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Binary quadratic programming (BQP) is a class of combinatorial optimization problems comprising binary

variables, quadratic objective functions and linear/non-linear constraints. This paper examines a unified

framework to reformulate a BQP problem with linear constraints to a new BQP with an exponential number

of variables defined on a graph. This framework relies on the concept of stars in the graph to split the

quadratic costs into adjacent and non-adjacent components indicating in-star and out-of-star interactions.

We exploit the star-based structure of the new reformulation to develop a decomposition-based column

generation algorithm. In our computational experiments, we evaluate the performance of our methodology

on different applications with different quadratic structures. The quadratic component of the problem is

dealt with in the column generation master problem and its subproblem. Results indicate the superiority

of the framework over one of the state-of-the-art solvers, GUROBI, when applied to various benchmark

reformulations with adjacent-only or sparse quadratic cost matrices. The framework outperforms GUROBI

in terms of both dual bound and computational time in almost all instances.

Key words : binary quadratic programming, combinatorial optimization, column generation,

semi-assignment problem, multiple object tracking problem

1. Introduction

Binary quadratic programming (BQP) is a large class of combinatorial optimization problems that

arise from modeling real-life applications, for example, in management, engineering, logistics and
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network design (Punnen et al., 2019). Given graph G = (V,E) with node set V = {1,2, . . . , |V |}

and edge set E = {1,2, . . . ,m}, a BQP problem with linear constraints on graph G can be specified

using a quadratic cost matrix q ∈ Rm×m and a linear cost vector c ∈ Rm and is formulated as

follows:

BQP: min
∑
e∈E

cexe +
∑

(e,f)∈E

qefxexf

s.t. x∈X,

(1)

where X ⊆ {0,1}m is the set of feasible binary vectors and E = {(e, f) ∈ E ×E : e < f}. Without

loss of generality, we only consider the symmetric quadratic costs in the objective function as one

can replace qef and qfe by their average (qef + qfe)/2 for the case of asymmetric quadratic costs.

Note that the matrices and vectors are shown in bold text throughout the paper.

Many quadratic combinatorial optimization problems can be naturally formulated in this fashion.

Some important examples include the quadratic assignment problem (Çela, 2013), the quadratic

knapsack problem (Pisinger, 2007), the quadratic travelling salesman problem (Fischer, 2014; Ros-

tami et al., 2016; Punnen et al., 2017), the quadratic shortest path problem (Hu and Sotirov, 2018;

Rostami et al., 2018), the quadratic spanning tree problem (Assad and Xu, 1992; Rostami and

Malucelli, 2015; Pereira and da Cunha, 2020) and the quadratic set covering problem (Escoffier

and Hammer, 2007; Punnen et al., 2019).

The main difficulty of solving BQP stems from the quadratic structure of the objective function

rather than the combinatorial nature of the problem. For example, when X = {0,1}m, problem (1)

is equivalent to unconstrained quadratic binary optimization and hence to the max-cut problem,

which is NP-hard (Barahona, 1983). In general, BQP problems are NP-hard, even if the linear

optimization problem over the same feasible set is tractable. This is the case for many BQP

problems, including the quadratic spanning tree problem (Assad and Xu, 1992) and the quadratic

assignment problem (Çela, 2013), while their linear counterparts are polynomially solvable.

One way to deal with the challenges of the BQP is to identify patterns and structures in the

objective function, constraint matrices, or instances (Punnen et al., 2017; Bettiol et al., 2022).

In this paper, we employ such a technique to exploit the structure of the quadratic cost matrix

q. Our methodology relies on splitting the quadratic cost q into (i) in-star interactions in which

the quadratic costs between adjacent edges are investigated and (ii) out-of-star interactions corre-

sponding to the quadratic costs between non-adjacent edges. This leads to a new reformulation of

the BQP with exponentially many variables, each associated with a star in G. Inspired by the star-

reformulation of Pereira et al. (2013) for the adjacent quadratic minimum spanning tree problem,

we develop a column generation to derive bounds for some classes of BQPs with different levels of

in-star and out-of-star quadratic costs.
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1.1. Literature Review

One of the most natural ways to solve the BQP problems with an exact method is to linearize the

quadratic terms of the model and solve the resulting mixed-integer linear programming (MILP)

using state-of-the-art solvers. The standard linearization technique is one of the most well-known

linearizations in the literature of BQPs (Glover and Woolsey, 1974). However, two main concerns

appear when dealing with the MILP reformulation: the increased size of the problem (in terms

of variables and constraints) and the quality of the obtained dual bounds. There have been many

attempts to deal with these concerns in the literature. Adams and Sherali (1990), Adams and

Forrester (2005) and Sherali and Smith (2007) provide different reduced-size MILP reformulations

of the BQP, while Liberti (2007) introduces a compact linearization approach for a general class

of binary quadratic problems subject to assignment constraints. This approach is then revised in

Mallach (2018) by proposing two new necessary and sufficient conditions to achieve consistent

linearization for this class of problems. In another study, Jünger and Mallach (2021) investigate

the solution methods proposed in the literature for unconstrained BQPs based on linear program-

ming. They provide some enhancements to the algorithm of the central separation problem arising

in solving these problems. Following this study, Charfreitag et al. (2022) present a solver called

McSparse, based on a branch-and-cut algorithm to obtain exact solutions for sparse unconstrained

binary quadratic programming problems. Furthermore, Hahn et al. (2012), Sherali and Adams

(2013) and Rostami and Malucelli (2015) develop the reformulation-linearization technique (RLT),

which generally provides stronger MILP reformulations. Recently, Mallach (2023) investigates the

effectiveness of the inductive linearization technique for some applications of BQPs. They represent

that although this linearization technique is more compact in terms of constraints, the continuous

relaxation is at least as tight as the standard linearization technique.

Semi-definite programming (SDP), quadratic reformulation, and cutting-plane methods are alter-

native approaches used to generate strong relaxations of BQP. In SDP, which is considered an exten-

sion of MILP reformulations, non-negativity constraints are replaced by positive semi-definiteness

constraints (Helmberg et al., 2000; Oustry, 2001). In quadratic reformulations, one must alter the

objective function of a BQP problem and transform it into an equivalent convex/non-convex BQP

problem to generate tighter dual bounds (Billionnet et al., 2009; Rostami et al., 2022). The use of

valid inequalities, which are generated and added in a cutting-plane fashion, is another approach

commonly adopted in the literature (Fischer, 2014).

Another relevant approach to obtain a stronger reformulation for the BQP is to use decomposi-

tion techniques. Variants of decompositions such as Lagrangian decomposition, graph partitioning,

and CG methods are employed to explore the bounds of unconstrained BQP problems (Mauri and

Lorena, 2011, 2012). For constrained BQP problems, Chen et al. (2017) represent bounds for the
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BQP using a Lagrangian-based heuristic method. Some examples of using decompositions to tackle

the problem of investigating bounds for some specific BQP problems are observed for the quadratic

knapsack problem and the minimum spanning tree problem (Billionnet and Soutif, 2004; Pereira

and da Cunha, 2020).

There are a few papers in the literature reformulating a BQP model for a specific application

into a MILP with an exponential number of variables, which is solved by CG. Aloise et al. (2010)

reformulate the mixed 0-1 quadratic programming model of the modularity maximization prob-

lem and solve the reformulation using a stabilized CG. In a related study, a CG heuristic is used

in a districting problem to produce the best territories for the purpose of financial product pric-

ing (De Fréminville et al., 2015). Rostami et al. (2016) propose a lower bounding procedure for

the asymmetric quadratic traveling salesman problem. They reformulate the problem as a MILP

with an exponential number of cycles as variables and solve the relaxation using a CG. Recently,

Yarkony et al. (2020) developed an extended MILP formulation for correlation clustering. They

consider solving correlation clustering for several computer vision applications through CG, Ben-

ders decomposition, and dynamic programming (DP).

The most related works to our study are the papers devoted to the reformulation of the adjacent-

only quadratic minimum spanning tree problem (AQMSTP) to a MILP and solution algorithms

applied to solve the reformulation. More specifically, a star-reformulation is introduced in Pereira

et al. (2013) based on the concept of stars in graph theory to reformulate the AQMSTP by a stronger

linear programming (LP). Then, an algorithm based on dynamic column and row generation is

proposed to determine the dual bounds of the problem. In another study, Pereira et al. (2015)

present a branch-and-cut-and-price algorithm based on this reformulation of the AQMSTP and a

branch-and-cut algorithm based on projecting out the decision variables of this model. There are

also other reformulations and algorithms for the AQMSTP in the literature based on the proposed

star-based model (e.g., Pereira and da Cunha (2018, 2020)).

In recent years, identifying patterns and structures inherent in large-scale optimization prob-

lems and using them to efficiently tackle these real-life problems has drawn researchers’ attention.

Exploring the constraint matrix structures (Punnen et al., 2019), finding important patterns in

a specific problem class (Khaniyev, 2018), and revealing the structure of a data instance related

to a large-scale problem (Khaniyev et al., 2020) are among the notable techniques in this area.

One of the structures explored in the MILP literature is the singly bordered block diagonal (BBD)

structure. Exploiting this structure in the constraint matrices of a MILP leads to Dantzig-Wolfe

(DW) decomposition, Lagrangian relaxation, and branch-and-price (Bergner et al., 2015; Khaniyev

et al., 2018). Bergner et al. (2015) provide a computational proof-of-concept to show that the

DW reformulation can be automated and applied to all MILPs by exploiting and rearranging the
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structure of the constraint’s matrix in various ways. They suggest a score to measure the quality

of each decomposition and identify the most useful one for the DW reformulation of a MIP. To our

knowledge, there are few methodological studies concerning structures in BQP problems. Bettiol

et al. (2022) tackle BQP from the CG perspective and construct an approach to study the structure

of block-decomposable problems in BQP. They present two types of relaxations that acquire strong

lower bounds for general BQP and block-decomposable BQP specifically. The relaxations are based

on DW reformulation, while CG is used as their solution method. In addition, some studies explore

the linearizability of the quadratic cost matrices. Punnen et al. (2017) investigate the structure

of quadratic cost matrices to propose necessary and sufficient conditions for linearizability of the

quadratic traveling salesman problem. In another related work, Hu and Sotirov (2021) present a

linearization-based lower bounding scheme applicable to several BQP problems using a certificate

for a quadratic function to be non-negative on the feasible set.

To the best of our knowledge, the idea of exploring the effectiveness of the star-reformulation

on more general cases rather than the AQMSTP has not been investigated in the literature. Our

major focus here is to explore the generalizability and usability of this reformulation by splitting

the quadratic cost to model and solve more general problems in BQP.

1.2. Main Contributions

Our main contributions are summarized as follows:

• We investigate the idea of the star-reformulation proposed for the AQMSTP in the literature

on the adjacent-only BQP problems. Moreover, we show how to exploit such a structure to

split the general BQP problems’ quadratic costs into adjacent and non-adjacent components.

• We develop a column generation (CG) for each specific reformulation to derive valid dual

bounds.

• To demonstrate the potential of the star-reformulation, the cost-splitting framework and the

solution methodology, we consider three BQP problems (quadratic semi-assignment, adjacent-

only quadratic semi-assignment, and multiple object tracking) whose reformulations lead to

different master problems and pricing subproblems, i.e., (i) quadratic master problem and

unconstrained BQP pricing subproblem, (ii) linear programming master problem and uncon-

strained BQP pricing subproblem, and (iii) linear programming master problem and con-

strained BQP pricing subproblem.

• We perform extensive computational experiments to evaluate the proposed reformulations and

CG algorithms on the adjacent-only and general BQP problems. The special quadratic matrix

structure of adjacent-only BQPs and BQP problems with sparse quadratic costs derive the

most significant benefit from the star reformulation and the proposed splitting framework.
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The rest of the paper is organized as follows. In Section 2, we present the idea of star-

reformulation and introduce the adjacent-only BQP class of problems. Section 3 is corresponding

to the proposed cost-splitting framework and then we explain a column generation to solve the

reformulation. Section 4 is dedicated to presenting and reformulating one BQP example to evaluate

the cost-splitting reformulation and two adjacent-only BQP problems, the AQSAP and MOT, as

our illustrative examples to generalize star-reformulation. Finally, in Section 5, we explain our test

sets and display the computational results from the introduced problems and in Section 6, we wrap

up the paper and provide some future possible directions for the research.

2. Star-Reformulation For Adjacent-only BQP Problems

In many real-life applications modeled as BQP on graphs, the quadratic costs appear only between

adjacent edges. As such, interaction costs are zero for pairs of edges that do not share a com-

mon endpoint. Some notable examples include the adjacent-only quadratic minimum spanning tree

problem (Pereira et al., 2013; Pereira and da Cunha, 2020), the quadratic traveling salesman prob-

lem (Fischer, 2014; Punnen et al., 2017), the adjacent quadratic assignment problem (Fischer et al.,

2009), the adjacent quadratic shortest path problem (Rostami et al., 2015; Hu and Sotirov, 2018)

and variants of the correlation clustering and the modularity maximization problems (Bonizzoni

et al., 2008; Aloise et al., 2010; Yarkony et al., 2020).

To exploit such a unique structure in developing a solution strategy, we follow Pereira et al.

(2013) to reformulate the adjacent-only BQP to a new model with exponentially many variables

based on the concept of stars in a graph. To this end, we first provide some notations to introduce

the concept in Section 2.1 and then present the star-based reformulation in Section 2.2. For further

information on the star-reformulation, we refer the readers to Pereira et al. (2013) where the idea

is introduced for the adjacent-only QMSTP.

