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A B S T R A C T
An important aspect of the quality of a public transport service is its reliability, which is defined
as the invariability of the service attributes. In order to measure the reliability during the service
planning phase, a key piece of information is the long-term prediction of the density of the
travel time, which conveys the uncertainty of travel times. This work empirically compares
probabilistic models for the prediction of the conditional probability density function (PDF)
of the travel time and proposes a simulation framework taking as input the latter distributions
to approximate the expected secondary delays, a measure of the reliability of public transport
services. Two types of probabilistic models, namely similarity-based density estimation models
and a smoothed Logistic Regression for probabilistic classification model, are compared on a
dataset of more than 41,000 trips and 50 bus routes of the city of Montréal. A similarity-based
density estimation model using a 𝑘 Nearest Neighbors method and a Log-Logistic distribution
predicted the best estimate of the true conditional PDF of the travel time and generated the most
accurate approximations of the expected secondary delays on this dataset. This model reduced
the mean squared error of the expected secondary delay by approximately 9% compared to the
benchmark model, namely a Random Forests. This result highlights the added value of modeling
the conditional PDF of the travel time with probabilistic models.

1. Introduction
In order to increase the ridership and attract new users, public transport agencies put increasing emphasis on

improving the quality of the service they provide and particularly its regularity, also referred to as reliability (Ma,
Ferreira and Mesbah, 2014). Studies show that a majority of passengers put more value on a reduction of the travel time
(TT) variability than on a reduction of TT itself (Bates, Polak, Jones and Cook, 2001). Reliability can be addressed at
different levels, either during the strategic planning, the tactical planning or the operational planning stages and during
operations. At the strategic planning level, adding reserved lanes for buses can increase the reliability of the service,
while during operations, bus holding is a popular solution to alleviate risks of bus bunching. The latter consists of
holding a bus at key locations along a bus trip if it is running ahead of time. However, service reliability is rarely taken
into account at the tactical and operational planning levels, when the detailed planning of the service is computed
(van Oort, 2011). The network design, the frequencies and/or timetables of buses, the vehicle schedules and the crew
schedules are built during these stages, among other things (Desaulniers and Hickman, 2007). This work aims at
providing tools to measure, and eventually improve, the reliability of one of the output of the service planning phase,
namely vehicle schedules. These schedules are defined as a sequence of timetabled trips and waiting times starting and
ending at the same depot, such that each travel is either a timetabled trip or a deadhead trip (e.g., between a depot and a
terminal or between two terminals). A deadhead trip between two terminals enables the connection of two timetabled
trips ending and starting at different terminals.

To assess the reliability of a vehicle schedule, Kramkowski, Kliewer and Meier (2009) introduced the concept of
delay tolerance, a term reused in the works of Amberg, Amberg and Kliewer (2019); van Kooten Niekerk (2018),
among others. This concept is based on primary and secondary delays that we distinguish below. On the one hand, a
primary delay (or exogenous delay) is a deviation from the planned duration of a timetabled trip caused by a disruption
(e.g., bus bunching) or variability during operation. This type of delay cannot be avoided by scheduling decisions.
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Indeed, day-to-day disruptions and delays are considered unavoidable on the day of operation (Amberg et al., 2019;
Kramkowski et al., 2009) due to the randomness of incidents and the variation in demand and capacity factors. Bus
sharing the road with other road-based vehicles (e.g., cars, bikes and trucks) are likely to have even higher degrees
of variability, because they are subject to the same - morning and evening peaks - traffic patterns (Comi, Nuzzolo,
Brinchi and Verghini, 2017). On the other hand, a secondary delay (or endogenous delay) occurs when the primary
delays of previous trips using the same resource (e.g., vehicle or crew) cannot be absorbed during idle time and thus
propagate to the next trip. If a trip starts on time, its secondary delay is null. Otherwise, it is equal to the delay at
the departure. Scheduling decisions, that is, the allocation of timetabled trips to resources, can influence the expected
secondary delays of timetabled trips. Thus, the delay tolerance of a vehicle schedule is measured by the average
expected secondary delay of its timetabled trips.

Secondary delays are stochastic, meaning that the departure of a timetabled trip may be late on a given day and on
time on the next day even if the two trips belong to the same vehicle schedule because the secondary delay of a trip
depends on the TTs of the previous trips covered in the schedule, which are also stochastic. TT variability is explained
by yearly, monthly, day-to-day and hourly variability as well as vehicle-to-vehicle variability (Kumar, Vanajakshi and
Subramanian, 2014; Büchel and Corman, 2018; Kieu, Bhaskar and Chung, 2015). The following equations show the
dependence between the secondary delay and the TT. Consider a vehicle schedule 𝑠 = {𝑣1, 𝑣2, ..., 𝑣𝑚𝑠

} with 𝑚𝑠 trips
planned on a given day. For notational conciseness, we denote the trip 𝑣𝑖 by 𝑖 directly in the following. The secondary
delay 𝑅𝑖 of a trip 𝑖 is the difference between its actual departure time 𝐷𝑖 and its planned departure time 𝑑𝑖(assuming
that 𝐷𝑖 ≥ 𝑑𝑖), computed as

𝑅𝑖 = 𝐷𝑖 − 𝑑𝑖. (1)
The random variable 𝐷𝑖 is a convolution of the previous trip’s actual departure time (𝐷𝑖−1), actual TT (𝑇𝑖−1) and

the minimum in-between time between trips 𝑖 − 1 and 𝑖 (𝑙𝑖−1,𝑖):

𝐷𝑖 = 𝑚𝑎𝑥{𝐷𝑖−1 + 𝑇𝑖−1 + 𝑙𝑖−1,𝑖, 𝑑𝑖}, 𝑖 = 2,… , 𝑚𝑠 (2)
𝐷1 = 𝑑1. (3)

Precisely, 𝑙𝑖−1,𝑖 accounts for the deadhead travel between terminals, if the trip 𝑖−1 ends at a different terminal than
the departure terminal of trip 𝑖, and the minimum break time for drivers. The duration of deadhead travels is stochastic,
but for simplicity a fixed value for each pair of terminals is used in the following. This value is given by the operator.

In order to compute 𝔼(𝑅𝑖), the expected secondary delay of trip 𝑖, we claim that the expected TT of trips 1,… , 𝑖−1
provide insufficient information. To illustrate this, let’s have a look at a simple case. Consider trip 2 scheduled to start
at 𝑑2 = 8:40AM and preceded by trip 1 that has started at 𝐷1 = 8:00AM. Let also 𝑙1,2 = 5 minutes. If the probability
that the actual TT of trip 1 is equal to 34 minutes is 𝑃 (𝑇1 = 34 minutes) = 0.75 and the probability that it is equal to 38
minutes is 𝑃 (𝑇1 = 38 minutes) = 0.25, then the expected TT of trip 1 is 𝔼(𝑇1) = 35 minutes. Thus, if we only consider
𝔼(𝑇1), we get that the expected secondary delay of trip 2 is 𝔼(𝑅2) = 0 minute. However, considering the probability
distribution of 𝑇1, we get that 𝑅2 = 0 minute with a probability of 0.75 and 𝑅2 = 3 minutes with a probability of 0.25
and therefore 𝔼(𝑅2) = 0.75 minutes. This example confirms that the correct way to compute the expected secondary
delay takes into account the probability distributions of the TT. Moreover, and at a more fundamental level, since the
planned duration of a trip 𝑖 is usually set to a value close to 𝔼(𝑇𝑖), by computing the expected secondary delays using the
expected TTs, any potential delay propagation is ignored. To take into consideration the fact that some trips are more
uncertain than others, we must compute the expected secondary delays based on the complete probability distributions
of the TT. In reality, these distributions are much more complex than the one presented in the above example, justifying
the need to explore models for the prediction of the probability distributions of the TT.

