, the robotic
arm can move from the current node to any other node that does not entail a collision
with the patient’s body. The Cyberknife equipped with a Multileaf Collimator (MLC)
allows more flexibility in field shaping and delivers fewer monitor units in comparison
with cone collimators [20]. The InCise MLC mounted on the Cyberknife system has 26
leaf pairs, each with a width of 3.85 mm and a maximum field size of 115 mm×100 mm

at 800 mm source-to-axis distance. The radiation field from each beam is discretized
into beamlets with the size of twice the MLC leaf width by 5 mm [20] and a dose
distribution is generated for each beamlet.

This work assumes a step-and-shoot delivery [21]. Delivery of the radiation is only
allowed at nodes. Unlike IMRT and VMAT, the dose rate of the Cyberknife system is
constant during delivery and cannot be increased or decreased as a parameter of the
device; therefore, the dose deposited in the patient is proportional to the delivery time.

3.2. Deep Reinforcement Learning

Reinforcement learning is a sub-field of machine learning that considers the decision-
making dynamics of an agent that interacts with an environment. The goal is to find an
optimal sequence of actions that the agent must follow in order to accomplish a given
task. Reinforcement learning problems are commonly modeled as a Markov Decision
Process (MDP) [22].

Let 〈S,A, T,R〉 be the tuple representing the agent-environment interactions in the
proposed RL structure. S is the set of states and A denotes the set of all possible actions.
By taking an action the state of the environment changes to a new one following the
transition function T . The environment sends a signal to the agent by a deterministic
reward function R as a result of selected action. At time step t, the agent receives a
representation of the state of the environment st ∈ S. Using the current information
at st, the agent takes an action at ∈ A which gives the state-action pair (st, at). At
the next time step, the state of the environment is updated to st+1 = T (st, at) and the
agent receives a scalar reward of rt = R(st, at) ∈ R. In a deterministic environment, the
selection of an arbitrary action in a specific state always results in the same next state.
The goal of reinforcement learning is to learn the agent’s behaviour policy π : S → A,
indicating the action to be taken at each state, such that it optimizes the sum of the
rewards. The agent visits a sequence of states st ∈ S at each time step t ∈ [1,Θ]

creating an episode. State sΘ is referred to as the terminal state. The expected return
after time step t is Gt =

∑Θ
k=t+1R(sk, ak). The problem is to find the optimal policy

π∗ = argmaxπQπ(a, s) ∀s ∈ S, ∀a ∈ A where Qπ(a, s) denotes the quality of selecting
action a at state s under policy π. It is referred to as the Q-values, and, for this
environment, we have Qπ(a, s) = Gt.

For relatively small environments, the optimal Q-values can be computed by an
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exhaustive exploration with Dynamic Programming. However, when the problem size
increases, Dynamic Programming suffers from the so-called curse of dimensionality [23],
making an exhaustive exploration not tractable anymore. In order to deal with this issue,
Q-learning [24] provides an estimation of the optimal Q-value function for every action
selected at specific states. It is computed by successive updates. This value is updated
by Q(st, at) ← Q(st, at) + α [Rt(st, at) + maxa∈At Q(st+1, a) − Q(st, at)] where α is the
learning rate. The aim is thus to find the optimal policy such that the expected total
reward gained through successive states is maximized.

In practice, the environments are comprised of an exponential number of states
and many of those may not be visited during the previous updates. Neural fitted
Q-learning [25] deals with this issue and uses neural networks to approximate the
Q-value function. By learning a weight vector w, the model provides an estimator
such that Q̂(s, a,w) ≈ Q(s, a). To this end, an optimizer, such as Adam [26] is used
to minimize the squared loss between the current Q-value and the approximated Q-
value and update the weight vector: w ← w − 1

2
α∇L(w) where the squared loss is

L(w) = [R(st, at) + maxa∈At Q̂(st+1, a,w)− Q̂(st, at,w)]2. We use prioritized experience
replay [27] to stabilize the training.

3.3. Graph Neural Networks

The Beam Orientation Optimization problem can be formulated as a CO problem.
Recently, Graph Neural Networks (GNNs) [28] emerged as a machine learning
architecture to help solve CO problems efficiently [29]. For any problem that can be
represented as a graph, the idea of the GNNs is to compute a vectorial representation
of each node by aggregating features of the neighboring nodes [29]. The learned vector
representation encodes crucial and latent structures that help to solve challenging CO
problems. We formulate the BOO problem as a graph to exploit the benefits of GNNs.
As shown in Figure 1, a state graph represents the partial trajectory with the selected
beams depicted by full circles. Features are assigned to each node (represented by boxes
with colors with different shades). The state graph passes through several layers in
the GNNs and at each layer, a new representation of the node features is generated by
exploiting the information of the neighbour edges and nodes. At the end, the final node
features of the last layer are combined to create a vectorized representation of the state
graph.

