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Abstract
End-to-end training of neural network solvers for graph combinatorial optimization 
problems such as the Travelling Salesperson Problem (TSP) have seen a surge of inter-
est recently, but remain intractable and inefficient beyond graphs with few hundreds of 
nodes. While state-of-the-art learning-driven approaches for TSP perform closely to clas-
sical solvers when trained on trivially small sizes, they are unable to generalize the learnt 
policy to larger instances at practical scales. This work presents an end-to-end neural com-
binatorial optimization pipeline that unifies several recent papers in order to identify the 
inductive biases, model architectures and learning algorithms that promote generalization 
to instances larger than those seen in training. Our controlled experiments provide the first 
principled investigation into such zero-shot generalization, revealing that extrapolating 
beyond training data requires rethinking the neural combinatorial optimization pipeline, 
from network layers and learning paradigms to evaluation protocols. Additionally, we ana-
lyze recent advances in deep learning for routing problems through the lens of our pipeline 
and provide new directions to stimulate future research.
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1  Introduction

NP-hard combinatorial optimization problems are the family of integer constrained optimiza-
tion problems which are intractable to solve optimally at large scales. Robust approximation 
algorithms to popular problems have immense practical applications and are the backbone of 
modern industries. Among combinatorial problems, the 2D Euclidean Travelling Salesperson 
Problem (TSP) has been the most intensely studied NP-hard graph problem in the Opera-
tions Research (OR) community, with applications in logistics, genetics and scheduling [1]. 
TSP is intractable to solve optimally above thousands of nodes for modern computers [2]. In 
practice, the Concorde TSP solver [3] uses linear programming with carefully handcrafted 
heuristics to find solutions up to tens of thousands of nodes, but with prohibitive execution 
times.1 Besides, the development of problem-specific OR solvers such as Concorde for novel 
or under-studied problems arising in scientific discovery [4] or computer architecture [5] 
requires significant time and specialized knowledge.

An alternate approach by the Machine Learning community is to develop generic learning 
algorithms which can be trained to solve any combinatorial problem directly from problem 
instances themselves [6–8]. Using classical problems such as TSP, Minimum Vertex Cover and 
Boolean Satisfiability as benchmarks, recent end-to-end approaches [9–11] leverage advances 
in graph representation learning [12–15] and have shown competitive performance with OR 
solvers on trivially small problem instances up to few hundreds of nodes. Once trained, approxi-
mate solvers based on Graph Neural Networks (GNNs) have significantly favorable time com-
plexity than their OR counterparts, making them highly desirable for real-time decision-making 
problems such as TSP and the associated class of Vehicle Routing Problems (VRPs).

1.1 � Motivation

Scaling end-to-end approaches to practical and real-world instances is still an open question [8] 
as the training phase of state-of-the-art models on large graphs is extremely time-consuming. 
For graphs larger than few hundreds of nodes, the gap between GNN-based solvers and simple 
non-learnt heuristics is especially evident for routing problems like TSP [16, 17].

As an illustration, Fig. 1 presents the computational challenge of learning TSP on 200-
node graphs (TSP200) in terms of both sample efficiency and wall clock time. Surpris-
ingly, it is difficult to outperform a simple insertion heuristic when directly training on 12.8 
Million TSP200 samples for 500 hours on university-scale hardware.

We advocate for an alternative to expensive large-scale training: learning efficiently 
from trivially small TSP and transferring the learnt policy to larger graphs in a zero-shot 
fashion or via fast finetuning. Thus, identifying promising inductive biases, architectures 
and learning paradigms that enable such zero-shot generalization to large and more com-
plex instances is a key concern for training practical solvers for real-world problems.

1.2 � Contributions

Towards end-to-end learning of scale-invariant TSP solvers, we unify several state-of-
the-art architectures and learning paradigms [16–19] into one experimental pipeline and 

1  The largest TSP solved by Concorde to date has 109,399 nodes with running time of 7.5 months.
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provide the first principled investigation on zero-shot generalization to large instances. Our 
findings suggest that learning scale-invariant TSP solvers requires rethinking the status quo 
of neural combinatorial optimization to explicitly account for generalization:

•	 The prevalent evaluation paradigm overshadows models’ poor generalization capabili-
ties by measuring performance on fixed or trivially small TSP sizes.

•	 Generalization performance of GNN aggregation functions and normalization schemes 
benefits from explicit redesigns which account for shifting graph distributions, and can 
be further boosted by enforcing regularities such as constant graph diameters when 
defining problems using graphs.

•	 Autoregressive decoding enforces a sequential inductive bias which improves generali-
zation over non-autoregressive models, but is costlier in terms of inference time.

•	 Models trained with expert supervision are more amenable to post-hoc search, while 
reinforcement learning approaches scale better with more computation as they do not 
rely on labelled data.

Our framework and datasets are available online.2 Additionally, we use our pipeline to 
characterize the recent state-of-the-art in deep learning for routing problems and provide 
new directions for future research.

2 � Related work

Neural combinatorial optimization  In a recent survey, Bengio et al. [8] identified three 
broad approaches to leveraging machine learning for combinatorial optimization problems: 
learning alongside optimization algorithms [20–22], learning to configure optimization 

Fig. 1   Computational challenges of learning large scale TSP. We compare three identical autoregressive 
GNN-based models trained on 12.8 Million TSP instances via reinforcement learning. We plot average 
optimality gap to the Concorde solver on 1,280 held-out TSP200 instances vs. number of training sam-
ples (left) and wall clock time (right) during the learning process. Training on large TSP200 from scratch 
is intractable and sample inefficient. Active Search [7], which learns to directly overfit to the 1,280 held-
out samples, further demonstrates the computational challenge of memorizing very few TSP200 instances. 
Comparatively, learning efficiently from trivial TSP20-TSP50 allows models to better generalize to TSP200 
in a zero-shot manner, indicating positive knowledge transfer from small to large graphs. Performance can 
further improve via rapid finetuning on 1.28 Million TSP200 instances or by Active Search. Within our 
computational budget, a simple non-learnt furthest insertion heuristic still outperforms all models. Precise 
experimental setup is described in Appendix A

2  https://​github.​com/​chait​jo/​learn​ing-​tsp
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algorithms [23, 24], and end-to-end learning to approximately solve optimization prob-
lems, a.k.a. neural combinatorial optimization [6, 7].

