
Dear Author,

Here are the proofs of your article.

You can submit your corrections online, via e-mail or by fax.

For online submission please insert your corrections in the online correction form. Always indicate the
line number to which the correction refers.

You can also insert your corrections in the proof PDF and email the annotated PDF.

For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write
the correction in the margin, not too close to the edge of the page.

Remember to note the journal title, article number, and your name when sending your response via e-
mail or fax.

Check the metadata sheet to make sure that the header information, especially author names and the
corresponding affiliations are correctly shown.

Check the questions that may have arisen during copy editing and insert your answers/ corrections.

Check that the text is complete and that all figures, tables and their legends are included. Also check the
accuracy of special characters, equations, and electronic supplementary material if applicable. If
necessary refer to the Edited manuscript.

The publication of inaccurate data such as dosages and units can have serious consequences. Please take
particular care that all such details are correct.

Please do not make changes that involve only matters of style. We have generally introduced forms that
follow the journal’s style.
Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed
without the approval of the responsible editor. In such a case, please contact the Editorial Office and
return his/her consent together with the proof.

If we do not receive your corrections within 48 hours, we will send you a reminder.

Your article will be published Online First approximately one week after receipt of your corrected
proofs. This is the official first publication citable with the DOI. Further changes are, therefore, not
possible.

The printed version will follow in a forthcoming issue.

Please note

After online publication, subscribers (personal/institutional) to this journal will have access to the complete
article via the DOI using the URL: http://dx.doi.org/[DOI].
If you would like to know when your article has been published online, take advantage of our free alert service.
For registration and further information go to: http://www.link.springer.com.

Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to
you on special request. When you return your corrections, please inform us if you would like to have these
documents returned.

http://www.link.springer.com

Metadata of the article that will be visualized in
OnlineFirst

ArticleTitle Learning the travelling salesperson problem requires rethinking generalization

Article Sub-Title

Article CopyRight The Author(s)
(This will be the copyright line in the final PDF)

Journal Name Constraints

Corresponding Author FamilyName Joshi
Particle
Given Name Chaitanya K.
Suffix
Division
Organization University of Cambridge
Address Cambridge, UK
Phone
Fax
Email ckj24@cl.cam.ac.uk
URL
ORCID http://orcid.org/0000-0003-4722-1815

Author FamilyName Cappart
Particle
Given Name Quentin
Suffix
Division
Organization Ecole Polytechnique de Montréal
Address Montreal, Canada
Phone
Fax
Email quentin.cappart@polymtl.ca
URL
ORCID

Author FamilyName Rousseau
Particle
Given Name Louis-Martin
Suffix
Division
Organization Ecole Polytechnique de Montréal
Address Montreal, Canada
Phone
Fax
Email louis-martin.rousseau@polymtl.ca
URL
ORCID

Author FamilyName Laurent
Particle
Given Name Thomas
Suffix
Division
Organization Loyola Marymount University

Address Los Angeles, USA
Phone
Fax
Email tlaurent@lmu.edu
URL
ORCID

Schedule Received
Revised
Accepted 16 Mar 2022

Abstract End-to-end training of neural network solvers for graph combinatorial optimization problems such as the
Travelling Salesperson Problem (TSP) have seen a surge of interest recently, but remain intractable and
inefficient beyond graphs with few hundreds of nodes. While state-of-the-art learning-driven approaches
for TSP perform closely to classical solvers when trained on trivially small sizes, they are unable to
generalize the learnt policy to larger instances at practical scales. This work presents an end-to-end
neural combinatorial optimization pipeline that unifies several recent papers in order to identify the
inductive biases, model architectures and learning algorithms that promote generalization to instances
larger than those seen in training. Our controlled experiments provide the first principled investigation
into such zero-shot generalization, revealing that extrapolating beyond training data requires rethinking
the neural combinatorial optimization pipeline, from network layers and learning paradigms to
evaluation protocols. Additionally, we analyze recent advances in deep learning for routing problems
through the lens of our pipeline and provide new directions to stimulate future research.

Keywords (separated by '-') Combinatorial optimization - Travelling salesperson problem - Graph neural networks - Deep learning

Footnote Information Code and datasets: github.com/chaitjo/learning-tsp

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

Vol.:(0123456789)

Constraints
https://doi.org/10.1007/s10601-022-09327-y

1 3

Learning the travelling salesperson problem requires
rethinking generalization

Chaitanya K. Joshi1  · Quentin Cappart2 · Louis‑Martin Rousseau2 · Thomas Laurent3

Accepted: 16 March 2022
© The Author(s) 2022

Abstract
End-to-end training of neural network solvers for graph combinatorial optimization
problems such as the Travelling Salesperson Problem (TSP) have seen a surge of inter-
est recently, but remain intractable and inefficient beyond graphs with few hundreds of
nodes. While state-of-the-art learning-driven approaches for TSP perform closely to clas-
sical solvers when trained on trivially small sizes, they are unable to generalize the learnt
policy to larger instances at practical scales. This work presents an end-to-end neural com-
binatorial optimization pipeline that unifies several recent papers in order to identify the
inductive biases, model architectures and learning algorithms that promote generalization
to instances larger than those seen in training. Our controlled experiments provide the first
principled investigation into such zero-shot generalization, revealing that extrapolating
beyond training data requires rethinking the neural combinatorial optimization pipeline,
from network layers and learning paradigms to evaluation protocols. Additionally, we ana-
lyze recent advances in deep learning for routing problems through the lens of our pipeline
and provide new directions to stimulate future research.

Keywords  Combinatorial optimization · Travelling salesperson problem · Graph neural
networks · Deep learning

Code and datasets: github.​com/​chait​jo/​learn​ing-​tsp

 *	 Chaitanya K. Joshi
	 ckj24@cl.cam.ac.uk

	 Quentin Cappart
	 quentin.cappart@polymtl.ca

	 Louis‑Martin Rousseau
	 louis-martin.rousseau@polymtl.ca

	 Thomas Laurent
	 tlaurent@lmu.edu

1	 University of Cambridge, Cambridge, UK
2	 Ecole Polytechnique de Montréal, Montreal, Canada
3	 Loyola Marymount University, Los Angeles, USA

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

A1

A2
A3

A4
A5

A6
A7

A8
A9

A10

A11

A12

http://orcid.org/0000-0003-4722-1815
http://crossmark.crossref.org/dialog/?doi=10.1007/s10601-022-09327-y&domain=pdf
https://www.github.com/chaitjo/learning-tsp

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

1  Introduction

NP-hard combinatorial optimization problems are the family of integer constrained optimiza-
tion problems which are intractable to solve optimally at large scales. Robust approximation
algorithms to popular problems have immense practical applications and are the backbone of
modern industries. Among combinatorial problems, the 2D Euclidean Travelling Salesperson
Problem (TSP) has been the most intensely studied NP-hard graph problem in the Opera-
tions Research (OR) community, with applications in logistics, genetics and scheduling [1].
TSP is intractable to solve optimally above thousands of nodes for modern computers [2]. In
practice, the Concorde TSP solver [3] uses linear programming with carefully handcrafted
heuristics to find solutions up to tens of thousands of nodes, but with prohibitive execution
times.1 Besides, the development of problem-specific OR solvers such as Concorde for novel
or under-studied problems arising in scientific discovery [4] or computer architecture [5]
requires significant time and specialized knowledge.

An alternate approach by the Machine Learning community is to develop generic learning
algorithms which can be trained to solve any combinatorial problem directly from problem
instances themselves [6–8]. Using classical problems such as TSP, Minimum Vertex Cover and
Boolean Satisfiability as benchmarks, recent end-to-end approaches [9–11] leverage advances
in graph representation learning [12–15] and have shown competitive performance with OR
solvers on trivially small problem instances up to few hundreds of nodes. Once trained, approxi-
mate solvers based on Graph Neural Networks (GNNs) have significantly favorable time com-
plexity than their OR counterparts, making them highly desirable for real-time decision-making
problems such as TSP and the associated class of Vehicle Routing Problems (VRPs).

1.1 � Motivation

Scaling end-to-end approaches to practical and real-world instances is still an open question [8]
as the training phase of state-of-the-art models on large graphs is extremely time-consuming.
For graphs larger than few hundreds of nodes, the gap between GNN-based solvers and simple
non-learnt heuristics is especially evident for routing problems like TSP [16, 17].

As an illustration, Fig. 1 presents the computational challenge of learning TSP on 200-
node graphs (TSP200) in terms of both sample efficiency and wall clock time. Surpris-
ingly, it is difficult to outperform a simple insertion heuristic when directly training on 12.8
Million TSP200 samples for 500 hours on university-scale hardware.

