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Prescriptive analytics provides organizations with scalable solutions for large-scale, automated decision-

making. At the core of prescriptive analytics methodology is optimization, a field devoted to the study of

algorithms that solve complex decision-making problems. Optimization algorithms rely heavily on generic

methods for identifying tight bounds, which provide both solutions to problems and optimality guaran-

tees. In the last decade, decision diagrams (DDs) have demonstrated significant advantages in obtaining

bounds compared with the standard linear relaxation commonly used by commercial solvers. However, it is

well-known that the quality of the bounds achieved by DDs is reliant on the ordering of variables chosen

for the construction. Finding an ordering that optimizes standard metrics is an NP-hard problem. This

paper studies how machine learning, specifically deep reinforcement learning (DRL), can be used to improve

bounds provided by DDs, in particular through learning a good variable ordering. The introduced DRL

models improve primal and dual bounds, even over standard linear programming relaxations, and are inte-

grated in a full-fledged branch-and-bound algorithm. This paper therefore provides a novel mechanism for

utilizing machine learning to tighten bounds, adding to recent research on using machine learning to obtain

high-quality heuristic solutions and, for the first time, using machine learning to improve relaxation bounds

through a generic bounding method. We apply the methods on a classic optimization problem, the max-

imum independent set, and demonstrate through computational testing that optimization bounds can be

significantly improved through DRL. We provide the code to replicate the results obtained on the maximum

independent set.
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1. Introduction

Relaxation bounds, and mechanisms by which those bounds can be improved, are a critical compo-

nent of scalable generic algorithms for solving combinatorial optimization problems. A noteworthy

example is the branch-and-bound algorithm, which is at the core of state-of-the-art mixed integer

programming (MIP) solvers such as CPLEX, Gurobi, or SCIP. Within this paradigm, a combi-

natorial optimization problem is defined by a linear formulation, which typically characterizes a

space of exponential size. MIP solvers then reduce the size of the search space using mechanisms

for quickly determining and improving upon objective function bounds. Assuming a maximiza-

tion problem, high-quality feasible solutions, referred to as primal solutions, provide lower bounds

whereas relaxation bounds, or dual bounds, obtained through a linear relaxation of the problem,

provide upper bounds on the optimal value. These bounds are utilized to guide search and prune

nodes for branch-and-bound search, which is required when solving an NP-hard problem. There is

a weatlh of literature on the use of generic algorithms to identify primal solutions (Berthold 2006,

Sadykov et al. 2019). Additionally, finding relaxation bounds and improving them is a prominent

research focus in combinatorial optimization (Gamrath et al. 2015, Farràs et al. 2018). Improve-

ments to bounds directly results in more e�cient algorithms, which are required for real-world

applications of prescriptive analytics.

As machine learning tools gain increasing popularity in combinatorial optimization, it is worth-

while to analyze whether machine learning can be used for the tedious task of improving opti-

mization bounds. Finding a way to utilize the power of machine learning for this task may be a

key to unlocking significant performance improvements in optimization solvers. One of the current

challenges in improving optimization bounds is that the bound provided by the standard linear

relaxation is inflexible. In other words, the algorithm used to compute the relaxation has no e↵ect

on the quality of the bound, which opens the possibility of integrating machine learning methods

for improving bounds.

Decision diagrams (DDs) (Lee 1959, Bryant 1986), a recent tool in optimization (Andersen et al.

2007, Bergman et al. 2011, 2013, 2016a,b), provide a particularly well-suited framework for exploit-

ing machine learning to tighten bounds of optimization problems that can be modeled through

a recursive formulation. A DD can be used to either under-approximate or over-approximate the

set of solutions to an optimization problem, meaning it can deliver both heuristic solutions and

relaxation bounds. The advantage of approximate DDs over other bounding mechanisms is that
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DDs are flexible: decisions made during their construction directly a↵ect the bound they deliver.

However, the quality of the bounds is known to be strongly related to the variable ordering consid-

ered during the construction of the DD (Bergman et al. 2012). It has been shown that finding the

ordering yielding the tightest bound is NP-hard and is challenging even to model. Thus, designing

methods for finding a good ordering is a major topic in the community and remains a great chal-

lenge. Delegating this task to a machine learning method, such as a reinforcement learning agent,

is a possible solution.

The contribution of this paper is a learning-based approach to obtain a better bounding mech-

anism for combinatorial optimization problems that can be encoded by a DD. This is done by

training an agent with reinforcement learning in order to achieve a variable ordering that tightens

the bounds. The framework we introduce is e↵ective in obtaining primal bounds, adding to the

recent literature on using ML to find high-quality heuristic solutions, which focuses on a particular

problem or a restricted category of problems. We propose a generic method suitable for any dis-

crete optimization problem that can be expressed using a recursive formulation. Additionally, the

tradeo↵ between the quality of primal solutions and their computation time can be easily controlled

by adjusting the width of the approximate DDs. Furthermore, our approach extends our related

conference paper (Cappart et al. 2019), which investigated how a reinforcement learning environ-

ment can be inferred from a DD construction. We now propose an end-to-end generic framework

for learning primal solutions and dual bounds simultaneously. We provide detailed explanations of

how the learning environment and the DD construction can be inferred from the same recursive

formulation of a discrete optimization problem. Finally, as an extension of our related conference

paper, we integrate the bounds in a DD-based branch-and-bound algorithm (Parjadis et al. 2021).

Experiments are mainly carried out on the maximum independent set problem and highlight that

the bounds obtained are significantly better than those obtained by other heuristics reported in

the literature and the linear relaxation. We further propose an application of the bounds inside a

complete branch-and-bound algorithm. Results indicate that the proposed approach can achieve

performance gains over CPLEX. Three other case studies (maximum cut problem, set covering

problem, and 0-1 knapsack problem) are also explored in the online supplement.

This paper is structured as follows. The next section introduces related work on DDs, rein-

forcement learning, and on the application of machine learning in combinatorial optimization. The

relevant technical background is provided in Section 3. Section 4 contains the core contribution of

the paper. It presents the generic process which relies on three main steps: (1) the definition of the

environment, (2) the learning algorithm, and (3) the construction of the solution. The method is

then tested on synthetic instances for the maximum independent set problem in Section 5.
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2. Literature Review

Decision diagrams are a decades-old data structure that was initially introduced to represent

switching circuits (Lee 1959) and for formal verification (Bryant 1986). They have been utilized

more recently in the field of combinatorial optimization for encoding the feasible solutions of a

problem in a structured way. They can be used, for instance, for postoptimality analysis in integer

programming models (Hadzic and Hooker 2006), for representing the domain store in constraint

programming (Andersen et al. 2007), for the implementation of global constraints (Verhaeghe et al.

2018), or even as a general-purpose solver (Bergman et al. 2016b). Another application, and the one

considered in this work, is to provide upper and lower bounds for discrete optimization problems

(Bergman et al. 2011, 2013).