State-of-the-art end-to-end approaches for TSP use Graph Neural Networks (GNNs) 
[12–15] and sequence-to-sequence learning [25] to construct approximate solutions 
directly from problem instances. Architectures for TSP can be classified as: (1) autore-
gressive approaches, which build solutions in a step-by-step fashion [9, 16, 19, 26–28]; 
and (2) non-autoregressive models, which produce the solution in one shot [17, 18, 
29–31]. Models can be trained to imitate optimal solvers via supervised learning or by 
minimizing the length of TSP tours via reinforcement learning [32].

Other classical problems tackled by similar architectures include Vehicle Routing [33, 
34], Maximum Cut [9], Minimum Vertex Cover [11], Boolean Satisfiability [10, 35], and 
Graph Coloring [36]. Using TSP as an illustration, we present a unified pipeline for charac-
terizing neural combinatorial optimization architectures in Section 3.

Notably, TSP has emerged as a challenging testbed for neural combinatorial optimi-
zation. Whereas generalization to problem instances larger and more complex than those 
seen in training has at least partially been demonstrated on non-sequential problems such 
as SAT, MaxCut, and MVC [10, 11], the same architectures do not show strong generaliza-
tion for TSP [16, 17].

Combinatorial optimization and GNNs  From the perspective of graph representa-
tion learning, algorithmic and combinatorial problems have recently been used to 
characterize the expressive power of GNNs [37, 38]. An emerging line of work on 
learning to execute graph algorithms [39, 40] has lead to the development of prov-
ably more expressive GNNs [41] and improved understanding of their generalization 
capability [42, 43]. Towards tackling realistic and large-scale combinatorial prob-
lems, this paper aims to quantify the limitations of prevalent GNN architectures and 
learning paradigms via zero-shot generalization to problems larger than those seen 
during training.

Novel applications  Advances on classical combinatorial problems have shown promising 
results in downstream applications to novel or under-studied optimization problems in the 
physical sciences [4, 44] and computer architecture [5, 45, 46], where the development of 
exact solvers is expensive and intractable. For example, autoregressive architectures pro-
vide a strong inductive bias for device placement optimization problems [47, 48], while 
non-autoregressive models [49] are competitive with autoregressive approaches [50, 51] 
for molecule generation tasks.

3 � Neural combinatorial optimization pipeline

NP-hard problems can be formulated as sequential decision making tasks on graphs 
due to their highly structured nature. Towards a controlled study of neural combinato-
rial optimization for TSP, we unify recent ideas [16–19] via a five stage end-to-end 
pipeline illustrated in Fig. 2. Our discussion focuses on TSP, but the pipeline presented 
is generic and can be extended to characterize modern architectures for several NP-
hard graph problems.
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Fig. 2   End-to-end neural combinatorial optimization pipeline: The entire model in trained end-to-end via imitating an opti-
mal solver (i.e. supervised learning) or through minimizing a cost function (i.e. reinforcement learning)



UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

3.1 � Problem definition

The 2D Euclidean TSP is defined as follows: “Given a set of cities and the distances 
between each pair of cities, what is the shortest possible route that visits each city and 
returns to the origin city?” Formally, given a fully-connected input graph of n cities 
(nodes) in the two dimensional unit square S = {xi}

n
i=1

 where each xi ∈ [0, 1]2 , we aim to 
find a permutation of the nodes π, termed a tour, that visits each node once and has the 
minimum total length, defined as:

where ∥⋅∥2 denotes the ℓ2 norm.

Graph sparsification  Classically, TSP is defined on fully-connected graphs, see Fig. 2(b). 
Graph sparsification heuristics based on k-nearest neighbors aim to reduce TSP graphs, 
enabling models to scale up to large instances where pairwise computation for all nodes is 
intractable [9] or learn faster by reducing the search space [17]. Notably, problem-specific 
graph reduction techniques have proven effective for out-of-distribution generalization to 
larger graphs for other NP-hard problems such as MVC and SAT [11].

Fixed size vs. variable size graphs  Most work on learning for TSP has focused on training 
with a fixed graph size [16, 17], likely due to ease of implementation. Learning from mul-
tiple graph sizes naturally enables better generalization within training size ranges, but its 
impact on generalization to larger TSP instances remains to be analyzed.

3.2 � Graph embedding

A Graph Neural Network (GNN) encoder computes d-dimensional representations for each 
node in the input TSP graph, see Fig. 2(c). At each layer, nodes gather features from their 
neighbors to represent local graph structure via recursive message passing [13]. Stacking 
L layers allows the network to build representations from the L-hop neighborhood of each 
node. Let h�

i
 and e�

ij
 denote respectively the node and edge feature at layer ℓ associated with 

node i and edge ij. We define the feature at the next layer via an anisotropic message pass-
ing scheme using an edge gating mechanism [52]:

where U� , V� , A� , B� , C� ∈ ℝ
d×d are learnable parameters, Norm denotes the normaliza-

tion layer (BatchNorm [53], LayerNorm [54]), Aggr represents the neighborhood aggre-
gation function (Sum, Mean or Max), σ is the sigmoid function, and ⊙ is the Hadamard 
product. As inputs h�=0

i
 and e�=0

ij
 , we use d-dimensional linear projections of the node coor-

dinate xi and the euclidean distance ∥xi − xj∥2, respectively.

(1)L(��s) = ‖x�n
− x�1

‖2 +

n−1�
i=1

‖x�i
− x�i+1

‖2,

(2)h�+1
i

= h�

i
+ ReLU

(
NORM

(
U�h�

i
+ AGGRj∈Ni

(
𝜎(e�

ij
)⊙ V�h�

j

)))
,

(3)e�+1
ij

= e�
ij
+ ReLU

(
NORM

(
A�e�

ij
+ B�h�

i
+ C�h�

j

))
,
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Anisotropic aggregation  We make the aggregation function anisotropic or directional 
via a dense attention mechanism which scales the neighborhood features hj,∀j ∈ Ni, using 
edge gates σ(eij). Anisotropic and attention-based GNNs such as Graph Attention Networks 
[14], Transformers [55, 56], and Gated Graph ConvNets [52] have been shown to outper-
form isotropic Graph ConvNets [12] across several challenging domains [57], including 
TSP [16, 17].