We advocate for an alternative to expensive large-scale training: learning efficiently
from trivially small TSP and transferring the learnt policy to larger graphs in a zero-shot
fashion or via fast finetuning. Thus, identifying promising inductive biases, architectures
and learning paradigms that enable such zero-shot generalization to large and more com-
plex instances is a key concern for training practical solvers for real-world problems.

1.2 � Contributions

Towards end-to-end learning of scale-invariant TSP solvers, we unify several state-of-
the-art architectures and learning paradigms [16–19] into one experimental pipeline and

1  The largest TSP solved by Concorde to date has 109,399 nodes with running time of 7.5 months.

AQ1

AQ2

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1FL01

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

Constraints	

1 3

provide the first principled investigation on zero-shot generalization to large instances. Our
findings suggest that learning scale-invariant TSP solvers requires rethinking the status quo
of neural combinatorial optimization to explicitly account for generalization:

•	 The prevalent evaluation paradigm overshadows models’ poor generalization capabili-
ties by measuring performance on fixed or trivially small TSP sizes.

•	 Generalization performance of GNN aggregation functions and normalization schemes
benefits from explicit redesigns which account for shifting graph distributions, and can
be further boosted by enforcing regularities such as constant graph diameters when
defining problems using graphs.

•	 Autoregressive decoding enforces a sequential inductive bias which improves generali-
zation over non-autoregressive models, but is costlier in terms of inference time.

•	 Models trained with expert supervision are more amenable to post-hoc search, while
reinforcement learning approaches scale better with more computation as they do not
rely on labelled data.

Our framework and datasets are available online.2 Additionally, we use our pipeline to
characterize the recent state-of-the-art in deep learning for routing problems and provide
new directions for future research.

2 � Related work

Neural combinatorial optimization  In a recent survey, Bengio et al. [8] identified three
broad approaches to leveraging machine learning for combinatorial optimization problems:
learning alongside optimization algorithms [20–22], learning to configure optimization

Fig. 1   Computational challenges of learning large scale TSP. We compare three identical autoregressive
GNN-based models trained on 12.8 Million TSP instances via reinforcement learning. We plot average
optimality gap to the Concorde solver on 1,280 held-out TSP200 instances vs. number of training sam-
ples (left) and wall clock time (right) during the learning process. Training on large TSP200 from scratch
is intractable and sample inefficient. Active Search [7], which learns to directly overfit to the 1,280 held-
out samples, further demonstrates the computational challenge of memorizing very few TSP200 instances.
Comparatively, learning efficiently from trivial TSP20-TSP50 allows models to better generalize to TSP200
in a zero-shot manner, indicating positive knowledge transfer from small to large graphs. Performance can
further improve via rapid finetuning on 1.28 Million TSP200 instances or by Active Search. Within our
computational budget, a simple non-learnt furthest insertion heuristic still outperforms all models. Precise
experimental setup is described in Appendix A

2  https://​github.​com/​chait​jo/​learn​ing-​tsp

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

2FL01

https://github.com/chaitjo/learning-tsp

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

algorithms [23, 24], and end-to-end learning to approximately solve optimization prob-
lems, a.k.a. neural combinatorial optimization [6, 7].

State-of-the-art end-to-end approaches for TSP use Graph Neural Networks (GNNs)
[12–15] and sequence-to-sequence learning [25] to construct approximate solutions
directly from problem instances. Architectures for TSP can be classified as: (1) autore-
gressive approaches, which build solutions in a step-by-step fashion [9, 16, 19, 26–28];
and (2) non-autoregressive models, which produce the solution in one shot [17, 18,
29–31]. Models can be trained to imitate optimal solvers via supervised learning or by
minimizing the length of TSP tours via reinforcement learning [32].

Other classical problems tackled by similar architectures include Vehicle Routing [33,
34], Maximum Cut [9], Minimum Vertex Cover [11], Boolean Satisfiability [10, 35], and
Graph Coloring [36]. Using TSP as an illustration, we present a unified pipeline for charac-
terizing neural combinatorial optimization architectures in Section 3.

Notably, TSP has emerged as a challenging testbed for neural combinatorial optimi-
zation. Whereas generalization to problem instances larger and more complex than those
seen in training has at least partially been demonstrated on non-sequential problems such
as SAT, MaxCut, and MVC [10, 11], the same architectures do not show strong generaliza-
tion for TSP [16, 17].

Combinatorial optimization and GNNs  From the perspective of graph representa-
tion learning, algorithmic and combinatorial problems have recently been used to
characterize the expressive power of GNNs [37, 38]. An emerging line of work on
learning to execute graph algorithms [39, 40] has lead to the development of prov-
ably more expressive GNNs [41] and improved understanding of their generalization
capability [42, 43]. Towards tackling realistic and large-scale combinatorial prob-
lems, this paper aims to quantify the limitations of prevalent GNN architectures and
learning paradigms via zero-shot generalization to problems larger than those seen
during training.

Novel applications  Advances on classical combinatorial problems have shown promising
results in downstream applications to novel or under-studied optimization problems in the
physical sciences [4, 44] and computer architecture [5, 45, 46], where the development of
exact solvers is expensive and intractable. For example, autoregressive architectures pro-
vide a strong inductive bias for device placement optimization problems [47, 48], while
non-autoregressive models [49] are competitive with autoregressive approaches [50, 51]
for molecule generation tasks.

3 � Neural combinatorial optimization pipeline

NP-hard problems can be formulated as sequential decision making tasks on graphs
due to their highly structured nature. Towards a controlled study of neural combinato-
rial optimization for TSP, we unify recent ideas [16–19] via a five stage end-to-end
pipeline illustrated in Fig. 2. Our discussion focuses on TSP, but the pipeline presented
is generic and can be extended to characterize modern architectures for several NP-
hard graph problems.

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

Constraints	

1 3

Fig. 2   End-to-end neural combinatorial optimization pipeline: The entire model in trained end-to-end via imitating an opti-
mal solver (i.e. supervised learning) or through minimizing a cost function (i.e. reinforcement learning)

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

3.1 � Problem definition

The 2D Euclidean TSP is defined as follows: “Given a set of cities and the distances
between each pair of cities, what is the shortest possible route that visits each city and
returns to the origin city?” Formally, given a fully-connected input graph of n cities
(nodes) in the two dimensional unit square S = {xi}

n
i=1

 where each xi ∈ [0, 1]2 , we aim to
find a permutation of the nodes π, termed a tour, that visits each node once and has the
minimum total length, defined as:

where ∥⋅∥2 denotes the ℓ2 norm.

Graph sparsification  Classically, TSP is defined on fully-connected graphs, see Fig. 2(b).
Graph sparsification heuristics based on k-nearest neighbors aim to reduce TSP graphs,
enabling models to scale up to large instances where pairwise computation for all nodes is
intractable [9] or learn faster by reducing the search space [17]. Notably, problem-specific
graph reduction techniques have proven effective for out-of-distribution generalization to
larger graphs for other NP-hard problems such as MVC and SAT [11].

Fixed size vs. variable size graphs  Most work on learning for TSP has focused on training
with a fixed graph size [16, 17], likely due to ease of implementation. Learning from mul-
tiple graph sizes naturally enables better generalization within training size ranges, but its
impact on generalization to larger TSP instances remains to be analyzed.

3.2 � Graph embedding

A Graph Neural Network (GNN) encoder computes d-dimensional representations for each
node in the input TSP graph, see Fig. 2(c). At each layer, nodes gather features from their
neighbors to represent local graph structure via recursive message passing [13]. Stacking
L layers allows the network to build representations from the L-hop neighborhood of each
node. Let h�

i
 and e�

ij
 denote respectively the node and edge feature at layer ℓ associated with

node i and edge ij. We define the feature at the next layer via an anisotropic message pass-
ing scheme using an edge gating mechanism [52]:

where U� , V� , A� , B� , C� ∈ ℝ
d×d are learnable parameters, Norm denotes the normaliza-

tion layer (BatchNorm [53], LayerNorm [54]), Aggr represents the neighborhood aggre-
gation function (Sum, Mean or Max), σ is the sigmoid function, and ⊙ is the Hadamard
product. As inputs h�=0

i
 and e�=0

ij
 , we use d-dimensional linear projections of the node coor-

dinate xi and the euclidean distance ∥xi − xj∥2, respectively.