3.4. Problem Representation

An instance of the BOO problem can be represented by a simple, undirected, and fully-
connected graph. Let G = (V,E) be a graph representing a problem instance, where the
set of vertices V corresponds to the set of all possible nodes (beams) around the patient
for the Cyberknife system. The edges denote the direct path the robotic arm needs to
traverse from one node to another. To fully represent the problem, we add distance-
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Figure 1. Vectorized representation of the state graph by applying GNNs.

driven and dose-driven features to edges and nodes of the graph, respectively. At each
time step, using Graph Neural Networks [30], we obtain an vectorial representation of
the current state. This vector is then forwarded to the next steps to learn the Q-values.

3.5. Reinforcement Learning environment for BOO

The RL environment formalizes the problem we want to solve using the aforementioned
learning algorithm. Let us consider an initial set of nodes around the patient. Due to
the flexibility of the Cyberknife system, the robotic arm can move to an arbitrary node
in the following step to irradiate the patient. The movements prone to collision of the
robotic arm with the patient can be manually excluded by setting the cost of traversing
their path to an arbitrary large value. As such, without loss of generality, collisions are
not considered in our implementation. Therefore, at each time step, the set of available
nodes includes the ones that have not been selected yet. An episode starts when the
robotic arm is at the resting point, and at each time step, it moves towards the next
node. The episode finishes when a predefined number of beams (N ) are selected [20, 17].
Each movement incurs a reward. Following the structure described by Cappart et al.
[31], our RL environment is formally defined as follows:

State At each time t, the state st ∈ S contains the ordered sequence of selected beams
denoted by δt. A state can be represented as an undirected acyclic graph. The nodes
of this graph include following features: (1) the nodes coordinates (x, y, z), (2) the
average dose deposited in the OARs, doar and, (3) the average dose deposited in the
target volume dtar at unit intensity. For every structure (OARs, target volumes)
that each beam passes through, we have computed the dose deposited in each voxel
at unit intensity. We then average this value over the voxels for each individual
structure to obtain the average dose deposited in each OAR (di, i ∈ OARs) and
the target volumes (dtar) separately corresponding to each beam. Each state is
transformed into a d-dimensional vector of features (d = 128) using GNNs, which
serves as the input of a fully connected neural network.
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Action At each state st, the action at ∈ At is defined as the next node to be visited. An
action is available only if it is not already included in the trajectory (i.e., at /∈ δt).

Transition The state is updated according to the action performed. By selecting a
new action, a new beam is appended to the sequence of the already selected beams.
Therefore, δt+1 = δt ∪ {at}.

Reward At each time step t, the agent receives the reward rt = R(st, at). Let m be the
last beam added to the trajectory in state st and the next beam selected is at = n.
The reward is defined as follows:

R(st, at) = −(rdist + rdose), t 6= Θ (1)

R(sΘ, at) = −(rdist + rdose + rspread)

rdist is the euclidean distance between m and n. rdose for beam n is the ratio
(
∑

i∈OARs ωi di)(ωtar dtar)
−1 where ωj is the importance of each structure j. For

simplicity we have considered a similar weight for all the structures. rspread is the
beam-spread score. The latter accounts for the beam-spread measure among n and
all previously selected beams in the trajectory denoted by

∑
i,jK(1−cosαij)

−1 and
i, j ∈ δΘ. This ensures a maximum separation between selected nodes to produce
a plan with higher quality [12, 32].
The importance of each part of the reward can be determined by weighting them;
however, in our experiments, we set an equal weight on all terms except for the
beam separation which is set by the choice of the parameter K.

3.6. Learning Algorithm

The learning algorithm relies on Deep Q-networks (DQN) presented in Algorithm 1. An
agent is used to learn the weight vector (w) of a fully connected neural network to output
Q-values. At each iteration of the training phase, a random instance of the problem
represented as a graph G is created. Each instance resembles a hypothetical patient. It
must be noted that we generate the features to create the state graph. Therefore, for
each instance, we generate random coordinates for the nodes from which the beams are
delivered towards the patients. These values are normalized to be in the range of (0, 1).
The other important measure to shape random instances during training is the ratio of
the dose delivered to OARs to the dose delivered in the target volume for each beam.
To compute this, for each beam, we need the information on the dose deposited in every
OAR (di, i ∈ OARs) and the target volume (dtar) that the beam passes through. Prior
to the training, for all the real patient data we calculated these values as follows. For
every structure (OARs, target volumes) that each beam passes through, we compute
the dose deposited in each voxel at unit intensity. We then average these values over the
voxels of each OAR and the target volume to obtain the values of di, i ∈ OARs and dtar.
We then add white Gaussian noise with zero mean and square coefficient of variation
equal to 0.25 to augment the dataset of dose to OARs and dose to target. Following
this, new instances has been added to the dataset for the training purpose [33]. Then
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during the training phase, the values of di, i ∈ OARs and dtar are randomly selected
from this augmented dataset. We thereby compute the ratio of (

∑
i∈OARs di)(dtar)

−1

for each possible beam. An episode is then constructed by selecting one beam at each
time step t using the model’s deep neural network architecture with the current weight
vector. To make the training more robust, we exploit Prioritized Experience Replay
[27]. At each time step, an experience tuple et = (st, at, rt, st+1) and its corresponding
significance are added to the memory for further use in the training.