3.3 � Solution decoding

Non‑autoregressive decoding (NAR)  Consider TSP as a link prediction task: each edge 
may belong/not belong to the optimal TSP solution independent of one another [18]. We 
define the edge predictor as a two layer MLP on the node embeddings produced by the 
final GNN encoder layer L, following Joshi et al. [17], see Fig. 2(d). For adjacent nodes i 
and j, we compute the unnormalized edge logits:

W1 ∈ ℝ
3d×d, W2 ∈ ℝ

d×2 , and [⋅,⋅,⋅] is the concatenation operator. The logits p̂ij are con-
verted to probabilities over each edge pij via a softmax.

Autoregressive decoding (AR)  Although NAR decoders are fast as they produce predic-
tions in one shot, they ignore the sequential ordering of TSP tours. Autoregressive decod-
ers, based on attention [16, 19] or recurrent neural networks [6, 26], explicitly model this 
sequential inductive bias through step-by-step graph traversal. We follow the attention 
decoder from Kool et al. [16], which starts from a random node and outputs a probability 
distribution over its neighbors at each step. Greedy search is used to perform the traversal 
over n time steps and masking enforces constraints such as not visiting previously visited 
nodes.

At time step t at node i, the decoder builds a context ĥC
i
 for the partial tour �′

t′
 , generated 

at time t′ < t , by packing together the graph embedding hG and the embeddings of the first 
and last node in the partial tour: ĥC

i
= WC

[
hG, hL

𝜋�
t−1

, hL

𝜋�
1

]
, where WC ∈ ℝ

3d×d and learned 
placeholders are used for hL

��
t−1

 and hL

�′
1

 at t = 1. The context ĥC
i
 is then refined via a standard 

Multi-Head Attention (MHA) operation [55] over the node embeddings:

where Q,K,V are inputs to the M-headed MHA (M = 8). The unnormalized logits for each 
edge eij are computed via a final attention mechanism between the context hC

i
 and the 

embedding hj:

The tanh is used to maintain the value of the logits within [−C,C] (C = 10) [7]. The logits 
p̂ij at the current node i are converted to probabilities pij via a softmax over all edges.

(4)p̂ij = W2

(
ReLU

(
W1

([
hG, hL

i
, hL

j

])))
, where hG =

1

n

n∑
i=0

hL
i
,

(5)hC
i
= MHA

(
Q = ĥC

i
, K =

{
hL

1
,… , hL

n

}
, V =

{
hL

1
,… , hL

n

})
,

(6)p̂ij =

⎧⎪⎨⎪⎩

C ⋅ tanh

�
(WQhC

i )
T
⋅

�
WK hL

j

�
√

d

�
if j ≠ 𝜋t� ∀t� < t

−∞ otherwise.
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Inductive biases  NAR approaches, which make predictions over edges independently of 
one-another, have shown strong out-of-distribution generalization for non-sequential prob-
lems such as SAT and MVC [11]. On the other hand, AR decoders come with the sequen-
tial/tour constraint built-in and are the default choice for routing problems [16]. Although 
both approaches have shown close to optimal performance on fixed and small TSP sizes 
under different experimental settings, it is important to fairly compare which inductive 
biases are most useful for generalization.

3.4 � Solution search

Greedy search  For AR decoding, the predicted probabilities at node i are used to select 
the edge to travel along at the current step via sampling from the probability distribution 
pi or greedily selecting the most probable edge pij, i.e. greedy search. Since NAR decoders 
directly output probabilities over all edges independent of one-another, we can obtain valid 
TSP tours using greedy search to traverse the graph starting from a random node and mask-
ing previously visited nodes. Thus, the probability of a partial tour �′ can be formulated as 
p(��) =

∏
j�∼i�∈��pi�j� , where each node j′ follows node i′.

Beam search and sampling  During inference, we can increase the capacity of greedy 
search via limited width breadth-first beam search, which maintains the b most probable 
tours during decoding. Similarly, we can sample b solutions from the learnt policy and 
select the shortest tour among them. Naturally, searching longer, with more sophisticated 
techniques, or sampling more solutions allows trading off run time for solution quality. 
However, it has been noted that using large b for search/sampling or local search during 
inference may overshadow an architecture’s inability to generalize [58]. To better under-
stand generalization, we focus on using greedy search and beam search/sampling with 
small b = 128.

3.5 � Policy learning

Supervised learning  Models can be trained end-to-end via imitating an optimal solver at 
each step (i.e. supervised learning). For models with NAR decoders, the edge predictions 
are linked to the ground-truth TSP tour by minimizing the binary cross-entropy loss for 
each edge [17]. For AR architectures, at each step, we minimize the cross-entropy loss 
between the predicted probability distribution over all edges leaving the current node and 
the next node from the groundtruth tour, following Vinyals et al. [6]. We use teacher-forc-
ing to stabilize training [59].

Reinforcement learning  Reinforcement learning is a elegant alternative in the absence of 
groundtruth solutions, as is often the case for understudied combinatorial problems. Mod-
els can be trained by minimizing problem-specific cost functions (the tour length in the 
case of TSP) via policy gradient algorithms [7, 16] or Q-Learning [9]. We focus on policy 
gradient methods due to their simplicity, and define the loss for an instance s parameterized 
by the model 𝜃 as L(�|s) = �p� (�|s)[L(�)] , the expectation of the tour length L(π), where 
p𝜃(π|s) is the probability distribution from which we sample to obtain the tour π|s. We use 
the REINFORCE gradient estimator [60] to minimize L:
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where the baseline b(s) reduces gradient variance. Our experiments compare standard critic 
network baselines [7, 19] and the greedy rollout baseline proposed by Kool et al. [16].