(1)L(��s) = ‖x�n
− x�1

‖2 +

n−1�
i=1

‖x�i
− x�i+1

‖2,

(2)h�+1
i

= h�

i
+ ReLU

(
NORM

(
U�h�

i
+ AGGRj∈Ni

(
𝜎(e�

ij
)⊙ V�h�

j

)))
,

(3)e�+1
ij

= e�
ij
+ ReLU

(
NORM

(
A�e�

ij
+ B�h�

i
+ C�h�

j

))
,

AQ3

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

Constraints	

1 3

Anisotropic aggregation  We make the aggregation function anisotropic or directional
via a dense attention mechanism which scales the neighborhood features hj,∀j ∈ Ni, using
edge gates σ(eij). Anisotropic and attention-based GNNs such as Graph Attention Networks
[14], Transformers [55, 56], and Gated Graph ConvNets [52] have been shown to outper-
form isotropic Graph ConvNets [12] across several challenging domains [57], including
TSP [16, 17].

3.3 � Solution decoding

Non‑autoregressive decoding (NAR)  Consider TSP as a link prediction task: each edge
may belong/not belong to the optimal TSP solution independent of one another [18]. We
define the edge predictor as a two layer MLP on the node embeddings produced by the
final GNN encoder layer L, following Joshi et al. [17], see Fig. 2(d). For adjacent nodes i
and j, we compute the unnormalized edge logits:

W1 ∈ ℝ
3d×d, W2 ∈ ℝ

d×2 , and [⋅,⋅,⋅] is the concatenation operator. The logits p̂ij are con-
verted to probabilities over each edge pij via a softmax.

Autoregressive decoding (AR)  Although NAR decoders are fast as they produce predic-
tions in one shot, they ignore the sequential ordering of TSP tours. Autoregressive decod-
ers, based on attention [16, 19] or recurrent neural networks [6, 26], explicitly model this
sequential inductive bias through step-by-step graph traversal. We follow the attention
decoder from Kool et al. [16], which starts from a random node and outputs a probability
distribution over its neighbors at each step. Greedy search is used to perform the traversal
over n time steps and masking enforces constraints such as not visiting previously visited
nodes.

At time step t at node i, the decoder builds a context ĥC
i
 for the partial tour �′

t′
 , generated

at time t′ < t , by packing together the graph embedding hG and the embeddings of the first
and last node in the partial tour: ĥC

i
= WC

[
hG, hL

𝜋�
t−1

, hL

𝜋�
1

]
, where WC ∈ ℝ

3d×d and learned
placeholders are used for hL

��
t−1

 and hL

�′
1

 at t = 1. The context ĥC
i
 is then refined via a standard

Multi-Head Attention (MHA) operation [55] over the node embeddings:

where Q,K,V are inputs to the M-headed MHA (M = 8). The unnormalized logits for each
edge eij are computed via a final attention mechanism between the context hC

i
 and the

embedding hj:

The tanh is used to maintain the value of the logits within [−C,C] (C = 10) [7]. The logits
p̂ij at the current node i are converted to probabilities pij via a softmax over all edges.

(4)p̂ij = W2

(
ReLU

(
W1

([
hG, hL

i
, hL

j

])))
, where hG =

1

n

n∑
i=0

hL
i
,

(5)hC
i
= MHA

(
Q = ĥC

i
, K =

{
hL

1
,… , hL

n

}
, V =

{
hL

1
,… , hL

n

})
,

(6)p̂ij =

⎧⎪⎨⎪⎩

C ⋅ tanh

�
(WQhC

i)
T
⋅

�
WK hL

j

�
√

d

�
if j ≠ 𝜋t� ∀t� < t

−∞ otherwise.

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

Inductive biases  NAR approaches, which make predictions over edges independently of
one-another, have shown strong out-of-distribution generalization for non-sequential prob-
lems such as SAT and MVC [11]. On the other hand, AR decoders come with the sequen-
tial/tour constraint built-in and are the default choice for routing problems [16]. Although
both approaches have shown close to optimal performance on fixed and small TSP sizes
under different experimental settings, it is important to fairly compare which inductive
biases are most useful for generalization.

3.4 � Solution search

Greedy search  For AR decoding, the predicted probabilities at node i are used to select
the edge to travel along at the current step via sampling from the probability distribution
pi or greedily selecting the most probable edge pij, i.e. greedy search. Since NAR decoders
directly output probabilities over all edges independent of one-another, we can obtain valid
TSP tours using greedy search to traverse the graph starting from a random node and mask-
ing previously visited nodes. Thus, the probability of a partial tour �′ can be formulated as
p(��) =

∏
j�∼i�∈��pi�j� , where each node j′ follows node i′.

Beam search and sampling  During inference, we can increase the capacity of greedy
search via limited width breadth-first beam search, which maintains the b most probable
tours during decoding. Similarly, we can sample b solutions from the learnt policy and
select the shortest tour among them. Naturally, searching longer, with more sophisticated
techniques, or sampling more solutions allows trading off run time for solution quality.
However, it has been noted that using large b for search/sampling or local search during
inference may overshadow an architecture’s inability to generalize [58]. To better under-
stand generalization, we focus on using greedy search and beam search/sampling with
small b = 128.

3.5 � Policy learning

Supervised learning  Models can be trained end-to-end via imitating an optimal solver at
each step (i.e. supervised learning). For models with NAR decoders, the edge predictions
are linked to the ground-truth TSP tour by minimizing the binary cross-entropy loss for
each edge [17]. For AR architectures, at each step, we minimize the cross-entropy loss
between the predicted probability distribution over all edges leaving the current node and
the next node from the groundtruth tour, following Vinyals et al. [6]. We use teacher-forc-
ing to stabilize training [59].

Reinforcement learning  Reinforcement learning is a elegant alternative in the absence of
groundtruth solutions, as is often the case for understudied combinatorial problems. Mod-
els can be trained by minimizing problem-specific cost functions (the tour length in the
case of TSP) via policy gradient algorithms [7, 16] or Q-Learning [9]. We focus on policy
gradient methods due to their simplicity, and define the loss for an instance s parameterized
by the model 𝜃 as L(�|s) = �p� (�|s)[L(�)] , the expectation of the tour length L(π), where
p𝜃(π|s) is the probability distribution from which we sample to obtain the tour π|s. We use
the REINFORCE gradient estimator [60] to minimize L:

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

Constraints	

1 3

where the baseline b(s) reduces gradient variance. Our experiments compare standard critic
network baselines [7, 19] and the greedy rollout baseline proposed by Kool et al. [16].

4 � Experimental setup

We design controlled experiments to probe the unified pipeline described in Section 3 in
order to identify inductive biases, architectures and learning paradigms that promote zero-
shot generalization. We focus on learning efficiently from small problem instances (TSP20-
50) and measure generalization to a wider range of sizes, including large instances which
are intractable to learn from (e.g. TSP200). Each experiment starts with a ‘base’ model
configuration and ablates the impact of a specific component of the five-stage pipeline. We
aim to fairly compare state-of-the-art ideas in terms of model capacity and training data,
and expect models with good inductive biases for TSP to: (1) learn trivially small TSPs
without hundreds of millions of training samples and model parameters; and (2) generalize
reasonably well across smaller and larger instances than those seen in training.

To quantify ‘good’ generalization, we additionally evaluate our models against a simple,
non-learnt furthest insertion heuristic baseline, which constructively builds a partial tour
�′ by inserting node i between tour nodes j1, j2 ∈ �� such that the distance from node i to
its nearest node j1 is maximized. Kool et al. [16] provide a detailed description of insertion
heuristic baselines.

Training datasets  We perform ablation studies of each component of the pipeline by
training on variable TSP20-50 graphs for rapid experimentation. We also compare to learn-
ing from fixed graph sizes up to TSP100. Each TSP instance consist of n nodes sampled
uniformly in the unit square S = {xi}

n
i=1

 and xi ∈ [0, 1]2 . In the supervised learning para-
digm, we generate a training set of 1,280,000 TSP samples and groundtruth tours using
the optimal Concorde solver as an oracle. Models are trained using the Adam optimizer
for 10 epochs with a batch size of 128 and a fixed learning rate 1e − 4. For reinforcement
learning, models are trained for 100 epochs on 128,000 TSP samples which are randomly
generated for each epoch (without optimal solutions) with the same batch size and learn-
ing rate. Thus, both learning paradigms see 12,800,000 TSP samples in total. Considering
that TSP20-50 are trivial in terms of complexity as they can be solved by simpler non-
learnt heuristics, training good solvers at this scale should ideally not require billions of
instances.