2.1. Definitions

Consider the BQP problem on graph G= (V,E) in (1). Without loss of generality, we assume that

V =N ∪H where N and H are disjoint sets. We also take into account the possibility of N being

an empty set. Thus, in this situation, the set V is equal to the set H. For each v ∈H, we define

δ(v)⊆E as the set of edges incident to node v and let A= ∪v∈Hδ(v) be the set of all edges with

exactly one endpoint in H, considering exceptionally, when the set N is empty, both endpoints of

all edges of the related graph are thereby included in H. So, if N ̸= ∅, A is the set of edges with

exactly one endpoint in H and if N = ∅, then A=E. Two distinct edges of A, say e= {i, j} and

f = {k, ℓ}, are adjacent if they share a common endpoint v in H, i.e., if {i, j}∩{k, ℓ}= v ∈H. We

denote by A the set of distinct pairs of adjacent edges in A:

A=
{
(e, f)∈A×A : e= {i, j}, f = {k, ℓ}, {i, j}∩ {k, ℓ}= v ∈H

}
(2)
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Figure 1 Two examples of graph to demonstrate the concepts of set A, adjacency set A and star s

Note: Graph on the left: A= {a, b, d, e, f, g}, A= {(a, b), (d, e), (d, f), (d, g), (e, f), (e, g), (f, g)}

Graph on the right: A= {a, b, c, d, e, f},

A= {(a, b), (a, d), (a, e), (a, f), (b, c), (b, e), (b, f), (c, d), (c, e), (c, f), (d, e), (d, f)},

Node1 is specified to motivate a star center candidate

The graphs indicated in Figure 1 illustrate the concept of adjacent edges by defining sets A and

A.

These definitions will lead to the following definition for the star-shaped sub-graph s. That is,

for each v ∈ H we define a star s centered at node v as any subset of δ(v) whose elements are

in the set A, including an empty set and let Sv be the set of all stars centered at node v. The

mathematical representation of the aforementioned definitions can be expressed as:

Sv = {s : s⊆ (δ(v)∩A)}.

Therefore, S =
⋃

v∈H Sv includes all the possible stars centered at nodes v ∈H in the graph. As

an example, in the left graph of Figure 1, s = {e, f, g, d} is the largest possible star centered at

node 1. Note that as both endpoints of the edge c are in the set H, this edge is not included in

any possible star of this graph.

2.2. Star-Reformulation

In the adjacent-only cases, interaction costs are zero for pairs of edges that do not share a common

endpoint in the defined subset H. Due to equation (2), in this BQP class, the quadratic cost q

for the pairs of edges (e, f) that are not covered by the set A are zero. Based on the represented

concepts and the fact that each star s∈ S consists of a subset of pairs in A, we can reformulate an

adjacent-only BQP problem in terms of stars. For each s∈ S let Cs =
∑

e∈s ce+
∑

e,f∈s qef represent

the total linear and quadratic cost of star s. We define a new binary decision variable λs for each

star s ∈ S to indicate if the corresponding star s is included in the solution of the BQP problem

or not. We also denote F to depict the feasible space of the problem. By preserving the definition

of variable x∈X, we provide the following star-based reformulation:

min
∑
s∈S

Csλs +
∑

e∈E\A

cexe (3)
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s.t. (x,λ)∈F(x,λ) (4)

x∈ {0,1}m (5)

λ∈ {0,1}|S| (6)

The objective function of the reformulation minimizes the total cost of the problem and consists

of two different parts. The first part corresponds to the cost of star s, including the linear costs of

the edges inside the star and the interaction between adjacent edges of that star. The second term

of the objective function reflects the linear cost of the edges which are not incorporated in any

possible star. Constraint (4) links the feasible region of the problem to the stars by coupling the

original variables x and new variables λ. It can also include the constraints which are only related

to the variables λ and the constraints which are only associated with variables x. We assume,

without loss of generality, that such linking constraints can always be found, because for each v ∈H

and each e ∈ δ(v), there exist parameters bes ∈ [0,1] such that xe =
∑

s∈Sv besλs (e.g., see Section

4). Since some of the constraints in the original model can be included in the definition of the star

in this reformulated counterpart, the x-only constraints can be considered as a subset of X in (1).

To elaborate on the star-reformulation consider the right graph of Figure 1. In this graph, a given

set of star centers (H) potentially comprises the whole node set of the graph (V ) (i.e., H = V ).

Intuitively, for BQP problems with this property, set A contains all the graph’s edges. To illustrate

this, consider the AQMST problem (Assad and Xu, 1992), in which the set H is equal to all nodes

of the graph (N = ∅). Thus, in the reformulated model of the AQMST of Pereira et al. (2013), the

objective function consists of only a linear term to represent the cost of stars. Nonetheless, in the

left graph of Figure 1, some of the nodes are not considered as possible star centers (N ̸= ∅), so we

keep the second term of the reformulation’s objective function to demonstrate the linear cost of the

edges which are not included in any possible star. In this study, we employ the star-reformulation

to model two applications, more details on modeling and solution methodology are presented in

Section 4.

3. Cost-Splitting and Star-Reformulation For General BQP Problems

In order to tackle the complexity of the general BQP problem of (1) using decomposition and

inspired by the idea of the star-reformulation of Section 2, we propose a cost-splitting framework to

reformulate BQP problems. Our methodology relies on the concept of star structures to partition

the objective function of (1) at any feasible solution x̄ into four parts: in-star linear costs, out-of-

star linear costs, in-star quadratic costs, and out-of-star quadratic costs. More precisely, given a

feasible solution x̄= (x̄1, x̄2, . . . , x̄m1
, . . . , x̄m) ∈X ⊆ {0,1}m, we can rewrite it as x̄= (x̄1, x̄2) with

x̄1 ∈ {0,1}m1 and x̄2 ∈ {0,1}m−m1 and where x̄1 is related to feasible solutions of edges in set A
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and x̄2 stands for feasible solutions of edges in E \A. Therefore, the objective function of (1) at x̄

can be written as: ∑
e∈A

cex̄e +
∑

e∈E\A

cex̄e +
∑

(e,f)∈A

qef x̄ex̄f +
∑

(e,f)∈E\A

qef x̄ex̄f

As presented in Section 2, the first and third terms of this formula together depict the costs of

inside stars, while the last term as a quadratic cost is associated with the interaction between pairs

of non-adjacent edges. Therefore, the cost-splitting reformulation of the BQP problem of (1) is

proposed where the constraints are maintained as in (4)-(6) and the objective function is as follows:

min
∑
s∈S

Csλs +
∑

e∈E\A

cexe +
∑

(e,f)∈E\A

qefxexf (7)

(4)− (6). (8)

Although modeling BQP problems based on separating adjacent edge interactions and non-adjacent

edge interactions is the principal notion behind the proposed model, each term of the objective

function can potentially be eliminated based on the specific problem structure in different applica-

tions. Nonetheless, we keep the first term of the objective function as the basis of our reformulation.

As an example, in the quadratic minimum spanning tree (QMST) problem (Assad and Xu, 1992),

since the quadratic cost comprises the interactions between all pairs of edges (adjacent and non-

adjacent) and the set of possible star centers consists of the complete node set V , in the objective

function of the cost-splitting reformulated model of the QMST problem, we incorporate a linear

term to represent the cost of stars and a quadratic term for interactions between non-adjacent

edges. Another notable example is the uncapacitated single allocation p-Hub median problem

(USApHMP) (O’Kelly, 1987; Meier et al., 2016) which can be formulated as a BQP problem.

This problem can be reformulated using our star-based model, consisting of linear costs inside the

possible stars and quadratic interactions between stars with different centers.

3.1. Column Generation Approach

The use of the star representation in the proposed reformulation of the BQP in (7)-(8) results in

an exponential number of variables λs, s∈ S. Pereira et al. (2013) suggest a column generation for

the star-reformulation of the AQMST problem. Inspired by this idea, CG is applied to deal with

the proposed cost-splitting of (7)-(8).

CG is an efficient iterative algorithm for providing dual bounds for problems with an exponential

number of variables (columns) (Dantzig and Wolfe, 1960). In each iteration of the algorithm, it

solves one restricted master problem (RMP) which is the problem restricted to a small subset of

the variables, and one or several pricing subproblems. Using the dual information of the RMP, the
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pricing subproblem is solved to verify the optimality of the master problem and the CG algorithm

stops if the optimality condition is satisfied. Otherwise, one or more new variables determined

by the subproblem will be added to the RMP and the updated RMP will be solved in the new

iteration.

Since the generic reformulation (7)-(8) is a non-convex quadratic problem, the standard CG

procedure cannot be directly applied. If the model is convex, meaning that the matrix q is positive

semidefinite, then either the underlying nature of that problem brings out a convex quadratic

subproblem or a convex quadratic master problem. In the case of a convex RMP, the primal and

dual solutions of the RMP can be obtained by state-of-the-art solvers. However, in our proposed

framework, we do not restrict the definition of q to positive semidefinite matrices. Therefore, one

has to deal with the quadratic term of the objective function. Different types of convexification

(Billionnet et al., 2009), linearization, semidefinite programming relaxation and BQP relaxation

for block-decomposable problems (Bettiol et al., 2022) are alternative options for handling the

BQP master problem. Nevertheless, some of these methods require additional complex constraints

and variables which may adversely affect their performance. Our approach is based on the idea

of converting the quadratic cost to linear cost by separating the in-star and out-of-star costs and

then replacing each of them by a linear term. Here, we follow linearization techniques to transform

the quadratic objective function into an equivalent MILP. We define yef as the linearized variable

to replace the quadratic terms xexf , (e, f) ∈ E \A, impose a set of linking constraints P(x,y) to

guarantee yef = xexf , and consider S̄ ⊆ S as a subset of possible stars, so we obtain the following

RMP for the LP relaxation of the problem:

min
∑
s∈S̄

Csλs +
∑

e∈E\A

cexe +
∑

(e,f)∈E\A

qefyef (9)

s.t. (x,λ)∈ F̄(x,λ) (10)

(x,y)∈P(x,y) (11)

y ∈R|(e,f)∈E\A|
+ (12)

λ∈ [0,1]|S̄| (13)

where F̄(x,λ) is a subset of F(x,λ) restricted to S̄.

In each iteration, we add a subset of columns s∈ S \ S̄ which potentially improves the objective

function of (9). To this end, we solve an auxiliary problem to find the most negative reduced

cost column to add to the master problem. Thus, a column entering the basis can be found by

computing the minimum reduced cost star with respect to the quadratic and linear costs of the

edges inside the star.
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According to the definition of the cost of stars Cs, the pricing subproblem can either be a

linear problem or a BQP problem. In a simple setting, this subproblem can take the form of

an unconstrained BQP (UBQP) problem. Nevertheless, it is possible that one must explicitly

incorporate constraints in the binary quadratic subproblem in some specific applications. Given

that the essence of solving a BQP problem exactly is NP-hard, intuitively adding columns with

negative reduced cost without solving the subproblem to optimality can be a promising alternative

when applying a CG algorithm. However, to provide a/some valid dual bound(s), we need to solve

the subproblem to optimality (Aloise et al., 2010; De Fréminville et al., 2015). Specifically, in the

case of a UBQP subproblem, several solution approaches based on greedy and heuristic methods

are proposed to solve this problem (Kochenberger et al., 2014). Even in the case where the pricing

is a constrained BQP problem and obtaining an exact solution is necessary, the size of the problem

is much smaller than the compact formulation in Section 1, meaning the problems are relatively

easy to solve. In addition, when the subproblem is a constrained BQP problem, we have better

options in terms of linearization techniques such as RLT to solve it exactly. In the following section,

we use examples to demonstrate how to deal with each of these cases.

Although the model presented in (7)-(8) is a generic reformulation of the BQP, special structure

assumptions for the quadratic matrix q to have only adjacent quadratic costs offer promising

properties for solving this type of problems. The third term of the objective function in (9) is

therefore eliminated and the stars interact with each other only through linear costs. The new

formulation for this particular class is an integer linear problem and consequently the constraints

(11) and (12) are removed leading to a model which is more tractable to solve than the generic

model. Noteworthy mentioning that the quadratic interaction between two adjacent edges may

depend on their common endpoint, or may be independent of it, resulting in different sparsity

levels of the matrix q.

4. Illustrative Examples

The objective of this section is to demonstrate how the star-reformulation, the cost-splitting frame-

work, and the solution strategy described in Sections 2 and 3 can be applied to different BQP

problems. To this end, we consider three BQP problems whose formulations lead to different master

problems and pricing subproblems, described as follows:

• Quadratic master problem and unconstrained BQP pricing subproblem

• Linear programming master problem and unconstrained BQP pricing subproblem

• Linear programming master problem and constrained BQP pricing subproblem

We consider the quadratic semi-assignment problem (QSAP) as an example to demonstrate the

performance of the cost-splitting idea in addition to two problems from the adjacent-only class of
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the BQP, the adjacent-only quadratic semi-assignment problem (AQSAP) and the multiple object

tracking (MOT) problem, to outline the computational advantages of the star-reformulation in this

class. In the following subsections, we provide a brief description and literature review for each

problem, as well as the compact BQP models. Then, we describe how to reformulate them as (7)

to (8) and obtain dual bounds using our CG solution method.

4.1. Quadratic Semi-Assignment Problem (QSAP)

In this problem, we are given a set of clients N = {1, ..., n} and a set of servers H = {1, ..., h}.

Suppose there is a linear cost ce, e= {i, j}, associated with the assignment of client i∈N to server

j ∈H and there is a quadratic cost qef , e= {i, j}, f = {k, l}, associated with the assignment of client

i ∈N to server j ∈H and client k ∈N to server l ∈H simultaneously. We transfer this problem

to the previously-defined graph G, with the node set V consisting of n clients and h servers and

the edge set E = {(i, j)|i ∈N,j ∈H}. By recalling the concepts of Section 3, we define the binary

decision variable as xe. Hence, denoting by variable xe equals 1 if the edge e is chosen (the client

i is assigned to server j), and 0 otherwise, the BQP problem of semi-assignment on graphs is

formulated as follows:

min
∑
e∈A

cexe +
∑

(e,f)∈E

qefxexf (14)

s.t.
∑
e∈δ(i)

xe = 1 ∀i∈N (15)

xe ∈ {0,1} ∀e∈E. (16)

The QSAP has a variety of applications in the area of scheduling (Stone, 1977; Chrétienne, 1989)

and partitioning (Hansen and Lih, 1992). The hub network design problem is also considered as a

special case of the QSAP (Saito et al., 2009). The problem is known to be NP-hard, and solving

it even for small size instances is very time-consuming (Sahni and Gonzalez, 1976; Magirou and

Milis, 1989; Malucelli, 1996). Using RLT is a common approach in the literature to solve the QSAP

and there are also some studies on polynomial algorithms, heuristics and lower bounding methods

for special cases of the QSAP. We refer the reader to Saito et al. (2009) and the references therein

for more details.