4 � Experimental setup

We design controlled experiments to probe the unified pipeline described in Section 3 in 
order to identify inductive biases, architectures and learning paradigms that promote zero-
shot generalization. We focus on learning efficiently from small problem instances (TSP20-
50) and measure generalization to a wider range of sizes, including large instances which 
are intractable to learn from (e.g. TSP200). Each experiment starts with a ‘base’ model 
configuration and ablates the impact of a specific component of the five-stage pipeline. We 
aim to fairly compare state-of-the-art ideas in terms of model capacity and training data, 
and expect models with good inductive biases for TSP to: (1) learn trivially small TSPs 
without hundreds of millions of training samples and model parameters; and (2) generalize 
reasonably well across smaller and larger instances than those seen in training.

To quantify ‘good’ generalization, we additionally evaluate our models against a simple, 
non-learnt furthest insertion heuristic baseline, which constructively builds a partial tour 
�′ by inserting node i between tour nodes j1, j2 ∈ �� such that the distance from node i to 
its nearest node j1 is maximized. Kool et al. [16] provide a detailed description of insertion 
heuristic baselines.

Training datasets  We perform ablation studies of each component of the pipeline by 
training on variable TSP20-50 graphs for rapid experimentation. We also compare to learn-
ing from fixed graph sizes up to TSP100. Each TSP instance consist of n nodes sampled 
uniformly in the unit square S = {xi}

n
i=1

 and xi ∈ [0, 1]2 . In the supervised learning para-
digm, we generate a training set of 1,280,000 TSP samples and groundtruth tours using 
the optimal Concorde solver as an oracle. Models are trained using the Adam optimizer 
for 10 epochs with a batch size of 128 and a fixed learning rate 1e − 4. For reinforcement 
learning, models are trained for 100 epochs on 128,000 TSP samples which are randomly 
generated for each epoch (without optimal solutions) with the same batch size and learn-
ing rate. Thus, both learning paradigms see 12,800,000 TSP samples in total. Considering 
that TSP20-50 are trivial in terms of complexity as they can be solved by simpler non-
learnt heuristics, training good solvers at this scale should ideally not require billions of 
instances.

Model hyperparameters  For models with AR decoders, we use 3 GNN encoder layers 
followed by the attention decoder head, setting hidden dimension d = 128. For NAR mod-
els, we use the same hidden dimension and opt for 4 GNN encoder layers followed by the 
edge predictor. This results in approximately 350,000 trainable parameters for each model, 
irrespective of decoder type. Unless specified, most experiments use our best model con-
figuration: AR decoding scheme and Graph ConvNet encoder with Max aggregation and 
BatchNorm (with batch statistics). All models are trained via supervised learning except 
when comparing learning paradigms.

(7)∇L(�|s) = �p� (�|s)
[
(L(�) − b(s))∇ log p�(�|s)

]
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Evaluation  We compare models on a held-out test set of 25,600 TSPs, consisting of 1,280 
samples each of TSP10, TSP20, … , TSP200. Our evaluation metric is the optimality gap 
w.r.t. the Concorde solver, i.e. the average percentage ratio of predicted tour lengths rela-
tive to optimal tour lengths. To compare design choices among identical models, we plot 
line graphs of the optimality gap as TSP size increases (along with a 99%-ile confidence 
interval) using beam search with a width of 128. Compared to previous work which evalu-
ated on fixed problem sizes, our protocol identifies not only those models that perform well 
on training sizes, but also those that generalize better than non-learnt heuristics for large 
instances which are intractable to train on.

5 � Results

5.1 � Does learning from variable sizes help generalization?

We train five identical models on fully connected graphs of instances from TSP20, TSP50, 
TSP100, TSP200 and variable TSP20-50. The line plots of optimality gap across TSP sizes 
in Fig. 3 indicates that learning from variable TSP sizes helps models retain performance 
across the range of graph sizes seen during training (TSP20-50). Variable graph training 
compared to training solely on the maximum sized instances (TSP50) leads to marginal 
gains on small instances but, somewhat counter-intuitively, does not enable better generali-
zation to larger problems. Learning from small TSP20 is unable to generalize to large sizes 
while TSP100 models generalize poorly to trivially easy sizes, suggesting that the preva-
lent protocol of evaluation on training sizes [16, 17] overshadows brittle out-of-distribution 
performance.

Training on TSP200 graphs is intractable within our computational budget, see Fig. 1. 
TSP100 is the only model which generalizes better to large TSP200 than the non-learnt 
baseline. However, training on TSP100 can also be prohibitively expensive: one epoch 
takes approximately 8 hours (TSP100) vs. 2 hours (TSP20-50) (details in Appendix B). For 
rapid experimentation, we train efficiently on variable TSP20-50 for the rest of our study.

Fig. 3   Learning from various TSP sizes. The prevalent protocol of evaluation on training sizes overshadows 
brittle out-of-distribution performance to larger and smaller graphs

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305



UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

Constraints	

1 3

5.2 � What is the best graph sparsification heuristic?

Figure 4 compares full graph training to the following heuristics: (1) Fixed node degree 
across graph sizes, via connecting each node in TSPn to its k-nearest neighbors, enabling 
GNN encoder layers/aggregators to specialize to constant degree k; and (2) Fixed graph 
diameter across graph sizes, via connecting each node in TSPn to its n × k%-nearest 
neighbors, ensuring that the same number of message passing steps are required to diffuse 
information across both small and large graphs.

Although both sparsification techniques lead to faster convergence on training instance 
sizes (not shown), we find that only approach (2) leads to better generalization on larger 
problems than using full graphs. Consequently, all further experiments use approach (2) to 
operate on sparse 20%-nearest neighbors graphs. Our results also suggest that developing 
more principled problem definition and graph reduction techniques beyond simple k-near-
est neighbors for augmenting learning-based approaches may be a promising direction.

5.3 � What is the relationship between GNN aggregation functions 
and normalization layers?

In Fig. 5, we compare identical models with anisotropic Sum, Mean and Max aggregation 
functions. As baselines, we consider the Transformer encoder on full graphs [16, 19] as 
well as a structure-agnostic MLP on each node, which can be instantiated by not using any 
aggregation function in (2), i.e. h�+1

i
= h�

i
+ ReLU

(
NORM

(
U�h�

i

))
.