With supervised and unsupervised learning, reinforcement learning (RL) (Sutton and Barto

2018) is one major area of machine learning. It focuses on how an agent can learn from its inter-

actions with an environment in order to e�ciently accomplish specific actions. The agent moves

from state to state by performing a sequence of actions, each of which gives a specific reward or

penalty. The behavior of an agent is characterized by a policy that dictates a certain action for each

state the agent encounters. The goal is to learn a policy that maximizes the sum of rewards (resp.

minimizes the sum of penalties) of each action performed by the agent. One di�culty that arises

in this framework is the state-space explosion problem. Traditional RL algorithms su↵er from a

lack of scalability and are limited to low-dimensional problems. The main issue is that some states

are never considered during the learning process when large state spaces are involved. With its

resurgence, deep learning (LeCun et al. 2015) has provided new tools to overcome this problem.

The fundamental idea is to use a deep neural network as a function approximation to generalize

knowledge from visited to unknown states. This o↵ers RL an opportunity for better approximations

and enables scalability, to tackle problems that were previously intractable. Prominent examples

are the superhuman performances obtained for the game of Go (Silver et al. 2016), Atari 2600

(Mnih et al. 2015) and other games (Silver et al. 2017). A formidable feature of recent reinforce-

ment learning agents, such as AlphaZero, is their ability to self-learn from scratch. Starting from

a random agent, and given no domain knowledge except the environment, they are able to achieve

superhuman performances. The combination of RL with a deep network is commonly referred to

as deep reinforcement learning (DRL).

Promising performances by RL and DRL algorithms have driven researchers to investigate the

application of DRL to finding approximate solutions to NP-hard combinatorial optimization prob-

lems. Most work focuses on the classic traveling salesman problem (Bello et al. 2016, Deudon et al.

2018, Kool et al. 2019), with the noteworthy exception of Khalil et al. (2017) which tackles four

NP-hard problems with a graph structure. They use a deep neural network in order to embed
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the vertex of the graphs into features (Dai et al. 2016), while taking into account the structure

of the graph. The competitive and increasingly better results of these works show the promise

of this approach for finding solutions to NP-hard problems. Recently, Cappart et al. (2019) and

Parjadis et al. (2021) advanced these e↵orts for generating dual bounds and using them inside a

branch-and-bound algorithm. Our contribution is positioned as an extension of these last works.

Finally, let us highlight that learning bounds is not the only generic approach to improve branch-

and-bound algorithms. For instance, He et al. (2014), Gasse et al. (2019), Cappart et al. (2021b)

learn how to make good branching decisions, Tang et al. (2020) learns cutting planes, and Hutter

et al. (2011) is dedicated to automatic algorithm configuration. We refer to three surveys (Lodi and

Zarpellon 2017, Bengio et al. 2018, Cappart et al. 2021a) for more information on other modern

learning-based methods for combinatorial optimization.

3. Technical Background

This section introduces the main concepts related to both decision diagrams and reinforcement

learning relevant to our paper.

3.1. Decision Diagrams

In the context of this work, and for a binary optimization problem

{maxf(x) : x2X ✓Bn
} , (O)

a decision diagram is a graphical representation of a collection of solutions to (O) through paths in a

layered, arc-weighted, arc-labeled, and rooted digraph. The number of layers (of nodes) is one more

than the number of variables in the problem, and each arc connects nodes in consecutive layers.

Every layer except the last, which is assumed to contain a single terminal node t, is associated

with a unique variable in the optimization problem, and the length of a path, calculated as the sum

of the weights of the arcs in the path, represents (either exactly or approximately) the objective

function value of the solution it corresponds to. The solution a path corresponds to is dictated by

the labels of the arc on the path, which for a binary optimization problem can be 0 or 1. The arcs

specify if the variable corresponding to the layer of its originating node is set to 0 or 1, thereby

dictating a vector in Bn. Note that there is a natural extension to problems with discrete variables.

In this case, there is an arc per value in the variable domain.

A DD can be viewed as the state-transition diagram of the path trajectories of a recursive model

(RM) for (O). Formally, an RM M for an optimization problem O is a tuple hS,T,Ci, where

• S is the state space, containing three special states: the root state s0, the infeasible state s;,

and the terminal state st;
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• T : S⇥X ⇥ {0,1}! S is the transition function which maps states, variables, and actions (0

or 1) to states;

• C : S⇥X⇥{0,1}!R is the cost transition function, which associates a cost with transitioning

from state s by taking action a2 {0,1} on variable x2X, typically assumed to be defined only for

s, x, and a for which T (s, x,a) 6= s;.

We think of the state s as containing information regarding which actions are feasible for the

remaining variables, thereby also recording which variables are already considered, so that starting

from the root state s0, the recursive application of T will never take as argument any variable twice.

We also assume that n applications of T to a state, i.e., the recursive application of actions to each

variable, always concludes at s; or st. This indicates where the collection of actions to variables,

i.e., the assignment of 0 or 1 values to each variable, is feasible (st) or infeasible (s;). It is often

assumed that for any variable x(j) and any action a, T(s;, x(j),a) = s;, so that the infeasible state

s; is absorbing. M is a valid RM for O if the following conditions are satisfied:

1. 8s 2 S, there exists an action a 2 {0,1} such that T
�
· · ·T

�
s0, x�(1),a0

�
, x�(n),an

�
= st for any

ordering x�(1), . . . , x�(n) of the variables;

2. 8x2X, the accumulated sum of costs through a path equals the objective cost of the function.

It is shown in Equation (1), and it holds again for any ordering of the variables.

Cacc(x) = C
�
s0, x�(1),a

0
�
+ · · ·+C

�
· · ·T

�
s0, x�(1),a

0
�
, x�(n),a

n
�
= f(x) (1)

Given a valid RM M for O, solving O amounts to finding actions for each variable for which

T
�
· · ·T

�
s0, x�(1),a0

�
, x�(n),an

�
= st that maximize Cacc(x). DDs provide a mechanism by which the

problem of finding the optimal actions can be solved.

A DD can be built by the following procedure. Starting from S1 = {s0}, select any variable

and designate it as x(1). Additionally, maintain an auxiliary digraph that will become the DD,

initialized as a single node called the root node, denoted by r. Each node u will belong to a layer

l(u) 2 {1, . . . , n+ 1}, with Lj := {u : l(u) = j} for j = 1, . . . , n+ 1, and correspond to some state

s(u) 2 S. Each layer j, for j = 1, . . . , n, will be assigned a variable x�(j). The first layer consists of

a single node, L1 = {r}, with s(r) = s0 and l(r) = 1.

The layers of the DD are built iteratively. Having constructed layer Lj, we build layer Lj+1 and

all arcs that connect nodes between these successive layers. Each arc a is directed from u�(a) to

u+(a), where it is assumed that l(u+(a)) = l(u�(a)) + 1. The arcs have a domain d(a) 2 {0,1}

when solving a binary optimization problem. The arc cost c(a) is defined by its domain, as well as

the state of its tail and its layer’s associated variable, c(a) = C
�
s(u�(a)), x(l(u�(a))),d(a)

�
, which is

the cost of taking action d(a) for variable x(l(u�(a))) transitioning from state s(u�(a)).
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The first step in creating Lj+1 is to select a variable x(j) that has not been used for the previous

layer. This is the major consideration of this paper, to be addressed and discussed in subsequent

sections. Once x(j) is selected, each node u 2 Lj is processed by calculating s0 := T(s(u), x�(j),a),

for a equals 0 and 1. If s0 6= s;, we check whether there exists a node u
0 such that s0(u0) = s(u), for

any u
0 in the current set of nodes in Lj+1. If such a node u

0 exists, arc a
0 is added with u�(a0) = u

and u+(a0) = u
0. Otherwise, we create a new node u

0, add it to Lj+1, and add the arc a
0. We set

d(a) = a. Note that when processing the penultimate layer, i.e., j = n, when creating layer Ln+1,

only state st is possible and so |Ln+1| 1.