There are two types of TT prediction: short-term and long-term. Both types can predict either a segment or a
complete trip TT. The former is usually performed less than one hour before a trip and uses online information as well
as external factors (e.g., weather). This type of prediction can be integrated to the operator’s operations control system
and provides online information to the users about the estimated arrival time of a bus. On the other hand, the long-term
TT prediction can be performed a few days before the trip and helps for transit planning. In this work, we are interested
in computing long-term TT predictions.
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We frame the long-term prediction of the density of the TT (PDTT) as a supervised learning problem which aims
at predicting, for each trip 𝑖 in a set of unseen trips (test set), an estimate of the complete conditional probability density
function (PDF) of its TT, 𝑝̂(𝑇𝑖|𝑥𝑖), given 𝑥𝑖 the set of characteristics of trip 𝑖. We assume that the conditional PDF of
the TT does not depend on scheduling decisions, i.e., the TT uncertainty is exogenous to the resource allocation. The
end-goal of this problem is to accurately estimate the expected secondary delays of trips in a test set. To this end, we
perform simulations using the predicted probability distributions of the TT to approximate the true expected secondary
delays. The model that generates the most accurate approximations of the expected secondary delays is selected. This
information can then be used by the operator’s schedulers to evaluate and compare vehicle schedules in terms of their
reliability or by a computer to optimize over a large number of possible vehicle schedules. Probabilistic models are
compared to a Random Forests (RF) model, which provided the most promising results among the three regression
models studied in the work of Moreira, Jorge, Sousa and Soares (2012). We introduce two types of probabilistic models,
namely the similarity-based density estimation models and the smoothed logistic regression model for probabilistic
classification, and present experimental results on a large-scale dataset of more than 41,000 trips and 50 bus routes.
Our contribution is threefold:

• The state-of-the-art for long-term prediction of public bus TT is almost nonexistent (Moreira-Matias, Mendes-
Moreira, de Sousa and Gama, 2015). This work tries to fill this gap and, in addition, it is to our knowledge the
first work to propose probabilistic models for the long-term prediction of public bus TT.

• We propose a novel method to approximate the expected secondary delays based on the probability distributions
of the TT.

• To the best of our knowledge, it is the first study in the field of public transport that empirically studies such
a large number of bus route’s TTs simultaneously. We hope this can make our results relevant to other bus
networks.

The remainder of this paper is organized as follows. In Section 2, we review the literature on TT analysis. The
dataset used for the PDTT is presented in Section 3. We overview the main bus route characteristics and portray
a preliminary analysis of the features. Section 4 describes the methodology that can be applied for the PDTT. A
Monte Carlo simulation to compute the expected secondary delays based on the results of the models for the PDTT
is introduced in Section 5. In Section 6, data preparation as well as features and parameters selection are presented,
before the evaluation metrics are specified and the performance of all models for the PDTT is compared. Thereafter,
in Section 7, a preview of an optimization model that uses the approximations of the expected secondary delays in an
attempt to improve the reliability of bus schedules is presented. Section 8 summarizes our findings.

2. Related works
The introduction of automatic vehicle location (AVL) data has given rise to a flourishing number of studies in the

field of public transport on speed, arrival time and TT analysis. Because TT and arrival time measures are closely
related, studies on both measures are treated without distinction. Indeed, the arrival time 𝐴𝑖 of a trip 𝑖 is given by

𝐴𝑖 = 𝐷𝑖 + 𝑇𝑖. (4)
In this section, three topics are covered: long-term TT prediction, TT variability analysis and TT distribution

modeling. The latter fits the TT distribution of trips that occurred during a given period in order to analyze the shape
and nature of the PDF of the TT, without trying to predict future events, as in the PDTT. We extend the field of the
first topic to all road-based transport, but the subsequent topics are restricted to the public transport field. Approaches
proposed for the PDTT are inspired by lessons learned through the review of the literature on these topics.

Compared with the literature on short-term TT prediction, studies on long-term TT prediction are rare and to the
best of our knowledge, only the works of Chen, Liang and Chu (2020), Moreira et al. (2012) and Klunder, Baas and
Op de Beek (2007) proposed or reviewed long-term TT prediction methods. In a survey on improving the planning of
public transit using AVL data, Moreira-Matias et al. (2015) suggested that the long-term TT prediction should be valid
for an horizon of at least the entire forecasting period. They divided models found in the literature for short-term TT
prediction in four categories: (i) machine learning and regression, (ii) state-based and time-series, (iii) traffic theory-
based and (iv) historical databased, and suggested that some regression algorithms applied for short-term TT prediction
Ricard et al.: Preprint submitted to Elsevier Page 3 of 19
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could be adapted for long-term TT prediction. Gradient boosting is an example of a model that was successfully applied
to the short-term TT prediction and then adapted by Chen et al. (2020) to the long-term TT prediction of trips on a
freeway segment in Taiwan. The features were ranked in order of relative importance: time of the day, day of the week,
national holiday, day of long / consecutive holiday, big event / activity, electronic tool collection fee promotion and
narrowing of roadway. Three regression models, namely a Projection Pursuit Regression, a Support Vector Machine
and a Random Forest, were compared by Moreira et al. (2012) for the long-term TT prediction of trips of one public bus
route in Porto. With a basic pre-processing work, the Random Forest had better results, but was slightly outperformed
by a Projection Pursuit Regression when the authors added an instance selection step. Klunder et al. (2007) trained a 𝑘
Nearest Neighbours algorithm (𝑘NN) with only time-based variables for the long-term TT prediction on a motorway
network in the Netherlands.

The reasons for TT variability can be external or internal (Yetiskul and Senbil, 2012) and related to demand or ca-
pacity (Mazloumi, Currie and Rose, 2010) (see Figure 1). In an early study, Abkowitz and Engelstein (1983) suggested
that shorter routes may have reduced TT variablity. Also, they reported that a running time deviation at the beginning
of a route tends to propagate downstream. Hence, control actions to correct early deviations on a route could reduce
TT variability. Strathman and Hopper (1993) reported that the afternoon peak period has higher TT variability, in
particular because of the higher passenger demand. In a study on TT variability in the city of Ankara, Yetiskul and
Senbil (2012) found major differences in regional TT variability and suggested that bus-stop spacing should depend
on the neighborhood density. Comi et al. (2017) performed a time series decomposition of the TT and compared it
to the temporal traffic patterns. The two are reported to have similarities. Also, the seasonality of the time series
decomposition was most significant for the hour of the day.

Infrastructure
characteristics

Weather
Traffic conditions
Management
policies

Passenger flow
Passenger demand
Area density

Bus capacity
Driver
Vehicle type
Fare collection
process

Door configuration

Number of stops

External

Internal

Capacity Demand

Figure 1: Reasons of TT variability

TT distribution modeling has been studied mostly with the objective of quantifying the reliability of a transit
service. Most works on TT distribution modeling in public transit occurred after the introduction of AVL systems.
We focus our review on the work of Mazloumi et al. (2010), Ma, Ferreira, Mesbah and Zhu (2016) and Büchel and
Corman (2018), as they are, in our view, the most comprehensive studies, from which useful lessons can be learned for
the PDTT. Mazloumi et al. (2010) assessed the shape and nature of the TT distribution over the course of the day and
for different levels of temporal aggregation on segments of a bus route. The authors measured the level of temporal
aggregation by the length of the departure time windows (DTW), which are time slots for which trips departing during
the slot are aggregated for subsequent analyzes (e.g., 15 minutes, 30 minutes or 1 hour). The study concluded that
for shorter DTWs, the TT distribution follows a Normal distribution. For longer DTWs, this result holds for peak
periods, but not for off-peak periods. For the latter, the Log-Normal distribution fits better. Also, the contribution of
a set of features to the TT was assessed through a linear regression analysis. The land use (industrial vs. residential)
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and the length of the segment were those affecting the most the TT variance. Ma et al. (2016) studied intensively the
influence of temporal and spatial aggregation on the TT distribution, with the objective of providing common grounds
for modeling and evaluating the performance. To this end, several settings of temporal and spatial aggregations were
assessed and an evaluation approach based on a statistical hypothesis test was proposed. The TT of a trip starting at
stop 𝑖 and ending at stop 𝑗 was decomposed in dwelling times 𝐷𝑇𝑘 at each stop 𝑘 of the trip and running times 𝑅𝑇(𝑘,𝑘+1)between each pair of stops

𝑇(𝑖,𝑗) =
𝑗−1
∑

𝑘=𝑖
𝐷𝑇𝑘 + 𝑅𝑇(𝑘,𝑘+1). (5)

Results concerning the normality of the TT distribution were in line with the ones of Mazloumi et al. (2010).
Also, the analysis suggested that spatial aggregation tends to decrease the multimodality of TT distribution. A mul-
timodal distribution is defined as a probability distribution with several modes. A Gaussian mixture model (GMM)
was proposed to address the multimodality of the link level TT distribution. Büchel and Corman (2018) found that the
Log-Normal distribution was, out of four unimodal statistical distributions, the best fit for the TT distribution modeling.