Always greedily selecting the action with the maximum immediate reward generally
leads to inferior solutions due to the lack of exploration. Even following the action with
the best approximated Q-value could lead to local minima if no exploration is used.
To ensure a balanced exploitation-exploration trade-off, actions are chosen following a
softmax action selection strategy. This is also superior to the ε-greedy strategy where
it chooses equally among all available actions while exploring [31]. In the softmax
action selection strategy, the greedy action still has the highest probability while others
are weighted according to their value estimates. By adjusting a temperature hyper-
parameter, the learning begins with higher exploration followed by increasingly favoring
exploitation. At the beginning of the training, the temperature is set to 0, and it
increases to a predefined maximum value as the training goes on.

Gradient-based optimizers tend to have difficulties if the rewards are large, sparse,
or too small. To avoid such cases, we use scaling to map the reward space into an
interval close to zero [31]. Let γ ∈ R be the scaling factor which is dependant on the
value of the coordinates of the nodes. The rescaled reward at time step t is γ rt.

We sample a batch from the stored experiences to learn the model for estimating
optimal Q-values for every state-action pair. For each experience comprising the batch,
we obtain an embedding (vectorized representation) of the state as illustrated in Figure
1 and then pass the embedding into a neural network called the policy network as an
input, shown in Figure 2. The aim of the policy network is to approximate the optimal
policy by finding the optimal Q-values for state-action pairs. We have such a network
associated with each possible action from the input given state. The output of these
networks is the estimated Q-value for each available action from the state st. It must
be pointed out the output layer of this neural network presents the action space of the
proposed RL algorithm. Each output unit (action) corresponds to a node of the state
graph (a beam). The beams that are currently included in the partial trajectory are
masked, illustrated by full circles in Figure 2, and cannot be chosen. Once the next
beam is selected, the trajectory will be updated the state transitions to a new one as in
Figure 2 (b).

At this point, the loss needs to be calculated by comparing the Q-value estimated
from the policy network for the action at of the experience tuple in the batch and the
corresponding (target) Q-value for the same action denoted by q∗(st, at) = E[Rt+1 +

max a′ q
∗(st+1, a

′)] and a′ ∈ At+1. The max a′ q
∗(st+1, a

′) needs to be approximated.
The target Q-values are obtained from a completely separate network cloned from the
policy network named the target network with its weights are frozen with the original
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Figure 2. Action Selection. (a) Passing the embedding of the state through a Feed
Forward Neural Network. (b) Updated trajectory after the action (selected beam) is
performed. The state graph is transitioned into a new state.

policy network’s weights. The weights of the target network are updated to the policy
network’s new weights every certain amount of the time steps. This target network
enables us to estimate the maximum Q-value for the next state st+1 in the experience
tuple to get the target Q-value q∗(st, at).

3.7. Neural Network Architecture

Selecting the beams to incorporate in the final trajectory for the robotic arm movement
of the Cyberknife system depends on the nodes of the underlying graph G. Therefore,
to capture all the node and edge features, we employ a Graph Attention Network
architecture to embed the graphs [34]. The policy network is a fully connected feed-
forward network with three hidden layers, consisting of 128, 64, and 32 hidden units,
respectively. The input of this network is the embedded current state. At each stage,
we have one such network for every available action. The output of the policy network
is the prediction of the Q-value for the current state-action pair. We use the Rectified
Linear Units (ReLu) as the activation function of the hidden layers and no activation
at the output layer.

3.8. Solving Algorithm

Once trained, the model can be reused to obtain a trajectory for unseen instances.
First, the instance is represented as a graph, and the relevant features are extracted.
The features of each state s are inputted to the deep neural networs architecture of
the model to estimate the value of the state-action function Q̂ for all feasible actions.
The next node is selected following the greedy policy π = argmaxa∈A Q̂(s, a). The
node incurring the maximum Q-value is inserted into the list of selected nodes until a
predetermined number of nodes are selected.
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Algorithm 1 Training
1: . I is the number of iterations
2: . Θ is the length of the episode
3: . N is the mini-batch size
4: . et is the experience tuple (st, at, rt, st+1)

5: . α is the learning rate
6:

7: M← initializeMemory(m) . Creating the replay memory with size m
8: for i from 1 to I do
9: G← generateRandomInstance
10: (S,A, T,R)← initializeEnvironment(G)
11: s1 ← initializeState(G)
12: for t from 1 to Θ do
13: at ← softmaxSelection(st)

14: rt = γ R(st, at)

15: st+1 = T (st, at)

16: M← updateMemory(et)
17: for j from 1 to N do
18: e← getSampleFrom(M)
19: Lj(w)← squared loss of e
20: end for
21: w← w + α

2N

∑N
j=1 Lj(w) . Update the weight vector

22: end for
23: end for
24: return w

4. Experiments

4.1. Dataset

To evaluate the performance and efficiency of the proposed algorithm, we consider three
challenging cases suffering from lung cancer. The data is collected from anonymous
patient data who underwent radiation therapy using the Cyberknife system at Centre
Hospitalier de l’Université de Montréal (CHUM). For the lung tumor, a choice of a
few predetermined paths developed by the manufacturer is selected regardless of the
innate differences among various patients. The first case consists of 28,800 beamlets
and 62,41,184 voxels where the tumor is in the right lung. There are 26,208 beamlets
and 7,736,670 voxels for the second case for which the tumor lies in the left lung. The
third plan has 3,440,112 voxels and 29,952 beamlets, and the tumor lies in the right
lung.

To this end, we evaluated the results of the proposed method with the current
clinical treatment plan for the lung tumor including 100, 91, and 104 non-coplanar 800



DQN for BOO 12

source-to-axis distance (SAD) nodes configured by the manufacturer scattered around
the centroid of the target volume for patient 1, 2, and 3 respectively.

4.2. Setup

Our model is implemented in Python 3.7. Training is carried out on one GPU (NVIDIA
V100 Volta, 32GB memory) for 24 hours on randomly generated instances and Adam
optimizer is used for training. To create an instance in the training phase, at any node,
values for different features are selected from the augmented database. Therefore, we can
compute the rewards namely distance-driven, dose-driven, and beam-spread measure.
It should be pointed out that all of these randomly generated values are normalized to
have similar ranges for all of the features during the learning.

Before initiating the training phase, we generate a set of 100 held-out validation
instances to track the performance of the learned model and the baselines as the training
goes on. The model resulting in the best average reward on the held-out validation set
is then selected as the final one and tested on another set of randomly generated graphs
with the same configuration as the training set to evaluate the generalization ability of
the model.

Three baselines are developed to compare the performance of our proposed
algorithm. They select a subset of beams and the best trajectory in a single pass.
Firstly, for each instance in the validation set, we randomly create 50 trajectories and
output the the best, the worst, and the average objective values. In addition, a greedy
heuristic is developed as follows. Starting from the resting point of the robotic arm,
at each time step, we select n nearest points as the candidates to be selected for the
next node to visit. For each potential next node and the partial trajectory created so
far, we compute the dose-driven and the beam-spread score and add the node yielding
the maximum total reward to the tour. We also implemented and solved the problem
(with the same instances used in the RL and the heuristic) in Gurobi 9.0.0 [35] with
time limits. The mathematical programming model is represented in the appendices.
Restricting the time to converge prevents finding the optimal solution using the exact
solver and results in some negligible optimality gap. Nonetheless, for practical cases,
the optimizer takes a long time to converge, which limits clinical applicability.

Once the subset of beams is selected, we follow the algorithm represented by Renaud
et al. [19] for only photon particles. This algorithm is implemented in C++ and the
quadratic mathematical programming is solved by IPOPT 3.13‡ which is based on
interior-point methods. This outputs the weight of the every selected beam and how to
deliver the treatment.

‡ https://coin-or.github.io/Ipopt/

https://coin-or.github.io/Ipopt/
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4.3. Training

We initialize the parameters of the policy network (weight vector w) according to Xavier
initialization [36] sampled uniformly from (−x, x) where x = g [6 / (dimin + dimout)]

1/2

where dimin and dimout refer to the input and output dimensions of the current layer
and g =

√
2 is the scaling factor used in this work. The capacity of the replay memory

is set to 50 and at each epoch, a batch of 32 experiences are sampled from it. We train
for 24 hours on the training data generated randomly on-the-fly as described in Section
4.2. The learning rate of α = 4× 10−4 is set following different experiments.

Using the weight vector w learned in the training phase, at each time step the next
node to be visited (next action) based on the current state st is selected by a greedy
policy following at = argmaxa∈At

Q̂(st, a,w). This process continues until the end of the
episode where the predetermined number of beams are selected. With the way that the
reward function is defined, the selected beams will not be clustered around some points
in the space around the patient.