Equipped with the DD for M that encodes the maximization problem O, finding a sequence of

optimal actions reduces to finding the longest path from r to t using c(a) as the length of each arc.

The correspondence can be seen by viewing an arc a
0 as setting the variable xl(u�(a0)) = d(a0) so

that any r to t path leads to the assignment of a value to each variable. If M is a valid RM, there is

a one-to-one correspondence of the collection of r to t paths, which we denote by P, and solutions

to O, with the length of each path equal to the value of the solution. Letting X (P) be the collection

of solutions dictated by paths, we have that X (P) =X . For any r to t path p= (a1, . . . , an), let x(p)

be the solution it corresponds to (i.e., x(p)�(j) = d(aj)) and c(p) its length (i.e., c(p) =
Pn

j=1 c(aj)).

An optimal collection of actions, which corresponds to an optimal solution to O, can be found

in linear time in the size of the DD, because it is acyclic. The challenge faced in this process is

the well-known curse of dimensionality, which may render an exponentially-sized DD. A solution

to this exponential growth is to build limited-width approximate DDs that provide either primal

solutions (in the case of restricted DDs) or dual bounds (in the case of relaxed DDs).

A DD of width W is a DD for which |Lj|W for j = 1, . . . , n+1. A restricted DD is a DD for

which a subset of the solutions to O are represented, i.e., X (P) ⇢ X . A restricted DD of width

W is easily constructed by dropping a collection of nodes from Lj after its construction, keeping

only a subset of those nodes of size W to expand. Since X (P)⇢ X , the longest path in this DD

corresponds to a feasible solution to O, thereby providing (in the case of maximization) lower

bounds on the optimal value of O.

A relaxed DD is a DD satisfying the following two properties: (1) X (P) ◆ X , and (2) 8p 2

P,c(p)� f(x(p)). The length of the longest path in a relaxed DD is therefore a dual bound. The

construction of a relaxed DD of width W requires the definition of a relaxation operation ⌦, which

takes two states s1 and s2 and merges them in manner in which a superset of the available paths

will be possible and/or the lengths of the paths increase. This is similar to aggregation techniques

in state-space relaxations (Christofides et al. 1981) and has been investigated for a variety of

combinatorial optimization problems (Bergman and Cire 2018). In order to illustrate the concepts

introduced throughout this paper, we refer to an example, the maximum independent set problem,

for which the impact of variable ordering has been thoroughly studied (Bergman et al. 2012).
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Definition 1 (maximum independent set problem). Let G(V,E) be a simple, undirected

graph. An independent set of G is a subset of vertices I ✓ V such that there are no two vertices in

I that are connected by an edge of E. The maximum independent set problem (MISP) consists in

finding an independent set with the largest cardinality. A standard binary optimization model of

the MISP is as follows, letting V = {1, . . . , n}:

max
nX

j=1

xj

s.t. xi +xj  1, 8{i, j}2E

xj 2 {0,1} 8j 2 V

Example 1 (Representing MISP decision diagrams). A possible recursive formulation

for this problem is found in Bergman et al. (2012), and is defined as follows:

1. S : 2V , with s0 = V

2. T
�
s, x�(j),a

�
=

8
><

>:

s\{�(j)}, if a= 0,

s\{N [�(j)]}, if a= 1,and �(j)2 s,

s;, otherwise,

3. C
�
s, x�(j),a

�
=

8
><

>:

0, if a= 0,

1, if a= 1,and �(j)2 s,

undefined, otherwise,

where N [j] = {j}[ {i : {i, j}2E} is the closed neighborhood of j. Additionally, the merging oper-

ator ⌦ can be defined as the standard set union operator (Bergman et al. 2013). Consider the

top graph in Figure 1. The largest independent set has cardinality 2 (four optimal solutions:

{1,4},{1,5},{2,5},{3,5}). This figure depicts two DDs for the MISP on this graph, obtained using

two di↵erent choices of variable orderings. A solid line corresponds to an arc that sets a variable

equal to 1, and a dashed arc corresponds to an arc that sets a variable equal to 0. Both contain 10

paths corresponding to the 10 feasible solutions, and, if we associate an arc-cost of 1 to each solid

arc and an arc-cost of 0 to each dashed arc, the longest path in both is 2 (optimal value).

This example illuminates how sensitive DD construction is to variable ordering. Both DDs rep-

resent the same set of solutions, but the one on the right contains 3 fewer nodes and 7 fewer arcs.

Figure 2 depicts a restricted DD (left) and a relaxed DD (right) for the same MISP instance using

the variable ordering for the exact DD in Figure 1 depicted on the left. The restricted DD contains

5 paths, each corresponding to a feasible solution. The longest path is still of length 2, the optimal

value, but in general will yield a lower bound. The relaxed DD contains 12 paths, 2 of which are

infeasible. The longest path has length 3 (solid-solid-solid-dashed-dashed path) that corresponds

to the solution (1,0,0,1,1). Although infeasible, this solution provides a dual bound of 3.
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1

2

3

4

5

x1

x5

x4

x3

x2

{1,2,3,4,5}

{2,3,4,5} {4,5}

{2,3,4} {3.4} {4} ;

{2,3} {3} ;

{2} ;

; (st)

x3

x2

x1

x4

x5

{1,2,3,4,5}

{1,2,4,5} {5}

{1,4,5} {5}

{4,5} {5}

; {5}

; (st)

Figure 1 Two exact DDs for a specific MISP instance, with � = (1,5,4,3,2) (left) and � = (3,2,1,4,5) (right).

The DDs are built using the recursive formulation proposed in Example 1 and two di↵erent variable

orderings. Dashed lines correspond to a 0 variable assignment, and solid lines to 1.

x1

x5

x4

x3

x2

{1,2,3,4,5}

{2,3,4,5} {4,5}

{2,3,4} ;

{2,3} ;

{2} ;

; (st)

x1

x5

x4

x3

x2

{1,2,3,4,5}

{2,3,4,5} {4,5}

{2,3,4} {4}

{2,3} ;

{2} ;

; (st)

Figure 2 A restricted (left) and relaxed (right) DD obtained from the left DD in Figure 1 (�= (1,5,4,3,2)).
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3.2. Reinforcement Learning

Let hS,A,T,Ri be a tuple representing a deterministic agent-environment pair where S is the set

of states in the environment, A is the set of actions that the agent can do, T : S ⇥A! S is the

transition function leading the agent from one state to another one given the action taken, and

R : S ⇥ A! R is the reward function of taking an action from a specific state. This model is

consistent with the definition of a recursive model as defined in the previous section. The behavior

of an agent is defined by a policy ⇡ : S!A describing the action to be done given a specific state.

