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Problem definition: Drone delivery has recently garnered significant attention due to its potential for

faster delivery at a lower cost than other delivery options. When scheduling drones from a depot for delivery

to various destinations, the dispatcher must take into account the uncertain wind conditions, which affect the

delivery times of drones to their destinations, leading to late deliveries. Methodology: To mitigate the risk

of delivery delays caused by wind uncertainty, we propose a two-period drone scheduling model to robustly

optimize the delivery schedule. In this framework, the scheduling decisions are made in the morning, with the

provision for different delivery schedules in the afternoon that adapt to updated weather information available

by midday. Our approach minimizes the essential riskiness index, which can simultaneously account for the

probability of tardy delivery and the magnitude of lateness. Using wind observation data, we characterize the

uncertain flight times via a cluster-wise ambiguity set, which has the benefit of tractability while avoiding

overfitting the empirical distribution. A branch-and-cut (B&C) algorithm is developed for this adaptive

distributionally framework to improve its scalability. Results: Our adaptive distributionally robust model

can effectively reduce lateness in out-of-sample tests compared to other classical models. The proposed B&C

algorithm can solve instances to optimality within a shorter time frame than a general modeling toolbox.

Managerial implications: Decision-makers can use the adaptive robust model together with the cluster-

wise ambiguity set to effectively reduce service lateness at customers for drone delivery systems.

Key words : drone delivery, uncertain flight time, uncertain wind conditions, cluster-wise ambiguity set,

distributionally robust optimization.

1. Introduction

Drone delivery is expected to redefine the traditional shipping market, as it is faster, cheaper, and

not restricted to congested roads, compared to truck delivery (Agatz et al. 2018). This innovative

transportation mode has gained increasing interest in recent years, especially since 2013 when

Amazon CEO Jeff Bezos announced plans for Amazon Prime Air in an interview (Rose 2013). Major

competitors in the delivery service industry, including DHL, Google, and JD.com, have also been
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developing and testing their drone models in recent years. On October 18, 2019, Alphabet’s drone

delivery company, Wing, launched the first U.S. commercial drone delivery flight (Doherty 2019).

Startups like Flirtey and Drone Delivery Canada have focused on designing and implementing

commercially viable drone delivery systems. Aside from their commercial use, drones can also

be applied in humanitarian logistics to deliver relief items (Rabta et al. 2018) and in healthcare

projects to refill medicine and pick up test kits (Kim et al. 2017).

A well-designed drone delivery system mitigates the risks of weather uncertainty. Uncertain wind

conditions, i.e., speeds and directions of the wind, can impact the transit times of the drones to

their destinations, leading to late deliveries or even cancellations of service (Walker 2014). Enderle

(2019) suggests that delays caused by weather conditions should be overcome before drone-based

order delivery becomes a reality. Black (2017) further states that the future of drone delivery

depends on its capability to adapt to different scenarios of weather conditions, and drone delivery

companies, such as Zipline, are actively working to build models that allow drones to safely and

efficiently operate under different weather scenarios.

In order to tackle this important issue, we explore how the availability of weather data, such as

wind observations, can be used to improve scheduling decisions in a drone delivery system, where

a fleet of identical drones is dispatched to visit a set of N geographically dispersed customers.

Each drone can make multiple round trips, where each round trip is a flight from the depot to

the customer and back to the depot for preparation for the next delivery, which may include tasks

such as mounting a new payload and/or swapping out a depleted battery. The transit times of the

drones between the depot and their assigned customers are affected by wind conditions, i.e., the

wind may increase or decrease their flight times depending on its speed and direction. Figure 1

illustrates the relationship between the wind conditions and flight times. The depot and customers

are distributed in a two-dimensional space and, without any loss of generality, the coordinate of

the depot is situated at (0,0). The wind vector is represented by the polar coordinate (r, θ), where

r denotes the speed of the wind, and θ is the angle between the direction of the wind and the

x-axis. The location of customer i, i ∈ [N ] is represented by the polar coordinate (di, φi), where

di is the distance from the depot and φi is the angle between the arc connecting the depot and

customer i and the x-axis.

The flight time of a drone depends on the ground speed, i.e., the speed relative to the ground.

The ground speed is the vector sum of the wind speed and the airspeed. The airspeed is the relative

velocity between a drone and the air, which generates the lift for the drone to move (Bocewicz et al.

2020, Radzki et al. 2021). The airspeed of drones in the forward direction (i.e., from the depot

to customers) for the ith customer, depending on the weight and size of the customer’s payload,

is denoted by r̄i. In the absence of a payload, the airspeed of drones in the backward direction is



Author: Robust Drone Delivery

Article submitted to ; manuscript no. 3

customer

wind speed

airspeed

ground speed

y
<latexit sha1_base64="HMV47UwYNs9jIPwl8SEt2DBxQVk=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LLaCp5K0UPVW9OKxgv2ANpTNdtMu3d2E3Y0QQv+CFw+KePUPefPfmLRB1Ppg4PHeDDPzvJAzbWz70yqsrW9sbhW3Szu7e/sH5cOjrg4iRWiHBDxQfQ9rypmkHcMMp/1QUSw8Tnve7Cbzew9UaRbIexOH1BV4IpnPCDaZVI2rpVG5YtfsBdAqcXJSgRztUfljOA5IJKg0hGOtB44dGjfByjDC6bw0jDQNMZnhCR2kVGJBtZssbp2js1QZIz9QaUmDFurPiQQLrWPhpZ0Cm6n+62Xif94gMv6lmzAZRoZKslzkRxyZAGWPozFTlBgepwQTxdJbEZlihYlJ41mGcJWh+f3yKunWa06j1rirV1rXeRxFOIFTOAcHLqAFt9CGDhCYwiM8w4slrCfr1XpbthasfOYYfsF6/wLscI2i</latexit>

x
<latexit sha1_base64="w4AyRoZP1exrFVC0NtFo53ovdZw=">AAAB63icbVDLSsNAFL2pr1pfVZduBlvBVUla8LErunFZwT6gDWUynbRDZyZhZiKW0F9w40IRt/6QO//GJA2i1gMXDufcy733eCFn2tj2p1VYWV1b3yhulra2d3b3yvsHHR1EitA2CXigeh7WlDNJ24YZTnuholh4nHa96XXqd++p0iyQd2YWUlfgsWQ+I9ikUvWhWhqWK3bNzoCWiZOTCuRoDcsfg1FAIkGlIRxr3Xfs0LgxVoYRTuelQaRpiMkUj2k/oRILqt04u3WOThJlhPxAJSUNytSfEzEWWs+El3QKbCb6r5eK/3n9yPgXbsxkGBkqyWKRH3FkApQ+jkZMUWL4LCGYKJbcisgEK0xMEs8ihMsUZ98vL5NOveY0ao3beqV5lcdRhCM4hlNw4ByacAMtaAOBCTzCM7xYwnqyXq23RWvBymcO4Res9y/q6o2h</latexit>

depot

drone

✓<latexit sha1_base64="1c0zo/3a62xju31viXHeZYcEVok=">AAAB73icbVDLSsNAFJ3UV62vqks3g63gqiQt+NgV3bisYB/QhjKZTtqhk0mcuRFK6E+4caGIW3/HnX/jJA2i1gMXDufcy733eJHgGmz70yqsrK6tbxQ3S1vbO7t75f2Djg5jRVmbhiJUPY9oJrhkbeAgWC9SjASeYF1vep363QemNA/lHcwi5gZkLLnPKQEj9aoDmDAg1WG5YtfsDHiZODmpoBytYfljMAppHDAJVBCt+44dgZsQBZwKNi8NYs0iQqdkzPqGShIw7SbZvXN8YpQR9kNlSgLO1J8TCQm0ngWe6QwITPRfLxX/8/ox+BduwmUUA5N0sciPBYYQp8/jEVeMgpgZQqji5lZMJ0QRCiaiUhbCZYqz75eXSadecxq1xm290rzK4yiiI3SMTpGDzlET3aAWaiOKBHpEz+jFureerFfrbdFasPKZQ/QL1vsXdpqPuQ==</latexit>