Model hyperparameters  For models with AR decoders, we use 3 GNN encoder layers
followed by the attention decoder head, setting hidden dimension d = 128. For NAR mod-
els, we use the same hidden dimension and opt for 4 GNN encoder layers followed by the
edge predictor. This results in approximately 350,000 trainable parameters for each model,
irrespective of decoder type. Unless specified, most experiments use our best model con-
figuration: AR decoding scheme and Graph ConvNet encoder with Max aggregation and
BatchNorm (with batch statistics). All models are trained via supervised learning except
when comparing learning paradigms.

(7)∇L(�|s) = �p� (�|s)
[
(L(�) − b(s))∇ log p�(�|s)

]
,239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

Evaluation  We compare models on a held-out test set of 25,600 TSPs, consisting of 1,280
samples each of TSP10, TSP20, … , TSP200. Our evaluation metric is the optimality gap
w.r.t. the Concorde solver, i.e. the average percentage ratio of predicted tour lengths rela-
tive to optimal tour lengths. To compare design choices among identical models, we plot
line graphs of the optimality gap as TSP size increases (along with a 99%-ile confidence
interval) using beam search with a width of 128. Compared to previous work which evalu-
ated on fixed problem sizes, our protocol identifies not only those models that perform well
on training sizes, but also those that generalize better than non-learnt heuristics for large
instances which are intractable to train on.

5 � Results

5.1 � Does learning from variable sizes help generalization?

We train five identical models on fully connected graphs of instances from TSP20, TSP50,
TSP100, TSP200 and variable TSP20-50. The line plots of optimality gap across TSP sizes
in Fig. 3 indicates that learning from variable TSP sizes helps models retain performance
across the range of graph sizes seen during training (TSP20-50). Variable graph training
compared to training solely on the maximum sized instances (TSP50) leads to marginal
gains on small instances but, somewhat counter-intuitively, does not enable better generali-
zation to larger problems. Learning from small TSP20 is unable to generalize to large sizes
while TSP100 models generalize poorly to trivially easy sizes, suggesting that the preva-
lent protocol of evaluation on training sizes [16, 17] overshadows brittle out-of-distribution
performance.

Training on TSP200 graphs is intractable within our computational budget, see Fig. 1.
TSP100 is the only model which generalizes better to large TSP200 than the non-learnt
baseline. However, training on TSP100 can also be prohibitively expensive: one epoch
takes approximately 8 hours (TSP100) vs. 2 hours (TSP20-50) (details in Appendix B). For
rapid experimentation, we train efficiently on variable TSP20-50 for the rest of our study.

Fig. 3   Learning from various TSP sizes. The prevalent protocol of evaluation on training sizes overshadows
brittle out-of-distribution performance to larger and smaller graphs

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

Constraints	

1 3

5.2 � What is the best graph sparsification heuristic?

Figure 4 compares full graph training to the following heuristics: (1) Fixed node degree
across graph sizes, via connecting each node in TSPn to its k-nearest neighbors, enabling
GNN encoder layers/aggregators to specialize to constant degree k; and (2) Fixed graph
diameter across graph sizes, via connecting each node in TSPn to its n × k%-nearest
neighbors, ensuring that the same number of message passing steps are required to diffuse
information across both small and large graphs.

Although both sparsification techniques lead to faster convergence on training instance
sizes (not shown), we find that only approach (2) leads to better generalization on larger
problems than using full graphs. Consequently, all further experiments use approach (2) to
operate on sparse 20%-nearest neighbors graphs. Our results also suggest that developing
more principled problem definition and graph reduction techniques beyond simple k-near-
est neighbors for augmenting learning-based approaches may be a promising direction.

5.3 � What is the relationship between GNN aggregation functions
and normalization layers?

In Fig. 5, we compare identical models with anisotropic Sum, Mean and Max aggregation
functions. As baselines, we consider the Transformer encoder on full graphs [16, 19] as
well as a structure-agnostic MLP on each node, which can be instantiated by not using any
aggregation function in (2), i.e. h�+1

i
= h�

i
+ ReLU

(
NORM

(
U�h�

i

))
.

We find that the choice of GNN aggregation function does not have an impact when
evaluating models within the training size range TSP20-50. As we tackle larger graphs,
GNNs with aggregation functions that are agnostic to node degree (Mean and Max) are
able to outperform Transformers and MLPs. Importantly, the theoretically more expressive
Sum aggregator [61] generalizes worse than structure-agnostic MLPs, as it cannot handle
the distribution shift in node degree and neighborhood statistics across graph sizes, lead-
ing to unstable or exploding node embeddings [39]. We use the Max aggregator in further
experiments, as it generalizes well for both AR and NAR decoders (not shown).

Fig. 4   Impact of graph sparsification. Maintaining a constant graph diameter across TSP sizes leads to bet-
ter generalization on larger problems than using full graphs

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

We also experiment with the following normalization schemes: (1) standard BatchNorm
which learns mean and variance from training data, as well as (2) BatchNorm with batch
statistics; and (3) LayerNorm, which normalizes at the embedding dimension instead of
across the batch. Figure 6 indicates that BatchNorm with batch statistics and LayerNorm
are able to better account for changing statistics across different graph sizes. Standard
BatchNorm generalizes worse than not doing any normalization, thus our other experi-
ments use BatchNorm with batch statistics.

We further dissect the relationship between graph representations and normalization in
Appendix D, confirming that poor performance on large graphs can be explained by unsta-
ble representations due to the choice of aggregation and normalization schemes. Using
Max aggregators and BatchNorm with batch statistics are temporary hacks to overcome the
failure of the current architectural components. Overall, our results suggest that inference
beyond training sizes will require the development of expressive GNN mechanisms that are

Fig. 5   Impact of GNN aggregation functions. For larger graphs, aggregators that are agnostic to node
degree (Mean, Max) are able to outperform theoretically more expressive aggregators

Fig. 6   Impact of normalization schemes. Modifying BatchNorm to account for changing graph statistics
across graph sizes leads to better generalization

333

334

335

336

337

338

339

340

341

342

343

344

345

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

Constraints	

1 3

able to leverage global graph topology [62] while being invariant to distribution shifts in
terms of node degree and other graph statistics [63].

5.4 � Which decoder has a better inductive bias for TSP?

Figure 7 compares NAR and AR decoders for identical models. To isolate the impact of
the decoder’s inductive bias without the inductive bias imposed by GNNs, we also show
Transformer encoders on full graphs as well as structure-agnostic MLPs. Within our exper-
imental setup, AR decoders are able to fit the training data as well as generalize signifi-
cantly better than NAR decoders, indicating that sequential decoding is powerful for TSP
even without graph information.

Conversely, NAR architectures are a poor inductive bias as they require significantly
more computation to perform competitively to AR decoders. For instance, recent models
[17, 18] used more than 30 GNN layers with over 10 Million parameters. We believe that

such overparameterized networks are able to memorize all patterns for small TSP training
sizes [64], but the learnt policy is unable to generalize beyond training graph sizes. At the
same time, when compared fairly within the same experimental settings, NAR decoders are
significantly faster than AR decoders described in Section 3.3 as well as those which re-
embed the graph at each decoding step [9], see Fig. 8.

5.5 � How do learning paradigms impact the search phase?

Identical models are trained via supervised learning (SL) and reinforcement learning
(RL).3 Figure 9 illustrates that, when using greedy decoding during inference, RL mod-
els perform better on the training size as well as on larger graphs. Conversely, SL models
improve over their RL counterparts when performing beam search or sampling.

Fig. 7   Comparing AR and NAR decoders. Sequential AR decoding is a powerful inductive bias for TSP as
it enables significantly better generalization, even in the absence of graph structure (MLP encoders)

3  For RL, we show the greedy rollout baseline. Critic baseline results are available in Appendix E

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

3FL01

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

In Appendix C, we find that the rollout baseline, which encourages better greedy behav-
iour, leads to the model making very confident predictions about selecting the next node at
each decoding step, even out of training size range. In contrast, SL models are trained with
teacher forcing, i.e. imitating the optimal solver at each step instead of using their own pre-
diction. This results in less confident predictions and poor greedy decoding, but makes the
probability distribution more amenable to beam search and sampling, as shown in Fig. 10.
Our results advocate for tighter coupling between the training and inference phase of learn-
ing-driven TSP solvers, mirroring recent findings in generative models for text [65].

5.6 � Which learning paradigm scales better?