4.4. Results

In this section, we evaluate the performance of the proposed algorithm based on the
quality and efficiency of the treatment on the lung cases. We use the Dose-Volume
Histograms (DVH) to evaluate the quality of the plans, a method widely used in practice.
These histograms depict the percentage of the organs capturing a certain amount of
dose. In order to attain an acceptable treatment plan regarding DVH constraints, we
change the structures underdose and overdose weights during the optimization of the
dose intensities. We increase the penalty for the structures whose DVH measures are
worse than the critical dosimetry references or the proposed values by the physicians. A
challenging issue is the voxels that could be identified in more than one structure. In this
case, based on the important factor of individual structures, the aforementioned voxels
are assigned to the structures with higher priority. All the structures are considered
throughout the algorithm, to create individual beam scores and beamlets for the beam
intensity optimization. It should be pointed out that fewer multi-structure voxels results
in higher quality plans. The figures and tables representing the results for patient 2 and
3 are shown in the appendices.

Figures 3, A1, and A2 compare the DVH diagrams for the cases of K = 25 beams
(DQN-Plan) and the clinical plan which uses all the beams (Full-Plan). Healthy tissues
are protected in both plans but the dose to the tumor is relatively lower in DQN-Plan.
All treatment plans meet clinical needs. As for the healthy tissues for patient 1, the
right and left lungs, and the ribs receive lower radiation in high percentage of their
volume using the DQN-plan. The heart and trachea attain lower dose in high volumes
using the proposed algorithm. In all these cases, the dose deposited in the structures
are within the acceptable thresholds.

The heart, right lung, esophagus receive lower dose throughout the structure with
the DQN-methods compared to the Full-Plan for patient 2. For the high percentage of
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Figure 3. Comparison between DVH diagrams for patient 1.

the volumes of the ribs and the left lung (where the tumor is in), the DQN-Plan gets
lower dose deposited. The dose deposited in tumor however is less in the majority of
the volume when following the DQN-Plan.

In addition, the robotic arm traverses only 25 beams in the DQN-plan whereas
the Full-Plan requires all the beams in the original treatment plan, 100, 93, and 104
for patients 1, 2, and 3. In general, the DQN-Plan maintains the quality of the Full-
Plan treatment within the clinically accepted thresholds, while delivered in shorter time.
Table 1 compares the total reward (objective), execution time, and the total distance
traversed by the robotic arm, and time for different methods. It should be pointed
out that the value of the objective function and the execution time are irrelevant for
the clinical method which is currently used at CHUM. The arm travels the distance
while the beam is off. The majority of the treatment time is spent on moving from one
beam to the next one. The total reward (the objective) is comprised of three parts,
total distance traversed, total dose-driven score collected, and the level of the sparsity
of the selected beams around the patient. Therefore, merely having the lowest distance
covered will not necessarily lead to a more advantageous treatment.

As illustrated, although DQN-Plan does not yield the minimum distance traversed
in comparison with the heuristic and random selection, it attains a better total reward
and hence a higher treatment quality shown in Tables 2, A1, and A2. In these tables,
DX% represents the amount of dose deposited in at least X% of the structure, Dmax

is the maximum dose delivered to the structure, and Dmean is the mean dose to the
structure. VY Gy percentage of the structure volume receiving Y Gy dose.

Table 1 also demonstrates the treatment time comparison between the clinical plan
and the DQN-Plan. Using the DQN-Plan results in a 35%, 33%, and 40% reduction of
the treatment time for patients 1, 2, and 3, respectively.

We represent the performance of the proposed Deep Q-learning algorithm during
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Table 1. Solution comparisons between different methods of solving the BOO.

Method Obj.
Execution
time (s)

Total arm
Distance

Time
(min)

Patient 1 DQN 3.53 1.09 5,529 35
Gurobi 3.27 3600.00 6,350 37
Heuristic 4.50 2.47 5,494 35
Random 4.65 0.15 2,696 31
Clinical NAa NAa 17,726 54

Patient 2 DQN 4.18 1.08 4,656 35
Gurobi 3.18 3600.00 4,836 36
Heuristic 4.26 2.89 4,128 34
Random 4.88 0.24 6,730 39
Clinical NAa NAa 12,936 51

Patient 3 DQN 1.80 1.38 4,068 30
Gurobi 1.53 3600.00 5,851 31
Heuristic 4.26 1.26 3,696 29
Random 2.41 0.09 8,166 35
Clinical NAa NAa 22,553 50

aObjective function and execution time are not defined for the Clinical-path method
as this is the approach that is used at the clinic and uses all of the possible nodes.

the training phase in Figure 4 for both patients. At certain points in time (every
100 episodes), we apply the learned model against the instances in the validation set
and show it in the plot. The same results are also illustrated for each baseline (random
selection, heuristic, and the results of the implementation in Gurobi). Figure 5 illustrates
a trajectory generated by the DQN-method compared with one of the Clinical method.