3. Data
Before introducing the data, it is essential to distinguish terms that are used in the following and that should not be

confused, namely bus routes, bus lines, timetabled trips and trips. First, we define a bus route as an ordered sequence
of road segments and bus stops, where the first and the last stops are called terminals. Second, a bus line usually has
two associated routes, each one going in opposite directions (e.g., North-South or East-West axis). Third, timetabled
trips are generated during service planning, which is performed for typical days in the planning horizon. For example,
service planning for the next two months can be reduced to planning for a typical weekday, Saturday and Sunday. A
timetabled trip is associated with a given route, time and typical day and is valid for the planning horizon. It is therefore
not associated with a given date. Fourth, trips are a unique event associated with a timetabled trip and a given date.
Buses record trip data as they travel, so each data point in the dataset is associated with a trip.

The dataset used for this study was collected during a 2-month period from 08/28/2017 to 10/29/2017 by in-car
Advanced Public Transport Systems (APTS) installed in buses running in the city of Montréal, Canada. Those systems
collect automatically at every stop of a trip the corresponding trip identifier, route identifier, direction identifier, stop
identifier, date, scheduled departure time, scheduled arrival time, actual departure time, actual arrival time and number
of passengers loading or unloading, among other things. The scheduled departure, scheduled arrival, actual departure
and actual arrival times are stored in milliseconds. The actual TT of a trip is the difference between its actual arrival
time and its actual departure time at the terminals, whereas its primary and secondary delays are the differences between
its actual TT and its scheduled TT and between its actual departure time and its scheduled departure time, respectively.
Hence, for every trip, only the first and last stops (i.e., terminals) data is kept. Since the APTS were embedded in
approximately 20% to 30% of the vehicles at that time, weekends and holidays had an insufficient number of trips
recorded. Indeed, during weekends and holidays, the service is reduced and thus the number of trips recorded during
those days is too small to conduct relevant data-driven analysis. For that reason, weekends and holidays are not studied
and are removed from the dataset. After removing weekends and holidays, the dataset has more than 116,000 trips. Of
the 408 routes in the dataset, only the 50 most frequent are kept for the remainder of the study, resulting in a dataset of
over 41,000 trips. The 50 selected routes run between 4:00AM to 1:59AM (+1 day) during weekdays. To facilitate the
notation, we add two extra hours to the usual 24-hour daily period. Thus, we say that the selected routes run between
4:00AM to 25:59PM.

Figure 2 shows the average secondary delay per scheduled departure hour and the average secondary delay plus the
standard deviation (𝜎) of all 41,000 trips. Note that the secondary delay cannot be negative (see equations (1) - (3)) and
thus the average secondary delay lies between 0 to 1.5 minutes all day long. The variability of the secondary delays
is high in the late afternoon (approximately from 15:00PM to 18:59PM) likely because delays accumulate during the
day and because this is a period of high mobility.
3.1. Route’s characteristics

The distribution of the average TT per scheduled departure hour is presented in Figure 3, where each piecewise
linear curve represents the evolution of the average TT of a route. It is possible to distinguish the morning peak
Ricard et al.: Preprint submitted to Elsevier Page 5 of 19
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Figure 2: Average secondary delay and variability per hour

approximately from 6:00AM to 8:59AM, and the afternoon peak, approximately from 14:00PM to 17:59PM for all
routes. The afternoon peak usually has an average TT higher than the morning peak and the average TT is generally
decreasing after 17:00PM.

Figure 3: Average TT per scheduled departure hour

The main characteristics of the 50 selected routes, namely the number of stops, the distance traveled and the type of
operational region, are presented in Table 1. Each route has a unique combination of line identifier and direction, such
that A-East and A-West are two different routes of the same bus line, but in opposite directions. We categorized the
type of operational region in 6 categories: residential areas, crossing city center (CC), from city center (to a residential
area), to city center (from a residential area), from an industrial (indust.) area (to a residential area), to an industrial
area (from a residential area). Bus line B is the only one crossing the city center; it starts in a residential neighborhood,
crosses the city center and ends in another residential neighborhood. Industrial areas are characterized by a high density
of factories. The city center and industrial areas are usually regions where a large number of people commute to work
every day. The majority of bus routes operate in residential areas (32 out of 50). Those bus routes may, for example,
connect two residential areas or a residential area to a subway or train station. The number of stops per bus route ranges
from 17 to 74 stops, while the distance traveled ranges from 3.0 km to 15.3 km. In general, as the number of stops
goes up, the distance traveled goes up as well. Line P is a counterexample, because it has a large number of stops close
to each other. Note that the number of stops and the distance traveled of two routes of the same line are generally not
equal, as the path in one direction is usually not symmetric to the path in the other direction (e.g., because some streets
are one-way).
3.2. Features analysis

The PDTT has to be based upon features (i.e., explanatory variables) that are available a few days or weeks in
advance. For example, meteorological conditions are likely to influence the TT duration. However, since it is an
information that is not available when solving service planning problems, it is not considered. Likewise, the TT of
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Table 1
Characteristics of bus routes studied

Line Dir. #stops Dist. Type of Line Dir. #stops Dist. Type of
(km) Region (km) Region

A East 52 13.9 Residential M West 18 4.0 Residential
A West 49 14.5 Residential N East 28 5.3 Residential
B East 46 13.2 Cross CC N West 29 5.3 Residential
B West 46 12.0 Cross CC O North 35 3.0 To indust.
C North 40 12.1 Residential O South 40 3.4 From indust.
C South 45 12.3 Residential P East 74 9.0 Residential
D North 33 10.3 From indust. P West 67 8.5 Residential
D South 36 10.4 To indust. Q East 40 7.0 Residential
E East 50 14.2 Residential Q West 38 7.0 Residential
E West 52 13.3 Residential R East 37 5.3 Residential
F East 34 7.8 Residential R West 35 5.3 Residential
F West 36 7.7 Residential S East 47 11.8 From indust.
G North 17 4.6 Residential S West 51 11.6 To indust.
G South 19 4.3 Residential T North 34 8.5 To indust.
H North 37 9.3 Residential T South 30 8.5 From indust.
H South 40 10.8 Residential U North 46 11.1 Residential
I East 71 15.3 Residential U South 42 10.7 Residential
I West 68 15.3 Residential V East 46 9.5 Residential
J North 28 7.1 From CC. V West 49 8.5 Residential
J South 30 7.1 To CC W East 43 10.3 Residential
K East 53 11.1 To CC W West 47 11.6 Residential
K West 51 11.4 From CC X North 30 6.6 From CC
L East 35 5.9 Residential X South 34 7.5 To CC
L West 36 6.0 Residential Y North 30 8.0 To CC
M East 18 4.4 Residential Y South 28 8.0 From CC

Table 2
Long-term features

Feature Type Possible values

Day of the week Categorical {Monday, Tuesday, ..., Friday}
Region Categorical {residential, crossing CC, ..., to indust.}
Route identifier Categorical {A East, A West, ..., Y South}
Distance (km) Non-categorical [3, 15.3]
Number of stops Non-categorical {17, 18, . . . , 74}
Scheduled departure time Non-categorical [4:00AM, 25:59PM]
Week number Non-categorical {35, 36, ..., 44}
Year Non-categorical {2017}

the previous trip is not considered. The list of possible features includes the day of the week, type of region, route
identifier, distance, number of stops, scheduled departure time, week number and year. Possible values and types of
features (categorical or non-categorical) are listed in Table 2.