We find that the choice of GNN aggregation function does not have an impact when 
evaluating models within the training size range TSP20-50. As we tackle larger graphs, 
GNNs with aggregation functions that are agnostic to node degree (Mean and Max) are 
able to outperform Transformers and MLPs. Importantly, the theoretically more expressive 
Sum aggregator [61] generalizes worse than structure-agnostic MLPs, as it cannot handle 
the distribution shift in node degree and neighborhood statistics across graph sizes, lead-
ing to unstable or exploding node embeddings [39]. We use the Max aggregator in further 
experiments, as it generalizes well for both AR and NAR decoders (not shown).

Fig. 4   Impact of graph sparsification. Maintaining a constant graph diameter across TSP sizes leads to bet-
ter generalization on larger problems than using full graphs
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We also experiment with the following normalization schemes: (1) standard BatchNorm 
which learns mean and variance from training data, as well as (2) BatchNorm with batch 
statistics; and (3) LayerNorm, which normalizes at the embedding dimension instead of 
across the batch. Figure 6 indicates that BatchNorm with batch statistics and LayerNorm 
are able to better account for changing statistics across different graph sizes. Standard 
BatchNorm generalizes worse than not doing any normalization, thus our other experi-
ments use BatchNorm with batch statistics.

We further dissect the relationship between graph representations and normalization in 
Appendix D, confirming that poor performance on large graphs can be explained by unsta-
ble representations due to the choice of aggregation and normalization schemes. Using 
Max aggregators and BatchNorm with batch statistics are temporary hacks to overcome the 
failure of the current architectural components. Overall, our results suggest that inference 
beyond training sizes will require the development of expressive GNN mechanisms that are 

Fig. 5   Impact of GNN aggregation functions. For larger graphs, aggregators that are agnostic to node 
degree (Mean, Max) are able to outperform theoretically more expressive aggregators

Fig. 6   Impact of normalization schemes. Modifying BatchNorm to account for changing graph statistics 
across graph sizes leads to better generalization
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able to leverage global graph topology [62] while being invariant to distribution shifts in 
terms of node degree and other graph statistics [63].

5.4 � Which decoder has a better inductive bias for TSP?

Figure 7 compares NAR and AR decoders for identical models. To isolate the impact of 
the decoder’s inductive bias without the inductive bias imposed by GNNs, we also show 
Transformer encoders on full graphs as well as structure-agnostic MLPs. Within our exper-
imental setup, AR decoders are able to fit the training data as well as generalize signifi-
cantly better than NAR decoders, indicating that sequential decoding is powerful for TSP 
even without graph information.

Conversely, NAR architectures are a poor inductive bias as they require significantly 
more computation to perform competitively to AR decoders. For instance, recent models 
[17, 18] used more than 30 GNN layers with over 10 Million parameters. We believe that 

such overparameterized networks are able to memorize all patterns for small TSP training 
sizes [64], but the learnt policy is unable to generalize beyond training graph sizes. At the 
same time, when compared fairly within the same experimental settings, NAR decoders are 
significantly faster than AR decoders described in Section 3.3 as well as those which re-
embed the graph at each decoding step [9], see Fig. 8.

5.5 � How do learning paradigms impact the search phase?

Identical models are trained via supervised learning (SL) and reinforcement learning 
(RL).3 Figure 9 illustrates that, when using greedy decoding during inference, RL mod-
els perform better on the training size as well as on larger graphs. Conversely, SL models 
improve over their RL counterparts when performing beam search or sampling.

Fig. 7   Comparing AR and NAR decoders. Sequential AR decoding is a powerful inductive bias for TSP as 
it enables significantly better generalization, even in the absence of graph structure (MLP encoders)

3  For RL, we show the greedy rollout baseline. Critic baseline results are available in Appendix E
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In Appendix C, we find that the rollout baseline, which encourages better greedy behav-
iour, leads to the model making very confident predictions about selecting the next node at 
each decoding step, even out of training size range. In contrast, SL models are trained with 
teacher forcing, i.e. imitating the optimal solver at each step instead of using their own pre-
diction. This results in less confident predictions and poor greedy decoding, but makes the 
probability distribution more amenable to beam search and sampling, as shown in Fig. 10. 
Our results advocate for tighter coupling between the training and inference phase of learn-
ing-driven TSP solvers, mirroring recent findings in generative models for text [65].

5.6 � Which learning paradigm scales better?

Our experiments till this point have focused on isolating the impact of various pipeline 
components on zero-shot generalization under limited computation. At the same time, 
recent results in natural language processing have highlighted the power of large scale 

Fig. 9   Comparing solution search settings. Under greedy decoding, RL demonstrates better performance 
and generalization. Conversely, SL models improve over their RL counterparts when performing beam 
search or sampling

Fig. 8   Inference time for various 
decoders. One-shot NAR decod-
ing is significantly faster than 
sequential AR, especially when 
re-embedding the graph at each 
decoding step [9]
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pre-training for effective transfer learning [66]. To better understand the impact of learn-
ing paradigms when scaling computation, we double the model parameters (up to 750,000) 
and train on tens times more data (12.8M samples) for AR architectures. We monitor opti-
mality gap on the training size range (TSP20-50) as well as a larger size (TSP100) vs. the 
number of training samples.

In Fig. 11, we see that increasing model capacity leads to better learning. Notably, RL 
models, which train on unique randomly generated samples throughout, are able to keep 
improving their performance within as well as outside of training size range as they see 
more samples. On the other hand, SL is bottlenecked by the need for optimal groundtruth 
solutions: SL models iterate over the same 1.28M unique labelled samples and stop 
improving at a point. Beyond favorable inductive biases, distributed and sample-efficient 
RL algorithms [67] may be a key ingredient for learning from and scaling up to larger 
TSPs beyond tens of nodes.