The goal of an agent is to learn a policy maximizing the accumulated sum of rewards (eventually

discounted) during its lifetime, defined by a sequence of states st 2 S with t 2 [1, . . . ,⇥]. Such a

sequence is called an episode, where s⇥ is the terminal state. The expected return after time step

t is denoted by Gt and is defined in Equation (2), where � 2 [0,1] is a discounting factor used for

parametrizing the weight of future rewards. When � = 1, all rewards have the same importance.

Gt =
⇥X

k=t+1

�
k�t�1

R(sk, ak) (2)

For a deterministic environment, the quality of taking an action a from a state s under a policy

⇡ is defined by the action-value function Q
⇡(s, a) = Gt. The challenge is to find a policy that

maximizes the expected return: ⇡? = argmax⇡ Q
⇡(s, a) 8s2 S,8a2A. In practice, ⇡? is computed

from an initial policy by two nested operations: (1) the policy evaluation, which makes the action-

value function consistent with the current policy, and (2) the policy iteration, which greedily

improves the current policy. However, in most problems, the optimal policy, or even an optimal

action-value function, cannot be computed in a reasonable amount of time. A method based on

approximation, such as Q-learning (Watkins and Dayan 1992), is therefore required. Instead of

computing the optimal action-value function, Q-learning approximates the function by iteratively

updating the current estimate after each action. The update function is defined in Equation (3),

where ↵2 (0,1] is the learning rate.

Q(st, at) Q(st, at)+↵

⇣
R(st, at)+ �max

a2A
Q(st+1, a)�Q(st, at)

⌘
(3)

Another issue that arises for large problems is that almost every state encountered may never

have been seen during previous updates, thus necessitating a method capable of utilizing prior

knowledge to generalize for di↵erent states that share similarities. Among such methods, neural

fitted Q-learning (Riedmiller 2005) uses a neural network for approximating the action-value func-

tion. This provides an estimator bQ(s, a,w)⇡Q(s, a), where w is a weight vector that is learned.

Stochastic gradient descent, or another optimizer coupled with back-propagation (Rumelhart et al.

1986), is then used for updating w and aims to minimize the squared loss between the current
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Q-value and the new value assigned using Q-learning. This approach is shown in Equation (4)

where L(w) is the square loss as defined in Equation (5).

w w�
1

2
↵rL(w) (4)

L(w) =
⇣
R(st, at)+ �max

a2A

bQ(st+1, a,w)� bQ(st, at,w)
⌘2

(5)

Other reinforcement learning algorithms exist in the literature that do not aim to select actions

based on their estimated Q-values. These algorithms generally use policy gradient methods, where,

a parametrized policy selects actions without resorting to the action-value function. The function

may still be used for learning the parameter of the policy but not for the action selection.

4. Generic Framework for Learning Optimization Bounds

This section describes the framework we propose for learning optimization bounds in a generic

fashion. It is important to note that both technologies are based on a recursive formulation. The

idea is to use this unique representation to define both the DD construction and the reinforcement

learning environment. The process is divided into two phases:

1. The learning phase, where a model is trained to identify good variable orderings. A set of

instances, either from a known dataset or randomly generated, as well as the recursive formulation,

are given as input for the reinforcement learning framework. The model, implemented as a deep

neural network, is then parametrized.

2. The evaluation phase, where the model is used to drive the variable ordering used for building

the relaxed and restricted DDs of the instances we want to evaluate. The same recursive formulation

is used for the DD construction. The expectation is that by using the ordering given by the learned

model, tight optimization bounds will be obtained.

The complete process for this approach is illustrated in Figure 3. The cubic blocks represent the

components that are problem-specific, such as the recursive formulation, or specific to a class of

problems, such as the neural architecture or the relaxation operator. For instance, a graph neural

network (Scarselli et al. 2008) can be used for all problems that can be represented as a graph.

Once these components have been defined, the process follows these steps:

(1) A training set is built either using known instances or using a random generator. The training

instances can also be generated dynamically during the training phase.

(2) The reinforcement learning framework operates the learning using the training instances as

input. The output is two parametrized neural networks, one designed for the relaxed DDs and the

other for the restricted DDs. The environment is directly inferred from the recursive formulation.
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(3) The recursive formulation is then used for building the relaxed and restricted DDs of the

instance that must be evaluated. The previously trained models are used for determining an appro-

priate variable ordering for both DDs.

(4) Finally, the DDs give a primal and a dual bound for the the evaluated instance. Such bounds

can be used afterward in a branch-and-bound algorithm.

This framework, using reinforcement learning to drive the construction of DDs in order to

improve optimization bounds, is the main contribution of this paper. It is suited for every opti-

mization problem that can be expressed by a recursive formulation. A relaxation operator is also

required when computing the dual bound. The rest of this section describes the generic reinforce-

ment learning environment we designed and the learning algorithm we used in order to solve it.

Optimization
problem targeted

Random instances 
generator

Training instances

Evaluated instance

Recursive 
formulation

+

Relaxed
decision diagram+

Restricted
decision diagram+

Dual bound

Primal bound

Reinforcement learning trainer

Agent

Environment

Neural network: 
variable ordering of 

restricted DDs

actionstate, reward
Neural network:

variable ordering of 
relaxed DDs

(1)

(2)

(3) (4)

Relaxation operator 

Figure 3 Complete process of the framework: (1) a training set is built, (2) a training based on RL is conducted

on generated instances in order to learn variable orderings giving tight bounds, (3) the ordering is used

to compile relaxed and restricted DDs, and (4) the DDs are used to compute primal and dual bounds.

4.1. Reinforcement Learning Environment

Let P = hX,D,C,Oi be a constrained optimization problem (COP), where X represents the set of

variables, D the set of discrete domains restricting the variables x2X, C the set of constraints and

O the objective function. Designing an RL model for determining the variable ordering of a DD

associated with P requires defining, the tuple hS,A,T,Ri to represent the system. The environment

we designed is defined as follows.

• State: An RL state s2 S is a pair hsL, sBi containing an ordered sequence of variables sL and

a partial DD sB associated with variables in sL. A state s is terminal if sL includes all the variables

of X. We emphasize that an RL state does not correspond to a DD state (i.e., a node).
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• Action: An action is defined as the selection of a variable from X. An action as can be

performed at the RL state s if and only if it is not yet inserted in sB (i.e., as 2X \ sL).

• Transition function: A transition is a function updating the current RL state according to

the action performed. Let B� x be an operator adding the variable x into a decision diagram B,

and y :: x another operator appending the variable x to an arbitrary ordered sequence of variables

(y); we have T (s, as) = hsL :: as, sB � asi.

• Reward function: The reward function is designed to tighten the bounds obtained with the

DD. For maximization problems, upper bounds are provided by relaxed DDs and lower bounds

by restricted DDs. Both cases are associated with a common reward. Let dBe and bBc indicate

the current upper/lower bound obtained with the decision diagram B. Such bounds correspond

to the current partial longest path of the relaxed/restricted DD from the root node to the last

constructed layer. At each variable insertion in B, the di↵erence in the longest path when adding

the new layer is computed. When computing the upper bound, this di↵erence is penalized because

we want the bound to be as small as possible (Equation (6)). For the lower bound, this di↵erence

is rewarded, as we want the bound to be as large as possible (Equation (7)).