4.1.1. Reformulation. We reformulate the QSAP as the general model (7) to (8). To this

end, without loss of generality, we assume that every server j is a center of a star-shaped sub-graph

s. So, the binary variable λs corresponds to selecting this star. We define parameter Bjs ∈ {0,1}

to indicate if server j is the center of star s or not, the parameters Dis ∈ {0,1} to identify if client

i is included in star s, and Des ∈ {0,1} to denote whether edge e belongs to star s or not. The

out-of-star interactions in the QSAP result in a quadratic reformulation, so based on the notation
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given above, and according to the formulation (9)-(13), the linearized RMP can be expressed as

follows:

[RMP-QSAP]: min
∑
s∈S̄

Csλs +
∑

(e,f)∈E\A

qefyef (17)

s.t.
∑
s∈S̄

Bjsλs ≤ 1 ∀j ∈H (18)∑
s∈S̄

Disλs = 1 ∀i∈N (19)∑
s∈S̄

Desλs = xe ∀e∈A (20)

(x,y)∈P(x,y) (21)

0≤ xe ≤ 1 ∀e∈A (22)

y ∈R|(e,f)∈E\A|
+ (23)

λ∈ [0,1]|S̄| (24)

where yef are the linearization variables. Constraints (18) impose that at most one star can be

chosen among all the stars centered at j. Constraints (19) are the set partitioning linking con-

straints, which impose that each client must be included in exactly one star. Constraints (20) are

the linking constraints, and enforce that if an edge is selected in an optimal solution, then it has

to be included in only one selected star.

4.1.2. Column Generation. Starting from a subset of stars ({s|λs = 1}) which are feasible

with respect to the constraints of the reformulation as initial columns, the algorithm solves the

[RMP-QSAP] restricted to the current set of stars in each iteration. The corresponding dual solu-

tions construct one pricing subproblem for each server j ∈H, which aims to find a star related to

j with the minimum reduced costs. In the next iteration of the algorithm, these stars are added to

[RMP-QSAP] as the new columns to possibly improve the objective value of the master problem.

The algorithm terminates when there are no more columns with a negative reduced cost to be

added.

Let πj, ρi and γij be the dual solutions corresponding to constraints (18)-(20), respectively. For

each server j we consider a set of incident edges to that server. Therefore, we can use them to

rewrite the dual solutions γi,j as γe, where e= {i, j}. In addition, ρi is not dependent on j, and is

fixed for all star centers, so we use ρe, e= {i, j} instead of ρi in our formulation to keep it consistent

with the rest of the terms. The star with minimum reduced cost can be found by solving the

following pricing subproblems on graphs, one for each server j:

min
∑

e∈δ(j)

(ce − ρe − γe)ze +
∑

e,f∈δ(j)

qefzezf −πj (25)
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s.t. ze ∈ {0,1} ∀e∈ δ(j) (26)

where binary decision variable ze, e = {i, j}, indicates if client i is part of the star centered at

server j.

4.2. Adjacent-only Quadratic Semi-Assignment Problem (AQSAP)

In this section, we consider a special class of the QSAP in which the quadratic costs are restricted

to the adjacent edges only. Consider the QSAP of assigning n clients to h servers, this time in a

distributed processing system. If client i ∈N is assigned to server j ∈H, the required processing

time cij, is computed based on the processing speed of the server and the client’s demand. In this

type of problem, where multiple clients are assigned to the same server, there is no predefined

priority and the order of processing the requirements is unknown. In this situation, every client

i ∈N aims to minimize the worst-case completion time. Hence, the completion time of client i is

set to CTi =
∑

j∈H xij

∑
k∈N ckjxijxkj, where the binary variable xij = 1 indicates assigning client

i to server j (Drwal, 2014). The goal in this problem is obtaining an assignment to minimize the

total completion time for all clients,
∑

i∈N CTi. According to the definitions presented in Section

4.1 and considering edge e = {i, j} and f = {k, j}, the objective function of this problem on the

graph G is:

min
∑
e∈A

cexe +
∑

(e,f)∈A

qefxexf (27)

where the constraints of the problem are the same as (15) and (16) and the equation below holds:

qef = ce + cf . ∀(e, f)∈A (28)

This formulation is valid for all assignment problems in which multiple clients compete for a

single machine and each assigned client has to undergo the completion time of the machine. This

problem includes a large class of the QSAP, while the structure of its quadratic matrix narrows

it down to the class of problems described in Section 2. We denote this problem by adjacent-only

QSAP (AQSAP) in the rest of the paper. Note that the explanations provided here are based on an

application of AQSAP for clarity. Nevertheless, AQSAP is a general problem and can be applied in

various applications such as specialized variants of scheduling and selfish resource allocation on the

Internet. We observe two fundamental properties of the current problem: (i) similar to the QSAP,

the linear costs for the edges which are not covered by stars are zero, and (ii) the non-adjacent

edges do not interact with each other. Therefore, there are no out-of-star interactions between

edges in the AQSAP, which in turn leads to the following reformulation:

min
∑
s∈S

Csλs (29)
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s.t.
∑
s∈S

Bjsλs ≤ 1 ∀j ∈H (30)∑
s∈S

Disλs = 1 ∀i∈N (31)

λ∈ [0,1]|S| (32)

In this case, the reformulation is linear and CG is directly applicable. In order to solve the

reformulation with CG, the pricing subproblem on graphs for every star center j can be written

as:

min
∑

e∈δ(j)

(ce − ρe)ze +
∑

e,f∈δ(j)

qefzezf −πj (33)

s.t. ze ∈ {0,1} ∀e∈ δ(j) (34)

where πj, j ∈ H, and ρi, i ∈ N are the optimal duals associated with constraints (30), and (31),

respectively, and we transfer them on the edges incident to j. Similar to the QSAP, here we end

up with a UBQP pricing subproblem. Implementation details of the CG approach, and extensive

computational experiments to find dual bounds, are provided in Section 5.

4.3. Multiple Object Tracking

Multiple object tracking (MOT) and, more specifically, multiple people tracking is a well-known

application in computer vision that aims to track multiple objects (people) in a sequence of video

frames. MOT is associated with a variety of applications like self-driving cars, human-computer

interaction, security and video surveillance, sports analysis, some games like Microsoft Kinect,

traffic analysis, etc. (Shen et al., 2018; Emami et al., 2018). Despite recent developments in this

area, it is still a very challenging task due to occlusion and scene cluttering. As a result of the

advancement of object detection technologies, detection-based methods are the most dominant

techniques in MOT (Tang et al., 2017; Shen et al., 2018). MOT consists of three main components:

(i) detecting the objects, in which a person detector is utilized for each individual frame to find the

potential locations of all the people, (ii) affinity, or score estimation, which demonstrates how likely

detections are related to a single identity, and (iii) data association, in which these hypotheses are

linked across the frames based on the estimated scores to form tracks (Henschel et al., 2018).

In general, while object detection and score determination are deep learning tasks, data associ-

ation is a combinatorial optimization problem. Once the detections and their unary and pair-wise

scores are computed, they are given as inputs to the data association problem to generate the

associated tracks. In the context of MOT, a sequence of frames (from t0 to t3) of a scene containing

a few objects (such as people) is depicted in Figure 2. These potential objects are identified as a

priori through the use of a machine-learning-based object detection method which provides a list
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Figure 2 Graphical representation of a solution of the data association in MOT applied to detections of four

video frames

of potential objects and the likelihood scores associated with them. This list and the detection

scores are then used as the inputs in the optimization model. The detected objects are represented

by circles and crossmarks in this figure where the detection scores produced by the detection algo-

rithm are included as a part of the linear and quadratic costs in the MOT model. This figure

represents the results of the data association step. In this step, an optimization model is solved

to determine the set of detections that belong to the same object across multiple frames based

on the cost parameters. The figure shows that, after solving the optimization model, the solution

indicates four tracks (people) which are depicted by connecting lines in the figure and two false

detections, represented by crossmarks. As shown in Figure 2, two of the objects are captured in

all four frames while one of the objects moves through frames t0 to t2 and the other object only

moves from frame t2 to the last frame. Data association algorithms can be categorized as online or

offline algorithms (Emami et al., 2018). Here we consider the offline data association case.

Essentially, a data association problem can be modeled with respect to a graph G= (V,E). A

detection i ∈ N is represented by a node in this graph. We consider another set of nodes H =

{1,2, . . . , h} which are dummy nodes related to the tracks (target people). h is an upper bound

on the number of target people in the video, which is predefined as an input. More precisely, we

define the graph where the vertex set V consists of all detections, i.e., potential bounding boxes

of potential candidates of people N in a video sequence and all possible tracks (target people)

H. Similar to Section 2, consider A as a subset of edges E which are incident in a node in H.

Therefore, edge e= {i, j} ∈A denotes a possible linking of a detection to a track (person).

Given T = {1,2, . . . ,T } as the set of all frames, each detection i belongs to a frame t ∈ T . We

introduce two other subsets of edges based on our definitions in Section 2.1: δ(i)⊆A is a subset of

edges in A incident to node i and δt(i) is a subset of δ(i) when the edges stem from the frame t.

Each edge e= {i, j} ∈A has a cost ce ∈R defined via a logit function and reflects the likelihood

of detection i∈N being a correct detection. This cost is called unary cost in the computer vision

literature (Henschel et al., 2018). Unary cost is fixed for each detection i and is not dependent on
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tracks. For every pair of edges (e, f) which are incident in a node in H, a pair-wise cost qef ∈Rm×m

is to be paid. Note that the interaction between edges e and f is non-zero if, and only if, the

detections i ∈ N and k ∈ N are assigned to a distinct track. Pair-wise cost identifies how likely

two detections belong to the same person. The probabilities which determine the costs are inferred

based on detection scores. There are several ways to estimate these score terms from the geometry

features, color histogram, appearance, and other features related to the image data. Considering p

as this probability, the quadratic cost is computed as log(1− p)/p, so depending on the unary and

pair-wise probabilities the costs can be negative, positive or zero, resulting in non-convexity of the

problem (Dehghan and Shah, 2017; Henschel et al., 2018).

Similar to the model presented in Henschel et al. (2018), the MOT data association problem to

minimize the total cost of labeling is expressed as:

min
∑
e∈A

cexe +
∑

(e,f)∈A

qefxexf (35)

s.t.
∑
e∈δ(i)

xe ≤ 1 ∀i∈N (36)∑
e∈δt(j)

xe ≤ 1 ∀j ∈H, ∀t∈ T (37)

xe ∈ {0,1} ∀e∈A (38)

where constraints (36) are needed to mandate that more than one track assignment is not possible

for every detection i. Constraints (37) restrict the model to select at most one detection associated

with each track inside every frame.

Although the BQP model from Henschel et al. (2018) only contains constraints (36), different

types of potential side constraints can be added to this primary model. These constraints can be

formulated based on prior knowledge or hypotheses associated with the scenes that video frames

come from, the types of cameras taping the frames, or the features of the object detector as well

as other constraints based on the prior knowledge with respect to the objects in the scenes (Assari

et al., 2016; Dehghan and Shah, 2017). The goal here is to input possible additional knowledge

associated with the scenes, detections, and other available information as the constraints to the

model. Thus, the obtained tracks will be more accurate with respect to the ground truth. In this

study, based on the assumption of using only one detector (body detector) and having one detection

per person as inputs to the problem, we append the frame constraints in (37) to the basis model

from Henschel et al. (2018), guaranteeing that no two detections inside a frame are associated with

the same person.

There are a few works in the literature on object tracking which are related to our modeling and

solution method. Leal-Taixe et al. (2012) study the problem of tracking multiple objects across
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multiple cameras. Their LP minimum cost flow formulation of the problem has block structural

properties and they explore the results using a branch-and-price algorithm. Wang et al. (2017)

model the MOT problem through an ILP and suggest using CG for MOT and solving the associated

pricing subproblem with dynamic programming. They consider a pool of constructed tracklets

(short tracks along with a few frames) as input for their model and choose an optimal among

them based on DP. However, in this study, we deal with the quadratic interactions between many

detections simultaneously.

4.3.1. Reformulation. To reformulate the problem as the general star-based model, (7) to

(8), we identify each track j as the center of a possible star s. According to the definition of the

problem, the pair-wise costs of MOT correspond only to the pairs of edges associated with the same

person, meaning that if the edges are adjacent in H, their corresponding quadratic cost is non-zero

and otherwise it is zero. Therefore, we can exploit the special structure of the adjacent-only class

in this problem. Moreover, since the cost ce is zero for the edges that are not incident to nodes in

H, the objective function of our reformulation is reduced to the cost of stars. Thus, the star-based

reformulation of MOT is given below:

[RMP-MOT]: min
∑
s∈S̄

Csλs (39)

s.t.
∑
s∈S̄

λs ≤ h (40)∑
s∈S̄

Disλs ≤ 1 ∀i∈N (41)

λ∈ [0,1]|S̄| (42)

The star-based model for LP relaxation of MOT consists of one star-only constraint (40) enforcing

the maximum number of tracks, and one set of coupling constraints (41) to impose labeling every

detection with at most one track.

4.3.2. Column Generation. The CG process starts from an empty set of feasible stars where

we solve a pricing subproblem for each person j ∈H as a star center. Let π and ρi, i ∈N , be the

optimal solutions of dual variables associated with constraints (40) and (41), respectively and by

transferring the definition of ρi to the edge e= {i, j}, we rewrite it as ρe. We further define binary

variable ze = 1 when edge e is selected in the star and ze = 0 otherwise. Given this, the pricing

subproblem corresponding to center j ∈H is as follows:

min
∑

e∈δ(j)

(ce − ρe)ze +
∑

e,f∈δ(j)

qefzezf −π (43)

s.t.
∑

e∈δt(j)

ze ≤ 1 ∀t∈ T (44)
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ze ∈ {0,1} ∀e∈ δ(j) (45)

where constraint (44) restricts each star to select a maximum of one detection per frame.

Note that this CG process requires only one subproblem to be solved at each iteration. This is

due to the fact that neither linear nor quadratic costs are dependent on the star centers; the centers

can be realized identically. More specifically, suppose that j, l ∈H are possible star centers (tracks)

and i, k ∈ V \H are the detections. The quadratic interaction between e1 = {i, j} and f1 = {k, j},

qe1f1 is equal to the quadratic interaction between e2 = {i, l} and f2 = {k, l}, qe2f2 .