Fig. 10   Impact of increasing beam width. Teacher-forcing during SL leads to poor generalization under 
greedy decoding, but makes the probability distribution more amenable to beam search

Fig. 11   Scaling computation 
and parameters for SL and 
RL-trained models. All models 
are trained on TSP20-50. We 
plot optimality gap on 1,280 
held-out samples of both TSP50 
(performance on training size) 
and TSP100 (out-of-distribution 
generalization) under greedy 
decoding. Note that SL models 
are less amenable than RL mod-
els to greedy search. RL models 
are able to keep improving their 
performance within as well as 
outside of training size range 
with more data. On the other 
hand, SL performance is bot-
tlenecked by the need for optimal 
groundtruth solutions
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6 � Recent case studies and future work

Since the initial publication of this work [68], deep learning for routing problems has 
received considerable attention from the research community [27, 28, 30, 31, 69–73]. In 
this section, we highlight recent advances, characterize them using the unified pipeline pre-
sented in Fig. 2, and provide future research directions, with a focus on improving generali-
zation to large-scale and real-world instances.

As a reminder, the unified neural combinatorial optimization pipeline consists of: (1) 
Problem Definition → (2) Graph Embedding → (3) Solution Decoding → (4) Solution 
Search → (5) Policy Learning.

Leveraging equivariance and symmetries  The autoregressive Attention Model [16] 
sequentially constructs TSP tours as permutations of cities, but does not consider the 
underlying symmetries of routing problems.

Kwon et al. [27] consider invariance to the starting city in constructive heuristics: They 
propose to train the Attention Model with a new reinforcement learning algorithm (inno-
vating on box 5 in Fig. 2(a)) which exploits the existence of multiple optimal tour permuta-
tions. Similarly, Ouyang, Wang, et  al. [28] consider invariance with respect to rotations, 
reflections, and translations (Euclidean symmetry group) of the input cities: They propose 
a constructive approach similar to Attention Model while ensuring invariance by perform-
ing data augmentation during the problem definition stage (Fig. 2(a), box 1) and using rela-
tive coordinates during graph encoding (Fig. 2(a), box 2). Their approach shows particu-
larly strong results on zero-shot generalization from random instances to the real-world 
TSPLib benchmark suite.

Future work may follow the Geometric Deep :earning blueprint [74] by designing 
models that respect the symmetries and inductive biases that govern the data. As routing 
problems are embedded in euclidean coordinates and the routes are cyclical, incorporating 
these contraints directly into the architectures or learning paradigms may be a principled 
approach to improving generalization to large-scale instances greater than those seen dur-
ing training.

Improved graph search algorithms  Several papers have proposed to improve the one-
shot non-autoregressive approach of Joshi et al. [17] by retaining the same GNN encoder 
(Fig. 2(a), box 2) while replacing the graph search component of the pipeline (Fig. 2(a), 
box  4) with more powerful and flexible algorithms, e.g. Dynamic Programming [31] or 
Monte-Carlo Tree Search (MCTS) [30].

Notably, the GNN + MCTS framework of Fu et al. [30] shows that the NAR approach 
can generalize to TSPs with up to 1000 nodes. They ensure that the predictions of the GNN 
encoder generalize from small to large TSP by updating the problem definition (Fig. 2(a), 
box 1): large problem instances are represented as many smaller sub-graphs which are of 
the same size as the training graphs for the GNN, and then merge the GNN edge predic-
tions before performing MCTS.

Overall, this line of work suggests that stronger coupling between the design of both 
the neural and symbolic/search components of models is essential for out-of-distribution 
generalization.

Learning within local search heuristics  Recent work has explored an alternative to con-
structive AR and NAR decoding schemes which involves learning to iteratively improve 
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(sub-optimal) solutions or learning to perform local search [69–73]. Since deep learning 
is used to guide decisions within classical search algorithms (which are designed to work 
regardless of problem scale), this approach implicitly leads to better zero-shot generaliza-
tion to larger problem instances compared to constructive approaches studied in our work. 
In particular, NeuroLKH [71] uses GNNs to improve the Lin-Kernighan-Helsgaun algo-
rithm and demonstrates strong zero-shot generalization to TSP with 5000 nodes as well as 
across TSPLib instances.

A limitation of this line of work is the need for hand-designed local search heuris-
tics, which may be missing for understudied problems. On the other hand, constructive 
approaches are comparatively easier to adapt to new problems by enforcing constraints 
during the solution decoding and search procedure (Fig. 2(a), box 4).

Learning Paradigms that promote generalization  Future work could look at novel learn-
ing paradigms which explicitly focus on generalization beyond supervised and reinforce-
ment learning. For e.g., this work explored zero-shot generalization to larger problems, 
but the logical next step is to fine-tune the model on a small number of larger problem 
instances [75]. Thus, it will be interesting to explore fine-tuning/generalization as a meta-
learning problem, wherein the goal is to train model parameters specifically for fast adapta-
tion and fine-tuning to new data distributions and problem sizes.

Another interesting direction could explore tackling understudied routing problems with 
challenging constraints via multi-task pre-training on well-known routing problems such as 
TSP and CVPR, followed by problem-specific finetuning. Similar to language modelling 
as a pre-training objective in NLP [66], the goal of pre-training for routing would be to 
learn generally useful neural network representations that can transfer well to novel routing 
problems.

7 � Conclusion

Learning-driven solvers for combinatorial problems such as the Travelling Salesperson 
Problem have shown promising results for trivially small instances up to a few hundred 
nodes. However, scaling fully end-to-end deep learning approaches to real-world instances 
is still an open question as training on large graphs is extremely time-consuming and chal-
lenging to learn from.

This paper advocates for an alternative to expensive large-scale training: training mod-
els efficiently on trivially small TSP and transferring the learnt policy to larger graphs in 
a zero-shot fashion or via fast fine-tuning. Thus, identifying promising inductive biases, 
architectures and learning paradigms that enable such zero-shot generalization to large and 
more complex instances is a key concern for tackling real-world combinatorial problems.