�i
<latexit sha1_base64="hDSHqKGNYafmQeD2TB7MRPB2OlA=">AAAB73icbVDLSsNAFL2pr1pfVZduBlvBVUla8LErunFZwT6gDWUynbRDJ5M4MxFK6E+4caGIW3/HnX/jJA2i1gMXDufcy733eBFnStv2p1VYWV1b3yhulra2d3b3yvsHHRXGktA2CXkoex5WlDNB25ppTnuRpDjwOO160+vU7z5QqVgo7vQsom6Ax4L5jGBtpF51EE3YkFWH5YpdszOgZeLkpAI5WsPyx2AUkjigQhOOleo7dqTdBEvNCKfz0iBWNMJkise0b6jAAVVukt07RydGGSE/lKaERpn6cyLBgVKzwDOdAdYT9ddLxf+8fqz9CzdhIoo1FWSxyI850iFKn0cjJinRfGYIJpKZWxGZYImJNhGVshAuU5x9v7xMOvWa06g1buuV5lUeRxGO4BhOwYFzaMINtKANBDg8wjO8WPfWk/VqvS1aC1Y+cwi/YL1/AWK8j6w=</latexit>

Figure 1 Illustration for calculating flight times. The right part is based on vector addition.

r̄0, r̄0 ≥ r̄i, i ∈ [N ]. We assume r < r̄i, i ∈ [N ] to forbid delivery under very windy conditions. The

automatic navigation system within a delivery drone would adapt according to the wind conditions,

to offset the wind’s influence on flight direction, such that the drone can fly straightly from the

depot to customers. Based on the definition and the calculation equation of the ground speed in

the three studies above, we can derive the nominal forward flight time ui and the backward flight

time vi as 
ui(r, θ),

di√
(r̄i)2− r2 sin2 (θ−φi) + r cos (θ−φi)

,

vi(r, θ),
di√

(r̄0)2− r2 sin2 (θ−φi)− r cos (θ−φi)
,

(1)

where the denominators are the forward and backward ground speeds, respectively. Note that since

r < mini∈[N ] r̄i, the airspeed of the drone has a positive influence on flight duration. Meanwhile,

a drone could reduce its speed or even delay its flight, which may be necessary to avoid an early

arrival at the customer’s location. For instance, if a drone departs from the depot at τ and the

customer can only be served after τ̄ 1, then the arrival time of the drone at the customer’s location

would be max{τ +ui, τ̄
1}.

In practice, the wind conditions cannot be perfectly predicted, and the actual flight times may

deviate from the nominal values. We denote the uncertain forward and backward flight times

resulting from the uncertain wind vector as ũi and ṽi, i ∈ [N ], respectively. Fortunately, weather

data, such as historical wind observations, are commonly available from the national or local

meteorological information center and can be used to predict flight times. Figure 2 is a wind rose

diagram of a province in China during a particular time interval. Wind information is reported in

terms of speed and direction. Each piece of information can be recognized as a wind observation

sample, based on which we can calculate the flight times between the depot and customers, thus

generating samples of flight times. Specifically, given H samples of the observed wind speed and
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Figure 2 Wind information collected from 145 subregions of Sichuan Province, China, ranging from the time inter-

val 00:00 to 04:00 on September 14th, 2019. Data are downloaded from the China National Meteorological

Information Center (http://data.cma.cn/site/index.html). The color-coded bands represent wind speed

ranges, and the circles denote different frequencies (from 0 to 8.4%).

direction, (rh, θh), h∈ [H], the corresponding forward and backward flight times of a drone to the

ith customer, i∈ [N ] are given by ui(rh, θh) and vi(rh, θh), respectively.

Contributions

We propose a drone delivery system to fulfill customers’ requests for their delivery to be made in

either the morning or in the afternoon. Given the weather data, our goal is to robustly optimize the

schedules of the drone delivery system to mitigate the risks of delivery delays due to uncertainty

in wind conditions. Our contributions are summarized as follows.

1. We propose a novel two-period data-driven adaptive distributionally robust optimization

(DRO) model that permits the modeler to use wind observation data to improve scheduling

decisions in a drone delivery system. The scheduling decisions for the fleet of drones are made

in the morning, with the provision for different delivery schedules in the afternoon that adapt

to updated weather information available by midday.

2. We show how to construct the ambiguity set characterizing the uncertain flight times of the

drones using wind observation data. We propose a cluster-wise ambiguity set, which has the

benefits of tractability while avoiding overfitting the empirical distribution. We incorporate

other weather information in the form of discrete scenarios to enhance the ambiguity set.

3. Inspired by the essential riskiness index (ERI) proposed by Zhang et al. (2019), we propose

a new decision criterion based on the characteristics of our problem. The new criterion can
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simultaneously account for the probability of tardy delivery and the magnitude of lateness

as the ERI does. More importantly, it leads to a more straightforward and computationally

scalable formulation for our problem.

4. For greater computational scalability, we propose a branch-and-cut (B&C) approach to solve

the adaptive DRO model.

5. We show in our computational studies that a small number of clusters obtained via K-means

can achieve high-quality, robust drone delivery schedules. We validate that the adaptive DRO

model can effectively reduce lateness in out-of-sample tests compared to other classical models.

Literature Review

This section reviews related works on drone delivery problems and data-driven robust optimization

(RO). We also discuss the differences between our problem and other scheduling problems. For

more details about drones’ applications, see the review paper by Moshref-Javadi and Winkenbach

(2021). For RO methods, interested readers can refer to the review paper by Yanıkoğlu et al. (2019).

Drone delivery problems. Most studies in drone delivery consider a truck-drone tandem

system, where one truck carries one drone to deliver packages. When the truck performs deliveries

along a traveling salesman problem (TSP) route, the drone can be launched from the truck at

a customer location to make one delivery. Then, the truck continues its route and retrieves the

drone at a new customer location. If the drone is not operational, it is carried by the truck. This

problem is termed the flying sidekick TSP (FSTSP) by Murray and Chu (2015). Agatz et al.

(2018) extend the FSTSP by allowing the truck to wait at the customer site for the drone to

return. They denote the problem as the TSP with drone. Many studies focus on developing solution

methods for the two problems above, e.g., simulated annealing heuristic (Ponza 2016), dynamic

programming (Bouman et al. 2018), and branch-and-price (Roberti and Ruthmair 2021). Other

variants are also studied. For example, Sacramento et al. (2019) address a vehicle routing problem

with drones, where multiple trucks, each equipped with one drone, are considered. There are other

drone-related delivery problems where trucks and drones do not work in tandem. Murray and Chu

(2015) introduce a parallel drone scheduling TSP, where drones and trucks work independently.