R
ub(s, as) =�

�
dsB � ase� dsBe

�
(6)

R
lb(s, as) =

�
bsB � asc� bsBc

�
(7)

When the objective is to minimize, the shortest path must be considered instead of the longest

one. The upper bounds are then provided by restricted DDs and lower bounds by relaxed DDs.

4.2. Learning Algorithm

The next step is to use a reinforcement learning algorithm to find a good sequence of actions.

The core of the learning algorithm we have chosen relies on neural fitted Q-learning, as described

previously, and includes several improvements:

• Experience replay : Let hs, a, r, s0i be a sample representing an action done (a) at a specific

state (s) with its reward (r) and the next state reached (s0), and let D be a sample store with

a fixed memory. Each time an action is performed, hs, a, r, s0i is added in D. Then, the optimizer

updates w using a random sample taken from D (Lin 1992). However, uniformly sampling the

experiences from the memory does not take into account the relative significance of the di↵erent

transitions. Prioritized experience replay (Schaul et al. 2015) deals with this issue by replaying

important transitions more frequently.

• Multi-step learning : Delayed rewards, where the final reward of interest is only received far

in the future during an episode, can be an issue for the learning. For this reason, updating the

Q-values by looking only at the next step, as in Equation (3), may be too myopic. A possible
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solution is to wait more steps before updating the parameters and then compute a more accurate

estimate of the future rewards. This is the basic idea behind multi-step Q-learning. The update

function and the square loss function (Equation (5)) are thus modified as presented in Equations

(8) and (9) where n is the number of steps considered.

Q(st, at) Q(st, at)+↵

⇣ n�1X

i=0

R(st+i, at+i)+ �max
a2A

Q(st+n, a)�Q(st, at)
⌘

(8)

L(w) =
⇣ n�1X

i=0

R(st+i, at+i)+ �max
a2A

bQ(st+n, a,w)� bQ(st, at,w)
⌘2

(9)

• Mini-batches: Instead of updating the bQ-function using a single sample as previously explained,

it is also possible to update it by considering a mini-batch of m samples from the store memory D.

As stressed by Masters and Luschi (2018), the choice of the mini-batch size can have a huge impact

on the learning process. On one hand, large batches result in faster learning and leverage better

support for parallelism, especially on GPUs. On the other hand, small batches can provide a better

generalization. Let Lj(w) be the squared loss related to a sample j, with N as the batch size. The

gradient update, where the square loss of each sample is summed, is defined in Equation (10).

w w�
1

2N
↵

NX

j=1

rLj(w) (10)

• Adaptive ✏-greedy : Always following a greedy policy results in a lack of exploration during

learning. One solution is to introduce limited randomness in choosing an action. ✏-greedy refers to

taking a random action with probability ✏ where ✏⌧ 1. Otherwise, the current policy is followed.

In our case, ✏ is adaptive and decreases linearly during the learning process, resulting in focused

exploration at first, followed by increased exploitation.

• Reward scaling : Gradient-based methods have di�culty learning when rewards are large or

sparse. Reward scaling compresses the space of rewards into a smaller interval value near zero while

still remaining su�ciently large, since tiny rewards can also lead to failed learning, as stressed by

Henderson et al. (2018). We let ⇢2R be the scaling factor, generally defined as a power of 10, and

rescale the rewards as rt = ⇢R(st, at).

Other improvements, such as the integration of a target network or double Q-learning (Van Has-

selt et al. 2016), are also possible. The complete algorithm is presented in Algorithm 1.
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Algorithm 1: Learning Algorithm.

1 . Pre: M is the training set containing COPs.
2 . K is the number of iterations.
3 . N is the batch size.
4 . ✏,⇢,↵,�, are parameters as defined previously.
5 . ⇡ is the policy, which is randomly initialized.
6 . w is the weight vector, which is randomly initialized.
7 D := ; . Experience replay store

8 for i from 1 to K do
9 P,V := randomValueFrom(M)

10 hS,A,T,Ri := initializeEnvironment(P ) . Reinforcement learning environment

11 s1 := h;,;i . Decision diagram is empty

12 for t from 1 to V do
13 ⇡ := argmax⇡

bQ⇡(s, a,w) 8s2 S,8a2A

14 k := randomValueFrom([0,1])
15 if k > ✏ then
16 at := ⇡(st) . Following policy

17 else
18 at := randomValueFrom(A) . ✏-greedy

19 rt := ⇢R(st, at) . Reward scaling

20 st+1 := T (st, at)
21 D :=D[ {hst, at, rt, st+1i} . Store update

22 for j from 1 to N do
23 hse, ae, re, s

0
ei := randomValueFrom(D) . Experience replay selection

24 Lj(w) :=
⇣
re + �maxa2A

bQ(s0e, a,w)� bQ(se, ae,w)
⌘2

. Square loss

25 w :=w� 1
2N

↵
PN

j=1rLj(w) . Mini-batch

26 update(✏)

27 return w

At each iteration, a COP (P ) of V variables is randomly taken from the training set and the

learning is conducted on it (line 9). E↵ective learning for any particular class of COPs should

consider instances for that class of COP. For example, if the goal is to find objective function

bounds for an instance of the maximum independent set problem, other instances from that class

of problem should be used during the training. The reinforcement learning environment is then

initialized (line 10). The next loop (lines 12-26) iterates until all the variables of P have been

considered. According to the ✏-greedy threshold, the next action to do is either random (line 17)

or follows the current greedy policy (line 15). The resulting reward is then scaled (line 18), and the

experience is stored in a bu↵er (line 20). As long as the batch size is not exceeded, random samples

from the experience replay store are picked up and used for computing the square loss (lines 21-23).

The weights of the deep network are then updated (line 24). Finally, the algorithm returns a vector

of weights (w) which is used for parametrizing the approximate action-value function bQ.
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4.3. Construction of the Solution

The trained model is used for building the DD related to the problem we want to solve. The process

is shown in Algorithm 2. It takes as input the weight vector that was obtained in Algorithm 1 for

setting the action-value function and the optimization problem we want to evaluate. The greedy

policy (line 5) is followed for selecting the next variable until all of them have been considered

(lines 7-9). The last RL state, corresponding an entirely built DD, is finally returned (line 10). An

illustration of this process is described in Example 2.

Algorithm 2: Construction of the Decision Diagram.

1 . Pre: P is the optimization problem we want to solve.
2 . V is the number of variables in P .
3 . w is the weight vector, which has been computed in Algorithm 1.
4 hS,A,T,Ri := initializeEnvironment(P )
5 ⇡ := argmax⇡

bQ⇡(s, a,w) 8s2 S,8a2A

6 s1 := h;,;i
7 for t from 1 to V do
8 at := ⇡(st)
9 st+1 := T (st, at)

10 return sV

Example 2. Let us consider the example of Figure 1 (left part) of the MISP. Table on the top of

Figure 4 shows examples of Q-values that can be obtained using the model trained in Algorithm 1.

Following the greedy policy, the variable with the highest Q-value is always selected, which in turn

is used to select the next variable for compiling the DD.