The feature year is discarded because our dataset is spread over 2017 only. The statistical significance of the features
scheduled departure time, day of the week and week number can be analyzed visually by looking at Figures 3, 4 and
5, which present the average TT per route depending on each of the feature respectively. Figure 3 suggests that the
scheduled departure time has a high importance. The relationship between the TT and the scheduled departure time
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is not linear. Generally, the average TT of a bus route increases during peak hours and is steady between the morning
and the afternoon peaks. Second, Figure 4 suggests that the relationship between the TT and the day of the week is
less important. This is hardly surprising given that Saturdays and Sundays are not considered. Interestingly, there is
no common pattern between the routes; for example some routes have a slightly higher average TT on Tuesdays than
on Mondays and Wednesdays, while some others have an inverse pattern (i.e., the average TT on Tuesdays is slightly
lower than on Mondays and Wednesdays). Third, Figure 5 suggests that the relationship between the TT and the week
number is significant only for a handful of bus routes. In Figures 3, 4 and 5, we can observe that the average TT differs
greatly from one bus route to another, unsurprisingly as each route has its own characteristics (as discussed earlier).

Figure 4: Average TT per day of the week

Figure 5: Average TT per week number

4. Methodology
Several approaches have been proposed to compute the conditional PDF of a random variable in a probabilistic

fashion. Gaussian process based models are among the most popular. The work of Dutordoir, Salimbeni, Deisenroth
and Hensman (2018) proposed a Gaussian process-based model to estimate a conditional PDF using latent variables
in order to model non-Gaussian probability distributions. Also, Bishop (1994) developed Mixture Density Networks,
which is a type of artificial neural network predicting multimodal conditional density distributions. The main drawback
of Mixture Density Networks is that they perform poorly when the size of the dataset is not large enough. In the work
of Yeo, Melnyk, Nguyen and Lee (2018), the prediction of a continuous PDF is converted into a classification task
by using a discretization technique. This simplifies the learning task and traditional probabilistic classifiers can be
used to predict the probability mass function, which can be smoothed later on into a PDF. The focus of this paper is
on frequentist models (Koller and Friedman, 2009). In the remainder of this section two approaches for the PDTT
are presented. The first one estimates the PDFs of the TT of a set of similar trips using parametric, semi-parametric
or non-parametric density estimation models. The second approach, namely the smoothed Logistic Regression for
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probabilistic classification, is similar to that of Yeo et al. (2018), but fits a Logistic Regression instead of a Recurrent
Neural Network estimator.
4.1. Similarity-based density estimation

Similarity-based density estimation models are a two-step process: for each trip, (1) find the set of similar trips and
(2) estimate the density of this particular set, by fitting a parametric, semi-parametric or non-parametric model. Next,
we will define two similarity-based methods and introduce some density estimation models.
4.1.1. Similarity-based methods

Consider a trip 𝑖 with a feature vector (𝒙(𝑖)1 ,… ,𝒙(𝑖)𝑑 ). We want to select, based upon one of the following similarity-
based methods, the set of trips in the (reduced) training set that have similar attributes:

• Equivalent DTW (eDTW) : select all trips from the same route that have a scheduled departure time in the same
departure time window (DTW) (Mazloumi et al., 2010; Büchel and Corman, 2018; Ma et al., 2016) as trip 𝑖.

• k Nearest Neighbors (kNN): select the 𝑘 nearest neighbors of the trip 𝑖. The distance between trip 𝑖 and trip 𝑗 is
the Euclidean distance between their feature vectors and is computed as

𝑑𝑖𝑠𝑡(𝒙𝑖,𝒙𝑗) =

√

√

√

√

𝑑
∑

𝓁=1
(𝑥(𝑖)𝓁 − 𝑥(𝑗)𝓁 )2. (6)

4.1.2. Density estimation models
The conditional probability 𝑝(𝑇𝑖 = 𝑡𝑖 ∣ 𝒙𝑖) is estimated by fitting a given density estimation model on points close

to 𝑖 in the (reduced) training set, which are either trips in the same eDTW or close neighbors.
Parametric models

Parametric density estimation considers a restricted set of common probability distributions. Each of these distribu-
tions has a small number of parameters that have to be estimated from the data. We consider the Normal, Log-Normal,
Logistic, Log-Logistic, Gamma, and Cauchy probability distributions. The Gamma distribution is a family of proba-
bility distributions containing the Exponential, Erlang and Chi-Squared distributions. In the work of Ma et al. (2016),
the first four distributions were successful at modeling the TT distribution at a route level. For each trip, parameters
of these probability distributions are found using the Maximum Likelihood Estimation (MLE) algorithm.
Semi-parametric model: Gaussian Mixture Model

GMMs are a sub-category of mixture models composed of 𝐾 normal components. GMMs are relevant when the
population modeled is multimodal and has undefined subpopulations or states, such that each component represents
a state. It is common in transport to use three components, one for each of the traffic states: free flow, recurrent and
non-recurrent traffic (Ma et al., 2016). The PDF of a 𝐾-components GMM is given by

𝑝̂(𝑇𝑖 = 𝑡𝑖 ∣ 𝒙𝑖) =
𝐾
∑

𝑘=1
𝜋𝑖𝑘 (𝑡𝑖 ∣ 𝜇𝑖𝑘, 𝜎2𝑖𝑘). (7)

The vector of positively defined coefficients 𝜋𝑖 = (𝜋𝑖1, ..., 𝜋𝑖𝐾 ), such that ∑𝐾
𝑘=1 𝜋𝑖𝑘 = 1, and the vector of the

model’s 𝑘𝑡ℎ component’s parameters (𝜇𝑖𝑘, 𝜎2𝑖𝑘), are found by applying the expectation maximization (EM) algorithm.
Non-parametric model: Kernel Density Estimation (KDE)

A KDE model infers the PDF of a random variable based on a sample of its population. To estimate the PDF of
a trip 𝑖, the model uses 𝑚 points close to 𝑖 in the training set. It is a data smoothing problem that allows to find, in a
non-parametric fashion, the curve of the PDF given a sample. The Gaussian kernel, 𝐾(⋅), is the most widely used, but
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any function that integrates to unity (∫ 𝐾(𝑡)𝑑𝑡 = 1) can replace it. The smoothness of the estimator is adjusted by the
bandwidth parameter ℎ as

𝑝̂(𝑇𝑖 = 𝑡𝑖 ∣ 𝒙𝑖) =
1
𝑚

𝑚
∑

𝑗=1
𝐾

( 𝑡𝑖 − 𝑡𝑗
ℎ

)

. (8)

4.2. Smoothed Logistic Regression for probabilistic classification (LR-PC)
Probabilistic classifiers are a type of machine learning model that can predict the probability that a given input

belongs to a set of classes, instead of only predicting the class with the highest probability. When a numerical dis-
cretization is applied to the random variable 𝑇 , such that the TT is categorized in bins of 1 minute, the PDTT task can
be translated into a probabilistic classification one: estimate the probability that 𝑇 takes a value that falls into class
𝑐 ∈ {0, ..., 𝐶 − 1}. A model is fitted per bus route, because this setting yields better experimental results than learning
a unique model for all bus routes (see Section 6.2).

A question arises: how to choose the number of classes for a bus route? Our approach was to use, for a given bus
route, the difference between the trip in the training set with the shortest duration, 𝑡𝑚𝑖𝑛, and the trip with the longest
duration, 𝑡𝑚𝑎𝑥, as 𝐶 , the number of classes. Thus, 𝑃 (𝑇𝑖 = 𝑐) is the probability that 𝑇𝑖 takes a value in [𝑐 + 𝑡𝑚𝑖𝑛, 𝑐 +1+
𝑡𝑚𝑖𝑛[. We disregarded the fact that trips in the test set can have shorter or longer duration than 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 respectively,
as the smoothing discussed later implicitly solves this issue.