Dorling et al. (2016) study a multi-trip drone routing problem where only drones are used. Recently,

Gao et al. (2023) explore an ambulance-drone system in emergency medical services, where drones

are dispatched to provide the first responses for some requests with bystander assistance, followed

by subsequent ambulance deployment. The authors consider the randomness of request arrival,

bystander availability, and travel times. They formulate the problem as a Markov decision process

and develop an approximate dynamic programming solution method. Unlike our work, they assume

known distributions of random variables. Gupta et al. (2022) propose a new estimator of out-

of-sample performance of a policy for data-driven optimization problems, particularly suitable
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for scarce data settings. They evaluate the estimator using a drone-assisted emergency medical

response problem with uncertain response times. They estimate drones’ response times mainly

based on the straight-line travel distances between nodes. We note that their work focuses on

providing a general framework to mitigate the optimizer’s curse (Smith and Winkler 2006) by using

limited data. However, our study explicitly considers the impact of uncertain weather conditions

on drones’ travel times and aims to mitigate the risks of service delay. Additionally, to improve the

out-of-sample performance, we adopt an adaptive policy by utilizing observed weather information.

One significant aspect that makes drone delivery problems particularly challenging, as opposed

to the typical vehicle delivery problems, is the influence of weather conditions on drones’ opera-

tional efficiency. Some recent studies have tackled this issue by directly or indirectly incorporating

weather conditions into the optimization models. Radzki et al. (2019) study a drone routing prob-

lem considering the impact of wind on energy consumption. They assume that all the influencing

factors, like ground speeds, wind conditions, and drone weight during a trip, are given parameters,

resulting in constant energy consumption values for each arc. Thibbotuwawa et al. (2019) design

a decision support tool for the multi-trip drone fleet mission planning problem under different

weather conditions. They decompose the problem into subproblems, dividing the time period into

time slots with analogous weather conditions. They then decide the customer clusters for each slot

and the routes for each cluster. The sequence of routes within each cluster is finally decided. Kim

et al. (2017) consider the influence of wind on flight time by setting asymmetric flight distances.

Vural et al. (2019) study a drone location routing problem and state that weather such as snow,

fog, and heavy rain would limit drone operations in some regions. In their study, weather scenarios

are known with an occurrence probability, and each scenario indicates whether a specific region

can operate drones. They formulate the problem as a two-stage stochastic programming model.

Kim et al. (2019) study a stochastic drone facility location problem. They state that some weather

conditions can negatively affect energy consumption, affecting drones’ flight ranges. A chance

constraint is used to ensure that the probability that a drone’s flight range is larger than or equal

to the travel distance between a facility and a customer is acceptable. They assume the flight range

follows an exponential distribution and reformulate the resulting model as a mixed-integer linear

programming model. Kim et al. (2018) consider a drone scheduling problem with uncertain flight

ranges, resulting from uncertain air temperature on battery duration. They use an RO method

and compare the performance of three uncertainty sets—polyhedral, box, and ellipsoidal. They

use historical and forecast data to estimate the hourly temperature (a span of 12 hours) over an

area and then calculate the flight range deviations via a regression function. These deviations are

fixed values and are treated as different scenarios with weights. Then, their uncertainty sets are

constructed to denote the random weights.
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The works above either ignore the impact of weather completely or consider it in a simplified

way. Specifically, future weather conditions (or flight range/time) are assumed to be deterministic,

follow a known distribution, or belong to some scenarios with known probabilities. Only Kim et al.

(2018) use a distribution-free method; however, they consider limited scenarios and need to specify

the budget or radius of the uncertainty sets. Unlike nearly all reviewed papers, we use the DRO

approach with a cluster-wise ambiguity set, where the distribution of random variables is assumed

to lie in an ambiguity set rather than being known perfectly in advance.

Data-driven RO. Our paper falls within the realm of data-driven RO, where the key step is

constructing ambiguity sets from historical data. Details on the construction of these sets can be

found in Delage and Ye (2010) and Bertsimas et al. (2018). Recently, Chen et al. (2020) propose an

event-wise ambiguity set, which is rich enough to capture a wide range of ambiguity sets, such as

statistic-based and machine-learning-based ones. The works of Hao et al. (2020) and Perakis et al.

(2023) are novel applications of the framework proposed in Chen et al. (2020). Specifically, Hao

et al. (2020) address a single-period vehicle allocation problem with uncertain demand, which is

related to weather conditions (rainy or sunny). They use a multivariate regression tree to construct

the ambiguity set. Perakis et al. (2023) study a two-period, multi-item joint pricing and production

problem, where the K-means clustering algorithm is utilized to partition the demand residuals.

Then, a cluster-wise ambiguity set is constructed.

Differences between our problem and other scheduling problems. We first discuss

the differences between our problem and the stochastic appointment sequencing and scheduling

problem (ASSP). In the ASSP, a set of jobs with stochastic durations is to be performed by a single

server. The planner makes the job sequencing decisions, i.e., determining the orders in which the

jobs will be performed, and the appointment scheduling decisions, i.e., determining the starting

times for jobs with a given sequence. The objective is to minimize the weighted costs arising from

job waiting times, server idle time, and overtime (Denton et al. 2007, Mancilla and Storer 2012,

Mak et al. 2014, 2015, de Kemp et al. 2021). Our problem mainly distinguishes the ASSP in two

aspects. First, the ASSP often assumes only a single server; thus, no job-server assignment decisions

need to be made. In contrast, such assignments are part of the decisions in our problem, as multiple

servers are considered. Second, the ASSP is a single-period problem, while our problem involves two

periods. Thus, for the jobs that can be performed in either period, we decide both the job-server

assignments and the time periods to perform these jobs. Moreover, our second-period assignment

and sequencing decisions can adapt to realized covariate information (the weather conditions in

our context) in the first period. However, the decisions of the ASSP are static. Namely, once made,

they are fixed regardless of the uncertainty realization, because jobs’ scheduled appointment times

are communicated to customers once they are decided. Thus, although we can utilize covariate
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information, e.g., the types of the server and patients, to construct a scenario-wise ambiguity set

for the distributionally robust version of the ASSP, adapting the decisions is impossible in the

ASSP. In a nutshell, the involvement of multiple servers and the two-period assumption make our

problem distinct from the stochastic ASSP in terms of decision variables and modeling frameworks.

Our work is also related to Zhang et al. (2019) and Zhang et al. (2021), where they study a TSP

with time windows and a vehicle routing problem with time window (VRPTW) under travel time

uncertainty, respectively. They minimize the ERI, a convex decision criterion that simultaneously

considers the probability of tardy delivery and the magnitude of lateness. To characterize the uncer-

tainty, the former explores a moment-based ambiguity set, and the latter considers a Wasserstein

distance-based ambiguity set. Unlike their static decision models, we consider an adaptive model,

which has the benefit of alleviating the conservatism of robust solutions. We do so by developing

a cluster-wise ambiguity set that is compatible with our two-period adaptive model. Moreover, to

reduce the computational burden resulting from adaptability, we introduce a new decision criterion

based on the structure of our problem, which keeps the desirable properties of the ERI, and also

leads to a more computationally scalable model.

The rest of the paper is organized as follows. At the end of this section, we summarize the

notation used throughout the paper. Section 2 constructs the ambiguity set from weather data.

Section 3 presents the decision criterion, builds the DRO model, and introduces the adaptive

policy. Section 4 reformulates the DRO model and presents the solution method. Section 5 reports

numerical results. Section 6 concludes this paper. All the proofs appear in Appendix C.