5. Case Study: Maximum Independent Set Problem

As is commonly done in the literature related to DDs, we propose to validate our approach on the

MISP. This section describes the neural architecture we consider to approximate the Q-values, the

experimental protocol, and finally the experiments we carried out. The implementation is available

online on Github (https://github.com/corail-research/learning-to-bound).

5.1. Neural Network Architecture

An important design choice is the selection of a neural network architecture. It must encompass the

combinatorial structure of the problem, and give as output an estimated Q-value for each variable

of the problem at each stage of the DD construction. Interestingly, there is a one-to-one matching

with a partial DD, and the related MISP instance partially solved. We can directly use the MISP

instance as input for the neural network. A fundamental aspect of the MISP is that it can be

entirely represented as a graph, which motivates the use of a graph neural network architecture

(Scarselli et al. 2008). Following the work of Khalil et al. (2017), we reuse the structure2Vec (Dai

et al. 2016) embedding. Let G(V,E) be a simple, undirected graph with V the set of vertices, E

the set of edges, fv 2 Rkv a vector of features attached to a vertex v 2 V , and he 2 Rke a vector
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Actions
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(e) State s5 (x2 selected).
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(f) State s6 (terminal state).

Figure 4 Example of an exact DD construction, step-by-step, for a MISP instance, following the policy

⇡= argmaxa
bQ⇡(s, a,w) based on the output of Algorithm 1.
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of features attached to an edge e 2 E, where kv is the number of features of vertex v and ke

the number of features of edge e. The objective of structure2vec is to compute a p-dimensional

feature embedding µv 2Rp for each node v 2 V . Details of this specific architecture are proposed

in the online supplement. We refer to the survey from Cappart et al. (2021a) for more information

about the relevance of graph neural networks in combinatorial optimization.

The neural network is used to obtain an approximate Q-value for each state-action pair. Typically,

an action corresponds to the choice of a vertex in the subset of non-selected vertices of the initial

graph, while the state corresponds to a combinatorial structure dependent on the previously-chosen

vertices. This process is illustrated in Figure 5, where µ is the message passing operation, and zv

the embedding that has been computed and which serves as input for a fully-connected neural

network. Once trained, the network will be called each time a Q-value must be computed.

Figure 5 Approximated Q-value obtained from a state using a graph embedding and a deep neural network.

Finally, a binary feature bv is added to each node v 2 V . It is set to 1 if v has already been

considered during the DD construction and to 0 otherwise. The features are updated after each

action. No modification on the graph structure is done. No information concerning the edges is

used. It is worth noting that this encoding contains all the required information to build the RL

state (i.e., related partial DD). No further information from the DD is required.

5.2. Experimental Protocol

Instance generation Except for the comparisons with CPLEX, instances are generated using

the model proposed by Albert and Barabási (2002). This model is commonly used to generate scale-

free graphs that mimic real-world networks. They are defined by the number of nodes (n) and an

attachment parameter (⌫). The greater ⌫ is, the denser the graph. Edges are added preferentially to

nodes with a higher degree. The graph size is randomly sampled from a uniform distribution (n2

{90, . . . ,100}). Four models, with a specific attachment parameter, are trained (⌫ 2 {2,4,8,16}).
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Baseline Comparisons are performed against the linear relaxation bound (LP), which is obtained

using a standard clique formulation for the MISP as described by Bergman et al. (2013), a random

ordering (RAND; best, worst, and average bounds obtained among 100 trials), and three heuristics

commonly used in the literature:

1. Maximal Path Decomposition (MPD): A maximal path decomposition is pre-computed and used

as the ordering of the vertices (Bergman et al. 2013). This ordering bounds the width of the exact

DDs by the Fibonacci numbers.

2. Minimum Number of States (MIN): Having constructed up to layer j, and hence chosen the

first j� 1 vertices, the next vertex is selected as the one appearing in the fewest number of states

in the DD nodes in layer j. This heuristic aims to greedily minimize the size of the next layer.

3. Minimum Vertex Degree (DEG): The vertices are ordered in ascending order of vertex degree.

The vertices with the lowest degree are inserted first.

Training and Evaluation Training time is limited to 24 hours, memory consumption to 128

GB, and one GPU (NVIDIA Tesla V100 32 GB Passive) is used. The learning is done using the

Adam optimizer (Kingma and Ba 2014) with default parameters (�1 = 0,9, �2 = 0.99), except for

the learning rate, which is dependent on the case study considered. For each configuration, the

training is done using random instances that are generated dynamically during the training (i.e.,

a new instance is generated for each episode). The model selected is the one that gives the best

average reward on a validation set composed of 100 instances randomly generated with the same

generator. The training time required to get the model is dependent on the configuration considered

and varies between 13 minutes and 385 minutes. The di↵erent values are summarized in the online

supplement The evaluation is carried out on 100 other random graphs that are generated in the

same manner as those used for the training. Performance profiles (Dolan and Moré 2002) are used

to compare the learned models with other methods. This tool provides a synthetic view on how

an approach performs compared to the others tested. The metric considered is the optimality gap

(i.e., the relative distance between the bound and the optimal solution).

Implementation Details The model is implemented based on code from Khalil et al. (2017)

for the learning part, while code from Bergman et al. (2013) is used for building the DDs of the

MISP instances. Graphs are generated using the networkX package (Hagberg et al. 2008). The

hyperparameters used are presented in the online supplement.

5.3. Results

The goal of the experiments is twofold. First, we show the adequacy of the approach for computing

both upper and lower bounds in di↵erent scenarios. We also consider its robustness when applied to

other configurations than the one used for the training. These experiments have been reused from
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our initial conference paper (Cappart et al. 2019). We then show that this learning-based bounding

mechanism can be successfully integrated inside a full-fledged branch-and-bound algorithm and

can be competitive with CPLEX.

5.3.1. Evaluating the DD Width for Training This experiment is designed to set an

appropriate DD maximal width (w) for training the model. Let us consider ⌫ = 4 for the attach-

ment parameter, as done by Khalil et al. (2017). We trained four models (w= {2,10,50,100}) for

relaxed DDs (RL-UB-4), and tested the models using the same values of w. Figure 6 shows the per-

formance profiles of the models when evaluated on relaxed DDs of various widths. It illustrates the

percentage of instances (y-axis) that are able to achieve a specific bound value, expressed as a ratio

to the optimal solution (x-axis). In other words, the higher the curve the better. The shaded area

represents the range of RAND performance when considering the best and worst solution obtained

among the 100 trials. These results suggest that the width chosen for the training has a negligible

impact on the quality of the model, even when the width considered during testing is di↵erent than

that for training. As computing shallow DDs is less computationally expensive compared to those

with larger widths, we selected the model trained with a width of 2 for the next experiments.