Our experiments till this point have focused on isolating the impact of various pipeline
components on zero-shot generalization under limited computation. At the same time,
recent results in natural language processing have highlighted the power of large scale

Fig. 9   Comparing solution search settings. Under greedy decoding, RL demonstrates better performance
and generalization. Conversely, SL models improve over their RL counterparts when performing beam
search or sampling

Fig. 8   Inference time for various
decoders. One-shot NAR decod-
ing is significantly faster than
sequential AR, especially when
re-embedding the graph at each
decoding step [9]

368

369

370

371

372

373

374

375

376

377

378

379

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

Constraints	

1 3

pre-training for effective transfer learning [66]. To better understand the impact of learn-
ing paradigms when scaling computation, we double the model parameters (up to 750,000)
and train on tens times more data (12.8M samples) for AR architectures. We monitor opti-
mality gap on the training size range (TSP20-50) as well as a larger size (TSP100) vs. the
number of training samples.

In Fig. 11, we see that increasing model capacity leads to better learning. Notably, RL
models, which train on unique randomly generated samples throughout, are able to keep
improving their performance within as well as outside of training size range as they see
more samples. On the other hand, SL is bottlenecked by the need for optimal groundtruth
solutions: SL models iterate over the same 1.28M unique labelled samples and stop
improving at a point. Beyond favorable inductive biases, distributed and sample-efficient
RL algorithms [67] may be a key ingredient for learning from and scaling up to larger
TSPs beyond tens of nodes.

Fig. 10   Impact of increasing beam width. Teacher-forcing during SL leads to poor generalization under
greedy decoding, but makes the probability distribution more amenable to beam search

Fig. 11   Scaling computation
and parameters for SL and
RL-trained models. All models
are trained on TSP20-50. We
plot optimality gap on 1,280
held-out samples of both TSP50
(performance on training size)
and TSP100 (out-of-distribution
generalization) under greedy
decoding. Note that SL models
are less amenable than RL mod-
els to greedy search. RL models
are able to keep improving their
performance within as well as
outside of training size range
with more data. On the other
hand, SL performance is bot-
tlenecked by the need for optimal
groundtruth solutions

380

381

382

383

384

385

386

387

388

389

390

391

392

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

6 � Recent case studies and future work

Since the initial publication of this work [68], deep learning for routing problems has
received considerable attention from the research community [27, 28, 30, 31, 69–73]. In
this section, we highlight recent advances, characterize them using the unified pipeline pre-
sented in Fig. 2, and provide future research directions, with a focus on improving generali-
zation to large-scale and real-world instances.

As a reminder, the unified neural combinatorial optimization pipeline consists of: (1)
Problem Definition → (2) Graph Embedding → (3) Solution Decoding → (4) Solution
Search → (5) Policy Learning.

Leveraging equivariance and symmetries  The autoregressive Attention Model [16]
sequentially constructs TSP tours as permutations of cities, but does not consider the
underlying symmetries of routing problems.

Kwon et al. [27] consider invariance to the starting city in constructive heuristics: They
propose to train the Attention Model with a new reinforcement learning algorithm (inno-
vating on box 5 in Fig. 2(a)) which exploits the existence of multiple optimal tour permuta-
tions. Similarly, Ouyang, Wang, et al. [28] consider invariance with respect to rotations,
reflections, and translations (Euclidean symmetry group) of the input cities: They propose
a constructive approach similar to Attention Model while ensuring invariance by perform-
ing data augmentation during the problem definition stage (Fig. 2(a), box 1) and using rela-
tive coordinates during graph encoding (Fig. 2(a), box 2). Their approach shows particu-
larly strong results on zero-shot generalization from random instances to the real-world
TSPLib benchmark suite.

Future work may follow the Geometric Deep :earning blueprint [74] by designing
models that respect the symmetries and inductive biases that govern the data. As routing
problems are embedded in euclidean coordinates and the routes are cyclical, incorporating
these contraints directly into the architectures or learning paradigms may be a principled
approach to improving generalization to large-scale instances greater than those seen dur-
ing training.

Improved graph search algorithms  Several papers have proposed to improve the one-
shot non-autoregressive approach of Joshi et al. [17] by retaining the same GNN encoder
(Fig. 2(a), box 2) while replacing the graph search component of the pipeline (Fig. 2(a),
box 4) with more powerful and flexible algorithms, e.g. Dynamic Programming [31] or
Monte-Carlo Tree Search (MCTS) [30].

Notably, the GNN + MCTS framework of Fu et al. [30] shows that the NAR approach
can generalize to TSPs with up to 1000 nodes. They ensure that the predictions of the GNN
encoder generalize from small to large TSP by updating the problem definition (Fig. 2(a),
box 1): large problem instances are represented as many smaller sub-graphs which are of
the same size as the training graphs for the GNN, and then merge the GNN edge predic-
tions before performing MCTS.

Overall, this line of work suggests that stronger coupling between the design of both
the neural and symbolic/search components of models is essential for out-of-distribution
generalization.

Learning within local search heuristics  Recent work has explored an alternative to con-
structive AR and NAR decoding schemes which involves learning to iteratively improve

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

Constraints	

1 3

(sub-optimal) solutions or learning to perform local search [69–73]. Since deep learning
is used to guide decisions within classical search algorithms (which are designed to work
regardless of problem scale), this approach implicitly leads to better zero-shot generaliza-
tion to larger problem instances compared to constructive approaches studied in our work.
In particular, NeuroLKH [71] uses GNNs to improve the Lin-Kernighan-Helsgaun algo-
rithm and demonstrates strong zero-shot generalization to TSP with 5000 nodes as well as
across TSPLib instances.

A limitation of this line of work is the need for hand-designed local search heuris-
tics, which may be missing for understudied problems. On the other hand, constructive
approaches are comparatively easier to adapt to new problems by enforcing constraints
during the solution decoding and search procedure (Fig. 2(a), box 4).

Learning Paradigms that promote generalization  Future work could look at novel learn-
ing paradigms which explicitly focus on generalization beyond supervised and reinforce-
ment learning. For e.g., this work explored zero-shot generalization to larger problems,
but the logical next step is to fine-tune the model on a small number of larger problem
instances [75]. Thus, it will be interesting to explore fine-tuning/generalization as a meta-
learning problem, wherein the goal is to train model parameters specifically for fast adapta-
tion and fine-tuning to new data distributions and problem sizes.

Another interesting direction could explore tackling understudied routing problems with
challenging constraints via multi-task pre-training on well-known routing problems such as
TSP and CVPR, followed by problem-specific finetuning. Similar to language modelling
as a pre-training objective in NLP [66], the goal of pre-training for routing would be to
learn generally useful neural network representations that can transfer well to novel routing
problems.

7 � Conclusion

Learning-driven solvers for combinatorial problems such as the Travelling Salesperson
Problem have shown promising results for trivially small instances up to a few hundred
nodes. However, scaling fully end-to-end deep learning approaches to real-world instances
is still an open question as training on large graphs is extremely time-consuming and chal-
lenging to learn from.

This paper advocates for an alternative to expensive large-scale training: training mod-
els efficiently on trivially small TSP and transferring the learnt policy to larger graphs in
a zero-shot fashion or via fast fine-tuning. Thus, identifying promising inductive biases,
architectures and learning paradigms that enable such zero-shot generalization to large and
more complex instances is a key concern for tackling real-world combinatorial problems.

We perform the first principled investigation into zero-shot generalization for learning
large scale TSP, unifying state-of-the-art architectures and learning paradigms into one
experimental pipeline for neural combinatorial optimization. Our findings suggest that
key design choices such as GNN layers, normalization schemes, graph sparsification, and
learning paradigms need to be explicitly re-designed to consider out-of-distribution gener-
alization. Additionally, we use our unified pipeline to characterize recent advances in deep
learning for routing problems and provide new directions to stimulate future research.

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

Appendix A: Additional Context for Fig. 1

Experimental setup  In Fig. 1, we illustrate the computational challenges of learning large
scale TSP by comparing three identical models trained on 12.8 Million TSP instances via
reinforcement learning. Our experimental setup largely follows Section 4. All models use
identical configurations: autoregressive decoding and Graph ConvNet encoder with Max
aggregation and LayerNorm. The TSP20-50 model is trained using the greedy rollout base-
line [16] and the Adam optimizer with batch size 128 and learning rate 1e − 4. Direct train-
ing, active search and finetuning on TSP200 samples is done using learning rate 1e − 5, as
we found larger learning rates to be unstable. During active search and finetuning, we use
an exponential moving average baseline, as recommended by Bello et al. [7].