Notation. We denote by [N ] , {1, . . . ,N} the set of positive running indices up to N . Boldface

lowercase and uppercase characters represent vectors and matrices with appropriate dimensions,

respectively. a′ is the transpose of a. We use P0(RI) to represent the set of all distributions on RI .

A random variable, z̃ is denoted with a tilde sign and we use z̃ ∼ P, P∈P0(W),W ⊆RI to define z̃

as an I-dimensional random variable with distribution P over the support W. For a vector u∈RI ,
the expression |u| denotes the vector of absolute values of the components of u. e corresponds to

the vector of 1s with an approximate dimension. ei is the ith standard basis vector.

2. Weather Uncertainty and Influence on Flight

We model a drone delivery system comprising a fleet of D identical drones that are dispatched to

visit a set of N , N >D geographically dispersed customers. Each drone can make multiple round

trips, where each round trip is a flight from the depot to the customer and back to the depot

for preparation for the next delivery. We assume that the drone has sufficient energy to perform

a round trip since a depleted battery can quickly be swapped with a fully charged one. Hence,

with a sufficient supply of charged batteries, we do not need to incorporate charging decisions
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into our model. If a fully charged battery is insufficient for a round trip between the depot and a

customer site, then that customer would be deemed a drone-ineligible customer. We characterize

the uncertainty of flight times as the result of wind conditions. Without loss of generality, we

assume that the time for mounting new payloads and swapping batteries at the depot is negligible,

as it is not influenced by wind conditions and can be incorporated into the model easily (Ham

2018). The service time at customer locations is also neglected here because, whenever necessary,

we can add it to the forward or backward flight time as a constant number.

We consider a two-period model, where Period 1 and Period 2 represent the morning and the

afternoon, respectively. Period 1 starts at time 0 and ends at the midday time, τ̄ 1, while Period

2 starts at τ̄ 1 and ends at τ̄ 2. At the beginning of Period 1, the model optimizes the scheduling

policy, which determines the drones’ delivery schedules in the morning, while the schedules in the

afternoon can flexibly adapt to the observed wind vector, (r1, θ1), in the morning, and/or other

weather information that would be known by midday. We assume that the modeler has H samples

of wind observation data at the beginning of the time period. Under sample h, h ∈ [H], we define

(r1
h, θ

1
h) and (r2

h, θ
2
h) to be the observed wind vectors in Period 1 and Period 2, respectively.

Ambiguity Set for Uncertain Flight Times

The forward and backward flight times for serving customer i, i ∈ [N ] in Period 1 are uncertain,

and we denote them by the random variables ũ1
i and ṽ1

i , which are functions of the wind vectors

from Equation (1). Likewise, we also denote by the random variables ũ2
i and ṽ2

i the forward and

backward flight times for serving customer i, i ∈ [N ] in Period 2. For convenience, we define the

vectorial notation ũt , (ũt1, . . . , ũ
t
N)′ and ṽt , (ṽt1, . . . , ṽ

t
N)′, t ∈ [2]. Based on Equation (1), we also

define u(r, θ), (u1(r, θ), . . . , uN(r, θ))′ and v(r, θ), (v1(r, θ), . . . , vN(r, θ))′.

We first characterize the ambiguity set in the first period using a cluster-wise ambiguity set

introduced by Chen et al. (2020). We partition the wind vector chart into K1 non-overlapping

clusters U1
k , k ∈ [K1] so that the index set of the subsamples

Lk = {h∈ [H] | (r1
h, θ

1
h)∈ U1

k}, (2)

are each associated with a region to which the morning wind vectors belong (see Figure 3).

We introduce the random variable κ̃1 taking discrete values in [K1] to represent the scenario

κ̃1 = k associated with the cluster U1
k that would contain the realized wind vector observed in
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Figure 3 Partitioning the wind vector chart into clusters using the K-means clustering algorithm. Note that wind

vectors are converted from polar coordinates to Cartesian coordinates to guarantee that coordinates are

in the same scales before performing the clustering. The dark points in each cluster are the centroids.

Period 1. Accordingly, using wind observational data, we construct the cluster-wise ambiguity set

G1 ⊆P(R2N × [K1]) associated with the random variable (ũ1, ṽ1, κ̃1) as follows:

G1 =



P∈P(R2N × [K1])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ1, ṽ1, κ̃1)∼ P

EP [ũ1 | κ̃1 = k] =µ1
k ∀k ∈ [K1]

EP [ṽ1 | κ̃1 = k] = ν1
k ∀k ∈ [K1]

EP [|ũ1−µ1
k| | κ̃1 = k]≤σ1

k ∀k ∈ [K1]

EP [|ṽ1−ν1
k | | κ̃1 = k]≤ ς1

k ∀k ∈ [K1]

P

 u1
k ≤ ũ1 ≤ ū1

k

v1
k ≤ ṽ1 ≤ v̄1

k

∣∣∣∣∣∣ κ̃1 = k

= 1 ∀k ∈ [K1]

P [κ̃1 = k] = |Lk|/H ∀k ∈ [K1]



, (3)

where the parameters of the forward flight times associated with the cluster k, k ∈ [K1], are

characterized as follows:

µ1
k =

1

|Lk|
∑
h∈Lk

u(r1
h, θ

1
h), σ1

k =
1

|Lk|
∑
h∈Lk

∣∣u(r1
h, θ

1
h)−µ1

k

∣∣ ,[
u1
k

]
i
= min

h∈Lk
ui(r

1
h, θ

1
h),

[
ū1
k

]
i
= max

h∈Lk
ui(r

1
h, θ

1
h), ∀i∈ [N ].

The parameters of the backward flight times can be obtained in a similar way.

Note that the ambiguity set does not explicitly express the relationship between the wind condi-

tions and the flight times, i.e., Equation (1). Instead, wind conditions and flight times are implicitly

linked by the clusters. Specifically, after clustering the wind samples, we calculate the historical

flight times associated with each sample in each cluster using Equation (1). In this way, we obtain

the samples of flight times in each cluster. Then, we extract the statistical information on flight

times and construct the cluster-wise ambiguity set.
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In RO, the ambiguity set is often designed to encompass distributions beyond the empirical

distribution to mitigate the risk of overfitting and improve out-of-sample performance. When K1 =

1, G1 reduces to a marginal moment ambiguity set which, analogous to the box uncertainty set , can

be too conservative when applied to solve DRO problems. As the number of clusters increases, the

level of conservativeness reduces, although the computational complexity increases. In the extreme

case of one sample per cluster, the ambiguity set only contains the empirical distribution due to the

support and deviation constraints. The empirically optimized solution may suffer from the issue

of overfitting, leading to poor out-of-sample performance, a phenomenon known as the optimizer’s

curse (Smith and Winkler 2006). In practice, the number of clusters is often determined empirically

in validation tests to achieve a tradeoff between conservativeness and computational complexity.

By midday, in preparation for Period 2, the random variable (ũ1, ṽ1, κ̃1) would be realized. Apart

from the wind data, we assume that there is other weather information like atmospheric pressures,

weather forecasts, and other covariates, which could be used to predict the wind conditions in

the afternoon. To incorporate this information into our ambiguity set, we discretize the weather

information into S finite scenarios, which can be done using standard classification approaches in

machine learning. Accordingly, we use s̃ to denote the random weather scenarios, which would be

realized by midday. We assume that the weather data contains historical information of the weather

scenarios, which we denote by sh, h ∈ [H]. We define the index set of the subsamples associated

with the different weather scenarios as Vs = {h∈ [H] | sh = s}.