Multinominal Logistic Regression is naturally probabilistic and is commonly used for probabilistic classification
tasks. Classes’ probabilities of a multinomial Logistic Regression are defined as

𝑃 (⌊𝑇𝑖⌋ = 𝑐 + 𝑡𝑚𝑖𝑛 ∣ 𝒙𝑖,𝐰𝑐) =
𝑒𝑥𝑝(𝐰𝑇

𝑐 𝒙𝑖)
∑𝐶−1

𝑐′=0 𝑒𝑥𝑝(𝐰
𝑇
𝑐′𝒙𝑖)

, (9)

where 𝐰𝑐 is the vector of parameters of the class 𝑐, found using a stochastic average gradient descent solver.
Logistic Regression outputs a probability mass function that can be smoothed into a PDF subsequently. As proposed

by Yeo et al. (2018), the output of the multinomial Logistic Regression, which takes the form of a p.m.f., is passed
thought a one-dimensional convolution layer. This step has the effect of enforcing a spatial correlation in the output.
The convolution layer is analogous to a KDE with a bandwidth ℎ and a kernel 𝐾(⋅), but uses the probability mass
function, 𝑃 (⌊𝑇𝑖⌋ ∣ 𝒙𝑖,𝒘𝑐), instead of a sample of trips:

𝑝̂(𝑇𝑖 = 𝑡𝑖 ∣ 𝒙𝑖) =
𝐶−1
∑

𝑐′=0

[

𝐾
(

𝑡𝑖 − (𝑐′ + 𝑡𝑚𝑖𝑛)
ℎ

)

× 𝑃 (⌊𝑇𝑖⌋ = 𝑐′ + 𝑡𝑚𝑖𝑛 ∣ 𝒙𝑖,𝐰𝑐′ )
]

. (10)

5. Simulation framework to measure the delay tolerance of a vehicle schedule
Consider again a vehicle schedule 𝑠 = {1, 2, ..., 𝑚𝑠} with 𝑚𝑠 trips. After the schedule has been performed, the

secondary delay 𝑅𝑖 of a trip 𝑖 can be computed using equations (1)-(3), as the actual value of the TT (𝑇𝑖−1) and
the actual departure time (𝐷𝑖−1) of the previous trip are then available. However, before the schedule is performed,
𝔼(𝑅1),𝔼(𝑅2)… ,𝔼(𝑅𝑚𝑠

) must be computed using the PDFs of the TT and it is impossible to do this exactly. Instead,
we propose a Monte Carlo simulation of 𝐾 iterations, where at each iteration a TT is randomly sampled, when it
is possible, from 𝑝̂(𝑇𝑖|𝑥𝑖) for each 𝑖 = 1,… , 𝑚𝑠 and delays are propagated from the first to the last trip in order to
compute the secondary delay of each trip. Before going further, we must state the situation in which it is not possible
to sample the TT. This situation occurs because trips in 𝑠 may not be included in , the dataset of 41,000 trips and 50
bus routes presented in Section 3. A detailed explanation of the reasons for this is provided in Section 6.3 and for now
just remember that this may be the case. If trip 𝑖 ∉ , then we have no information about the TT distribution of this
trip and we have to use the scheduled duration of the trip directly. The scheduled duration of trip 𝑖 is the difference
between its scheduled arrival time 𝑎𝑖 and its scheduled departure time 𝑑𝑖. After running the 𝐾 iterations, it is possible
to approximate the expected secondary delays of all the trips in the schedule. This approximation is given by:

𝔼(𝑅𝑖) ≈ 𝑅̄𝑖 =
∑𝐾

𝑘=1𝑅
𝑘
𝑖

𝐾
, for 𝑖 = 1,… , 𝑚𝑠, (11)

Ricard et al.: Preprint submitted to Elsevier Page 10 of 19



Predicting the probability distribution of bus travel time

with 𝑅𝑘
𝑖 the secondary delay of trip 𝑖 computed at iteration 𝑘. The exact expected secondary delay of trip 𝑖 is approx-

imated by 𝑅̄𝑖, its average secondary delay over 𝐾 iterations. At each iteration, the randomly sampled TTs of trips
1,… , 𝑚𝑠 must have a duration that lies between 𝑀𝑖𝑛𝑇𝑇𝑖 and 𝑀𝑎𝑥𝑇𝑇𝑖, the smallest and the largest observed TTs of
the trips on the same bus route as trip 𝑖. Otherwise, a new TT is sampled until that condition is fulfilled. In other
words, we truncate the PDF of the TT below and above the times never recorded and therefore for which we have no
information.

The pseudo-code in Algorithm 1 summarizes the Monte Carlo simulation used to compute the approximation of
the expected secondary delays for all trips of a schedule 𝑠. In essence, at each iteration of the simulation the TT of
each trip in the schedule 𝑠 is either sampled or set to the planned duration and the delays are propagated from the first
trip to the last one. The simulation outputs the average secondary delay over 𝐾 iterations for each trip 𝑖 ∈ 𝑠. Note that
we assume that the first trip of a schedule always starts on time, i.e., its secondary delay is null (see equation (3)).

Algorithm 1: Monte Carlo simulation to approximate the expected secondary delays
SumR𝑖 ← 0,∀𝑖 ∈ 𝑠
for 𝑘 ← 1 to 𝐾 do

for trip 𝑖 ← 1 to 𝑚𝑠 do
if trip 𝑖 = 1 then

𝐷𝑖 ← 𝑑𝑖
else

𝐷𝑖 ← max{𝐷𝑖−1 + 𝑇𝑖−1 + 𝑙𝑖−1,𝑖, 𝑑𝑖}SumR𝑖 ← SumR𝑖 + (𝐷𝑖 − 𝑑𝑖)
end
if trip 𝑖 ∈  then

repeat
𝑇𝑖 ← sample from 𝑝̂(𝑇𝑖|𝑥𝑖)

until MinTT𝑖 ≤ 𝑇𝑖 ≤ MaxTT𝑖
else

𝑇𝑖 ← 𝑎𝑖 − 𝑑𝑖
end

end
end
for each trip 𝑖 ∈ 𝑠 do

𝑅̄𝑖 ← SumR𝑖∕𝐾
end

6. Experimental results
Using the dataset described in Section 3, we next explain how we fit probabilistic models for the PDTT, before

comparing the performance of these models. First, we describe how the data is filtered and split for the PDTT. Sec-
ond, we go through features and parameters selection for each type of model and detail the selection of the temporal
aggregation level. Third, metrics to evaluate the performance of the models on the test set are presented. Finally, all
probabilistic models are compared to a Random Forests model in terms of their performance on the test set.
6.1. Data preparation

The dataset is filtered in order to remove erroneous information and special situations that we do not want to cover
in the PDTT. Incomplete trips, vias and trips with detours are discarded. A via is a trip that deviates from the main
trip or an express trip. To remove erroneous trips which were not filtered by the previous step, the Median Absolute
Deviation or MAD (Hellerstein, 2008) with a 6-delta criterion is used. A trip is discarded if it has a TT longer or
shorter than the median TT value of the trips associated with the same route plus (minus) 6 times the corresponding
standard deviation. This method also removes trips with extended TT due to exceptional scenarios (e.g., bus failure)
that the PDTT problem should not cover, because when such exceptional scenarios occur, an additional bus is usually
dispatched to recover the schedule and prevent severe delay propagation.
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We use a hold-out method and split the dataset in two sets: a training and a test set. The validation set, a hold-out
subset of the training set, is used for features and parameters selection and the test set is used for model evaluation.
Figure 6 summarizes the dataset split. We split the dataset such that the training data starts on 08/28/2017 and ends
on 10/08/2017. The set of test data is composed of the trips from 10/16/2017 to 10/29/2017. Hence, a complete week,
from 10/09/2017 to 10/16/2017 is discarded to simulate real-life settings where the planning is done at least a few days
ahead. The training set is split again in a validation set and a reduced training set by slicing the last trips recorded per
route from the original training set. The reduced training set contains 80% of the trips in the original training set and
the validation set contains the remaining 20%.

Figure 6: Dataset split

08∕28 10∕08 10∕16 10∕29 date

Training set

Test set

Validation set

6.2. Models training
In the training process, the features and parameters of the estimator 𝑝̂(⋅) are selected by fitting each model to the

reduced training set and evaluating them on unseen data in the validation set. The performance of all the probabilis-
tic models is evaluated by the negative log-likelihood (NLL) score over the validation set (containing 𝑛𝑣𝑎𝑙 points),
computed as

𝑁𝐿𝐿𝑣𝑎𝑙 = −
𝑛𝑣𝑎𝑙
∑

𝑖=1
log(𝑝̂(𝑡𝑖|𝒙𝑖)), (12)

with 𝑡𝑖 the true TT of trip 𝑖. The performance of the Random Forests model, for its part, is evaluated by the mean
squared error (MSE) of the output. The pair of features and parameters which obtains the best performance on the
validation set is selected.