Furthest insertion baseline  We characterize ‘good’ generalization across our experiments
by the well-known furthest insertion heuristic, which constructively builds a solution/par-
tial tour �′ by inserting node i between tour nodes j1, j2 ∈ �� such that the distance from
node i to its nearest tour node j1 is maximized.

We motivate our work by showing that learning from large TSP200 is intractable on
university-scale hardware, and that efficient pre-training on trivial TSP20-50 enables mod-
els to better generalize to TSP200 in a zero-shot manner. Within our computational budget,
furthest insertion still outperforms our best models. At the same time, we are not claiming
that it is impossible to outperform insertion heuristics with current approaches: reinforce-
ment learning-driven approaches will only continue to improve performance with more
computation and training data. We want to use simple non-learnt baselines to motivate the
development of better architectures, learning paradigms and evaluation protocols for neural
combinatorial optimization.

Routing problems and generalization  It is worth mentioning why we chose to study TSP
in particular. Firstly, TSP has stood the test of time in terms of relevance and continues to
serve as an engine of discovery for general purpose techniques in applied mathematics.

TSP and associated routing problems have also emerged as a challenging testbed for
learning-driven approaches to combinatorial optimization. Whereas generalization to prob-
lem instances larger and more complex than those seen in training has at least partially
been demonstrated on non-sequential problems such as SAT, MaxCut, MVC [9–11],4 the
same architectures do not show strong generalization for TSP. For e.g., furthest insertion
outperforms or is competitive with state-of-the-art approaches for TSP above tens of nodes,
see Fig. D.1.(e, f) from Khalil et al. [9] or Fig. 5 from Kool et al. [16], despite using more
computation and data than our controlled study.

4  It is worth noting that classical algorithmic and symbolic components such as graph reduction, sophis-
ticated tree search as well as post-hoc local search have been pivotal and complementary to GNNs in ena-
bling such generalization.

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

4FL01
4FL02
4FL03

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

Constraints	

1 3

Appendix B: Hardware and Timings

Fairly timing research code can be difficult due to differences in libraries used, hardware con-
figurations and programmer skill. In Table 1, we report approximate total training time and
inference time across TSP sizes for the model setup described in Section 4. All experiments
were implemented in PyTorch and run on an Intel Xeon CPU E5-2690 v4 server and four
Nvidia 1080Ti GPUs. Four experiments were run on the server at any given time (each using a
single GPU). Training time may vary based on server load, thus we report the lowest training
time across several runs in Table 1.

Appendix C: Learning paradigms and amenity to search

Figure 10 demonstrate that SL models are more amenable to beam search and sampling,
but are outperformed by RL-rollout models under greedy search. In Fig. 12, we investigate
the impact of learning paradigms on probability distributions by plotting histograms of the
probabilities of greedy selections during inference across TSP sizes for identical models
trained with SL and RL. We find that the rollout baseline, which encourages better greedy
behaviour, leads to the model making very confident predictions about selecting the next
node at each decoding step, even beyond training size range. In contrast, SL models are
trained with teacher forcing, i.e. imitating the optimal solver at each step instead of using
their own prediction. This results in less confident predictions and poor greedy decod-
ing, but makes the probability distribution more amenable to beam search and sampling
techniques.

We understand this phenomenon as follows: More confident predictions (Fig. 12b) do
not automatically imply better solutions. However, sampling repeatedly or maintaining
the top-b most probable solutions from such distributions is likely to contain very similar
tours. On the other hand, less sharp distributions (Fig. 12a) are likely to yield more diverse
tours with increasing b. This may result in comparatively better optimality gap, especially
for TSP sizes larger than those seen in training.

Table 1   Approximate training
time (12.8M samples) and
inference time (1,280 samples)
across TSP sizes and search
settings for SL and RL-trained
models

 GS: Greedy search, BS128: beam search with width 128, S128: sam-
pling 128 solutions. RL training uses the rollout baseline and timing
includes the time taken to update the baseline after each 128,000 sam-
ples

Graph Size Training Time Inference Time

SL RL GS BS128 S128

TSP20 4h 24m 8h 02m 2.62s 7.06s 63.37s
TSP20-50 9h 49m 15h 47m − − −
TSP50 16h 11m 40h 29m 7.45s 29.09s 86.48s
TSP100 68h 34m 108h 30m 19.04s 98.26s 180.30s
TSP200 − 495h 55m 54.88s 372.09s 479.37s

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

Appendix D: Visualizing node and graph embedding spaces

Our results in Section 5.3 suggest that inference beyond training sizes requires the devel-
opment of GNN architectures and normalization layers that are both expressive as well
as invariant to distribution shifts. We explore how node and graph embeddings for TSP
graphs evolve across training distribution (TSP20-50) and beyond (up to TSP200) through
visualizing the statistics of the embedding spaces. Intuitively, constructing TSP tours
involves decisions which are not just locally optimal, but also optimal w.r.t some global
graph structure. Thus, node embeddings represent local information while graph embed-
dings, which are conventionally computed as the mean of node embeddings, provide global
structural information.

We utilize distribution plots to study the variation in embedding statistics5 of three iden-
tical models: (1) GNN-Max, which represents our best model configuration from Section 5:
autoregressive decoding, Graph ConvNet encoder with Max aggregation and BatchNorm
with batch statistics; (2) GNN-Sum, which uses Sum aggregation for the Graph ConvNet
and shows comparatively poor generalization beyond training size, see Fig. 5; and (3)
GNN-Max + learnt BN, which uses standard BatchNorm, i.e. learns statistics from the
training data, and also shows comparatively poor generalization, see Fig. 6.

We draw upon work in learning embeddings for computer vision [77] to characterize
embedding spaces across TSP sizes according to: (1) magnitudes, denoted by ℓ2 norms,
indicating whether embeddings are shrinking to one magnitude or expanding outwards as
TSP size increases; and (2) pair-wise distances, which tells us how well-separated the
embedding are, or whether they are pulled apart/towards each other as TSP size increases.

5  Distribution plots show 0, 5, 50, 95, and 100-percentiles for embedding statistics at various TSP sizes,
thus visualizing how the statistics changes with problem scale (implemented via TensorBoard [76]).

Fig. 12   Histograms of greedy selection probabilities (x-axis) across TSP sizes (y-axis)

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

5FL01
5FL02

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

Constraints	

1 3

Fig. 13   Distribution plots of node embedding ℓ2 norms (y-axis) across TSP sizes (x-axis)

Fig. 14   Distribution plots of node embedding pair-wise distances (y-axis) across TSP sizes (x-axis)

Node embedding space  In Figs. 13 and 14, we see that GNN-Max leads to the most sta-
ble node embedding norms and pair-wise distances (which are calculated at an intra-graph
level) across TSP sizes. On the other hand, GNN-Sum and GNN-Max + learnt BN lead to
fluctuating and monotonically increasing embedding norms as size increases, e.g. compare
Fig. 13b and c. Clearly, maintaining similar distributions for node embeddings across graph
sizes indicates that the GNN is building meaningful representations of local structure, or,
at the very least, does not break down for large graphs. This enables better generalization,
as the decoder has lower chances of encountering embeddings which are statistically differ-
ent than those seen during training.

Graph embedding space  Figures 15 and 16 indicate that the graph embedding space is
shrinking towards a single magnitude and moving closer as graph size increases. Interest-
ingly, with standard BatchNorm, the graph embedding magnitude monotonically increases
with graph size to ranges beyond those for training graphs. On the other hand, using batch
statistics for BatchNorm, as done in GNN-Max and GNN-Sum, leads to graph embedding
magnitudes converging to a single value which is within the range of values for training
graphs, thus enabling better generalization. E.g. compare Fig. 15b and c.

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

Fig. 15   Distribution plots of graph embedding ℓ2 norms (y-axis) across TSP sizes (x-axis)

Fig. 16   Distribution plots of graph embedding pair-wise distances (y-axis) across TSP sizes (x-axis)

We can further visualize this phenomenon through 2D Principal Component Analysis
(PCA) plots of graph embedding spaces for GNN-Max and GNN-Max + learnt BN models,
see Fig. 17a and b. In both cases, the graph embeddings at larger sizes have very similar
magnitudes and are extremely close to each other, indicating that the model is unable to
differentiate among different graphs. Thus, decoders currently lack good global structural
context. Investigating better graph embeddings through pooling methods [78] could be an
interesting approach towards representing global graph structure beyond training sizes.