In the absence of other weather information beyond wind observation data, we can use the

random scenario κ̃1 defined for the ambiguity set G1 as the random scenario for predicting wind

conditions in the afternoon, in which case, S =K1 and Vs =Ls for all s∈ [S].

Given a realized scenario s̃= s, we can characterize Period 2 flight times (ũ2, ṽ2) via a cluster-

wise ambiguity set as before. We partition the wind vectors (r2
h, θ

2
h), h∈ Vs into K2 non-overlapping

clusters U2
g , g ∈ [K2]. Each cluster g ∈ [K2] is associated with the subset of samples Lsg ={

h∈ Vs | (r2
h, θ

2
h)∈ U2

g

}
. We also introduce the random variable κ̃2, taking discrete values in [K2]

to represent the scenario κ̃2 = g associated with the cluster U2
g that would contain the realized

wind vector observed in Period 2. For each scenario s, s ∈ [S], we construct the ambiguity set
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G2
s ⊆P(R2N × [K2]) as follows:

G2
s =



P∈P(R2N × [K2])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ2, ṽ2, κ̃2)∼ P

EP [ũ2 | κ̃2 = g] =µ2
sg ∀g ∈ [K2]

EP [ṽ2 | κ̃2 = g] = ν2
sg ∀g ∈ [K2]

EP
[
|ũ2−µ2

sg| | κ̃2 = g
]
≤σ2

sg ∀g ∈ [K2]

EP
[
|ṽ2−ν2

sg| | κ̃2 = g
]
≤ ς2

sg ∀g ∈ [K2]

P

 u2
sg ≤ ũ2 ≤ ū2

sg

v2
sg ≤ ṽ2 ≤ v̄2

sg

∣∣∣∣∣∣ κ̃2 = g

= 1 ∀g ∈ [K2]

P [κ̃2 = g] = |Lsg|/|Vs| ∀g ∈ [K2]



, (4)

where the parameters of the forward flight times in the cluster g, g ∈ [K2], are determined as

µ2
sg =

1

|Lsg|
∑
h∈Lsg

u(r2
h, θ

2
h), σ2

sg =
1

|Lsg|
∑
h∈Lsg

∣∣u(r2
h, θ

2
h)−µ2

sg

∣∣ ,[
u2
sg

]
i
= min

h∈Lsg
ui(r

2
h, θ

2
h),

[
ū2
sg

]
i
= max

h∈Lsg
ui(r

2
h, θ

2
h), ∀i∈ [N ].

The parameters of the backward flight times can be characterized similarly.

In general, the discrete random variable κ̃1, κ̃2, and s̃ are dependent, and hence we denote W as

the support of the joint discrete random variable (κ̃1, κ̃2, s̃). We are now ready to characterize the

full ambiguity set. The actual joint distribution of (ũ1, ṽ1, ũ2, ṽ2, s̃)∼ P is unknown but belongs to

an ambiguity set, F , as follows:

F =


Q∈P(R4N × [S])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ1, ṽ1, ũ2, ṽ2, s̃)∼Q

∃P∈P(R4N ×W) :

(ũ1, ṽ1, ũ2, ṽ2, (κ̃1, κ̃2, s̃))∼ P

∃Q1 ∈ G1 : (ũ1, ṽ1, κ̃1)∼Q1

∃Q2
s ∈ G2

s : (ũ2, ṽ2, κ̃2)|s̃=s ∼Q2
s ∀s∈ [S]

P [(κ̃1, κ̃2, s̃) = (k, g, s)] = qkgs ∀(k, g, s)∈W


, (5)

where

qkgs =
|Vs ∩Lk ∩Lsg|

H
.

The explicit form of the ambiguity set, F , is provided in Appendix A.

3. The Drone Delivery Model

We aim to robustly optimize the drone schedules to mitigate the risks of delivery delays caused

by wind uncertainty. Customers specify their preference for delivery in the morning or afternoon.

Hence, we partition the customers into three groups, C1, C2, and C3. The first two groups, C1

and C2, are the sets of customers that expect to have their delivery made in Period 1 and Period
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2, respectively. The third group C3 is the set of unconstrained customers who can be served in

either period. Customers in C3 are notified to expect their delivery in either Period 1 or Period 2.

Hence, customers assigned to be served in Period 1 should be served within [0, τ̄ 1], while customers

assigned to be served in Period 2 should be served within [τ̄ 1, τ̄ 2]. Poor service occurs whenever

the scheduled delivery time windows cannot be met.

Decision Criterion

For a given delivery policy, the arriving time of a drone is a function of the random variable

(ũ1, ṽ1, ũ2, ṽ2, s̃)∼ P, P∈F , which we denote by ξ(ũ1, ṽ1, ũ2, ṽ2, s̃) for some function ξ :R4N× [S] 7→
R. For convenience, we use ξ̃ , ξ(ũ1, ṽ1, ũ2, ṽ2, s̃) to represent the random arriving time. A service

is delayed whenever ξ̃ > τ , where τ ∈ {τ̄ 1, τ̄ 2} is the delivery time expected by the customer.

Our goal is to mitigate the risks of service delays under distributional ambiguity, and we evaluate

such risks using the ERI proposed by Zhang et al. (2019). The index is endowed with good compu-

tational properties, and it performs well as an optimization criterion in a vehicle routing problem

(Zhang et al. 2021). Although the entropic value-at-risk (Nemirovski and Shapiro 2007) and the

requirement violation index (Jaillet et al. 2016) are also used to evaluate risks for some delivery

problems, they admit a tractable formulation only if the random variables are independent (Long

and Qi 2014, Zhang et al. 2021). However, the random flight times in our problem are correlated,

as they jointly depend on the wind conditions.

Definition 1. Given an arriving time function, ξ : R4N × [S] 7→ R and the expected delivery

time, τ ∈R+. The essential riskiness index is defined as

ρτ (ξ̃) = min

{
γ ≥ 0

∣∣∣∣ sup
P∈F

EP

[
max

{
ξ̃− τ,−γ

}]
≤ 0

}
, (6)

where min∅=∞ by convention.

We briefly present some of the important properties as ERI.

i) Monotonicity: If P
[
ξ̃1 ≥ ξ̃2

]
= 1, ∀P∈F , then ρτ (ξ̃1)≥ ρτ (ξ̃2);

ii) Satisficing: ρτ (ξ̃) = 0 if and only if P
[
ξ̃ ≤ τ

]
= 1, ∀P∈F ;

iii) Infeasibility: If sup
P∈F

EP

[
ξ̃
]
> τ , then ρτ (ξ̃) =∞;

iv) Convexity: For all λ∈ [0,1], ρτ (λξ̃1 + (1−λ)ξ̃2)≤ λρτ (ξ̃1) + (1−λ)ρτ (ξ̃2);

v) Delay bounds:

P
[
ξ̃− τ > ρτ (ξ̃)ϑ

]
≤ 1

1 +ϑ
, ∀ϑ> 0,P∈F .