We perform the first principled investigation into zero-shot generalization for learning 
large scale TSP, unifying state-of-the-art architectures and learning paradigms into one 
experimental pipeline for neural combinatorial optimization. Our findings suggest that 
key design choices such as GNN layers, normalization schemes, graph sparsification, and 
learning paradigms need to be explicitly re-designed to consider out-of-distribution gener-
alization. Additionally, we use our unified pipeline to characterize recent advances in deep 
learning for routing problems and provide new directions to stimulate future research.
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Appendix A: Additional Context for Fig. 1

Experimental setup  In Fig. 1, we illustrate the computational challenges of learning large 
scale TSP by comparing three identical models trained on 12.8 Million TSP instances via 
reinforcement learning. Our experimental setup largely follows Section 4. All models use 
identical configurations: autoregressive decoding and Graph ConvNet encoder with Max 
aggregation and LayerNorm. The TSP20-50 model is trained using the greedy rollout base-
line [16] and the Adam optimizer with batch size 128 and learning rate 1e − 4. Direct train-
ing, active search and finetuning on TSP200 samples is done using learning rate 1e − 5, as 
we found larger learning rates to be unstable. During active search and finetuning, we use 
an exponential moving average baseline, as recommended by Bello et al. [7].

Furthest insertion baseline  We characterize ‘good’ generalization across our experiments 
by the well-known furthest insertion heuristic, which constructively builds a solution/par-
tial tour �′ by inserting node i between tour nodes j1, j2 ∈ �� such that the distance from 
node i to its nearest tour node j1 is maximized.

We motivate our work by showing that learning from large TSP200 is intractable on 
university-scale hardware, and that efficient pre-training on trivial TSP20-50 enables mod-
els to better generalize to TSP200 in a zero-shot manner. Within our computational budget, 
furthest insertion still outperforms our best models. At the same time, we are not claiming 
that it is impossible to outperform insertion heuristics with current approaches: reinforce-
ment learning-driven approaches will only continue to improve performance with more 
computation and training data. We want to use simple non-learnt baselines to motivate the 
development of better architectures, learning paradigms and evaluation protocols for neural 
combinatorial optimization.

Routing problems and generalization  It is worth mentioning why we chose to study TSP 
in particular. Firstly, TSP has stood the test of time in terms of relevance and continues to 
serve as an engine of discovery for general purpose techniques in applied mathematics.

TSP and associated routing problems have also emerged as a challenging testbed for 
learning-driven approaches to combinatorial optimization. Whereas generalization to prob-
lem instances larger and more complex than those seen in training has at least partially 
been demonstrated on non-sequential problems such as SAT, MaxCut, MVC [9–11],4 the 
same architectures do not show strong generalization for TSP. For e.g., furthest insertion 
outperforms or is competitive with state-of-the-art approaches for TSP above tens of nodes, 
see Fig. D.1.(e, f) from Khalil et al. [9] or Fig. 5 from Kool et al. [16], despite using more 
computation and data than our controlled study.

4  It is worth noting that classical algorithmic and symbolic components such as graph reduction, sophis-
ticated tree search as well as post-hoc local search have been pivotal and complementary to GNNs in ena-
bling such generalization.
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Appendix B: Hardware and Timings

Fairly timing research code can be difficult due to differences in libraries used, hardware con-
figurations and programmer skill. In Table 1, we report approximate total training time and 
inference time across TSP sizes for the model setup described in Section 4. All experiments 
were implemented in PyTorch and run on an Intel Xeon CPU E5-2690 v4 server and four 
Nvidia 1080Ti GPUs. Four experiments were run on the server at any given time (each using a 
single GPU). Training time may vary based on server load, thus we report the lowest training 
time across several runs in Table 1.

Appendix C: Learning paradigms and amenity to search

Figure 10 demonstrate that SL models are more amenable to beam search and sampling, 
but are outperformed by RL-rollout models under greedy search. In Fig. 12, we investigate 
the impact of learning paradigms on probability distributions by plotting histograms of the 
probabilities of greedy selections during inference across TSP sizes for identical models 
trained with SL and RL. We find that the rollout baseline, which encourages better greedy 
behaviour, leads to the model making very confident predictions about selecting the next 
node at each decoding step, even beyond training size range. In contrast, SL models are 
trained with teacher forcing, i.e. imitating the optimal solver at each step instead of using 
their own prediction. This results in less confident predictions and poor greedy decod-
ing, but makes the probability distribution more amenable to beam search and sampling 
techniques.

We understand this phenomenon as follows: More confident predictions (Fig. 12b) do 
not automatically imply better solutions. However, sampling repeatedly or maintaining 
the top-b most probable solutions from such distributions is likely to contain very similar 
tours. On the other hand, less sharp distributions (Fig. 12a) are likely to yield more diverse 
tours with increasing b. This may result in comparatively better optimality gap, especially 
for TSP sizes larger than those seen in training.

Table 1   Approximate training 
time (12.8M samples) and 
inference time (1,280 samples) 
across TSP sizes and search 
settings for SL and RL-trained 
models

 GS: Greedy search, BS128: beam search with width 128, S128: sam-
pling 128 solutions. RL training uses the rollout baseline and timing 
includes the time taken to update the baseline after each 128,000 sam-
ples

Graph Size Training Time Inference Time

SL RL GS BS128 S128

TSP20 4h 24m 8h 02m 2.62s 7.06s 63.37s
TSP20-50 9h 49m 15h 47m − − − 
TSP50 16h 11m 40h 29m 7.45s 29.09s 86.48s
TSP100 68h 34m 108h 30m 19.04s 98.26s 180.30s
TSP200 − 495h 55m 54.88s 372.09s 479.37s
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Appendix D: Visualizing node and graph embedding spaces

Our results in Section 5.3 suggest that inference beyond training sizes requires the devel-
opment of GNN architectures and normalization layers that are both expressive as well 
as invariant to distribution shifts. We explore how node and graph embeddings for TSP 
graphs evolve across training distribution (TSP20-50) and beyond (up to TSP200) through 
visualizing the statistics of the embedding spaces. Intuitively, constructing TSP tours 
involves decisions which are not just locally optimal, but also optimal w.r.t some global 
graph structure. Thus, node embeddings represent local information while graph embed-
dings, which are conventionally computed as the mean of node embeddings, provide global 
structural information.