Similarity-based density estimation models use one of the similarity-based methods, namely the eDTW or the
𝑘NN method. While the eDTW method does not require feature selection, as the features used are always the route
identifier and the scheduled departure time, the 𝑘NN method does require feature selection. Indeed, the distance
between neighbors depends on the specified feature vector. Estimating the TT density of a trip 𝑖 does not require
feature selection; it fits a probability density to a sample containing trips similar to trip 𝑖. Thus, here the features
selection problem is reduced to finding a feature vector for the 𝑘NN method.The selection of features is carried out in
parallel with the selection of parameters. The parameters of the similarity-based methods are the DTW duration for
the eDTW method and the number 𝑘 of neighbors for the 𝑘NN method. For the KDE, the validation set is used to
select the bandwidth ℎ and the kernel function.

We found that similarity-based density estimation models and the LR-PC model fit the data better when they are
fitted per bus route. By doing so, the features describing the bus route characteristics, namely the number of stops,
distance traveled, route identifier and type of region, become uninformative to the model. Indeed, all trips used to train
the model of a given bus route have exactly the same values for these features. The remaining features to consider are
the scheduled departure time, the week number and the day of the week.

To select the features of the similarity-based density estimation using 𝑘NN models as well as the LR-PC and the
Random Forests models, we applied the permutation feature importance technique (Breiman, 2001). The latter reports
the statistical significance of a set of possible features by measuring the increase of a predictor score when the values
of a feature are permuted. The importance of a feature 𝓁 is the difference between a model’s score over the original
dataset and the average (over 10 shuffles) score over a corrupted dataset (with the values of the feature 𝓁 permuted).
Results of this analysis are presented in Table 3. In line with the preliminary feature analysis presented in Section 3.2,
the results indicate that the scheduled departure time has a higher statistical significance than the week number and the
day of the week. For all models, features with a relative statistical significance of more than 1.00% are selected. Thus,
for all similarity-based density estimation models except the Cauchy with 𝑘NN and the LR-PC model, the scheduled
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Table 3
Relative statistical significance (%) of features

kNN∗

Feature Cauchy Gamma Normal Log-Norm. Logistic Log-Log. KDE LR-PC RF

Number of stops - - - - - - - - 59.03
Distance - - - - - - - - 17.75
Sched. departure time 99.74 96.71 97.02 97.01 97.98 98.21 97.43 99.51 17.37
Route identifier - - - - - - - - 2.25
Week number 0.50 2.47 2.10 2.32 1.61 1.49 1.69 -0.46 2.09
Region - - - - - - - - 1.20
Day of the week -0.24 0.81 0.88 0.67 0.41 0.30 0.87 0.95 0.30

Table 4
NLL (lower is better) of the similarity-based density estimation models using eDTW method with different levels of temporal
aggregation on the validation set

5 periods 60 minutes 30 minutes
Model Train Validation Train Validation Train Validation

Cauchy 3.24 3.30 2.72 2.89 2.60 2.96
Gamma 3.08 3.15 2.58 2.83 2.47 5.98
Normal 3.09 3.16 2.59 2.87 2.48 6.57
Log-Normal 3.09 3.15 2.57 2.81 2.46 5.72
Logistic 3.09 3.16 2.59 2.77 2.48 2.91
Log-Logistic 3.09 3.15 2.58 2.75 2.47 2.88
GMM 3.07 3.16 2.26 5.81 1.82 24.96
KDE 2.99 3.15 2.49 2.76 2.77 2.89

departure time and the week number are selected. Only the scheduled departure time is selected for the Cauchy with
𝑘NN and the LR-PC models. The number of stops, the distance, the scheduled departure time, the route identifier, the
week number and the region are selected for the Random Forests model.

Temporal aggregation is a fundamental aspect of the PDTT since it has been shown to affect the shape and nature
of the TT probability distribution (Mazloumi et al., 2010; Ma et al., 2016). Thus, the parameter associated with it,
namely the DTW duration, is studied carefully. We select the DTW duration by analyzing how the density estimation
models perform on the validation set for different levels of temporal aggregation. DTWs considered are, going from the
most aggregated to the least aggregated, 5 periods per day (before morning peak, morning peak, in-between morning
and afternoon peaks, afternoon peak and after afternoon peak), 60 minutes and 30 minutes. Table 4 compares the
performance of models using the eDTW method, with the values in bold indicating the best NNL of the validation
set for each level of temporal aggregation. For all models except the GMM, the NLL score over the validation set
is better at DTWs of 60 minutes. The Log-Logistic model obtains the best results at all aggregation levels, matched
by the Gamma, Log-Normal and KDE models at an aggregation level of 5 periods per day. The GMM has a similar
performance to the parametric models for the most aggregated level, but it also has a poor performance for lower
levels of temporal aggregation, both 60 and 30 minutes. Since the performance on the reduced training set is good, it
indicates that the GMM overfits the training data. For the DTWs considered, the conditional PDF of the TT is most
likely not multimodal. Thus, this model is discarded for the rest of the study. Interestingly, the training NLL decreases
when the temporal aggregation level increases for all models except the KDE, while the NLL over the validation set
increases from DTWs of 60 minutes to DTWs of 30 minutes for all models. This suggests that models are overfitting
more at DTWs of 30 minutes than at DTWs of 60 minutes.

We can conclude that, between the three levels of temporal aggregation compared, the best one is the one with
DTWs of 60 minutes. We denote the eDTW method with DTWs of 60 minutes as eDTW*. For the second similarity-
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based method, namely the 𝑘NN, the value of 𝑘 can be chosen similarly to the duration of DTWs, by assessing the
performance of the similarity-based density estimation models on the validation set for different values of 𝑘. Figure 7
shows that the NLL over the validation set decreases significantly for all models when the value of 𝑘 increases up to
approximately 𝑘 = 13. After that, the NLL stays almost constant. Thus, we set the number 𝑘 of neighbors to 13 and
denote the 𝑘NN method with 𝑘 = 13 as 𝑘NN*.

Figure 7: NLL (lower is better) of the similarity-based density estimation models using 𝑘NN method with different numbers
of neighbors

The LR-PC model yields better performance when it considers transformations of the scheduled departure time to
capture a non-linear relationship with the TT. First, the scheduled departure time is categorized in bins of 1 hour and
30 minutes using a one-hot encoding. Second, the sine and cosine of the scheduled departure time are computed. The
total dimension of the feature vector is 69 (22 for the one-hot encoding of bins of 1 hour, 44 for the one-hot encoding of
bins of 30 minutes, 2 for the sine and cosine of the scheduled departure time and 1 for the original scheduled departure
time). The bandwidth and the kernel function of the LR-PC model are selected based on the performance on the
validation set, along with the regularization strength of the Logistic Regression.