5.3.2. Comparison with Other Methods for Relaxed DDs The approach is now com-

pared to the other variable ordering heuristics for relaxed DDs. Barabasi-Albert graphs of varying

densities (⌫ = {2,4,8,16}) are considered, and a specific model is trained for each density. The

di↵erent models are referred to as RL-UB-⌫, where UB stands for the upper bound and ⌫ the density

coe�cient. Results are presented in Figure 7 for relaxed DDs with a width of 100. In all tested

configurations, our approach provides a better upper bound than the RAND, MIN, MPD, and DEG

heuristics. For the sparsest graphs (Figure 7a), the optimal solution is reached for almost all of

the instances. When the graphs are relatively sparse (Figure 7b), the linear relaxation provides the

best bound. However, this trend decreases as the density of the graphs grows (Figures 7c and 7d).

For these graphs, our model gives the best performance for all of the instances.

5.3.3. Evolution of the Width We focus on the situation shown in Figure 7b, where RL-UB-4

provides a worse bound than the linear relaxation of the problem. Figure 8a depicts the evolution

of the optimality gap when the model is tested on relaxed DDs of an increasingly larger width.

As RAND provided results far outside the range of the other methods for relaxed DDs, we do not

include it. We observe that RL-UB-4 remains better than the other ordering heuristics tested, and

when the DD width is su�ciently large (w > 1000), the linear relaxation bound is surpassed and

the optimal solution is almost reached (w= 10000). We also notice that the second-best heuristic

(MIN) is still worse than the linear relaxation even at this large width. Figure 8b reports the

execution time of the di↵erent methods. The linear relaxation is the fastest method and is almost
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(a) Testing on w= 2. (b) Testing on w= 10.

(c) Testing on w= 50. (d) Testing on w= 100.

Figure 6 Performance profiles of models trained with di↵erent widths for relaxed DDs. The y-axis represents the

percentage of instances that are able to achieve a specific dual bound value, expressed as a ratio with

the optimal solution (x-axis). Each curve (except the random one) represents the performance of a

model trained with a specific maximum DD width w 2 {2,10,50,100}. The name RL-UB-4 designates a

model trained on graphs with attachment parameter ⌫ = 4 for generating an upper bound (UB). Results

suggest that the DD width used for training has a negligible impact on the model performance.

instantaneous. Concerning the heuristics, MPD and DEG are static and the execution time for each

generally increases proportionally with the width, while MIN processes the nodes dynamically in

each layer to determine the next vertex to insert, which is more expensive. In the worst case,

selecting a vertex is done with a time complexity of O(w ⇥ n) per layer, with w the maximum

width and n the number of nodes (Bergman et al. 2012).

5.3.4. Comparison with Other Methods for Restricted DDs Experiments similar to

those reported on in Figure 7 were also carried out for restricted DDs. They are referred as RL-LB-⌫,

where LB stands for the lower bound. Results for restricted DDs with a width of 2 are depicted in

Figures 9a-9d. Again, our model has the best results from those tested and provides stronger lower

bounds, close to the optimal solution. Optimality is reached for ⇡ 90% of the easiest instances

(⌫ = 2) and for ⇡ 30% of the hardest ones (⌫ = 16). We also notice that for restricted DDs, DEG
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(a) ⌫ = 2. (b) ⌫ = 4.

(c) ⌫ = 8. (d) ⌫ = 16.

Figure 7 Performance profiles on graphs of di↵erent distributions (⌫) for relaxed DDs (w = 100). The y-axis

represents the percentage of instances that are able to achieve a specific dual bound value, expressed as

a ratio to the optimal solution (x-axis). Each curve represents the performance of a model. The name

RL-UB-{2,4,8,16} designates a model trained by reinforcement learning on graphs with attachment

parameter ⌫ = {2,4,8,16} for generating an upper bound (UB). A larger number indicates that the

graphs are denser. These results suggest that the learned model provides the best bounds for dense

graphs, while being close to the linear relaxation for sparse graphs.

is the strongest competitor, while MIN is more e�cient for relaxed DDs. This result indicates that

the choice of a universal dedicated heuristic is not trivial.

5.3.5. Analysis of the Ordering for Relaxed/Restricted DDs As shown in Figure 3, a

di↵erent model is learned to obtain the variable ordering of relaxed and restricted DDs. One may

wonder if a model trained using relaxed DDs can also be used to generate the ordering of restricted

DDs (or the inverse), the potential benefit being that only one model would be required to compute

the bounds. Figure 10a replays the experiments shown in Figure 7b but uses the model trained

with restricted DDs (RL-LB-4). Similarly, Figure 10b replays the experiments shown in Figure 9b

using RL-UB-4. As we can see, the models do not perform well and their performance is similar

to, or even worse than, the random ordering. This result indicates that a model that is suited for

relaxed DDs is not necessarily good for the restricted counterpart, and vice versa.
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(a) Evolution of width. (b) Evolution of time.

Figure 8 Quality of the upper bound in terms of optimality gap (i.e., the relative gap between the bound and the

cost of the optimal solution) and the execution time required to build the DD, for di↵erent widths and

ordering schemes. The inflexible bound obtained with the linear relaxation is also illustrated. Results

(with ⌫ = 4) show that when the width increases, the learned model (RL-UB-4) can obtain significantly

better bounds (left figure), but at the expense of an increased execution time (right figure).

5.3.6. Application to a Branch-and-Bound Algorithm Following Parjadis et al. (2021),

we integrate the learned bounds in a DD-based branch-and-bound algorithm (Bergman et al. 2016b)

in order to assess the practical use of the framework. Compared to the work in (Parjadis et al.

2021), we conduct experiments on graphs with up to 300 nodes (instead of 120), and the caching

mechanism has been dropped in favor of other improvements in the e�cient RL agent integration.

This algorithm works by building relaxed and restricted decision diagrams at each node of the

branch-and-bound search in order to obtain both primal and dual bounds, and uses relaxed DDs

for branching decisions. We propose two ways to integrate our framework within this process. In

the first method, the trained models are called at each node to build the decision diagrams (DD-RL).

Alternatively, we provide a more e�cient integration designed to obtain a trade-o↵ between the

quality of the bounds and the execution time (DD-RL+). The rational behind this second integration

is that calling a neural network many times at each node comes with significant overhead, and

this provides a mechanism by which this overhead can be mitigated. The improvements of DD-RL+

include the following: (1) only the relaxed DD is built using the trained model, (2) the model is

called only for the first 50 search nodes, then the MIN heuristic is used, and (3) at each prediction,

the next m variables are selected instead of only the single next variable. This is done by taking

m variables with the highest Q-values. These three improvements were designed empirically. We

observed that the primal bound has a negligible impact on the tree-search size compared to the

dual bound, and that the bounds found at the beginning of the search are the most important.

The last modification enables the selection of several variables with a single call to the model. It

incurs a slight loss in the bound quality in exchange for a reduction in execution time by a factor
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(a) ⌫ = 2. (b) ⌫ = 4.

(c) ⌫ = 8. (d) ⌫ = 16.