We remark that the pricing subproblem in this case is a constrained BQP problem. The imple-

mentation details are provided in Section 5.

5. Computational Experiments

In this section, we provide a rigorous experimental study to evaluate our suggested framework on

test instances of the quadratic semi-assignment, the adjacent-only variant of the QSAP and MOT

in terms of dual bound and computing time. We attempt to answer these fundamental questions

through our experiments: How effective and applicable is the star-reformulation on other adjacent-

only problems like the AQSAP and MOT? To what extent employing the cost-splitting framework

is worthwhile for a BQP problem like the QSAP? And for each of the selected problems, which

type of formulation performs better?

To answer these questions, we compare the star-reformulation, the cost-splitting and the CG

framework with both standard linearization technique (SLT) and RLT as two most commonly used

methods in the literature of BQP. For the QSAP and the AQSAP, we also compare our results

with the most effective exact method proposed (Rostami et al., 2022). GUROBI version 9.0.1 is

chosen as our benchmark mixed-integer programming (MIP) solver and we also solve the BQP

models directly using GUROBI. Note that, through the CG procedure, we consider various possible

reformulations which result in different pricing subproblems (i.e., BQP and different linearizations).

This leads to different reformulations and solution strategies to solve the original BQP models

which can be implemented and solved by a commercial solver like GUROBI. We consider a time

limit of 3 hours to solve each instance.

For the sake of comparison, the root node dual bound of the RMP is selected as a reliable

indicator to be compared with the solver dual bound. Yet, the dual bound is not the only measure

of efficiency; we single out the computation time needed to complete the CG process in the root

node and for GUROBI to solve the problem.

We compare the trade-off between computation time and the quality of the dual bound using the

methodology of performance profiles (Dolan and Moré, 2002; Bergner et al., 2015) in the related
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section of each problem. The profile plot shows the cumulative distribution function (CDF) of the

ratio of the time taken by each method to solve each problem or the bound obtained by each

method to the best acquired time or bound among all the approaches for that problem. These two

criteria are described below in more detail:

- Dual bound performance profile: The first set of graphs is based on the dual bound quality

regardless of the time required to compute that bound. For each instance and each method, we

compute the ratio between the dual bound of each method and the best bound among them. The

horizontal axis reports this ratio, thus the vertical axis corresponds to the fraction of instances with

at least this ratio of bound performance displayed for each method. A large value is considered

for the ratio where the method could not provide any dual bound for an instance within the time

limit.

- Time performance profile: The second type of graphs is generated based on the time needed

to obtain the best dual bound. In this analysis, for each instance, we first find the best dual bound

among all the obtained dual bounds by different methods. Then, for every method which yielded

the best dual bound, we consider the ratio between the time required by that method to attain

the best dual bound and the shortest time among all of them. This ratio provides the performance

index in the horizontal axis. We report the fraction of instances with a maximum of a specific time

ratio in the vertical axis. A large value is assigned to the ratio where the method is not able to

achieve the best dual bound for an instance. Before moving on, let us make the following remarks:

Remark 1. For each method, the probability that the method will win over the rest of the

methods is defined by the fraction of instances with the best performance (Dolan and Moré, 2002).

Hence, we refer to the ratio of instances with the performance equal to one, as the number of wins

of the associated method.

Remark 2. When running the CG algorithm, we do not have to wait until the termination of the

CG procedure to obtain a valid lower bound. If the CG procedure could not converge in our desired

time, we have information about the intermediate quality of the dual bound in each iteration at

the expense of slightly more computations (Lübbecke and Desrosiers, 2005). Nonetheless, to attain

an exact dual bound, we must solve the pricing of that iteration to optimality.

Remark 3. Primal bounding methodologies are beyond the scope of the current study, thus we

do not embed the CG procedure in a branch-and-bound tree. However, we compute primal bounds

by applying a trivial heuristic to the solutions of the CG for each instance of the problem. In this

heuristic, we solve the IP model for the master problem of the last iteration where all available

columns are considered as binary variables. In Appendix C, we discuss the obtained upper bounds

in more detail.
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Remark 4. The reported computation time for the experiments is comprised of the time to

attain both LB and UB.

Remark 5. It is well-accepted that difficulties in proving optimality may appear when column

generation is solving a degenerate, large-scale problem. In addition, dual variables may oscillate

from a good one to a much worse one, deriving the same value for many iterations of the CG

(Amor et al., 2004; Desaulniers et al., 2006). Computational experiments show that it is possible

to alleviate these effects using stabilization techniques such as dual-optimal inequalities and stabi-

lized column generation algorithms. In this study, we implemented BoxPen, in-out separation, and

interior-point stabilization techniques (Du Merle et al., 1999; Ben-Ameur and Neto, 2007; Rousseau

et al., 2007). Since these methods need tuning of several parameters and our main focus is on

the application of the standard CG algorithm, further specialized CG enhancements and tuning

procedures for specific problem structures were not thoroughly investigated. Our computational

results demonstrate improvements in some CG experiments, but not for all of them. Thus, we have

decided to keep the unstabilized results in our reports. However, one can test different techniques

to accelerate the CG algorithm to solve the proposed star-reformulation and cost-splitting in an

arbitrary application.

All the algorithms and models were implemented in the Python programming language. They

were performed on a shared cluster with a four-core, 3.05GHz processor and 128GB RAM run-

ning under Linux 7.8. In the following sections, we present the test instances, parameter settings

and computational results for the data association in MOT and both versions of the QSAP. The

instance-by-instance tables in Appendix B provide more details on the results of each problem.

5.1. QSAP and Adjacent-only QSAP Experiments

Instances in the literature that can be used for the QSAP experiments are very limited and many

papers rely on data instances that were randomly generated (Silva et al., 2021; Rostami et al.,

2022). More importantly, since our main objective was to investigate the instances with varying

cost structures, we generate random instances for QSAP, introduced in Section 4.1, where the

processing cost cij for assigning a client i to a machine j is computed as dmi×prj. The client unit of

demand for processing i is identified by dmi, while prj indicates the required time for processing a

unit in machine j. They are randomly generated over (0,100) and (0,10), respectively, from uniform

distribution. We carry out our experiments considering different combinations of parameters n≤ 50

and h≤ 14, since in practice h is smaller than n. To investigate the impacts of the sparsity and

structure of the quadratic matrix on the performance of the cost-splitting framework, we run the

experiments on 5 randomly-generated data sets with different sparsity of the quadratic matrices,

each comprised of 41 instances. We embark on our experiments, using an adjacent-only QSAP data
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set and adding out-of-star interactions incrementally to observe the effects. Indeed, the quadratic

matrix of the first problem consists of in-star interactions only, while the next problems include 10%,

15%, 20%, and 25% out-of-star interactions, respectively, in addition to the in-star interactions.

We should take into account that, in the real-life applications of BQP, the quadratic matrix is

mostly very sparse (Furini et al., 2019). Therefore, adding just 10% out-of-star interactions on top

of the in-star interactions results in a fairly dense quadratic matrix. Data generated by altering

parameters n and h are defined in the QSAP-associated tables in Appendix B.

As mentioned in Section 4.1, the pricing subproblems (25) and (33) are unconstrained BQP

problems. In order to heuristically solve these subproblems, we employ an open-source solver,

qbsolv (Booth et al., 2017). Based on divide and conquer and dynamic programming, the solver

partitions the problem into multiple subproblems and solves them using a tabu search algorithm.

When the heuristic solver fails to find an improving column to add, we switch to an iteration of an

exact method. In addition, as mentioned before, to retrieve information on the intermediate dual

bounds, either the pricing has to be solved to optimality or a valid lower bound on the optimal

reduced cost must be available. Hence, we apply a hybrid strategy to solve the pricing subproblem

in which, after calling qbsolv for a fixed number of CG iterations, it switches to an exact method

(branch-and-bound) for one iteration. In the exact iteration, either the BQP formulation of the

subproblem or the linearized version is solved by GUROBI. We chose the standard linearization

technique to construct the set P(x, y) in constraints (21). The concept of the standard linearization

is presented in Appendix A.

As mentioned earlier, the RLT is, in general, the most effective linearization approach to provide

tight bounds for the QSAP in the literature (Billionnet and Elloumi, 2001; Schüle et al., 2009).

Therefore, we compare the results of our reformulation with the results of GUROBI applied to the

RLT model of the QSAP as well as the SLT model of the QSAP. To investigate the effectiveness

of the proposed reformulation, we also implement the reformulation and outer approximation sug-

gested in Rostami et al. (2022) for a class of BQP problems including the quadratic semi-assignment

and report the results on the same instances. A brief description of the different reformulations

and methods used to solve instances of the QSAP and the AQSAP are provided here.

BQP: The BQP model (14)-(16) solved by GUROBI.

SLT: Linearized reformulation (using SLT) of the BQP model (14)-(16) solved by GUROBI.

RLT: Linearized reformulation (using RLT) of the BQP model (14)-(16) solved by GUROBI.

OuterApproximation: Convex reformulation and outer approximation (Rostami et al., 2022)

applied to the BQP model (14)-(16) solved by GUROBI.

CG+BQPPricing: CG algorithm for the model (17)-(23) where the UBQP pricing is solved by

GUROBI
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Figure 3 Performance profiles for AQSAP instances
(a) Dual bound performance profile (b) Time performance profile

CG+SLTPricing: CG algorithm for model (17)-(23) where the standard linearization of the pricing

subproblem is solved by GUROBI.

CG+HeuristicBQPPricing: CG algorithm for model (17)-(23) where the UBQP pricing is solved

by using the hybrid heuristic method described above.

CG+HeuristicSLTPricing: CG algorithm for model (17)-(23) where the UBQP pricing is solved

using the hybrid heuristic in which the exact iteration solves the standard linearized pricing

subproblem by GUROBI.

Note that, although we use GUROBI to solve all the obtained models in different methods, in

the rest of the work, we only refer to SLT, BQP and RLT as GUROBI methods for the sake of

simplicity.

Figures 3 to 7 show the results of all methods in terms of performance profile for both the

AQSAP and the QSAP. In each figure, the left diagram compares all GUROBI, CG and the Out-

erApproximation methods in terms of dual bound performance, while the right one gives the time

performance comparison of the methods. According to the description provided for the dual bound

performance profile, the dual bound ratio is between zero and one for this application. However, the

diagrams on the right-hand side corresponding to time performance always consist of performance

ratios that are greater than or equal to 1. Clearly, for both bound and time performance profiles,

a method with a larger fraction of instances with a ratio closer to 1 is preferable.

AQSAP results. The results for the AQSAP instances are given in Figure 3. Accord-

ing to the LB performance analysis in Figure 3a, CG hybrid methods have the most wins

in terms of providing the best LB (83% and 80% for the CG+HeuristicBQPPricing and the

CG+HEURISTICBQPPricing, respectively) among all the methods, though the CG+BQPPricing

outperforms the hybrid methods in a few quantiles. For instance, all the instances are solved by
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the CG+BQPPricing to 90% of the best LB, while only 95% of them could reach this ratio when

solved by the CG+HeuristicPricing. We also observe that in general, GUROBI solves the BQP

model (BQP) slightly better than it solves the linearization models (SLT and RLT). If we seek a

method that can achieve at least 20% of the best LB, then all of the tested methods achieve this.

However, if we increase the requirement to 40%, we can observe that all the CG methods perform

better than the non-CG GUROBI methods and the OuterApproximation method. Finally, looking

for a method with 100% performance, the CG+HeuristicBQPPricing is the best choice.

The next analyses are related to computing time. The time performance profile in Figure

3b shows that the best time to find the best LB for almost 50% of instances belongs to the

CG+HeuristicBQPPricing method. It also demonstrates the superiority of this method in all other

quantiles. Comparing all the methods together, the GUROBI methods and the OuterApproxima-

tion method are inefficient at finding the best LBs, where the best of them in terms of time (the

OuterApproximation method) provides the best time in only 7% of the cases. As another example

to illustrate the superiority of CG methods, consider that using the SLT method, only 15% of the

instances and using the BQP, only 12% of instances could converge to the best LB within 2 orders

of magnitude of the best time.

Looking at both graphs simultaneously confirms the superiority of the CG-based methods over

the GUROBI and the OuterApproximation methods, with a large gap for almost all intervals.

Likewise, comparing the different methods of CG indicates that, as theory suggests, combining

heuristics and exact methods to solve the pricing problems improves the results both in terms of

computing time and LB for most of the instances.

QSAP results. The results for the QSAP instances are shown in Figures 4 and 7 where to

increase the density of the quadratic matrix, we add more out-of-star interactions to the AQSAP

problem each time to generate our data sets.

Considering the graph 4a, where we have only 10% out-of-star interactions (quadratic

costs), the overall interpretation of the results is very similar to adjacent-only QSAP. The

CG+HeuristicBQPPricing has the greatest number of instances with the best LB among all the

methods (44%); however, this time the CG+BQPPricing outperforms the hybrid counterpart in

more intervals compared to the AQSAP. The performance of the GUROBI methods and the Outer-

Approximation is almost the same as before. The BQP and the OuterApproximation methods are

superior to the other GUROBI methods while they still have a huge LB performance gap compared

to all the CG methods.

Nevertheless, in the next LB performance profile represented in Figure 5a, all GUROBI methods

and the OuterApproximation outperform CGs in the interval [0.95,1]. Comparing the CG methods
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Figure 4 QSAP-10% out-of-star density

(a) Dual bound performance profile

(b) Time performance profile

with one another in this figure demonstrates that the CG methods with exact pricing generally

outperform heuristic pricing methods. Considering this figure and the next LB performance figures,

6a and 7a, the number of wins for the GUROBI and the OuterApproximation methods is more

than for CG methods. Indeed, adding more out-of-star interactions incrementally to the data sets

in Figures 6a and 7a results in enhancing the performance of the GUROBIs and the OuterApprox-

imation method. However, even for the densest quadratic matrix in Figure 7a, the CG methods

still outperform non-CG methods in some quantiles. For example, we can observe the superiority

of both CG+BQPPricing and CG+SLTPricing to GUROBI methods when a ratio smaller than

70% is considered and to the OuterApproximation method when the ratio is smaller than 60%. An

overview of LB performance profiles for all of the data sets in the QSAP demonstrates that CG

methods are more robust because they can achieve satisfactory LB performance for most of the

instances. While if we need higher LB ratios, we aim to use GUROBI and the OuterApproximation.