Appendix E: Extra Results

NAR decoders and aggregation functions  In Section 5, we found that AR decoding pro-
vides a powerful sequential inductive bias for TSP and is able to generalizes well with
both GNNs as well as structure-agnostic encoder architectures. This result may lead one
to question the need for GNNs, altogether. Interestingly, Fig. 18 illustrates a different trend
for NAR architectures: GNN encoders generalize better than both Transformers and MLPs,
indicating that leveraging graph structure is essential in the absence of the sequential
inductive bias. (It is worth noting that, overall, all models with NAR decoders generalize
poorly compared to AR architectures for our experimental setup.)

Critic baseline  Figure 19 illustrates that, for identical models, the critic baseline [7, 19]
is unable to match the performance of the rollout baseline [16] under both greedy and
beam search settings. We did not explore tuning learning rates and hyperparameters for
the critic network, opting to use the same settings as those for the actor. In general, getting

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

Constraints	

1 3

actor-critic methods to work seems to require more parameter tuning than the rollout
baseline.

Scaling computation for AR and NAR architectures  In Figures 20 and 21, we present
extended results for Section 5.6, where we scale model parameters and data. We observe
that using larger models (up to 1.5 Million parameters) enables fitting the training dataset
better. The impact of larger models is especially evident for NAR architectures. As previ-
ously noted, recent NAR-based models [17, 18] used more than 30 layers with over 10
Million parameters to outperform AR architectures on fixed TSP sizes. We believe that
such overparameterized networks are able to memorize all patterns for small TSP training
sizes [64], but the learnt policy is unable to generalize beyond training graph sizes as NAR
decoding does not provide a useful inductive bias for TSP.

Fig. 17   2D PCA of graph embedding spaces. Colors represent TSP instance sizes, e.g. orange: TSP10, teal:
TSP20, pink: TSP50, dark grey: TSP200

Fig. 18   GNN aggregation func-
tions (NAR decoder)

597

598

599

600

601

602

603

604

605

606

607

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

Fig. 19   Comparing learning
paradigms and solution search
settings

Fig. 20   Scaling computation and model parameters for AR decoder

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

Constraints	

1 3

Fig. 21   Scaling computation and model parameters for NAR decoder

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

Fig. 23   Prediction visualization for TSP50

Appendix F: Visualizing model predictions

As a final note, we present a visualization tool for generating model predictions and
heatmaps of TSP instances, see Figures 22, 23. We advocate for the development of
more principled approaches to neural combinatorial optimization, e.g. along with
model predictions, visualizing the reduce costs for each edge (cheaply obtained using
the Gurobi solver [79]) may help debug and improve learning-driven approaches in the
future. Using reduce costs as supervision signals could also be an inexpensive alterna-
tive to running optimal solvers to create large labelled datasets.

Fig. 22   Prediction visualization for TSP20

608

609

610

611

612

613

614

615

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

Constraints	

1 3

Acknowledgements  We would like to thank R. Anand, X. Bresson, V. Dwivedi, A. Ferber, E. Khalil,
W. Kool, R. Levie, A. Prouvost, P. Veličković and the anonymous reviewers for helpful comments and
discussions.

Declarations 

Conflict of Interests  None.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Lenstra, J.K., & Kan, A.R. (1975). Some simple applications of the travelling salesman problem. Jour-
nal of the Operational Research Society.

	 2.	 Applegate, D.L., Bixby, R.E., Chvatal, V., & Cook, W.J. (2006). The traveling salesman problem: A
computational study.

	 3.	 Applegate, D., Bixby, R., Chvatal, V., & Cook, W. (2006). Concorde TSP solver.
	 4.	 Senior, A.W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C., žídek, A., Nelson,

A.W., Bridgland, A., & et al. (2020). Improved protein structure prediction using potentials from deep
learning. Nature.

	 5.	 Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J.W., Songhori, E., Wang, S., Lee, Y.-J., Johnson, E.,
Pathak, O., Nazi, A., & et al. (2021). A graph placement methodology for fast chip design. Nature.

	 6.	 Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks. In NeurIPS.
	 7.	 Bello, I., Pham, H., Le, Q.V., Norouzi, M., & Bengio, S. (2017). Neural combinatorial optimization

with reinforcement learning. In ICLR.
	 8.	 Bengio, Y., Lodi, A., & Prouvost, A. (2020). Machine learning for combinatorial optimization: a meth-

odological tour d’horizon. European Journal of Operational Research.
	 9.	 Khalil, E., Dai, H., Zhang, Y., Dilkina, B., & Song, L. (2017). Learning combinatorial optimization

algorithms over graphs. In NeurIPS.
	10.	 Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., & Dill, D.L. (2019). Learning a sat solver

from single-bit supervision. In ICLR.
	11.	 Li, Z., Chen, Q., & Koltun, V. (2018). Combinatorial optimization with graph convolutional networks

and guided tree search. In NeurIPS.
	12.	 Kipf, T.N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks.

In ICLR.
	13.	 Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., & Dahl, G.E. (2017). Neural message passing for

quantum chemistry. In ICML.
	14.	 Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018). Graph attention

networks. ICLR.
	15.	 Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tac-

chetti, A., Raposo, D., Santoro, A., Faulkner, R., & et al. (2018). Relational inductive biases, deep
learning, and graph networks. arXiv preprint.

	16.	 Kool, W., van Hoof, H., & Welling, M. (2019). Attention, learn to solve routing problems!. In ICLR.
	17.	 Joshi, C.K., Laurent, T., & Bresson, X. (2019). An efficient graph convolutional network technique for

the travelling salesman problem. arXiv preprint.
	18.	 Nowak, A., Villar, S., Bandeira, A.S., & Bruna, J. (2017). A note on learning algorithms for quadratic

assignment with graph neural networks. arXiv preprint.
	19.	 Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., & Rousseau, L.-M. (2018). Learning heuristics

for the TSP by policy gradient. In CPAIOR.

616
617
618

619

620

621
622
623
624
625
626
627
628

629

630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

http://creativecommons.org/licenses/by/4.0/

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

	20.	 Gasse, M., Chételat, D., Ferroni, N., Charlin, L., & Lodi, A. (2019). Exact combinatorial optimization
with graph convolutional neural networks. In NeurIPS.

	21.	 Cappart, Q., Goutierre, E., Bergman, D., & Rousseau, L.-M. (2019). Improving optimization bounds
using machine learning: Decision diagrams meet deep reinforcement learning. In AAAI.

	22.	 Chalumeau, F., Coulon, I., Cappart, Q., & Rousseau, L.-M. (2021). Seapearl: A constraint program-
ming solver guided by reinforcement learning. In CPAIOR.

	23.	 Wilder, B., Dilkina, B., & Tambe, M. (2019). Melding the data-decisions pipeline: Decision-focused
learning for combinatorial optimization. In AAAI.

	24.	 Ferber, A., Wilder, B., Dilkina, B., & Tambe, M. (2020). MIPaaL: Mixed integer program as a layer. In
AAAI.

	25.	 Sutskever, I., Vinyals, O., & Le, Q.V. (2014). Sequence to sequence learning with neural networks. In
NeurIPS.

	26.	 Ma, Q., Ge, S., He, D., Thaker, D., & Drori, I. (2020). Combinatorial optimization by graph pointer
networks and hierarchical reinforcement learning. In AAAI workshop on deep learning on graphs.

	27.	 Kwon, Y.-D., Choo, J., Kim, B., Yoon, I., Gwon, Y., & Min, S. (2020). Pomo: Policy optimization with
multiple optima for reinforcement learning. In NeurIPS.

	28.	 Ouyang, W., Wang, Y., Weng, P., & Han, S. (2021). Generalization in deep rl for tsp problems via
equivariance and local search. arXiv preprint.