The number of trees in the Random Forest model, the maximum number of features considered when branching,
the maximum depth of each tree and the minimum number of samples required to split an internal node are selected
based on the performance on the validation set.
6.3. Models evaluation

After models training, the reduced training set is combined with the validation set and each model is trained on
the complete training set using their selected features and parameters. The performance of the models for the PDTT
is evaluated by the NLL score and the MSE of the expected secondary delay over the test set. The NLL score over the
test set is analogue to the NLL over the validation set (𝑁𝐿𝐿𝑣𝑎𝑙) and is computed as

𝑁𝐿𝐿𝑡𝑒𝑠𝑡 = −
𝑛𝑡𝑒𝑠𝑡
∑

𝑖=1
log(𝑝̂(𝑡𝑖|𝒙𝑖)). (13)

It quantifies the likelihood of the PDFs of the TT predicted by the models, with respect to the test points. The
second metric, the MSE of the expected secondary delay over the test set, measures the accuracy of the approximation
of 𝔼(𝑅𝑖) for 𝑖 = 1,… , 𝑛𝑡𝑒𝑠𝑡. It is given by

𝑀𝑆𝐸𝑅 = 1
𝑛𝑡𝑒𝑠𝑡

𝑛𝑡𝑒𝑠𝑡
∑

𝑖=1

(

𝑟𝑖 − 𝑅̄𝑖
)2 , (14)

with 𝑟𝑖 the true secondary delay of trip 𝑖 and 𝑅̄𝑖 the average predicted secondary delay of trip 𝑖, for 𝑖 = 1,… , 𝑛𝑡𝑒𝑠𝑡. The
latter values are obtained by running the simulation presented in Section 5. This simulation takes as input a complete
vehicle schedule 𝑠 = {1,… , 𝑚𝑠}, the scheduled departure and arrival times of trips 𝑖 = 1,… , 𝑚𝑠 and the probability
distributions of the TT of trips 𝑖 ∈ 𝑠 for which the information is available. Indeed, as mentioned in Section 3, the
Ricard et al.: Preprint submitted to Elsevier Page 14 of 19



Predicting the probability distribution of bus travel time

Table 5
NLL (lower is better) and MSE (lower is better) of the expected secondary delay of similarity-based density estimation,
LR-PC and Random Forests models on the test set.

Model Similarity NLL𝑡𝑒𝑠𝑡 MSE𝑅
method

Cauchy eDTW∗ 2.87 4.44
kNN∗ 2.84 4.33

Gamma eDTW∗ 2.79 4.45
kNN∗ 2.80 4.33

Normal eDTW∗ 2.82 4.47
kNN∗ 2.84 4.37

Log-Normal eDTW∗ 2.77 4.43
kNN∗ 2.78 4.33

Logistic eDTW∗ 2.74 4.42
kNN∗ 2.73 4.34

Log-Logistic eDTW∗ 2.72 4.39
kNN∗ 2.70 4.31

KDE eDTW∗ 2.75 4.41
kNN∗ 2.73 4.43

LR-PC - 2.71 4.72
Random Forests (point prediction) - - 4.75
Random Forests (probabilistic interpretation) - 2.83 4.59

∗DTWs = 60 minutes or k = 13

original dataset of 166,000 trips and 408 bus routes is reduced to a dataset of 41,000 trips and the 50 most frequent
bus routes. Thus, many, if not nearly all, of the trips in the test set are part of a vehicle schedule that contains some
trips that are discarded and for which we therefore have no information about the uncertainty of their TTs. In order to
be able to propagate delays from the first trip to the last trip of 𝑠 using the recursive equations (1)-(3), the TTs of the
trips for which no information is available are considered deterministic and equal to the planned duration.
6.4. Models comparison

Table 5 presents the NLL and the MSE of the expected secondary delay of all models over the test set. On the one
hand, it is interesting to see that models using a non-Gaussian probability distribution, either a Gamma, Log-Normal,
Logistic or Log-Logistic distribution, yield a lower NLL over the test set than those using a Normal distribution, which
calls the normality of the conditional PDF of the TT into question. For the parametric models, the Cauchy, Logistic and
Log-Logistic distributions have better NLL score over the test set when using the 𝑘NN* method, while the Gamma,
Normal and Log-Normal distributions have rather the opposite results. The KDE models also have a better NLL over
the test set when using the 𝑘NN* method than when using the eDTW* method. Overall, the Log-Logistic with 𝑘NN*
model is the one which yields the best test NLL.

On the other hand, all parametric models predict more accurate expected secondary delays when using the 𝑘NN*
method. On the contrary, the KDE models generate more accurate expected secondary delays when using the eDTW*
method. The KDE using 𝑘NN* method and the LR-PC models surprisingly generate poorly accurate approximations
of expected secondary delays, even though they achieved good NLL scores. It appears that smooth distributions, like
parametric distributions, produce better approximations of the expected secondary delays. From the perspective that
the end-goal of the PDTT is to approximate the expected secondary delays, the Log-Logistic with 𝑘NN* model should
be selected because it yields the lowest MSE of the expected secondary delay, with a MSE of 4.31. Furthermore, the
good test NLL of this model confirms this choice.

Similarity-based density estimation models and the LR-PC model are compared with two different interpretations
of the Random Forests model. The first interpretation, which is our benchmark, considers the Random Forests model
as non-probabilistic, i.e., used exclusively for point prediction (Dutordoir et al., 2018). The emphasis is on modeling
the mapping between an input 𝒙 to its output 𝑦 rather than on predicting the conditional PDF 𝑝(𝑦 ∣ 𝒙) (Dutordoir et al.,
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2018). For this interpretation, the NLL over the test set is not computed because the prediction is not a PDF, but rather
a point. Moreover, the expected secondary delays are computed slightly differently than for the other models because
the TTs are considered deterministic in this interpretation. Thus, the expected secondary delays can be computed
directly using equations (1) - (3) and without using the simulation presented in Section 5. As shown in Table 5 (see
row "Random Forests (point prediction)"), this interpretation of the Random Forests is outperformed by all the models
in terms of the MSE of the expected secondary delay. Thus, the experimental results show that there is an added value
in modeling the conditional PDF of the TT using probabilistic models. A Random Forests model optimized with a
sum-of-squares function can also be interpreted as fitting a Gaussian on the conditional distribution of the TT, where
the mean of the Gaussian is given by the output of the Random Forests and the variance is constant for all the inputs
and equal to the MSE of the output. The MSE of the output is not to be confused with the MSE of the expected
secondary delay that we use to compare models performance. The results of this second interpretation can be found
in row "Random Forests (probabilistic interpretation)" in Table 5. Note that the MSE of the expected secondary delay
over the test set is better for this second interpretation than for the point prediction one, supporting our earlier assertion
about the added value of probabilistic models. However, this interpretation is still outperformed by all models except
the LR-PC model, showing the poor adequacy of the Random Forests model with a probabilistic interpretation to
actual TTs and delays. As outlined by the NLL over the test set of parametric models before, the conditional PDF
of the TT is most likely not Gaussian. Thus, it comes as no surprise that the Random Forests model, which assumes
Gaussian noise, performs poorly both in terms of the NLL and the MSE of the expected secondary delay over the test
set. Another key factor explaining the dominance of the Random Forests model by truly probabilistic models could be
that the variance of probabilistic models is not constant for every trip, whereas it is the case for the Random Forests
model as we interpreted it. In sum, because both interpretations of the Random Forests model, the non-probabilistic
and the probabilistic ones, generate less accurate expected secondary delays than truly probabilistic models, the latter
prevail for the prevision of the expected secondary delays of bus trips.

7. Preview of an integration in an optimization problem
The conditional PDF of the TT can be integrated in many service planning problems in an attempt to improve the

delay tolerance of the service. For example, we are currently working on a variant of the vehicle scheduling problem
with stochastic TTs that aims at computing vehicle schedules based on the expected secondary delay of their timetabled
trips. The complete methodology and results of this work will be presented in a subsequent work. Nevertheless, we
provide below a preview of the formulation of this optimization problem for interested readers.