For instance, in the case of 20% out-of-star density and for a minimum requirement of 60% LB

performance, we would opt for the CG+BQPPricing as all the instances reach this ratio of the best

bound when they are solved using this method. In contrast, the best non-CG method, the Outer-

Approximation, satisfies this requirement in only 90% of the problem instances. Assessing non-CG

methods, the plots suggest increasing the performance of both RLT and the OuterApproximation

compared to BQP and SLT by adding more out-of-star costs, to an extent that they outperform

BQP and SLT in most of the quantiles in Figure 7a.

The second analysis is related to the time performance profiles. As shown in Figure 3b, all CG

methods perform better than GUROBI methods in all quantiles when it comes to AQSAP. Starting

from the plot associated with time performance in Figure 4, when we add out-of-star interactions,
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Figure 5 QSAP-15% out-of-star density

(a) Dual bound performance profile

(b) Time performance profile

the GUROBI methods and the OuterApproximation move upside of the figure and get closer to the

CG methods. This is due to the fact that the speed of the GUROBI and the OuterApproximation

methods increases when the instances consist of some out-of-star interactions in addition to the

in-star interactions. However, still, in Figure 4b, most wins belong to CG methods. Starting from

Figure 5b, SLT, RLT, and BQP methods outperform all CG methods in all quantiles. Comparing

non-CG methods together, similar to the LB analysis, the OuterApproximation outperforms the

GUROBI methods in terms of time and it is superior even when we add more out-of-star costs.

It is interesting to note that, based on the last vertical lines of Figure 4b, around 47% of

the instances could not obtain the best LB when they are solved by the best CG method

(CG+HeuristicBQPPricing), while this number is 57% for the best GUROBI method and the Out-

erApproximation method. Although inefficiency at finding the best LB increases for CG methods

by adding more out-of-star costs, GUROBI methods can reach the best lower bound for more

instances, in denser matrices, due to their speed improvement. Regarding the vertical lines for the

BQP method in Figures 5b and 6b, our interpretation is that this method could not obtain the best

LB in the time limit for more than 35% of instances, whereas it obtained the best LB in the best

time for the other 65% of instances. Moreover, it is observed that as often seen in the literature, CG

methods with exact pricing are slower than their hybrid counterparts for all instances of adjacent-

only problems. Nonetheless, the advantages of using the hybrid methods are weakened for more

dense quadratic matrices. As an example, Figure 7b shows that the CG+HeuristicBQPPricing

method outperforms the CG+BQPPricing in only 4% of the cases in terms of time performance.

Looking at the trend in all of the time performance profiles in Figures 4b to 7b, we observe that

the GUROBI methods and the OuterApproximation method generally outperform CG methods
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Figure 6 QSAP-20% out-of-star density
(a) Dual bound performance profile (b) Time performance profile

when the quadratic cost matrix of the QSAP is more dense. For instance, in Figure 7b where we

have 25% out-of-star quadratic costs, in approximately 63% of the instances, the best GUROBI

method (RLT) is within one order of magnitude with respect to the best time. Nevertheless, when

we solve the instances using the best CG method (CG+BQPPricing), only around 18% of the

cases are within this order. However, we should remark that, in our time performance analysis,

we do not reflect the computing time of the instances which could not obtain the best LB. In an

extreme example, suppose that CG stopped in a few seconds with a high ratio of the best LB while

GUROBI found the best LB in 3 hours. In this situation, since CG did not yield the best LB, we

assign a very large number (10000) to its time performance. If the GUROBI method is the only

one that obtains the best LB, we consider its corresponding time performance equal to 1.

Considering both performance profile analyses and the instance-by-instance details of Appendix

B, it can be deduced that the star-based reformulation and CG, even with a basic implementation,

outperform GUROBI in terms of computing time and LB for all the instances of the AQSAP.

Additionally, in a large number of the instances, given a heuristic solution for the optimal value,

optimality can be proved in the root node for this problem. By evaluating the general QSAP, the

performance of the cost-splitting framework is reduced by augmenting the out-of-star quadratic

matrix and it might not be highly effective when the matrix is fairly dense. It should be noted that,

since the majority of real applications of the BQP consist of sparse quadratic matrices (Furini et al.,

2019), 10% to 25% out-of-star interactions in addition to in-star interactions provides the proper

condition to investigate the effects of having dense matrices in our proposed reformulation. One

notable remark is that, although the performance of the CG methods appears to deteriorate when

solving the instances with more out-of-star costs, their performance to solve larger instances is still

generally good. The results shown in instance-by-instance tables in Appendix B suggest that for the
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Figure 7 QSAP-25% out-of-star density

(a) Dual bound performance profile
(b) Time performance profile

majority of large instances, the CG methods generally provide the best bounds when the time limit

is reached. In this case, GUROBI and OuterApproximation method’s dual bounds are relatively

weak. In practice, we may choose CG methods over non-CG methods for even denser quadratic

matrices. For example, when we have 15% out-of-star density, all the instances solved by the

CG+BQPPricing provide an overall LB with the ratio of at least 80% of the best LB, while this ratio

is 30% when using the best GUROBI method, BQP. Although GUROBI and OuterApproximation

methods can solve small instances quite efficiently and obtain the best bounds, they still have

a huge optimality gap when solving large instances after 3 hours. On the other hand, while CG

methods are not able to converge to the best LB in many cases, they obtain a rather strong LB

compared to the other methods in the majority of the instances which were not solved to optimality

within the time limit.

5.2. MOT Experiments

For the MOT data association problem, we perform our tests based on a well-known benchmark,

the MOT challenge datasets (Milan et al., 2016). Our tests are performed on different instances

from the same video sequence (MOT16-09) of this benchmark and produce instances by altering the

input parameters in the sequence. These parameters include the number of frames in the video (T ),

the maximum number of tracks (h), and the maximum number of considered adjacent frames (d).

Trivially, the estimated upper bound h has to be increased by enlarging the number of investigated

data frames to avoid missing track of any person in a real case. However, one has to consider the

effects of this parameter on the growth of the problem size in the pre-estimation. In addition, we set

the quadratic cost of two nodes that are more than d frames apart to zero in our implementation.

We alter this parameter to demonstrate its influence on enlarging the quadratic matrix and problem
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size and generating various instances. The majority of the dataset configurations in this section

are based on Henschel et al. (2018).

It is worth noting that to be able to compare two entire MOT algorithms, the detection of objects

and the precision of estimating unary and pair-wise costs, which are normally obtained using deep

learning techniques, are very crucial. However, since in the current paper , we aim to compare the

proposed reformulation of data association and CG with the results of a MIP solver, computing

real accurate costs is beyond the scope of our research. Therefore, although we explore the real

detection of the MOT challenge dataset, we estimate naive unary and pair-wise costs for these

detections based on some basic factors such as the distance between the detections. This method

is exploited in several papers in data association. For example, Yarkony et al. (2020) assume that

the costs are provided by learning methods and are given to their algorithms.

We should remark that each frame in the MOT16-09 sequence includes 15 to 25 detections;

therefore, the number of decision variables in the represented formulation of (35) is between 15×

h× T and 25× h× T . To better realize the large scale of the problem, assume we investigate a

data instance related to 10 frames of a video sequence consisting of an average of 20 detections in

each frame and we aim to track a maximum number of 35 people in the sequence. This instance

includes 7000 decision variables in the represented BQP formulation, which generates a graph of

the problem with 235 nodes in total. We show 27 generated instances from the mentioned data set

in Tables 11 and 12 of Appendix B.

Similar to the semi-assignment problem, here we evaluate the efficiency of the star-based reformu-

lation of MOT compared with the solver. In Section 4.3, we discussed that the pricing subproblem

of MOT is a constrained BQP problem. So, we can apply a naturally tighter linearization, RLT,

to solve the subproblems in addition to previously-used standard linearization in the QSAP. In

Appendix A, we clarify this linearization when it is applied to the MOT formulation. Here, the

solution methods are briefly introduced:

BQP: The BQP model (35)-(38) solved by GUROBI.

SLT: Linearized reformulation (using SLT) of the BQP model (35)-(38) solved by GUROBI.

RLT: Linearized reformulation (using RLT) of the BQP model (35)-(38) solved by GUROBI.

CG+BQPPricing: CG algorithm for model (39)-(42) where the constrained BQP pricing is solved

by GUROBI.

CG+SLTPricing: CG algorithm for the model (39)-(42) where the standard linearization of the

pricing subproblem is solved by GUROBI.

CG+RLTPricing: CG algorithm for the model (39)-(42) where the linearized pricing subproblem

using RLT is solved by GUROBI.
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Figure 8 Performance profiles for the MOT problem
(a) Dual bound performance profile

(b) Time performance profile

As discussed in the previous section, we investigate the performance of the methods through

two types of performance profiles. Moreover, we report the experimental details for each instance

of the problem in instance-by-instance tables in Appendix B.

According to the LB performance plot in Figure 8a, all the CG-based methods outperform their

GUROBI-based counterparts in almost all of the intervals. The only exception occurs when it comes

to comparing the CG+BQPPricing method with the BQP method. The GUROBI method demon-

strates superior performance in almost 20% of the instances. As we mentioned in the definition of

the dual bound performance profile, we assign a large number for the performance ratio when the

method fails to provide a valid dual bound for an instance within the time limit. Given that 5 is

considered as a large ratio in our analyses, the figure indicates that in 22% of the instances, the

CG+BQPPricing could not obtain an LB within the time limit. We identify the dual bound for

these instances by NA in Table 12. Another remark related to the LB performance graph is that

all three CG methods have a number of wins that is equal to, or greater than the best GUROBI

method (RLT). Evidently, when we apply RLT to solve the pricing subproblem of the CG refor-

mulation, the number of wins is the highest among all the methods with a large gap. Overall, the

best method is the CG+RLTPricing, since it obtains the best LB for 96% of the instances and the

worst LB outcome for this method for the rest of the instances is less than 1.25 times the best LB.

It should be noted that the negative objective function of the data association problem in MOT is

reflected in an LB performance ratio greater than 1.

Although according to Figure 8a the ratio of the obtained LB by the RLT to the best LB is

at most 1.25, Figure 8b shows that its computational time is not competitive compared to CGs.

More specifically, less than 20% of the test set is solved by the RLT within 2 orders of magnitude

with respect to the fastest method. Hence, it still outperforms other GUROBI methods. The
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performance profiles in Figure 8 delineate the superiority of the RLT method. Evidently, when the

RLT is directly applied to the BQP formulation (the BQP+RLT method), it outperforms the other

GUROBIs. Moreover, when it is used as the method for solving the pricing subproblem of CG (the

CG+RLTPricing method), it has better performance than the other CG methods. Considering

both LB and time performance, we observe that the CG+RLTPricing obtains not only the best

LB in 96% of the cases but also in the shortest time for almost all of these cases. We detail the

experiments on dual bound and time, as well as UB and the parameters of the instances, later in

the appendices.

Given the instance-by-instance tables in Appendix B and the performance analyses, we can

infer that the star-based reformulation and the CG methodology computationally outperform the

GUROBI solver in obtaining LB for the data association problem in MOT. Moreover, similar to the

CG+RLTPricing, which outperforms the RLT, the other CG methods outperform their GUROBI

counterparts both in terms of LB and computational time. Evidently, the CG+RLTPricing achieves

the best LB in nearly all the cases and, in the situation where it stops before the time limit, it

converges to an optimal solution for the vast majority of instances.

6. Conclusion

In this study, we investigated the generalizability and performance of the star-reformulation on a

large class of BQP problems, adjacent-only BQP problems. We employed the star-reformulation

on two adjacent-only BQP problems with different characteristics: the quadratic semi-assignment

problem and the multiple object tracking problem. Moreover, we developed a cost-splitting refor-

mulation framework and solution methodology using column generation for general BQP problems.

This framework, based on in-star and out-of-star interaction between pairs of edges in the BQP

problem’s graph, exploits the quadratic matrix structure. To evaluate the efficiency of our frame-

work, we perform extensive experiments on the QSAP. We compare the lower bound and computing

time of the reformulation and CG methods with a state-of-the-art MIP solver on instances of this

problem as well as the AQSAP and MOT. According to the proposed framework, the adjacent-only

class of problems inherits a special structure of the quadratic matrix which resulted in a huge

improvement to solve these problems.

One notable outcome of this study is that, in the adjacent-only class of problems, a basic imple-

mentation of the presented framework can already compete with the solver, showing large improve-

ments both in terms of dual bound and computation time. When out-of-stars quadratic costs are

added to the problem incrementally, the potential of the framework to compete with the solver

decreases. Nevertheless, it is interesting to note that even in the case of QSAP with a fairly dense

out-of-star quadratic matrix, the cost-splitting and CG methods still obtain promising results for
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some instances. Particularly in larger instances, where all the tested methods meet the time limit,

CG methods outperform the MIP solver in many cases.

A possible future research direction is to explore the possibility of incorporating the proposed

framework in a branch-and-bound tree to improve the primal bounds in addition to the dual

bounds. Investigating this idea on other BQP problems with different constraint structures (such

as the general case of quadratic minimum spanning tree) is another avenue for further research.

Alternatively, exploring the star-reformulation idea on more problems in the adjacent-only BQP

class such as the adjacent quadratic assignment problem is of interest for future studies. It would

also be interesting to explore how effective the cost-splitting technique is on general BQP problems

such as the quadratic assignment problem.
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Schüle I, Ewe H, Küfer KH (2009) Finding tight RLT formulations for quadratic semi-assignment problems.

Proceedings of 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, CTW, 109–

112.

Shen H, Huang L, Huang C, Xu W (2018) Tracklet Association Tracker: An End-to-End Learning-based

Association Approach for Multi-Object Tracking URL https://arxiv.org/abs/1808.01562.

Sherali HD, Adams WP (2013) A reformulation-linearization technique for solving discrete and continuous

nonconvex problems, volume 31 (Springer Science & Business Media).

Sherali HD, Smith JC (2007) An improved linearization strategy for zero-one quadratic programming prob-

lems. Optimization Letters 1(1):33–47.

Silva A, Coelho LC, Darvish M (2021) Quadratic assignment problem variants: A survey and an effective

parallel memetic iterated tabu search. European Journal of Operational Research 292(3):1066–1084.