4.5. Discussion

In this work, we proposed a method based on Deep Q-learning to solve the BOO problem
for the Cyberknife system. It entails a reduction in treatment time while maintaining
plan quality. The selected subset of the beams can be forwarded to any formulation of
the Fluence Map Optimization or Direct Aperture Optimization problem (with different
objective functions and constraints) to realize beam intensities and leaf sequencing.

Compared to previous methods, using a deep Q-learning approach enables us
to include dose considerations related to each patient as well as the geometric
characteristics of beams. The proposed algorithm exploits the benefits of both
approaches of solving the BOO problem. Firstly, capturing the dose-related scores
results in more realistic treatment planning. Methods assigning scores to beams by
geometric characteristics generally suffer from the lack of dose-relevant rewards as they
do not directly capture the information of the deposited dose of individual beams.
However, we showed that including the dose-driven part in the rewards compensates
this issue. Furthermore, similar to heuristics, using the learned models on new patients
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Figure 4. Total reward of the algorithm against the fixed validation set during
training. The shaded area depicts the spectrum between the worst and the best random
trajectories.

x

y

z

Figure 5. Comparison of the trajectories of the DQN-method (blue) and the Clinical-
method (red).

takes a short amount of time. However, the majority of the heuristics in the literature
use only anatomical features of the patients.

As mentioned before, long treatment times are a fundamental drawback of the
Cyberknife system treatment planning. We reduced the overall treatment time by
considering travel times in the distance-driven part in reward computations of the
proposed algorithm.
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Finally, imposing spatial dispersion as the terminal reward of the episodes helps
to choose the most spread subset of beams while minimizing the total rewards gained.
As mentioned before, BOO can be modeled as a combinatorial optimization problem
which is proven to be NP-hard. Adding these measures to this problem will increase
the complexity of this problem. However, deep Q-learning method allows to consider
multiple measures as different (immediate and terminal) rewards. Therefore, deep Q-
learning is an efficient and effective method to tackle the BOO problem. This approach
results in treatment plans with a substantially shorter treatment time compared to
current clinical practice using all the beams. Although it takes a relatively long time
for the model to be trained (as is the case for all learning tasks), once the model is
trained, finding the solution to new instances in the inference part takes up to few
seconds compared to the hours of computational time by solvers such as Gurobi. For
training, we only generate random values for node coordinates and doses deposited to
different organs through the beams corresponding at each node. Therefore, we do not
restrain the learning for a particular case.

Another challenge with the current clinical methods is the use of a set of fixed
trajectories devised by the manufacturer for all patients with the same tumors.
Neglecting individual-specific variations is likely to diminish the quality of the plan,
where even small changes can greatly influence the health of the patients.

The treatment plan resulting from the beams generated by the DQN-plan has
acceptable dose quality. For the first patient, the maximum dose, average dose, and
median dose deposited in the target volume is 4.5 Gy lower, 0.2 Gy larger and 0.8 Gy
larger respectively compared to the Full-Plan. The maximum dose is reduced by 4.5

Gy in DQN-plan compared to the full-plan. While the mean dose and the median are
increased with negligible values of 0.2 Gy and 0.8 Gy respectively. As for the right lung
where the tumor is located, the maximum dose and the median dose are reduced by 3.3

Gy and 0.6 Gy while the average dose is 0.3 Gy higher in DQN-plan.
For the second patient, maximum dose delivered to tumor is 5.34 Gy less in the

DQN-Plan. The right lung, heart and esophagus are also much better protected,
considering the maximum and mean dose in DQN-Plan. The maximum dose deposited
in the right lung is 12.56 Gy lower than the Full plan, while the mean dose is if reduced
by around 80%. maximum dose attained by the heart and esophagus are down by 4.33
Gy and 4.59 Gy respectively. As for the left lung, where the tumor is located at, a
small reduction of 5.32 Gy is obtained. On the other hand, although the maximum dose
delivered to the ribs is almost 1.5 times greater using the DQN-Plan, the average dose
is on par with the Full-Plan.

For the last patient, the maximum dose is about 9 Gy less in the tumor in the
DQN-Plan. The maximum dose deposited in the left lung is also 20 Gy lower while
the max and mean dose in the other organs are similar in both plans. Therefore, the
DQN-Plan at maintains the dose-volume parameters of the clinical full-Plan. The dose-
wash images for different patients comparing DQN method and the clinical full-plan is
illustrated in Figure A3.
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Table 2. Dose-volume parameters for the target volume and critical structures for
treatment plans generated by different method for patient 1.