	29.	 Nowak, A., Folqué, D., & Estrach, J.B. (2018). Divide and conquer networks. In ICLR.
	30.	 Fu, Z.-H., Qiu, K.-B., & Zha, H. (2021). Generalize a small pre-trained model to arbitrarily large TSP

instances. In AAAI.
	31.	 Kool, W., van Hoof, H., Gromicho, J., & Welling, M. (2021). Deep policy dynamic programming for

vehicle routing problems. arXiv preprint.
	32.	 Joshi, C.K., Laurent, T., & Bresson, X. (2019). On learning paradigms for the travelling salesman

problem. NeurIPS Graph Representation Learning Workshop.
	33.	 Nazari, M., Oroojlooy, A., Snyder, L., & Takác, M. (2018). Reinforcement learning for solving the

vehicle routing problem. In NeurIPS.
	34.	 Chen, X., & Tian, Y. (2019). Learning to perform local rewriting for combinatorial optimization. In

NeurIPS.
	35.	 Yolcu, E., & Poczos, B. (2019). Learning local search heuristics for boolean satisfiability. In NeurIPS.
	36.	 Huang, J., Patwary, M., & Diamos, G. (2019). Coloring big graphs with alphagozero. arXiv preprint.
	37.	 Sato, R., Yamada, M., & Kashima, H. (2019). Approximation ratios of graph neural networks for com-

binatorial problems. In NeurIPS.
	38.	 Cappart, Q., Chételat, D., Khalil, E., Lodi, A., Morris, C., & Veličković, P. (2021). Combinatorial opti-

mization and reasoning with graph neural networks. In IJCAI.
	39.	 Veličković, P., Ying, R., Padovano, M., Hadsell, R., & Blundell, C. (2020). Neural execution of graph

algorithms. In ICLR.
	40.	 Veličković, P., & Blundell, C. (2021). Neural algorithmic reasoning. Patterns.
	41.	 Corso, G., Cavalleri, L., Beaini, D., Liò, P., & Veličković, P. (2020). Principal neighbourhood aggrega-

tion for graph nets. In NeurIPS.
	42.	 Xu, K., Li, J., Zhang, M., Du, S.S., Kawarabayashi, K.-i., & Jegelka, S. (2019). What can neural net-

works reason about?. In ICLR.
	43.	 Xu, K., Li, J., Zhang, M., Du, S.S., Kawarabayashi, K.-i., & Jegelka, S. (2020). How neural networks

extrapolate: From feedforward to graph neural networks. In ICLR.
	44.	 Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D., Hernández-Lobato, J.M., Sánchez-Lengeling,

B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T.D., Adams, R.P., & Aspuru-Guzik, A. (2018).
Automatic chemical design using a data-driven continuous representation of molecules. ACS central
science.

	45.	 Mao, H., Schwarzkopf, M., Venkatakrishnan, S.B., Meng, Z., & Alizadeh, M. (2019). Learning sched-
uling algorithms for data processing clusters. In ACM special interest group on data communication.

	46.	 Paliwal, A., Gimeno, F., Nair, V., Li, Y., Lubin, M., Kohli, P., & Vinyals, O. (2019). Regal: Transfer
learning for fast optimization of computation graphs. arXiv preprint.

	47.	 Mirhoseini, A., Pham, H., Le, Q.V., Steiner, B., Larsen, R., Zhou, Y., Kumar, N., Norouzi, M., Bengio,
S., & Dean, J. (2017). Device placement optimization with reinforcement learning. In ICML.

	48.	 Zhou, Y., Roy, S., Abdolrashidi, A., Wong, D., Ma, P.C., Xu, Q., Zhong, M., Liu, H., Goldie, A.,
Mirhoseini, A., & et al. (2019). Gdp: Generalized device placement for dataflow graphs. arXiv
preprint.

	49.	 Bresson, X., & Laurent, T. (2019). A two-step graph convolutional decoder for molecule generation. In
NeurIPS workshop on machine learning and the physical sciences.

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

Constraints	

1 3

	50.	 Jin, W., Barzilay, R., & Jaakkola, T. (2018). Junction tree variational autoencoder for molecular graph
generation. In ICML.

	51.	 You, J., Liu, B., Ying, Z., Pande, V., & Leskovec, J. (2018). Graph convolutional policy network for
goal-directed molecular graph generation. In NeurIPS.

	52.	 Bresson, X., & Laurent, T. (2018). An experimental study of neural networks for variable graphs. In
ICLR Workshop.

	53.	 Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint.

	54.	 Ba, J.L., Kiros, J.R., & Hinton, G.E. (2016). Layer normalization. arXiv preprint.
	55.	 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., & Polosukhin,

I. (2017). Attention is all you need. In NeurIPS.
	56.	 Joshi, C. (2020). Transformers are graph neural networks. The Gradient.
	57.	 Dwivedi, V.P., Joshi, C.K., Laurent, T., Bengio, Y., & Bresson, X. (2020). Benchmarking graph neural

networks. arXiv preprint.
	58.	 François, A., Cappart, Q., & Rousseau, L.-M. (2019). How to evaluate machine learning approaches

for combinatorial optimization: Application to the travelling salesman problem. arXiv preprint.
	59.	 Williams, R.J., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neu-

ral networks. Neural Computation, 1(2), 270–280.
	60.	 Williams, R.J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Machine Learning.
	61.	 Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural networks?. In

ICLR.
	62.	 Garg, V.K., Jegelka, S., & Jaakkola, T. (2020). Generalization and representational limits of graph neu-

ral networks. In ICML.
	63.	 Levie, R., Bronstein, M.M., & Kutyniok, G. (2019). Transferability of spectral graph convolutional

neural networks. arXiv preprint.
	64.	 Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Understanding deep learning

requires rethinking generalization. In ICLR.
	65.	 Holtzman, A., Buys, J., Du, L., Forbes, M., & Choi, Y. (2020). The curious case of neural text degen-

eration. In ICLR.
	66.	 Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P.J.

(2020). Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR.
	67.	 Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimiza-

tion algorithms. arXiv preprint.
	68.	 Joshi, C.K., Cappart, Q., Rousseau, L.-M., & Laurent, T. (2021). Learning tsp requires rethinking gen-

eralization. In International conference on principles and practice of constraint programming.
	69.	 Wu, Y., Song, W., Cao, Z., Zhang, J., & Lim, A. (2021). Learning improvement heuristics for solving

routing problem. IEEE Transactions on Neural Networks and Learning Systems.
	70.	 da Costa, P.R.d.O., Rhuggenaath, J., Zhang, Y., & Akcay, A. (2020). Learning 2-opt heuristics for the

traveling salesman problem via deep reinforcement learning. In Asian conference on machine learning.
	71.	 Xin, L., Song, W., Cao, Z., & Zhang, J. (2021). Neurolkh: Combining deep learning model with lin-

kernighan-helsgaun heuristic for solving the traveling salesman problem. In NeurIPS.
	72.	 Ma, Y., Li, J., Cao, Z., Song, W., Zhang, L., Chen, Z., & Tang, J. (2021). Learning to iteratively solve

routing problems with dual-aspect collaborative transformer. In NeurIPS.
	73.	 Hudson, B., Li, Q., Malencia, M., & Prorok, A. (2021). Graph neural network guided local search for

the traveling salesperson problem. arXiv preprint.
	74.	 Bronstein, M.M., Bruna, J., Cohen, T., & Veličković, P. (2021). Geometric deep learning: Grids,

groups, graphs, geodesics, and gauges. arXiv preprint.
	75.	 Hottung, A., Kwon, Y.-D., & Tierney, K. (2021). Efficient active search for combinatorial optimization

problems. arXiv preprint.
	76.	 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean,

J., Devin, M., & et al. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint.

	77.	 Hermans, A., Beyer, L., & Leibe, B. (2017). In defense of the triplet loss for person re-identification.
arXiv preprint.

	78.	 Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., & Leskovec, J. (2018). Hierarchical graph repre-
sentation learning with differentiable pooling. In NeurIPS.

	79.	 Inc, G.O. (2015). Gurobi optimizer reference manual. URL http://​www.​gurobi.​com.

726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

http://www.gurobi.com

UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

784
785

786

Journal:	 10601
Article:	 9327

Author Query Form
Please ensure you fill out your response to the queries raised below

and return this form along with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen.
Please check your typeset proof carefully against the queries listed below and mark
the necessary changes either directly on the proof/online grid or in the ‘Author’s
response’ area provided below

Query Details Required Author’s
Response

AQ1 Footnotes are not allowed in abstract, thus we captured it
as “Article note”. Please check if okay.

AQ2 (City) has been provided in affiliation 1-3, please check if
it is correct.

AQ3 Please check all Equations if captured and presented
correctly

	Learning the€travelling salesperson problem requires rethinking generalization
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related work
	3 Neural combinatorial optimization pipeline
	3.1 Problem definition
	3.2 Graph embedding
	3.3 Solution decoding
	3.4 Solution search
	3.5 Policy learning

	4 Experimental setup
	5 Results
	5.1 Does learning from€variable sizes help generalization?
	5.2 What is€the€best graph sparsification heuristic?
	5.3 What is€the€relationship between€GNN aggregation functions and€normalization layers?
	5.4 Which decoder has€a€better inductive bias for€TSP?
	5.5 How do€learning paradigms impact the€search phase?
	5.6 Which learning paradigm scales better?

	6 Recent case studies and€future work
	7 Conclusion
	Acknowledgements
	References