Stone HS (1977) Multiprocessor scheduling with the aid of network flow algorithms. IEEE transactions on

Software Engineering (1):85–93.

Tang S, Andriluka M, Andres B, Schiele B (2017) Multiple people tracking by lifted multicut and person

re-identification. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2017, ISBN 9781538604571, URL http://dx.doi.org/10.1109/CVPR.2017.394.

Wang S, Wolf S, Fowlkes CC, Yarkony J (2017) Tracking objects with higher order interactions via delayed

column generation. Proceedings of the 20th International Conference on Artificial Intelligence and

Statistics, AISTATS 2017.

Yarkony J, Adulyasak Y, Singh M, Desaulniers G (2020) Data association via set packing for computer vision

applications. Informs Journal on Optimization 2(3):167–191.



Bayani et al.: A Dual Bounding Framework For BQP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 1

Online Supplement

Appendix A: Linearization

The standard linearization technique (SLT) is a known technique in the literature to transform the BQP

model into its equivalent mixed integer program (MIP) model by substituting the quadratic terms with extra

binary variables yef . For instance, linearized constraints for the MOT problem are as follows:

yef ≥ xe +xf − 1 ∀(e, f)∈A (46)

yef ≤ xe ∀(e, f)∈A (47)

yef ≤ xf ∀(e, f)∈A (48)

yef ≥ 0 ∀(e, f)∈A (49)

where it suggests O(n3) decision variables and constraints be added to the BQP model.

The reformulation linearization technique (RLT) is another mathematical programming technique used

for linearization. In this study, we exploit a tighter linearization which is similar to the RLT to linearize the

BQP formulation of MOT as well as to linearize the star-based reformulation of MOT. Considering (37) and

multiplying it once by xf ,∀f ∈ δt
′
(j), where t′ represents any frame except frame t and then generating the

same constraint for xe, we obtain the following strong valid inequalities instead of the SLT constraints (47)

and (48): ∑
e∈δt(j)

yef ≤ xf ∀t∈ T,∀j ∈H,∀f ∈ δt
′
(j) : t′ ̸= t (50)

∑
f∈δt(j)

yef ≤ xe ∀t∈ T,∀j ∈H,∀e∈ δt
′
(j) : t′ ̸= t (51)

The RLT model applied to the quadratic semi-assignment problem of (14)-(16) is formulated as follows:

min
∑
e∈A

cexe +
∑

i,k∈N
i ̸=k

∑
e∈δ(i)
f∈δ(k)

qefyef (52)

s.t.
∑

e∈δ(i)

xe = 1 ∀i∈N (53)

∑
e∈δ(i)

yef = xf ∀i, k ∈N, i ̸= k,∀f ∈ δ(k) (54)

∑
f∈δ(k)

yef = xe ∀i, k ∈N, i ̸= k,∀e∈ δ(i) (55)

yef ≥ 0 ∀i, k ∈N, i ̸= k,∀e∈ δ(i),∀f ∈ δ(k) (56)

xe ∈ {0,1} ∀e∈A. (57)

Appendix B: Instance-by-instance tables

In the following, we detail the computational results for each problem in two tables consisting of dual bounds

and computational time. For each problem, one table demonstrates the experiments for the instances in

which at least one of the compared methods stops within the time limit. The other table contains instances
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in which all the methods reach the time limit; thus, the three hours of fixed computation time is not reported

in this table to avoid repetition. As an index of efficiency for each method, we report the ratio of the obtained

lower bound to the best known feasible solution (BFS). The BFS is computed by comparing the obtained

upper bounds of all methods in the three hour timeframe.
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Table 1 AQSAP – Comparing different methods – At least one of the methods stops within the time limit
Instance
(m-n)

BFS
BQP CG+BQPPricing CG+HeuristicBQPPricing CG+HeuristicSLTPricing SLT CG+SLTPricing RLT OuterApproximation

LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time
10-3 3038.8 1 0 1 2 1 8 1 6 1 1 1 2 1 1 1 0.1
10-4 2829.3 1 0 1 4 1 11 1 8 1 2 1 1 1 2 1 0.1
15-3 32202.4 1 52 1 56 1 18 1 14 1 40 1 16 1 30 1 6
15-4 21336.7 1 524 1 57 1 28 1 28 1 314 1 17 1 593 1 120
15-6 4472.7 1 327 1 41 1 25 1 16 1 233 1 10 1 1395 1 95
18-3 8168.7 1 43 1 298 1 35 1 24 1 25 1 142 1 61 1 13
18-4 6747.3 1 1852 1 142 1 5 1 8 1 909 1 127 1 1910 1 535
18-6 5906.2 0.82 10800 1 96 1 53 1 43 0.81 10800 1 147 0.73 10800 0.82 10800
18-8 4916 0.85 10800 1 96 1 83 1 82 0.8 10800 1 160 0.74 10800 0.79 10800
20-3 15549.8 1 1099 1 430 1 10 1 25 1 345 1 531 1 422 1 68
20-4 13657.3 0.92 10800 1 333 1 58 1 25 0.94 10800 1 331 0.86 10800 1 7406
20-6 9781.5 0.72 10800 1 227 1 101 1 52 0.68 10800 1 293 0.55 10800 0.66 10800
20-8 8559.1 0.62 10800 1 105 1 10 1 31 0.62 10800 1 176 0.55 10800 0.62 10800
20-10 4810.8 0.83 10800 1 151 1 18 1 59 0.81 10800 1 195 0.61 10800 0.79 10800
22-3 42873.5 0.97 10800 1 1744 1 51 1 74 1 7360 1 1612 0.98 10800 1.00 4807
22-4 24085.5 0.87 10800 1 500 1 27 1 76 0.84 10800 1 590 0.75 10800 0.80 10800
22-6 18316.3 0.72 10800 1 237 1 28 1 66 0.63 10800 1 404 0.46 10800 0.52 10800
22-8 7394.2 0.74 10800 1 205 1 13 1 31 0.67 10800 1 293 0.61 10800 0.67 10800
22-10 6017.8 0.78 10800 1 188 1 95 1 49 0.73 10800 1 284 0.59 10800 0.73 10800
22-12 4519.2 0.83 10800 1 158 1 100 1 73 0.76 10800 1 197 0.56 10800 0.80 10800
25-3 42794.9 0.94 10800 1 3127 1 51 1 72 0.98 10800 1 2417 0.89 10800 0.92 10800
25-4 14012.7 0.9 10800 1 598 1 16 1 79 0.9 10800 1 656 0.82 10800 0.88 10800
25-6 9478.1 0.68 10800 1 1937 1 684 1 174 0.59 10800 1 1477 0.46 10800 0.54 10800
25-8 8807.1 0.68 10800 1 581 1 566 1 252 0.64 10800 1 614 0.47 10800 0.57 10800
25-10 6318.8 0.7 10800 1 975 1 98 1 99 0.61 10800 1 591 0.43 10800 0.56 10800
25-12 4744 0.61 10800 1 265 1 228 1 179 0.52 10800 1 348 0.38 10800 0.47 10800
30-3 48847.1 0.89 10800 1 1741 1 70 1 98 0.94 10800 1 1863 0.90 10800 1.00 8424
30-4 20369.8 0.74 10800 0.99 10800 1 3665 1 1143 0.73 10800 1 9636 0.62 10800 0.65 10800
30-6 14167 0.52 10800 1 10800 1 2001 1 2287 0.5 10800 1 10800 0.39 10800 0.45 10800
30-8 10322.5 0.58 10800 1 6378 1 2612 1 964 0.5 10800 1 2953 0.31 10800 0.45 10800
30-14 6680.8 0.47 10800 1 1875 1 214 1 831 0.41 10800 1 818 0.31 10800 0.38 10800
40-14 10365.5 0.4 10800 0.98 10800 1 10800 1 4062 0.34 10800 1 10800 0.21 10800 0.31 10800
50-4 49468.9 0.43 10800 1 10800 1 6895 1 10800 0.37 10800 0.97 10800 0.29 10800 0.35 10800
50-6 40831 0.67 10800 1 10800 1 4156 0.56 10800 0.25 10800 0.82 10800 0.17 10800 0.22 10800
50-8 34960.5 0.5 10800 1 10800 1 7146 0.46 10800 0.24 10800 0.78 10800 0.18 10800 0.22 10800
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Table 2 AQSAP – Comparing different methods – None of the methods stop within the time limit

Instance
(m-n)

BFS
BQP CG+BQPPricing

CG+Heuristic
BQPPricing

CG+Heuristic
SLTPricing

SLT CG+SLTPricing RLT
Outer

Approximation
LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS

40-3 46075.8 0.66 0.94 1 1 0.58 0.93 0.51 0.58
40-4 37264 0.46 0.89 0.80 0.80 0.41 0.89 0.28 0.35
40-6 17322.9 0.36 0.86 0.86 0.86 0.28 0.88 0.20 0.26
40-8 16018.9 0.34 0.94 0.84 1 0.29 0.90 0.21 0.27
50-3 52448.4 0.61 0.99 1 1 0.50 0.94 0.47 0.50
50-14 11696.4 0.29 0.99 1 0.41 0.34 0.78 0.21 0.29

A closer look at Tables 3 to 10 proves that in some cases of the QSAP with out-of-star interactions, one

has to choose the solution methodology by considering the trade-off between time and the quality of LB.

The reason is that CG may stop in a shorter time with a slightly worse LB, which we do not consider in

our performance analysis. In addition, for larger-size instances of different data sets in QSAP, a significant

pattern is observed in the results. When the number of servers (h) is relatively large compared to the number

of clients (n), one of the CG methods yields the best results, while instances with a smaller number of

servers are solved by GUROBI and the OuterApproximation methods with better bounds. Interestingly, in

certain cases where none of the techniques stops prior to the time limit, CG exhibits a superior LB. As

various techniques (such as acceleration and stabilization techniques) can be applied to further improve the

performance of CG, there is room for enhancements in our methodology to make it more effective in tackling

large-scale problems.

According to the tables associated with the MOT problem, increasing the parameter d for a problem with

a fixed number of frames (T ) results in more computational time, highlighting the effects of the density

of the quadratic matrix in solving the problem. Table 12 demonstrates that in many cases CG algorithms

converge to an optimal solution of the problem. Specifically, when we use CG+RLTPricing and the problem

can be solved within the time limit, optimality is proved for almost all the instances.
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Table 3 QSAP – 10% out-of-star quadratic matrix density – Comparing different methods – At least one of the methods stops within the time limit

BQP CG+BQPPricing
CG+

HeuristicBQPPricing
CG+

HeuristicSLTPricing
SLT CG+SLTPricing RLT OuterApproximation

Instance
(m-n)

BFS
LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time

10-3 3061.4 1 0.1 1 6 1 6 1 3 1 2 1 2 1 0.1 1 0.1
10-4 2829.3 1 1 1 5 1 5 1 5 1 1 1 2 1 0.1 1 0.1
15-3 33075.4 1 4 0.98 77 0.98 10 0.98 6 1 11 0.98 22 1 2 1 1
15-4 21665.4 1 21 0.99 71 0.99 18 0.99 14 1 348 0.99 17 1 10 1 5
15-6 4497.2 1 7 0.99 40 0.99 15 0.99 15 1 79 0.99 64 1 5 1 6
18-3 8383 1 4 0.99 164 0.99 41 0.99 32 1 13 0.99 180 1 1 1 2
18-4 6884.3 1 23 0.98 144 0.98 29 0.98 24 1 119 0.98 169 1 12 1 25
18-6 5957.5 1 248 0.99 123 0.99 47 0.99 39 1 4021 0.99 135 1 239 1 395
18-8 4956.1 1 4762 0.99 125 0.99 43 0.99 40 0.76 10800 0.99 129 1 3748 1 6587
20-3 16245.3 1 20 0.97 533 0.97 103 0.97 55 1 75 0.97 561 1 25 1 5
20-4 13942.2 1 492 0.98 459 0.98 53 0.98 25 1 1701 0.98 502 1 170 1 37
20-6 9919.2 1 4867 0.99 224 0.99 42 0.99 23 0.51 10800 0.99 270 1 9593 1 2166
20-8 8697.8 0.75 10800 0.98 156 0.98 76 0.98 31 0.53 10800 0.98 250 0.71 10800 0.76 10800
20-10 4878.3 0.88 10800 0.99 194 0.99 87 0.99 34 0.64 10800 0.99 280 0.74 10800 0.81 10800
22-3 44517.4 1 444 0.96 1092 0.96 34 0.96 21 1 1632 0.96 1432 1 328 1 183
22-4 25071.6 1 4806 0.96 589 0.96 89 0.96 36 1 9336 0.96 768 1 3453 1 2033
22-6 18872.5 0.79 10800 0.97 312 0.97 89 0.97 31 0.55 10800 0.97 391 0.76 10800 0.70 10800
22-8 7587.9 0.82 10800 0.97 322 0.97 109 0.97 59 0.62 10800 0.97 511 0.75 10800 0.80 10800
22-10 6121.4 0.84 10800 0.99 336 0.99 84 0.99 107 0.65 10800 0.99 432 0.72 10800 0.78 10800
22-12 4566.7 0.88 10800 0.99 353 0.99 111 0.99 126 0.62 10800 0.99 478 0.71 10800 0.90 10800
25-3 44875.1 1 206 0.96 3207 0.96 516 0.96 176 1 918 0.96 4427 1 181 1 196
25-4 14811.7 1 83 0.95 1256 0.95 122 0.95 66 1 567 0.95 1298 1 184 1 153
25-6 9887.9 0.79 10800 0.96 2361 0.96 376 0.96 195 0.47 10800 0.96 2629 0.74 10800 0.79 10800
25-8 8999.1 0.73 10800 0.98 2051 0.98 673 0.98 402 0.53 10800 0.98 1492 0.64 10800 0.67 10800
25-10 6509.8 0.74 10800 0.97 2698 0.97 367 0.97 543 0.39 10800 0.97 1822 0.55 10800 0.63 10800
25-12 4921.6 0.47 10800 0.96 1130 0.96 1024 0.96 916 0.35 10800 0.96 1712 0.45 10800 0.57 10800
30-3 53502.1 1 203 0.93 8255 0.94 412 0.94 79 1 2902 0.94 1863 1 361 1 208
30-4 21896.3 1 1359 0.93 10800 0.93 4229 0.93 4350 1 8366 0.93 9636 1 1101 1 2049
30-6 14736.8 0.73 10800 0.95 10800 0.96 2324 0.96 3722 0.43 10800 0.96 10800 0.65 10800 0.64 10800
30-8 10807.5 0.40 10800 0.95 8560 0.95 4120 0.95 2720 0.24 10800 0.95 8120 0.44 10800 0.47 10800
30-14 6978.9 0.36 10800 0.96 7894 0.96 1063 0.96 10800 0.26 10800 0.96 10800 0.33 10800 0.39 10800
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Table 4 QSAP – 10% out-of-star quadratic matrix density – Comparing different methods – None of the

methods stops within the time limit

Instance
(m-n)