Plan Structure Statistics
DQN-Plan Dose 95% (Gy) Dose 98% (Gy) D max (Gy)

Target 60.0 58.1 81.3
D max (Gy) D mean (Gy) V 20Gy (%)

Right Lung 81.1 5.1 8.9
Left Lung 26.4 2.2 0.5
Ribs 73.9 2.9 2.8
Hearts 24.4 1.1 0.2

Gurobi-Plan Dose 95% (Gy) Dose 98% (Gy) D max (Gy)
Target 60.0 58.2 81.2

D max (Gy) D mean (Gy) V 20Gy (%)
Right Lung 80.5 5.2 7.8
Left Lung 26.6 2.3 0.4
Ribs 75.8 3.2 2.2
Hearts 20.5 1.2 0.0

Heuristic-Plan Dose 95% (Gy) Dose 98% (Gy) D max (Gy)
Target 60.0 57.7 85.7

D max (Gy) D mean (Gy) V 20Gy (%)
Right Lung 85.5 5.0 7.4
Left Lung 33.0 2.3 1.7
Ribs 79.3 3.1 2.8
Hearts 19.3 0.5 0.0

Random-Plan Dose 95% (Gy) Dose 98% (Gy) D max (Gy)
Target 60.0 56.3 97.5

D max (Gy) D mean (Gy) V 20Gy (%)
Right Lung 94.7 5.2 9.9
Left Lung 58.0 2.2 4.3
Ribs 79.1 3.4 6.5
Hearts 62.7 0.8 1.5

Full-Plan Dose 95% (Gy) Dose 98% (Gy) D max (Gy)
Target 60.0 56.3 85.8

D max (Gy) D mean (Gy) V 20Gy (%)
Right Lung 84.5 4.8 6.5
Left Lung 17.3 2.0 0.0
Ribs 72.4 3.6 2.8
Hearts 20.5 0.9 0.0

The values corroborate the fact that intelligently selecting a subset of nodes results
in relatively the same treatment quality. It should be remarked that these similar
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treatments are obtained by reducing the robotic arm movement time. This reduction
of treatment time yields higher comfort for the patients, eliminates the burden on the
clinics and allows more patients to be treated in any given time duration.

5. Conclusion

In this work, we have proposed a Deep Q-learning algorithm for the Beam Orientation
Optimization problem for the Cyberknife system treatment planning. This algorithm
generates a set of favorable beams which is tailored to consider patient-specific
dosimetric features and beam-related geometric features. This approach also tries to
maximally distribute the selected beams around the patient. The proposed Deep Q-
learning algorithm has the following advantages over the other methods that can be
found in the literature:

• The majority of the previous methods consider only a single feature (geometric or
dosimetric) for the individual beam scores. Using this method, we can integrate
any number of features into the neural network structure to generate a favorable
trajectory.

• By intelligently selecting the beams, we attained treatment plans with much shorter
times while maintaining the treatment quality of using all the possible beams.

Finally, we have evaluated our proposed algorithm on three challenging lung cancer
cases to demonstrate the effectiveness and efficiency of the algorithm. While the training
may take a long time, it should be remarked that the solution time is really short.

Although we have considered identical importance for different features in
generating rewards at each step of the Deep Q-learning algorithm, one might tune the
weights to achieve an even better treatment quality. For instance, having higher weight
on the beam-spread score would lead to an even more scattered beam formation. In
addition, as the training is not restricted to a particular patient or cancer type, it would
be beneficial to evaluate the possibility of applying the same model to patients suffering
from the different types of cancers.
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Appendix

Mathematical Programming Model

The Mathematical Programming model which is implemented in Gurobi is represented
as follows in (A.1)-(A.7). Let G = (V,E) be a graph where V = {v1, v2, . . . , vn} is a set
of n vertices and E is a set of edges. V corresponds to the nodes at which the robotic
arm delivered beam towards the patient. An edge e ∈ E represents the path the robotic
arm traverses from one node to the other. Let a score fi be associated to each node
vi ∈ V and a distance de associated to each edge. A beam spread measure is denoted
by sij = K (1− cosαij)

−1 for every pair of the nodes (beams) i and j. αij is the angle
separation between the pair of beams [12]. Distance de, score fi and spread measure sij
corresponds to rdist, rdose, and rspread described in Section 3.5.

We associate a binary variable xe to every edge e ∈ E, equal to 1 if the edge is
traversed and 0 otherwise. Another binary variable yi is associated with every vi ∈ V ,
equal to 1 if and only if the corresponding node is used in the solution.

min
∑
e∈E

de xe +
∑
vi∈V

fi yi +
∑
vi∈V

∑
vj∈V

sij yi yj (A.1)

s.t.
∑

e∈ δ({vi})

xi = 2 yi vi ∈ V (A.2)

∑
e∈E(S)

xe ≤ |S| − 1 S ⊆ V, 2 ≤ |S| ≤ |V | − 2 (A.3)

∑
vi∈V

yi = N (A.4)

y1 = 1 (A.5)

xe ∈ {0, 1} e ∈ E (A.6)

yi ∈ {0, 1} vi ∈ V. (A.7)

Constraints (A.2) are the degree constraints. Constraints (A.3) eliminates subtours form
the solutions. As discussed before, the number of selected nodes is illustrated by N = 25

and enforced in constraint (A.4). The resting point of the robotic arm is denoted by
node 1 as is imposed by constraint (A.5).