Monotonicity ensures that an uncertain arrival time that dominates another would not be better

off under ERI. Satisficing ensures that if the delivery time can always be met, then the risk of

poor service under ERI is zero. The infeasibility property ensures that the average arriving time,

even under distributional ambiguity, should not exceed the expected delivery time. The property of
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convexity provides a more tractable formulation compared to non-convex ones, such as the criterion

based on the probability of service delays. Delay bounds provide insights into the probability bounds

of the event, namely that the arriving time exceeds the expected delivery time plus any duration.

This property indicates that ERI ensures the probability of lateness reduces reciprocally as the

magnitude of lateness increases in multiples of the index value. Specifically, when ϑ takes a larger

value, although the magnitude of lateness increases, the probability bound 1/(1 +ϑ) for this event

decreases. In this way, the ERI can account for both the probability of delay and its magnitude.

The drone delivery problem can be modeled as a multi-trip VRPTW proposed in Zhang et al.

(2021), where the model’s objective is to minimize the sum of the ERIs associated with service

delay risks for all customers. Accordingly, to ensure high quality of services across all customers,

the drone delivery system could also minimize the following joint decision criterion

%τ (ξ̃),
∑
i∈[N ]

ρτi(ξ̃i), (7)

where ξ̃i and τi are, respectively, the uncertain arriving time and expected delivery time for the

ith customer. Note that the basic ERI (6) with a random scalar has been extended to the case

with a random vector ξ̃ in (7), representing the sum of ERIs from multiple customers. The benefit

of this criterion in achieving high-quality solutions with reasonable computational effort has been

demonstrated in Zhang et al. (2021). Moreover, the joint decision criterion satisfies the following

salient properties:

i) Monotonicity: If P
[
ξ̃1 ≥ ξ̃2

]
= 1, ∀P∈F , then %τ (ξ̃1)≥ %τ (ξ̃2);

ii) Satisficing: %τ (ξ̃) = 0 if and only if P
[
ξ̃≤ τ

]
= 1, ∀P∈F ;

iii) Non-abandonment: If there exists i∈ [N ] such that sup
P∈F

EP

[
ξ̃i

]
> τi, then %τ (ξ̃) =∞;

iv) Convexity: For all λ∈ [0,1], %τ (λξ̃1 + (1−λ)ξ̃2)≤ λ%τ (ξ̃1) + (1−λ)%τ (ξ̃2).

Because we are using a nonstandard decision criterion, these properties serve as an axiomatic

framework for which our decision criterion would be justified. In our opinion, these properties are

reasonable for any joint decision criterion that evaluates overall customer service. In particular,

the non-abandonment property ensures that any feasible solution for which the objective value

is finite implies that the average arrival time at every customer’s location would not exceed the

expected delivery time. We are cognizant of other joint decision criteria that would also preserve

the same properties, such as the one that takes the value of the highest ERI among all customers.

However, from our numerical experience, minimizing the maximum ERI results in having an excess

of multiple optimal solutions, influencing the quality of the solutions as well as the computing time.

We will illustrate this in our computational studies.



Author: Robust Drone Delivery

Article submitted to ; manuscript no. 15

While we can cast our problem as a robust VRPTW proposed in Zhang et al. (2021), the resulting

model would not be suitable and applicable to our problem due to the following reasons. First,

to minimize the joint decision criterion (7), a number of binary decision variables denoting the

visiting sequence of customers must be introduced. Second, the robust model in Zhang et al. (2021)

is static, while we consider an adaptive model in this work. Thus, we propose an alternative joint

decision criterion,

%τ (ξ̃),
∑

d∈[D]:K1
d
6=∅

(
max
i∈K1

d

{
ρτ̄1
(
ξ̃i

)})
+

∑
d∈[D]:K2

d
6=∅

(
max
i∈K2

d

{
ρτ̄2
(
ξ̃i

)})
, (8)

where Ktd ⊆ [N ] denotes the set of customers to be served by drone d, d∈ [D] in period t, t∈ [2].

The proposed criterion also satisfies the properties of monotonicity, satisficing, non-

abandonment, and convexity. More importantly, it helps us construct a simpler, more computa-

tionally scalable formulation, as demonstrated in the following proposition.

Proposition 1. The joint decision criterion %τ (ξ̃) is equivalent to

%τ (ξ̃) =
∑

d∈[D]:K1
d
6=∅

ρτ̄1
(
ξ̃`1

d

)
+

∑
d∈[D]:K2

d
6=∅

ρτ̄2
(
ξ̃`2

d

)
,

where `td denotes the last customer served by drone d, d∈D in Period t, t∈ [2].

Observe that the random arrival time at the last customer by drone d, d∈ [D] in Period 1 is

ξ̃`1
d

=
∑

i∈K1
d
\{`1

d
}

(ũ1
i + ṽ1

i ) + ũ1
`1
d
. (9)

Note that the arrival time in Period 2 is not an additive function of the flight times because

customers in Period 2 can only be served after τ̄ 1. We assume that whenever the anticipated arrival

is before τ̄ 1, the drone can delay its departure from the depot so that the arrival would be punctual

at τ̄ 1. We also need to account for the first customer to be served in Period 2 by drone d, d∈ [D],

which we denote by `2d. Hence, the random arrival time at the last customer by drone d, d∈ [D] in

Period 2 is

ξ̃`2
d

= max

∑
i∈K1

d

(ũ1
i + ṽ1

i ) + ũ2
`2
d
, τ̄ 1

+ ṽ2
`2
d

+
∑

i∈K2
d
\{`2d,`2d}

(
ũ2
i + ṽ2

i

)
+ ũ2

`2
d

∀d∈ [D]. (10)

Under our proposed joint decision criterion, Proposition 1 implies that we only need to keep track

of, for every drone, the last customer to be served in the morning, and the first and last customers

served in the afternoon by the drone. In particular, the sequence of customers being served before

the last customer in Period 1, and the sequence of customers being served between the first and

the last customers in Period 2, would not affect the joint decision criterion. This greatly reduces

the complexity of the model compared to a VRPTW formulation regarding the number of binary

variables needed to model the problem.
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Scheduling Decisions and Event-wise Adaptations

We denote C̄1 = C1∪C3 and C̄2 = C2∪C3 as the sets of customers who can expect their deliveries in

the morning and afternoon, respectively. For scheduling decisions (y1
id, x

1
id), i∈ C̄1, d∈ [D] associated

with Period 1, we define the binary variable y1
id = 1 if and only if customer i is the last customer

visited by drone d in Period 1, i.e., i ∈ K1
d ∩ {`1d}, and the binary variable x1

id = 1 if and only if

i∈K1
d\{`1d}.

As we have mentioned, the drone schedule in the afternoon can flexibly adapt to wind informa-

tion, which is available by midday when the random scenario s̃ is realized. Hence, the decisions

associated with Period 2 are functions of s ∈ [S], which we denote by y2
id(s), z

2
id(s), x

2
id(s), i ∈ C̄2,

d ∈ [D]. For a given scenario s ∈ [S], the binary variable y2
id(s) = 1 if and only if customer i is the

last customer visited by drone d in Period 2, i.e., i∈K2
d∩{`2d}, the binary variable z2

id(s) = 1 if and

only if customer i is the first customer visited by drone d in Period 2, i.e., i ∈K2
d ∩ {`2d}, and the

binary variable x2
id(s) = 1 if and only if i∈K2

d\{`2d, `2d}.

The adaptive scheduling decisions in Period 2 can be defined within a family of binary function

maps. For flexibility in adaptation, we adopt the event-wise adaptation introduced in Chen et al.