BFS
BQP CG+BQPPricing

CG+Heuristic
BQPPricing

CG+Heuristic
SLTPricing

SLT CG+SLTPricing RLT
Outer

Approximation
LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS

40-3 51693.8 0.75 0.83 0.68 0.87 0.63 0.83 0.68 0.72
40-4 41684.2 0.52 0.78 0.71 0.71 0.22 0.78 0.40 0.48
40-6 19765.3 0.31 0.76 0.18 0.18 0.17 0.68 0.24 0.27
40-8 18865.9 0.21 0.43 0.35 0.35 0.17 0.43 0.23 0.26
40-14 11586.1 0.25 0.51 0.51 0.38 0.21 0.51 0.25 0.28
50-3 60996.3 0.83 0.87 0.88 0.82 0.58 0.79 0.73 0.65
50-4 62141.8 0.46 0.79 0.81 0.76 0.26 0.73 0.44 0.53
50-6 51281.2 0.27 0.78 0.79 0.27 0.16 0.50 0.18 0.23
50-8 44208.2 0.18 0.77 0.79 0.33 0.15 0.45 0.15 0.19
50-14 14426.3 0.22 0.37 0.25 0.30 0.20 0.29 0.17 0.23

Appendix C: Primal bounding

As mentioned before, primal bounding methodologies are beyond the scope of this project. However, to

show the strength of the proposed reformulation framework and CG for the adjacent-only class of BQPs, we

obtain the primal bounds for all of the methods. In the next sections we first discuss the obtained UB for

the adjacent-only problems and then we point out some discussions on the QSAP as an example of general

BQPs.

C.1. Upper bound for adjacent-only problems

Although we use a very trivial heuristic to find the feasible solutions after the CG methods terminate, in a

relatively large fraction of instances in adjacent-only problems, the BFS is obtained through the CG, meaning

that the reformulation and CG outperform other formulations and methods in terms of both primal bound

and dual bound for these problems.

To find the BFS for each instance, we compare the primal bounds obtained by different methods. In Figure

9, we present the fraction of instances where the BFS is found through each method. This figure proves the

capabilities of the CG methods to find the best upper bounds in both the AQSAP and the MOT problem.

According to Figure 9a, the CG+HeuristicBQPPricing obtains the BFS for the largest fraction of instances

(93%) among all of the methods. For MOT, Figure 9b indicates that the CG+RLTPricing is the best method,

finding the BFS for 70% of instances.
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Table 5 QSAP – 15% out-of-star quadratic matrix density – Comparing different methods – At least one of the methods stops within the time limit
Instance
(m-n)

BFS
BQP CG+BQPPricing CG+HeuristicBQPPricing CG+HeuristicSLTPricing SLT CG+SLTPricing RLT OuterApproximation

LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time
10-3 3172.5 1 0 0.97 4 0.97 4 0.97 4 1 2 0.97 1 1 0 1 0
10-4 2881.7 1 1 0.99 5 0.99 5 0.99 4 1 1 0.99 1 1 0 1 0
15-3 33324.7 1 2 0.97 54 0.97 14 0.97 10800 1 8 0.97 18 1 1 1 1
15-4 22318.5 1 6 0.96 63 0.96 26 0.96 20 1 65 0.96 65 1 5 1 4
15-6 4568.5 1 4 0.98 41 0.98 16 0.98 21 1 38 0.98 56 1 3 1 4
18-3 8669.3 1 2 0.96 182 0.96 24 0.96 22 1 6 0.96 212 1 0 1 1
18-4 6978.7 1 10 0.97 194 0.97 29 0.97 26 1 38 0.97 193 1 4 1 13
18-6 6126.4 1 130 0.96 122 0.96 62 0.96 59 1 1544 0.96 137 1 75 1 136
18-8 5034.8 1 419 0.98 97 0.98 57 0.98 52 1 7584 0.98 122 1 500 1 840
20-3 16434.4 1 9 0.96 600 0.96 71 0.96 45 1 27 0.96 550 1 6 1 2
20-4 14529.7 1 97 0.94 349 0.94 32 0.94 19 1 788 0.94 444 1 76 1 19
20-6 10257.6 1 1707 0.95 206 0.95 57 0.95 25 0.85 10800 0.95 283 1 1724 1 391
20-8 9062.6 1 9703 0.95 227 0.95 84 0.95 36 0.6 10800 0.95 289 0.85 10800 0.85 10800
20-10 4965.2 1 4169 0.97 196 0.97 110 0.97 50 0.65 10800 0.97 315 1 10800 1 6248
22-3 45955.1 1 222 0.93 897 0.93 52 0.93 37 1 1037 0.93 1525 1 151 1 88
22-4 26366.2 1 899 0.91 464 0.91 121 0.91 44 1 4682 0.91 654 1 868 1 899
22-6 19512 1 8792 0.94 256 0.94 73 0.94 29 0.61 10800 0.94 433 0.89 10800 1 7364
22-8 8214.5 1 4946 0.9 525 0.90 106 0.90 78 0.64 10800 0.9 492 1 6424 1 8687
22-10 6349.8 0.85 10800 0.95 259 0.95 168 0.95 237 0.65 10800 0.95 368 0.85 10800 1 9966
22-12 4821.5 0.70 10800 0.93 433 0.93 160 0.93 131 0.65 10800 0.93 490 1 10800 1 8706
25-3 48713.8 1 117 0.89 4418 0.89 287 0.89 202 1 377 0.89 4186 1 117 1 129
25-4 16521.4 1 46 0.86 1685 0.86 121 0.86 75 1 241 0.86 1631 1 81 1 122
25-6 10827.9 1 7729 0.88 1932 0.88 384 0.88 191 0.51 10800 0.88 1895 1 7087 1 8188
25-8 9745.2 0.61 10800 0.9 4584 0.9 952 0.9 511 0.65 10800 0.9 2642 0.72 10800 0.76 10800
25-10 7063.3 0.59 10800 0.89 3336 0.89 942 0.89 840 0.39 10800 0.89 2130 0.61 10800 0.68 10800
25-12 4738.4 0.44 10800 0.85 1328 0.85 10156 0.85 10283 0.32 10800 0.85 10800 0.45 10800 0.58 10800
30-3 57082.6 1 93 0.88 10800 0.88 1751 0.88 264 1 1025 0.88 10800 1 103 1 118
30-4 24213 1 109 0.84 10800 0.85 2085 0.85 1132 1 2207 0.85 10800 1 398 1 322
30-6 18614.7 0.68 10800 0.77 10800 0.77 809 0.77 2739 0.41 10800 0.77 10800 0.69 10800 0.64 10800
30-8 14294 0.38 10800 0.78 5906 0.78 5366 0.78 3479 0.25 10800 0.78 8978 0.39 10800 0.44 10800
30-14 10284 0.31 10800 0.80 9593 0.80 1371 0.80 1365 0.23 10800 0.80 10800 0.29 10800 0.34 10800
40-14 17160.5 0.17 10800 0.36 10800 0.22 1540 0.19 10800 0.15 10800 0.37 10800 0.17 10800 0.2 10800
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Table 6 QSAP – 15% out-of-star quadratic matrix density – Comparing different methods – None of the

methods stops within the time limit

Instance
(m-n)

BFS
BQP CG+BQPPricing

CG+Heuristic
BQPPricing

CG+Heuristic
SLTPricing

SLT CG+SLTPricing RLT
Outer

Approximation
LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS

40-3 55376 0.85 0.75 0.62 0.82 0.65 0.76 0.78 0.76
40-4 47234.8 0.68 0.70 0.64 0.64 0.32 0.69 0.41 0.50
40-6 23518.1 0.29 0.62 0.22 0.22 0.15 0.60 0.25 0.27
40-8 27886.8 0.16 0.29 0.17 0.17 0.13 0.29 0.17 0.20
50-3 65385.1 0.91 0.81 0.82 0.77 0.66 0.76 0.83 0.80
50-4 70572.9 0.57 0.69 0.70 0.66 0.29 0.63 0.54 0.58
50-6 62755.8 0.24 0.63 0.65 0.23 0.14 0.51 0.17 0.25
50-8 53024.2 0.16 0.63 0.66 0.32 0.13 0.35 0.14 0.18
50-14 26288.9 0.12 0.17 0.03 0.16 0.12 0.16 0.10 0.14

Figure 9 Comparing methods in terms of obtaining BFS
(a) AQSAP methods (b) MOT methods

C.2. Upper bound for QSAP

Akin to the heuristic in AQSAP and MOT, we use all of the entered columns in the QSAP-RMP to build our

IP model to obtain a valid UB for QSAP. However, instead of solving the IP version of the last RMP directly,

we solve an RMP with a slightly different objective function. In this model, we build a new quadratic cost

function to reflect the interaction between each pair of stars (columns) of the RMP as below:{
Qs,s′ = 0, if s and s′ have i or j in common

Qs,s′ =
∑

e∈s,f∈s′ qef , otherwise

Therefore, the alternative model to solve is:

min
∑
s∈S

Csλs +
∑
s∈S

∑
s′>s∈S

Qss′λsλs′ s.t. (30− 32) (58)

Through the new definition of the quadratic costs, we discard many impossible interactions among the

stars from the beginning. This leads to reaching the same feasible solutions as with the previously mentioned

heuristic in a much shorter time. Nonetheless, even with this reformulation the obtained feasible solutions

are not promising. We do not report the details on the UB of the QSAP, but we would like to provide some

remarks to direct future research on this topic:



B
a
y
a
n
i
e
t
a
l.:

A
D
u
a
l
B
o
u
n
d
in

g
F
ra

m
e
w
o
r
k
F
o
r
B
Q
P

A
rtic

le
su

b
m
itte

d
to

IN
F
O
R
M

S
J
o
u
r
n
a
l
o
n

C
o
m
p
u
tin

g
;
m
a
n
u
sc
rip

t
n
o
.
(P

le
a
se
,
p
ro
v
id
e
th

e
m
a
n
u
sc
rip

t
n
u
m
b
e
r!)

9

Table 7 QSAP – 20% out-of-star quadratic matrix density – Comparing different methods – At least one of the methods stops within the time limit

Instance
(m-n)

BFS
BQP CG+BQPPricing

CG+
HeuristicBQPPricing

CG+
HeuristicSLTPricing

SLT CG+SLTPricing RLT OuterApproximation

LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time
10-3 3213.4 1 0 0.96 5 0.96 3 0.96 3 1 1 0.96 1 1 0 1 0
10-4 3001.4 1 1 0.96 9 0.96 5 0.96 4 1 1 0.96 2 1 0 1 0
15-3 34726.1 1 2 0.93 60 0.93 11 0.93 10 1 6 0.93 21 1 1 1 1
15-4 23852.4 1 7 0.90 72 0.90 19 0.90 19 1 54 0.90 75 1 4 1 3
15-6 5132.6 1 5 0.87 52 0.87 21 0.87 21 1 33 0.87 66 1 2 1 4
18-3 9895.4 1 2 0.84 182 0.84 31 0.84 26 1 5 0.84 227 1 1 1 1
18-4 7357.1 1 6 0.92 174 0.92 44 0.92 35 1 19 0.92 174 1 2 1 5
18-6 6379.6 1 43 0.92 138 0.92 54 0.92 48 1 374 0.92 138 1 21 1 63
18-8 5446 1 228 0.90 116 0.90 55 0.90 48 1 3503 0.90 134 1 201 1 571
20-3 18140.5 1 8 0.87 533 0.87 189 0.87 13 1 39 0.87 627 1 4 1 1
20-4 15836 1 73 0.86 394 0.86 28 0.86 20 1 553 0.86 461 1 76 1 14
20-6 11201.2 1 1681 0.87 197 0.87 51 0.87 26 1 6065 0.87 286 1 1108 1 315
20-8 10102.4 1 2891 0.85 169 0.85 124 0.85 40 0.62 10800 0.85 219 1 6039 1 5047
20-10 5464.7 1 4997 0.88 242 0.88 167 0.88 71 0.69 10800 0.88 337 1 4995 1 5199
22-3 49327.2 1 248 0.87 1066 0.87 64 0.87 28 1 692 0.87 1693 1 153 1 81
22-4 28349 1 705 0.85 524 0.85 113 0.85 45 1 4661 0.85 659 1 832 1 510
22-6 21754.1 1 7202 0.84 214 0.84 115 0.84 46 0.61 10800 0.84 431 1 10800 1 6822
22-8 9714.9 0.71 10800 0.76 342 0.76 132 0.76 87 0.63 10800 0.76 470 1 4536 1 4872
22-10 7733.6 0.74 10800 0.78 322 0.78 243 0.78 263 0.61 10800 0.78 438 1 10800 1 7526
22-12 5884.6 0.66 10800 0.77 685 0.77 461 0.77 687 0.54 10800 0.77 818 0.78 10800 1 10800
25-3 51647 1 88 0.84 4549 0.84 218 0.84 149 1 321 0.84 4396 1 135 1 110
25-4 17712.6 1 21 0.80 1669 0.80 112 0.80 69 1 74 0.80 1812 1 51 1 71
25-6 12832.8 1 2871 0.74 2300 0.74 241 0.74 196 0.77 10800 0.74 2235 1 4243 1 6120
25-8 13192.7 0.55 10800 0.67 5744 0.67 542 0.67 384 0.41 10800 0.67 2463 0.68 10800 0.63 10800
25-10 8560.9 0.52 10800 0.74 2446 0.74 1284 0.74 957 0.31 10800 0.74 1967 0.57 10800 0.62 10800
25-12 7883.8 0.35 10800 0.60 1181 0.60 366 0.60 295 0.27 10800 0.60 1173 0.36 10800 0.44 10800
30-3 61853.4 1 48 0.81 10800 0.81 1105 0.81 237 1 257 0.81 10800 1 69 1 71
30-4 31188.4 1 222 0.65 10800 0.66 10800 0.66 1557 1 2317 0.66 10800 1 546 1 711
30-6 25956.1 0.52 10800 0.55 10800 0.55 2629 0.55 1965 0.34 10800 0.55 10800 0.59 10800 0.59 10800
30-8 19918.5 0.33 10800 0.52 10800 0.52 4722 0.52 2499 0.18 10800 0.52 7811 0.30 10800 0.38 10800
30-14 14062.6 0.19 10800 0.48 3044 0.48 1185 0.48 1191 0.15 10800 0.48 1461 0.17 10800 0.22 10800
50-3 71284.3 1 4427 0.75 10800 0.75 10800 0.69 10800 1 5015 0.37 10800 1 7429 0.86 10800