Figure 9 Performance profiles on graphs of di↵erent distributions (⌫) for restricted DDs (w = 2). The y-axis

represents the percentage of instances that are able to achieve a specific primal bound value, expressed

as a ratio to the optimal solution (x-axis). Each curve represents the performance of a model. The name

RL-LB-{2,4,8,16} designates a model trained by reinforcement learning on graphs with attachment

parameter ⌫ = {2,4,8,16} for generating a lower bound (LB). A larger number indicates that the graphs

are denser. These results suggest that the learned model provides the best bounds in every situation

studied.

m. We set m to 5 in the reported results. Both methods are first compared to a DD-based branch-

and-bound algorithm resorting to the MIN heuristic for the variable ordering. Results are presented

in Figure 11a for the number of nodes explored before proving optimality, and in Figure 11b for

the related execution time. Interestingly, we observe that even if a major reduction in the number

of nodes can be obtained by DD-RL versus MIN, the execution time is dramatically worse with the

learned bounds. This is due to the expensive call of the neural networks required to compute the

bounds. The improvements of DD-RL+ show both a reduction in search nodes and execution time.

5.3.7. Comparisons against CPLEX This final experiment aims to validate our approach

against an industrial and e�cient MIP solver (CPLEX), based on the linear relaxation and improved

by other mechanisms such as cutting planes and pre-computation of cliques (Grötschel et al.
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(a) Replay of Figure 7b. (b) Replay of Figure 9b.

Figure 10 Performance of the model trained with restricted DDs on relaxed DDs and vice versa, reproducing the

experiments of a previous situation but with another learned model. The results suggest that a model

trained to obtain a tight upper bound is not e�cient to obtain a tight lower bound, and conversely.

Figure 11 Branch-and-bound results for 100 MISP instances (Barabasi-Albert graphs of 140 nodes, with ⌫ = 4).

The y-axis represents the percentage of instances that are able to solve the problem at optimality,

within a given number of nodes explored (x-axis). These results show that the our learned solver

without improvement (DD-RL) is able to reduce the number of nodes explored compared to the

commonly used heuristic (MIN), but at the expense of a significantly longer execution time. The

improved version of the solver (DD-RL+) is able to compensate for this limitation.

1993). The tested instances were generated randomly following a Erdos-Renyi model for graphs of

n2 {200,250,300} nodes and density d= 0.3. We made this choice as the Barabasi-Albert graphs

considered so far are sparse and thus are solved e�ciently with a branch-and-bound algorithm.

We also increased the size of the graphs. Results are reported in Table 1 and show the number of

nodes explored, the optimality gap, and the execution time. A timeout (t.o.) of 1800 seconds is

used. DD-RL uses the learned bounds until the DDs reach a depth of 50 layers, and DD-RL+ uses RL

agent orderings for the first 100 search nodes. The model was trained on graphs of size 250 nodes.

We consistently observe the superiority of DD-RL+ in terms of execution time and optimality gap.
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Table 1 Average number of nodes, optimality gap, and execution time for solving 100 MISP instances of size n.

Results show the superiority of DD-RL+ compared to CPLEX and other DD methods for the three configurations.

Algorithms
n= 200 n= 250 n= 300

Nodes Opt. Gap. Time Nodes Opt. Gap Time Nodes Opt. Gap Time
(⇥1000) (%) (sec) (⇥1000) (%) (sec) (⇥1000) (%) (sec)

CPLEX 8771 0 432 27059 15 t.o. - 40 t.o.
DD-MIN 998 0 66 4947 0 416 - 7.2 t.o.
DD-RL 800 0 180 3263 0 1140 - 65 t.o.
DD-RL+ 879 0 61 4018 0 362 - 4.7 t.o.

5.4. Discussion

These experiments illustrate the promise of reinforcement learning for obtaining appropriate vari-

able orderings and improving both primal and dual bounds. Interestingly, training a model using

shallow DDs (width of 2) is su�cient to make these improvements. The model is also able to

generalize to DDs with a larger width, producing tighter bounds. We also observed that a model

trained for getting a dual bound is not suited for getting a primal one, and vice versa. We then

illustrated how the bounds can be successfully integrated within a branch-and-bound algorithm

and be competitive with the CPLEX branch-and-bound algorithms for dense graphs. That being

said, we observed that integrating learned bound (although very tight) inside a solver is not trivial,

as the time needed to call a neural network is prohibitive compared to a simpler heuristic. To

tackle this issue, we proposed di↵erent mechanisms to integrate the learned bounds, resulting in a

moderate loss in the bound accuracy but leading to a great improvement in time e�ciency.

In order to validate the results, we carried out experiments on three other problems (maximum

cut, set covering, and 0-1 knapsack problem). The experimental protocol and detailed results are

shown in the online supplement. The main insights we gained from these experiments is that

learning is e↵ective and provides bounds that are at least as tight as the ones obtained with a

standard ordering heuristic for DDs. Specifically, state-of-the-art orderings are achieved for the

maximum cut problem. We note that the training phase is more expensive, and that a larger DD

width must be considered for this problem.

The set covering case study can also benefit from the integrated framework. Experiments on

relaxed and restricted DDs both show that the learning is e↵ective and improves the bounds

compared to classic heuristics in most situations. Although the relaxation bounds obtained are

close to the ones obtained by the linear relaxation, we gain flexibility. Since the relaxation bounds

provided by DDs are flexible, they can be easily improved by increasing the width of the DD. Such

an improvement would not be possible with the linear relaxation bounds.

Finally, 0-1 knapsack experiments demonstrate that even if learning is e↵ective and can be

done without decreasing performance, it may not be useful for this problem. Our first observation
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indicates that the recursive formulation for this problem allows greedy choices (i.e., selecting the

item with the best utility/weight ratio) to obtain good performances, perhaps close to the best

ordering that can be reached given the DD width chosen. Although the reinforcement learning

framework is able to achieve similar performances as these heuristics, it seeks to improve upon

them. A second observation is that the linear relaxation of the standard problem is superior to

its DD counterpart. This is not a limitation of the reinforcement learning framework, but of DD

technology itself: it appears that the bounds that can be obtained with DD do not compete with

those obtained by the linear relaxation for this problem.

6. Conclusion

Prescriptive analytics provide organizations with scalable software for large-scale, automated

decision-making. A large portion of prescriptive analytic methodology is based on combinatorial

optimization. In order to reach as many practitioners as possible, generic optimization solvers have

developed scalable implementations of state-of-the-art algorithms. One challenge in the design of

scalable algorithms is the e�cient computation of tight optimization bounds. Recently introduced,

decision diagrams (DDs) provide a novel and flexible mechanism for obtaining high-quality and

flexible bounds. The main contribution of this work is a generic framework based on deep rein-

forcement learning for improving the optimization bounds of dynamic programs, thanks to DD

technology. This is done by learning appropriate variable orderings that are shown experimentally

to tighten the bounds proven by restricted and relaxed DDs. Compared to most of the related

work using machine learning for computing primal solutions, our framework (1) is generic in the

sense that it can be applied to any problem that can be encoded by a recursive formulation and

(2) provides flexible bounds. Similarly, it can also be used for computing dual bounds, provided

that a relaxation operator has been defined.

The general idea of the framework is to exploit a recursive formulation of an optimization prob-

lem, which can be used to define the reinforcement learning environment and the DD construction

at the same time. In doing so, it links the areas of operations research and machine learning, using

the recursive formulation as a bridge between both fields. Linking both fields in a generic way is

a hot topic in both research communities and remains a challenge. This contribution embraces

that challenge and moves the discussion forward. Experimental results indicate the promise of our

approach when integrated within a branch-and-bound algorithm.
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