(2020). We first define an event E ⊆ [S] by a subset of scenarios. A partition of scenarios then induces

a collection S of mutually exclusive and collectively exhaustive (MECE) events. Correspondingly,

we define a mapping fS : [S] 7→ S such that fS(s) = E , for which E is the only event in S that

contains the scenario s. Given a collection S of MECE events, we define the event-wise adaptation

to characterize the scheduling decisions in Period 2 as follows:

A (S),

x : [S] 7→ {0,1}C̄2×D
∣∣∣∣∣∣ x(s) =xE , E = fS(s)

for some xE ∈ {0,1}C̄2×D

 .

In the case of a non-adaptive (or static) policy, we have S = {[S]}, so that the scheduling decisions

in Period 2 would not change its solutions in response to the outcomes of scenario s̃. For the case

of full adaption, the collection S would have S different events, each containing an element of [S].
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The feasible drone delivery schedule is as follows:

X =



(x1,y1,

x2,y2,z2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
d∈[D]

(x1
id + y1

id) = 1 ∀i∈ C1,∑
d∈[D]

(
x2
id(s) + y2

id(s) + z2
id(s)

)
= 1 ∀i∈ C2, s∈ [S],∑

d∈[D]

(
x1
id + y1

id +x2
id(s) + y2

id(s) + z2
id(s)

)
= 1 ∀i∈ C3, s∈ [S],∑

i∈C̄1
y1
id = 1 ∀d∈ [D],∑

i∈C̄2
y2
id(s) = 1 ∀d∈ [D], s∈ [S],∑

i∈C̄2
z2
id(s) = 1 ∀d∈ [D], s∈ [S],

x1,y1 ∈ {0,1}C̄1×D, x2,y2,z2 ∈A(S).



(11a)

(11b)

(11c)

(11d)

(11e)

(11f)

Constraints (11a)–(11c) mean that customers in each set are respectively scheduled to be visited

exactly once in their allowable delivery time slots. Constraints (11d)–(11e) impose that each drone

at each period can only have one customer as the last served one. Constraints (11f) mean that

each drone can only have one customer as the first visited customer in Period 2. The index s in

the constraints suggests that the afternoon schedule should be feasible under any scenario.

An example is provided in Appendix B to show the construction of the cluster-wise ambiguity

sets and the definition of the event-wise adaptations. Additionally, the schedule decision can be

enhanced by the following lexicographic ordering constraints, which break the symmetry between

drones (Adulyasak et al. 2014)

j∑
i=1,i∈C1

2j−ix1
id ≥

j∑
i=1,i∈C1

2j−ix1
id+1 ∀j ∈ C1, d∈ [D− 1]. (12)

DRO Model

Now, for a given d, d∈ [D], the arrival time at the last customer in Period 1 can be written as the

function

ζ1
d(x1,y1, ũ1, ṽ1),

∑
i∈C̄1

(
x1
id(ũ

1
i + ṽ1

i ) + y1
idũ

1
i

)
, (13)

and likewise, the arrival time at the last customer in Period 2 can be expressed as

ζ2
d(x1,y1,x2,y2,z2, ũ1, ṽ1, ũ2, ṽ2, s̃)

, max

{∑
i∈C̄1

(x1
id + y1

id)(ũ
1
i + ṽ1

i ) +
∑
i∈C̄2

z2
id(s̃)ũ

2
i , τ̄

1

}
+
∑
i∈C̄2

(
z2
id(s̃)ṽ

2
i +x2

id(s̃)(ũ
2
i + ṽ2

i ) + y2
id(s̃)ũ

2
i

)
.

(14)
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Note that these two functions are the explicit expressions of equations (9) and (10), respectively.

Recall that our goal is to minimize the risks of service delays under distributional ambiguity,

where the risks are evaluated by the ERIs. Combining the definition of ERI in (6), the equivalent

form of the joint decision criterion in Proposition 1, and the constraints (11) for defining a feasible

drone delivery schedule, we construct the final DRO model as follows:

inf
∑
d∈[D]

(γ1
d + γ2

d)

s.t. sup
P∈F

EP
[
max

{
ζ1
d(x1,y1, ũ1, ṽ1)− τ̄ 1,−γ1

d

}]
≤ 0 ∀d∈ [D], (15a)

sup
P∈F

EP
[
max

{
ζ2
d(x1,y1,x2,y2,z2, ũ1, ṽ1, ũ2, ṽ2, s̃)− τ̄ 2,−γ2

d

}]
≤ 0 ∀d∈ [D], (15b)

γ1
d , γ

2
d ≥ 0 ∀d∈ [D],

(x1,y1,x2,y2,z2)∈X .

The DRO model (15) with cluster-wise moment-based ambiguity set and event-wise adaption

fits into the robust stochastic optimization framework introduced by Chen et al. (2020). They also

provide an algebraic modeling toolbox, RSOME - Robust Stochastic Optimization Made Easy,

which facilitates rapid prototyping of our model. Specifically, by using affine recourse adaptation

on a lifted ambiguity set, we can model the problem intuitively via RSOME. However, while it is

convenient to do so, the toolbox generates numerous auxiliary variables and results in slow com-

putational performance. We aim to eradicate all auxiliary variables and propose a B&C approach

to solve our problem. We use RSOME as a reference to check the correctness of our approach.

4. Solving via Branch-and-Cut

For greater scalability, this section first presents a classical RO reformulation and then develops a

B&C algorithm to solve the reformulation.

Reformulating the DRO Model

We first address the supremum over the ambiguity set in constraints (15a). Note that

sup
P∈F

EP [max{ζ1
d(x1,y1, ũ1, ṽ1)− τ̄ 1,−γ1

d}] is equivalent to

sup
P∈G1

EP
[
max

{
ζ1
d(x1,y1, ũ1, ṽ1)− τ̄ 1,−γ1

d

}]
.

Under the law of total probability, constraints (15a) can be reformulated as

∑
k∈[K1]

qk sup
P∈G1

k

EP

[
max

{∑
i∈C̄1

(
x1
id(ũ

1
i + ṽ1

i ) + y1
idũ

1
i

)
− τ̄ 1,−γ1

d

}]
≤ 0 ∀d∈ [D],
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where qk = |Lk|/H,

G1
k =


Q∈P(R4N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ1, ã1, ṽ1, b̃1)∼ P

EP [ũ1] =µ1
k

EP [ṽ1] = ν1
k

EP [ã1]≤σ1
k

EP

[
b̃1
]
≤ ς1

k

P
[
(ũ1, ã1, ṽ1, b̃1)∈Ξ1

k

]
= 1


, and Ξ1

k ,


(u1,a1,v1,b1)∈R4N

∣∣∣∣∣∣∣∣∣∣∣

u1
k ≤u1 ≤ ū1

k

a1 ≥ |u1−µ1
k|

v1
k ≤ v1 ≤ v̄1

k

b1 ≥ |v1−ν1
k |


.

Note here that the lifted ambiguity set first proposed by Wiesemann et al. (2014) is adopted to

keep the expectation constraints within the ambiguity set linear. We next tackle the supremum

over set G1
k and provide the result in the following theorem.