Bayani et al.: A Dual Bounding Framework For BQP
10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Table 8 QSAP – 20% out-of-star quadratic matrix density – Comparing different methods – None of the

methods stops within the time limit

Instance
(m-n)

BFS
BQP CG+BQPPricing

CG+Heuristic
BQPPricing

CG+Heuristic
SLTPricing

SLT CG+SLTPricing RLT
Outer

Approximation
LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS

40-3 59514.1 0.85 0.71 0.65 0.76 0.74 0.71 0.82 0.80
40-4 53056.6 0.70 0.62 0.50 0.50 0.27 0.61 0.42 0.50
40-6 28760 0.27 0.53 0.29 0.29 0.14 0.50 0.24 0.26
40-8 39915 0.14 0.19 0.11 0.11 0.10 0.21 0.13 0.16
40-14 28785.3 0.10 0.18 0.17 0.10 0.10 0.19 0.10 0.12
50-4 77901.2 0.74 0.63 0.64 0.60 0.36 0.56 0.68 0.65
50-6 74931.2 0.29 0.53 0.55 0.22 0.14 0.33 0.18 0.23
50-8 70230.7 0.15 0.48 0.49 0.23 0.11 0.27 0.13 0.15
50-14 27759.7 0.12 0.17 0.01 0 0.12 0.15 0.11 0.14

Remark 6. GUROBI methods, and in particular BQP, attain the BFS in the vast majority of the cases

in the QSAP data sets. However, as the tables in Appendix B suggest, it could not find the best LB and

close the optimality gap for many instances of the problems, while CG methods can prove optimality in

many instances of adjacent-only problems.

Remark 7. Interestingly, we observe that in the cases where CG methods terminate within the time

limit, the obtained UB is fairly close to the BFS provided by GUROBI. In the contrast, when the CG

methods reach the three-hour time limit, they suggest a weak UB, while their associated LB is still better

than GUROBI in a relevant subset of instances.
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Table 9 QSAP – 25% out-of-star quadratic matrix density – Comparing different methods – At least one of the methods stops within the time limit

Instance
(m-n)

BFS
BQP CG+BQPPricing

CG+
HeuristicBQPPricing

CG+
HeuristicSLTPricing

SLT CG+SLTPricing RLT OuterApproximation

LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time LB/BFS Time
10-3 3456.3 1 1 0.89 7 0.89 5 0.89 4 1 1 0.89 1 1 0 1 0
10-4 3161 1 1 0.91 6 0.91 8 0.91 6 1 0 0.91 2 1 0 1 0
15-3 37682.9 1 2 0.86 66 0.86 11 0.86 8 1 6 0.86 20 1 1 1 1
15-4 25935.9 1 6 0.82 77 0.82 26 0.82 22 1 53 0.82 89 1 3 1 3
15-6 6285.4 1 3 0.71 52 0.71 24 0.71 23 1 50 0.71 65 1 2 1 4
18-3 10703.9 1 2 0.77 168 0.77 37 0.77 38 1 5 0.77 221 1 0 1 1
18-4 9346.3 1 7 0.72 203 0.72 32 0.72 29 1 23 0.72 222 1 3 1 10
18-6 7765.1 1 76 0.76 124 0.76 51 0.76 41 1 722 0.76 142 1 27 1 100
18-8 6158.9 1 187 0.80 116 0.80 80 0.80 71 1 2245 0.80 131 1 156 1 551
20-3 20576.4 1 10 0.77 519 0.77 52 0.77 16 1 33 0.77 704 1 4 1 2
20-4 16772.2 1 34 0.82 462 0.82 51 0.82 22 1 154 0.82 712 1 21 1 10
20-6 12269.6 1 960 0.80 239 0.80 77 0.80 27 1 4011 0.80 285 1 725 1 165
20-8 11915.7 0.75 10800 0.72 175 0.72 174 0.72 43 0.61 10800 0.72 264 1 6101 1 2875
20-10 6446.6 1 10800 0.75 238 0.75 140 0.75 68 0.66 10800 0.75 346 1 3108 1 8047
22-3 50813.7 1 126 0.84 1037 0.84 42 0.84 42 1 307 0.84 1644 1 79 1 60
22-4 30416.8 1 621 0.79 376 0.79 95 0.79 54 1 1807 0.79 729 1 545 1 542
22-6 24468.6 1 9098 0.75 249 0.75 98 0.75 59 0.70 10800 0.75 360 1 6559 1 10800
22-8 11778.1 0.73 10800 0.63 336 0.63 125 0.63 90 0.66 10800 0.63 443 1 4523 1 5447
22-10 10706.9 0.54 10800 0.56 334 0.56 257 0.56 164 0.50 10800 0.56 491 0.67 10800 0.77 10800
22-12 7346.2 0.59 10800 0.61 590 0.61 812 0.61 723 0.46 10800 0.61 973 0.76 10800 1 10800
25-3 54414.9 1 59 0.80 3991 0.80 368 0.80 283 1 150 0.80 4858 1 102 1 74
25-4 19097.4 1 22 0.75 2513 0.75 175 0.75 75 1 45 0.75 2209 1 39 1 59
25-6 15827.4 0.79 10800 0.60 3070 0.60 378 0.60 131 0.78 10800 0.60 1609 1 5183 1 3281
25-8 16652.1 0.47 10800 0.53 3526 0.53 969 0.53 475 0.37 10800 0.53 1659 0.60 10800 0.58 10800
25-10 13344.2 0.40 10800 0.47 1363 0.47 389 0.47 271 0.22 10800 0.47 1273 0.42 10800 0.46 10800
25-12 12815 0.21 10800 0.37 8340 0.37 251 0.37 195 0.19 10800 0.37 1505 0.24 10800 0.31 10800
30-3 65491.3 1 28 0.77 10800 0.77 904 0.77 272 1 190 0.77 10800 1 18 1 27
30-4 35820.9 1 95 0.57 10800 0.57 6451 0.57 6451 1 1277 0.57 10800 1 212 1 349
30-6 33203.3 0.51 10800 0.43 10800 0.43 7491 0.43 3041 0.29 10800 0.43 10800 0.60 10800 0.54 10800
30-8 27684.8 0.27 10800 0.37 8469 0.37 1600 0.37 2229 0.15 10800 0.37 6692 0.29 10800 0.31 10800
30-14 18797.5 0.15 10800 0.36 9217 0.36 1482 0.36 1422 0.12 10800 0.36 3186 0.14 10800 0.19 10800
40-14 43918.3 0.07 10800 0.11 10800 0.1 1540 0.07 10800 0.06 10800 0.11 10800 0.07 10800 0.09 10800
50-3 74787.6 1 236 0.71 10800 0.72 10800 0.71 10800 1 2195 0.66 10800 1 2001 0.94 10800
50-4 78766.4 1 6021 0.62 10800 0.63 10800 0.59 10800 0.44 10800 0.55 10800 0.79 10800 0.83 10800
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Table 10 QSAP – 25% out-of-star quadratic matrix density – Comparing different methods – None of the

methods stops within the time limit

Instance
(m-n)

BFS
BQP CG+BQPPricing

CG+Heuristic
BQPPricing

CG+Heuristic
SLTPricing

SLT CG+SLTPricing RLT
Outer

Approximation
LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS LB/BFS

40-3 65784.3 0.96 0.66 0.58 0.69 0.86 0.64 0.85 0.82
40-4 59743.9 0.72 0.56 0.42 0.42 0.34 0.55 0.45 0.50
40-6 32330.7 0.3 0.47 0.26 0.26 0.15 0.44 0.25 0.31
40-8 47935.6 0.13 0.19 0.15 0.33 0.09 0.17 0.11 0.16
50-6 77643.1 0.3 0.51 0.52 0.23 0.17 0.39 0.22 0.26
50-8 74816.2 0.14 0.46 0.44 0.24 0.11 0.25 0.11 0.16
50-14 27759.7 0.13 0.16 0.01 0 0.13 0.13 0.12 0.16
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Table 11 Data association on the MOT16-09 data set – Comparing GUROBI and CG – At least one of the methods stops within the time limit
Instance
(T -h-d)

BFS
BQP CG+BQPPricing SLT CG+SLTPricing RLT CG+RLTPricing

LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time
3-20-2 -266.4 -401.7 1.51 10800 -266.8 1 75 -266.4 1 1089 -266.8 1 64 -266.4 1 509 -266.8 1 12
4-25-2 -486.2 -1064.7 2.19 10800 -486.2 1 72 -486.2 1 6969 -486.2 1 950 -486.2 1 367 -486.2 1 70
4-25-3 -516.7 -1372.8 2.66 10800 -516.7 1 507 -551.9 1.07 10800 -538.2 1.04 10800 -516.7 1 5498 -516.7 1 78
5-25-2 -636.1 -1693.5 2.66 10800 -636.1 1 200 -665.3 1.05 10800 -636.1 1 4674 -636.1 1 5939 -636.1 1 466
5-25-3 -740.1 -1774.6 2.4 10800 -740.1 1 6522 -1477.4 2 10800 -740.1 1 6347 -754.8 1.02 10800 -740.1 1 555
5-25-4 -783.2 -2024.3 2.58 10800 -783.2 1 7291 -2177.8 2.78 10800 -783.2 1 5676 -806.7 1.03 10800 -783.2 1 400
6-25-3 -910.1 -2359 2.59 10800 -1365.8 1.5 10800 -2754.3 3.03 10800 -945.1 1.04 10800 -937.6 1.03 10800 -913.1 1 733
6-25-4 -1014.5 -2817 2.78 10800 -1898.7 1.87 10800 -3883 3.83 10800 -1070.2 1.05 10800 -1064.4 1.05 10800 -1014.5 1 822
6-25-5 -1110.1 -3087.7 2.78 10800 -2260.7 2.04 10800 -3493 3.15 10800 -2288.8 2.06 10800 -1137.2 1.02 10800 -1110.6 1 821
7-30-3 -1040.5 -2932.4 2.82 10800 -2509.7 2.41 10800 -3915.9 3.76 10800 -1135.1 1.09 10800 -1077.3 1.04 10800 -1040.8 1 1304
7-30-4 -1172.7 -3538.3 3.02 10800 -3038 2.59 10800 -4499 3.84 10800 -1267 1.08 10800 -1236.6 1.05 10800 -1172.8 1 1374
7-30-5 -1336.9 -3753 2.81 10800 -3496.2 2.62 10800 -5062.4 3.79 10800 -1456.3 1.09 10800 -1417.3 1.06 10800 -1336.9 1 1718
8-30-3 -1229.1 -3379.1 2.75 10800 -2261.9 1.84 10800 -4567.4 3.72 10800 -1741.7 1.42 10800 -1303.5 1.06 10800 -1229.7 1 4293
8-30-4 -1497.8 -4778.2 3.19 10800 -3806.2 2.54 10800 -5646.2 3.77 10800 -2002 1.34 10800 -1638.2 1.09 10800 -1497.8 1 4252
8-30-5 -1619.4 -5207.5 3.22 10800 -4373.9 2.7 10800 -6429.1 3.97 10800 -2902 1.79 10800 -1892.7 1.17 10800 -1632.4 1.01 5088
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Table 12 Data association on the MOT16-09 data set – Comparing GUROBI and CG – None of the methods

stops within the time limit
Instance
(T -h-d)

BFS
BQP CG+BQPPricing SLT CG+SLTPricing RLT CG+RLTPricing

LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS
9-35-4 -1790.8 -5601.5 3.13 -5377.9 3 -6569.6 3.67 -4230.2 2.36 -2026.3 1.13 -1792.1 1.00
9-35-5 -1974.7 -6624.1 3.35 NA NA -7740.1 3.92 -5085.4 2.58 -2358.4 1.19 -1988.9 1.01
9-35-6 -2065.4 -7647.6 3.7 NA NA -8519.1 4.12 -5134.7 2.49 -2535.4 1.23 -2150.4 1.04
10-35-4 -1971.7 -6472 3.28 NA NA -7357.6 3.73 -5469.1 2.77 -2288.2 1.16 -2073.7 1.05
10-35-5 -2150.6 -8116.3 3.77 NA NA -8663.3 4.03 -5700.6 2.65 -2665.1 1.24 -2346.1 1.09
10-35-6 -2405.1 -9273.5 3.86 NA NA -9792.8 4.07 -6824.3 2.84 -2988.5 1.24 -2621.2 1.09
10-35-7 -2569.7 -10134.5 3.94 NA NA -10681.3 4.16 -7544.9 2.94 -3252.3 1.27 -2833.3 1.10
11-35-4 -2167.5 -7494.8 3.46 -6969.1 3.22 -8306.2 3.83 -5996.4 2.77 -2650.4 1.22 -2412.8 1.11
11-35-6 -2687 -10773.8 4.01 -8849.4 3.29 -11098.4 4.13 -8436 3.14 -3440.9 1.28 -3074.5 1.14
11-35-9 -3141.3 -12752.7 4.06 -9512.7 3.03 -13306.3 4.24 -9496.8 3.02 -4107.9 1.31 -3540.1 1.13
12-40-4 -2467.1 -8257 3.35 -8606.6 3.49 -9107.1 3.69 -8168.3 3.31 -2915.7 1.18 -2862.4 1.16
12-40-6 -3044.7 -11709.1 3.85 -10676.2 3.51 -12016.3 3.95 -10281.8 3.38 -3762.6 1.24 -3520.2 1.16