The vehicle scheduling problem has been widely studied over the last half-century (Bunte and Kliewer, 2010) and
consists of assigning vehicles to cover a set of timetabled trips, in such a way that every timetabled trip is covered
exactly once and at minimal costs. When the operator’s fleet is spread in two or more depots, it is referred to as the
Multiple Depot Vehicle Scheduling Problem (MDVSP). We introduce an extension of the MDVSP, namely the reliable
MDVSP with stochastic TTs, that exploits the long-term prediction of the PDFs of the TT studied in this work. This
model takes the set of 𝑛 timetabled trips and the long-term prediction of the PDF of the TT of each of these timetabled
trips in input in order to output cost-efficient and delay tolerant vehicle schedules. Let 𝐷 be the set of depots, 𝑆 the set
of all feasible vehicle schedules, and 𝑆𝑑 the subset of schedules starting and ending at depot 𝑑. The problem is to find a
subset of vehicle schedules in 𝑆 that covers exactly once each timetabled trip while respecting the number of available
buses 𝑏𝑑 at each depot 𝑑 ∈ 𝐷 and minimizing a weighted sum of the total planned vehicle operating cost and the total
expected secondary delay. To formulate this problem, we define for each timetabled trip 𝑖 ∈ 𝑉 and schedule 𝑠 ∈ 𝑆
a binary parameter 𝑎𝑖𝑠 which is equal to 1 if schedule 𝑠 covers timetabled trip 𝑖 and 0 otherwise, and denote by 𝑐𝑠 the
cost of schedule 𝑠 (including delay penalties). Furthermore, we introduce for each schedule 𝑠 ∈ 𝑆, a binary variable
𝑦𝑠 that takes value 1 if schedule 𝑠 is selected in the solution and 0 otherwise. The reliable MDVSP with stochastic TTs
can then be expressed as the following integer linear program:

min ∑

𝑠∈
𝑐𝑠𝑦𝑠 (15)

s.t. ∑

𝑠∈
𝑎𝑖𝑠𝑦𝑠 = 1, ∀𝑖 ∈  (16)

∑

𝑠∈𝑑

𝑦𝑠 ≤ 𝑏𝑑 , ∀𝑑 ∈  (17)
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𝑦𝑠 ∈ {0, 1}, ∀𝑠 ∈  . (18)
Constraints (16) ensure that each timetabled trip is covered by a selected vehicle schedule, whereas constraints (17)

impose vehicle availability at each depot.
The objective function (15) minimizes the total cost of the selected schedules which combines planned operational

costs and delay penalties. The planned costs usually include a fix cost per vehicle used and a variable cost that depends
on the traveled distance and the waiting time attended by a bus driver. Consider a vehicle schedule 𝑠 = {1, 2, ..., 𝑚𝑠} ∈
 of 𝑚𝑠 timetabled trips. The total cost 𝑐𝑠 of the vehicle schedule 𝑠 is a weighted sum of the planned costs 𝑞𝑠 and the
sum of the expected secondary delay 𝔼(𝑅𝑖) of all timetabled trips 𝑖 covered by the schedule 𝑠, weighted by a factor 𝛽:

𝑐𝑠 = 𝑞𝑠 + (𝛽
𝑚𝑠
∑

𝑖=1
𝔼(𝑅𝑖)). (19)

Note that the PDTT is trained and tested using trips data whereas the reliable MDVSP with stochastic TTs deals
with timetabled trips. Fortunately, the selected model, namely the Log-Logistic with 𝑘NN*, can easily compute the
PDF of the TT of timetabled trips, used to approximate the expected secondary delays. To that end, the model training
is done as presented in Section 3.2 using data on past trips. The selected model for the PDTT is based on three features,
the route identifier, the scheduled departure time and the week number. Thus, the prediction of the PDF of the TT of
a timetabled trip 𝑖 ∈  depends on its feature vector 𝑥𝑖 = (𝑥(𝑖)1 , 𝑥(𝑖)2 , 𝑥(𝑖)3 ), with 𝑥(𝑖)1 , 𝑥(𝑖)2 and 𝑥(𝑖)3 the route identifier,
the scheduled departure time and the week number of timetabled trip 𝑖, respectively. Since timetabled trips are not
associated with a given date, it is not clear how to define 𝑥(𝑖)3 , the week number. However, it is straightforward to see
that, for the model selected, the PDF of the TT of a timetabled trip 𝑖 is the same regardless of the value of 𝑥(𝑖)3 , as long
as it is a week number in the future planning horizon. Thus, the PDF of the TT of a timetabled trip can be computed by
setting its week number to any week number in the future planning horizon. Then, an approximation of the expected
secondary delay 𝔼(𝑅𝑖) of all timetabled trips 𝑖 covered by a given schedule 𝑠 can be computed based on the PDFs of
the TT by running the Monte Carlo simulation detailed in Section 5.

Since the number of feasible schedules is typically huge, it is impossible to enumerate them all. Instead, schedules
are generated using column generation. The costs 𝑐𝑠 are computed during the solution process by taking into account
the PDFs of the TT.

When solving the reliable MDVSP with stochastic TTs, the scheduled departure and arrival times are fixed for every
timetabled trip. Thus, the choice of timetabled trip connections is the only lever to tackle reliability. The sequence
of timetabled trips in each vehicle schedule must take into account the uncertainty of the TT of these trips, i.e., the
connection between an uncertain timetabled trip and the next should allow enough idle time to avoid delay propagation.
The 𝛽 factor can be modulated according to the operator’s level of aversion to delay propagation. Of course, the higher
the 𝛽 factor, the greater the tolerance to delay, but the higher the planned costs.

8. Conclusions
In public transport, reliability has become a key challenge for operators wishing to attract new users. In this

work, we proposed a method to measure, in order to eventually improve, the reliability of bus schedules. To that end,
we presented a simulation model to approximate the delay tolerance of a vehicle schedule based on the long-term
conditional PDF of the TT. We framed the prediction of this conditional probability distribution, that we referred to
as the PDTT, as a supervised learning problem. We verified if probabilistic models could predict more accurately the
complete conditional PDF of the TT and generate more accurate approximations of the expected secondary delays than
a Random Forests model. In fact, the latter is not inherently probabilistic and is typically used for point prediction.
Also, we compared the performance of several probabilistic models.

To train and test the PDTT models, we used a 2-month dataset collected by buses equipped with APTS in the city of
Montréal, involving 50 bus routes and a total of over 41,000 trips. The bus routes studied have various attributes (e.g.,
number of stops, frequency, traveled distance, etc.) and constitute a diverse sample from which we hope to obtain
results relevant to other bus networks. Based on previous works on TT variability analysis, we determined a set of
features, the number of stops, distance, scheduled departure time, route identifier, week number, type of region and
day of the week, which we ranked in order of statistical significance for each model.
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We proposed two types of probabilistic models for the PDTT, namely similarity-based density estimation models
and the LR-PC model. The former is a two-step process that firstly find, for each trip, the set of similar trips and then
estimate the density of this set using parametric, semi-parametric or non-parametric density estimation models. We
proposed two types of similarity-based methods, namely the eDTW and the 𝑘NN, for which the temporal aggregation
level and the number of neighbors had to be set, respectively. The LR-PC model applies a numerical discretization
to the TT before fitting a Logistic Regression classifier per bus route. The output of the Logistic Regression is then
smoothed into a PDF using a convolution layer analogous to a KDE.

Previous works on TT distribution modeling indicated that the level of temporal aggregation greatly affects the
shape and nature of the TT distribution. Thus, we carefully selected the DTW duration based on the performance on
the validation set. The GMM model had a poor performance for DTWs of 60 minutes and 30 minutes and thus we
concluded that the conditional PDF of the TT is most likely not multimodal. This result is aligned with the one of (Ma
et al., 2016) which observed that the multimodality of the TT decreases with spatial aggregation.

Models were compared in terms of both of their NLL and their MSE of the expected secondary delay over a test
set. The first metric measures the likelihood of the probability distribution of the TT predicted while the second metric
measures the accuracy of the approximations of the expected secondary delays outputted by the simulation model using
the predicted probability distributions of the TT. From all the models tested, the density-based estimation model using
𝑘NN method and a Log-Logistic distribution yielded the best NLL and MSE of the expected secondary delay over
the test set. Precisely, it produced approximations of the expected secondary delays that are about 9% more accurate
than the benchmark model, the Random Forests. This result indicates that there is an added value in modeling the
conditional PDF of the TT using probabilistic models. In particular, probabilistic models account for the variability of
the TT whereas the Random Forests model does not intrinsically. Also, the Random Forests model as we interpreted
it assumes, as many other point prediction models, that the noise of the TT is Gaussian. However, the normality of
the TT was questioned because several similarity-based density estimation models using parametric distributions had
better NLL over the test set than the models using the Normal distribution.

The Log-Logistic with 𝑘NN model generated accurate approximations of the expected secondary delays that sched-
ulers can use to compare few bus schedule alternatives in terms of their reliability or to recommend changes to cus-
tomers in the service planning parameters (e.g., minimum idle time between timetabled trips). Moreover, the expected
secondary delays can be used to solve a reliable version of the MDVSP. We introduced this problem and proposed an
integer programming model for it. In a forthcoming paper, we will propose a column generation algorithm for solving
it.
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