We utilize distribution plots to study the variation in embedding statistics5 of three iden-
tical models: (1) GNN-Max, which represents our best model configuration from Section 5: 
autoregressive decoding, Graph ConvNet encoder with Max aggregation and BatchNorm 
with batch statistics; (2) GNN-Sum, which uses Sum aggregation for the Graph ConvNet 
and shows comparatively poor generalization beyond training size, see Fig.  5; and (3) 
GNN-Max + learnt BN, which uses standard BatchNorm, i.e. learns statistics from the 
training data, and also shows comparatively poor generalization, see Fig. 6.

We draw upon work in learning embeddings for computer vision [77] to characterize 
embedding spaces across TSP sizes according to: (1) magnitudes, denoted by ℓ2 norms, 
indicating whether embeddings are shrinking to one magnitude or expanding outwards as 
TSP size increases; and (2) pair-wise distances, which tells us how well-separated the 
embedding are, or whether they are pulled apart/towards each other as TSP size increases.

5  Distribution plots show 0, 5, 50, 95, and 100-percentiles for embedding statistics at various TSP sizes, 
thus visualizing how the statistics changes with problem scale (implemented via TensorBoard [76]).

Fig. 12   Histograms of greedy selection probabilities (x-axis) across TSP sizes (y-axis)
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Fig. 13   Distribution plots of node embedding ℓ2 norms (y-axis) across TSP sizes (x-axis)

Fig. 14   Distribution plots of node embedding pair-wise distances (y-axis) across TSP sizes (x-axis)

Node embedding space  In Figs. 13 and 14, we see that GNN-Max leads to the most sta-
ble node embedding norms and pair-wise distances (which are calculated at an intra-graph 
level) across TSP sizes. On the other hand, GNN-Sum and GNN-Max + learnt BN lead to 
fluctuating and monotonically increasing embedding norms as size increases, e.g. compare 
Fig. 13b and c. Clearly, maintaining similar distributions for node embeddings across graph 
sizes indicates that the GNN is building meaningful representations of local structure, or, 
at the very least, does not break down for large graphs. This enables better generalization, 
as the decoder has lower chances of encountering embeddings which are statistically differ-
ent than those seen during training.

Graph embedding space  Figures 15 and 16 indicate that the graph embedding space is 
shrinking towards a single magnitude and moving closer as graph size increases. Interest-
ingly, with standard BatchNorm, the graph embedding magnitude monotonically increases 
with graph size to ranges beyond those for training graphs. On the other hand, using batch 
statistics for BatchNorm, as done in GNN-Max and GNN-Sum, leads to graph embedding 
magnitudes converging to a single value which is within the range of values for training 
graphs, thus enabling better generalization. E.g. compare Fig. 15b and c.
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Fig. 15   Distribution plots of graph embedding ℓ2 norms (y-axis) across TSP sizes (x-axis)

Fig. 16   Distribution plots of graph embedding pair-wise distances (y-axis) across TSP sizes (x-axis)

We can further visualize this phenomenon through 2D Principal Component Analysis 
(PCA) plots of graph embedding spaces for GNN-Max and GNN-Max + learnt BN models, 
see Fig. 17a and b. In both cases, the graph embeddings at larger sizes have very similar 
magnitudes and are extremely close to each other, indicating that the model is unable to 
differentiate among different graphs. Thus, decoders currently lack good global structural 
context. Investigating better graph embeddings through pooling methods [78] could be an 
interesting approach towards representing global graph structure beyond training sizes.

Appendix E: Extra Results

NAR decoders and aggregation functions  In Section 5, we found that AR decoding pro-
vides a powerful sequential inductive bias for TSP and is able to generalizes well with 
both GNNs as well as structure-agnostic encoder architectures. This result may lead one 
to question the need for GNNs, altogether. Interestingly, Fig. 18 illustrates a different trend 
for NAR architectures: GNN encoders generalize better than both Transformers and MLPs, 
indicating that leveraging graph structure is essential in the absence of the sequential 
inductive bias. (It is worth noting that, overall, all models with NAR decoders generalize 
poorly compared to AR architectures for our experimental setup.)

Critic baseline  Figure 19 illustrates that, for identical models, the critic baseline [7, 19] 
is unable to match the performance of the rollout baseline [16] under both greedy and 
beam search settings. We did not explore tuning learning rates and hyperparameters for 
the critic network, opting to use the same settings as those for the actor. In general, getting 
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actor-critic methods to work seems to require more parameter tuning than the rollout 
baseline.

Scaling computation for AR and NAR architectures  In Figures  20 and  21, we present 
extended results for Section 5.6, where we scale model parameters and data. We observe 
that using larger models (up to 1.5 Million parameters) enables fitting the training dataset 
better. The impact of larger models is especially evident for NAR architectures. As previ-
ously noted, recent NAR-based models [17, 18] used more than 30 layers with over 10 
Million parameters to outperform AR architectures on fixed TSP sizes. We believe that 
such overparameterized networks are able to memorize all patterns for small TSP training 
sizes [64], but the learnt policy is unable to generalize beyond training graph sizes as NAR 
decoding does not provide a useful inductive bias for TSP.

Fig. 17   2D PCA of graph embedding spaces. Colors represent TSP instance sizes, e.g. orange: TSP10, teal: 
TSP20, pink: TSP50, dark grey: TSP200

Fig. 18   GNN aggregation func-
tions (NAR decoder)
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Fig. 19   Comparing learning 
paradigms and solution search 
settings

Fig. 20   Scaling computation and model parameters for AR decoder
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Fig. 21   Scaling computation and model parameters for NAR decoder



UNCORRECTED PROOF

Journal : SmallCondensed 10601 Article No : 9327 Pages : 30 MS Code : 9327 Dispatch : 21-4-2022

	 Constraints

1 3

Fig. 23   Prediction visualization for TSP50

Appendix F: Visualizing model predictions

As a final note, we present a visualization tool for generating model predictions and 
heatmaps of TSP instances, see Figures  22,  23. We advocate for the development of 
more principled approaches to neural combinatorial optimization, e.g. along with 
model predictions, visualizing the reduce costs for each edge (cheaply obtained using 
the Gurobi solver [79]) may help debug and improve learning-driven approaches in the 
future. Using reduce costs as supervision signals could also be an inexpensive alterna-
tive to running optimal solvers to create large labelled datasets.

Fig. 22   Prediction visualization for TSP20
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