Tables and Figures

In this section, we present the DVH diagrams and the tables discussing the dose-volume
parameters of different methods for patients 2 and 3.
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Table A1. Dose-volume parameters for the target volume and critical structures for
treatment plans generated by different method for patient 2.

Plan Structure Statistics
DQN-Plan Dose 95% (Gy) Dose 98% (Gy) D max (Gy)

Target 60.00 58.60 80.98
D max (Gy) D mean (Gy) V 20Gy (%)

Right Lung 1.59 0.01 0.00
Left Lung 80.98 5.87 9.26
Ribs 61.83 5.94 11.45
Hearts 0.06 0.00 0.00
Esophagus 1.88 0.07 0.00

Gurobi-Plan Dose 95% (Gy) Dose 98% (Gy) D max (Gy)
Target 60.00 58.50 84.00

D max (Gy) D mean (Gy) V 20Gy (%)
Right Lung 6.94 0.76 0.00
Left Lung 84.00 5.96 8.69
Ribs 56.32 5.48 0.00
Hearts 6.35 0.22 0.00
Esophagus 5.26 0.88 0.00

Heuristic-Plan Dose 95% (Gy) Dose 98% (Gy) D max (Gy)
Target 60.00 58.09 84.35

D max (Gy) D mean (Gy) V 20Gy (%)
Right Lung 7.72 0.65 0.00
Left Lung 84.35 5.85 8.70
Ribs 57.71 5.53 10.75
Hearts 3.39 6.43 0.00
Esophagus 9.43 1.27 0.00

Random-Plan Dose 95% (Gy) Dose 98% (Gy) D max (Gy)
Target 60.00 58.80 87.60

D max (Gy) D mean (Gy) V 20Gy (%)
Right Lung 3.65 0.07 0.00
Left Lung 87.60 6.45 9.47
Ribs 58.27 5.62 10.46
Hearts 4.04 0.02 0.00
Esophagus 4.55 0.62 0.00

Full-Plan Dose 95% (Gy) Dose 98% (Gy) D max (Gy)
Target 60.00 58.1 86.32

D max (Gy) D mean (Gy) V 20Gy (%)
Right Lung 14.15 0.54 0.0
Left Lung 86.32 5.46 7.52
Ribs 38.92 5.90 3.86
Hearts 4.39 0.09 0.00
Esophagus 6.47 1.05 0.00
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Table A2. Dose-volume parameters for the target volume and critical structures for
treatment plans generated by different method for patient 3.

Plan Structure Statistics
DQN-Plan Dose 95% (Gy) Dose 98% (Gy) D max (Gy)

Target 50.0 43.0 90.2
D max (Gy) D mean (Gy) V 20Gy (%)

Right Lung 90.2 13.05 20.1
Left Lung 11.1 0.04 0.0

Ribs 86.9 6.2 14.7
Hearts 57.4 3.1 4.9

Gurobi-Plan Dose 95% (Gy) Dose 98% (Gy) D max (Gy)
Target 50.0 45.5 82.8

D max (Gy) D mean (Gy) V 20Gy (%)
Right Lung 82.1 12.1 23.7
Left Lung 22.4 2.7 0.6

Ribs 76.6 6.9 14.9
Hearts 44.4 3.1 4.7

Heuristic-Plan Dose 95% (Gy) Dose 98% (Gy) D max (Gy)
Target 50.0 44.3 84.6

D max (Gy) D mean (Gy) V 20Gy (%)
Right Lung 84.7 12.3 22.4
Left Lung 34.6 2.6 5.9

Ribs 76.5 5.3 9.9
Hearts 54.4 4.8 10.8

Random-Plan Dose 95% (Gy) Dose 98% (Gy) D max (Gy)
Target 50.0 43.6 86.0

D max (Gy) D mean (Gy) V 20Gy (%)
Right Lung 86.1 13.7 24.1
Left Lung 43.2 3.3 7.5

Ribs 82.2 6.2 11.2
Hearts 69.4 7.7 15.7

Full-Plan Dose 95% (Gy) Dose 98% (Gy) D max (Gy)
Target 50.0 43.7 99.1

D max (Gy) D mean (Gy) V 20Gy (%)
Right Lung 99.1 9.5 16.9
Left Lung 31.6 0.8 0.3

Ribs 87.9 6.9 11.0
Hearts 55.2 3.3 4.88
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Figure A1. Comparison between DVH diagrams for patient 2.
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Figure A3. Dose-wash images. Left column represents the DQN-plan and right
column is the Clinical full-plan. Rows 1, 2, and 3 correspond to patients 1, 2, and 3,
respectively.
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