Theorem 1. The optimization problem

sup
P∈G1

k

EP

[
max

{∑
i∈C̄1

(
x1
id(ũ

1
i + ṽ1

i ) + y1
idũ

1
i

)
− τ̄ 1,−γ1

d

}]
(16)

is equivalent to

max
(u1

1,v
1
1 ,p1,p2)∈Y1

kd

{(∑
i∈C̄1

(x1
id + y1

id)ei

)′
u1

1 +

(∑
i∈C̄1

x1
idei

)′
v1

1 − τ̄ 1p1− γ1
dp2

}
, (17)

where

Y1
kd =



(u1
1,v

1
1, p1, p2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃a1
j ,b

1
j , j ∈ [2] :

u1
1 +u1

2 =µ1
k, v1

1 +v1
2 = ν1

k ,

a1
1 +a1

2 ≤σ1
k, b1

1 + b1
2 ≤ ς1

k ,

u1
kpj ≤u1

j ≤ ū1
kpj, a1

j ≥ |u1
j −µ1

kpj| ∀j ∈ [2],

v1
kpj ≤ v1

j ≤ v̄1
kpj, b1

j ≥ |v1
j −ν1

kpj| ∀j ∈ [2],

p1 + p2 = 1, p1, p2 ≥ 0,

u1
j ,a

1
j ,v

1
j ,b

1
j ∈RN ∀j ∈ [2]



.

Until now, constraints (15a) have been transformed into a linear programming problem. Similarly,

constraints (15b) can also be reformulated into an equivalent linear model. To keep the paper

concise, we provide the reformulation process in Appendix C.3.

With Theorem 1 and the reformulation in Appendix C.3, we can now transform the DRO problem

to a classical linear problem (see, for instance, Ben-Tal and Nemirovski 1998) as follows:

inf
∑
d∈[D]

(γ1
d + γ2

d)

s.t.
∑
k∈[K1]

qk

((∑
i∈C̄1

(x1
id + y1

id)ei

)′
u1k

1 +
(∑
i∈C̄1

x1
idei

)′
v1k

1 − τ̄ 1pk1 − γ1
dp

k
2

)
≤ 0
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∀(u1k
1 ,v

1k
1 , p

k
1 , p

k
2)∈Y1

kd, k ∈ [K1], ∀d∈ [D], (18a)∑
(k,g,s)∈W

qkgs

((∑
i∈C̄1

(x1
id + y1

id)ei

)′
(u1kgs

1 +v1kgs
1 ) +

(∑
i∈C̄2

(z2
id(s) +x2

id(s))ei

)′
(u2kgs

1 +v2kgs
1 )

+
(∑
i∈C̄2

y2
id(s)ei

)′
u2kgs

1 − τ̄ 2pkgs1 + τ̄ 1pkgs2 +
(∑
i∈C̄2

z2
id(s)ei

)′
v2kgs

2 +
(∑
i∈C̄2

x2
id(s)ei

)′
(u2kgs

2 +v2kgs
2 )

+
(∑
i∈C̄2

y2
id(s)ei

)′
u2kgs

2 − τ̄ 2pkgs2 − γ2
dp

kgs
3

)
≤ 0

∀(u1
1,v

1
1,u

2
1,v

2
1,u

2
2,v

2
2, p1, p2, p3)∈Y2

kgsd, (k, g, s)∈W, ∀d∈ [D], (18b)

γ1
d , γ

2
d ≥ 0 ∀d∈ [D],

(x1,y1,x2,y2,z2)∈X .

Branch-and-Cut Algorithm

The B&C algorithm has been widely used to tackle mixed-integer linear programming problems,

and it is an exact solution method that combines a cutting plane approach with a branch-and-bound

(B&B) algorithm (Mitchell 2002). The B&C algorithm works by solving a linear programming

(LP) relaxation problem at each node of the B&B tree. Each time when a fractional solution

is obtained, violated cuts are generated, and the LP relaxation problem at the current node is

resolved. If all the cuts are respected, and the solution still has fractional-valued integer variables,

the algorithm selects a node to branch, generating two child nodes. If an integer solution is found

and no violated cuts are detected, the algorithm updates the incumbent solution and prunes some

nodes by comparing their LP relaxations’ objective values with that of the incumbent solution.

This process continues until all the B&B nodes are evaluated.

In our B&C scheme, constraints (18a) and (18b) are dynamically added, which has the advan-

tage of keeping the number of decision variables small compared to the explicit formulation via

RSOME. Specifically, we solve model (18) by ignoring these two groups of constraints. Whenever

an integer solution is generated, we solve the equivalent maximum models presented in Theorem 1

and Appendix C.3. If the resulting solutions violate the constraints, cuts are generated and added

to the model, and the model is resolved. This process continues until the optimality gap is satisfied.

5. Numerical Experiments

In this section, we first introduce the instance sets and benchmark approaches, and then conduct

numerical tests to evaluate the proposed B&C algorithm and the cluster-wise DRO framework.

Instance Sets

We consider N = 15 and 20 customers, where 2 and 3 drones are used, respectively. We set drones’

airspeed in both directions as r̄0 = r̄i = 20 m/s, i∈ [N ], based on Amazon Prime Air and Workhorse
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HorseFly drones (used by UPS), which can fly at speeds up to 22.35 m/s (Lavars 2015, Straight

2018). For each customer i, i ∈ [N ], we generate a random number from the interval [6000,18000]

to denote the distance di between the depot and the customer. This indicates that if the wind is

neglected, it generally takes 10 to 30 minutes for a drone to perform a round trip. The distance

data is based on the following reports: The Amazon Prime Air drone can fly 15 miles (in about 20

minutes at a ground speed of 20 m/s) to deliver packages (Lee 2019), and the HorseFly drone has a

30-minute flight time (Straight 2018). The angle φi, i∈ [N ] between customer i and the x-axis takes

a random integer value between 0 and 360. We set C1 = {1, . . . ,0.4N}, C2 = {0.4N + 1, . . . ,0.8N},
and C3 = {0.8N + 1, . . . ,N}. Let τ̄ 1 = 4000 and τ̄ 2 = 8000. To mitigate the biases resulting from

the data generation method, for a fixed number of customers, we generate 5 instances.

With respect to weather information, we use the wind data downloaded from the China

National Meteorological Information Center (http://data.cma.cn/site/index.html). For each geo-

graphic region, the realized wind conditions of the last 7 days (including the current day) are

available. Each region is divided into several subregions, where the average wind speed and degree

are reported hourly, i.e., 24 records per day. We utilize the wind data of Sichuan Province, a

landlocked province in Southwest China, ranging from September 14th to 19th, 2019. The wind

information is reported for 145 subregions; therefore, we have 3480 records per day. We consider

every two hours as a time horizon, and the first hour is Period 1, and the second hour is Period 2.

Thus, for each day, we can get 1740 wind samples. Note that for some missing data, we randomly

generate continuous values based on the lower and upper bounds of the available data. We use

the data of September 14th as the (in-sample) training data, i.e., H = 1740, and the data from

September 15th to 19th as the (out-of-sample) test data, producing 8700 samples.

To construct the cluster-wise ambiguity set, we use the K-means clustering algorithm to partition

the wind samples. We also tried other clustering algorithms, such as the hierarchical clustering

(Murtagh and Contreras 2012), and our preliminary tests showed that the results were similar

to those under the K-means clustering. Thus, we opt to use the K-means clustering as it is a

widely adopted clustering algorithm and easy to implement. For the adaptive scheduling decisions

in Period 2, we define each first-period cluster as an event. The B&C algorithm and all benchmark

models are implemented in Python programming language using Gurobi 9.1.1 as the solver. All

computations are executed on a macOS PC with an Apple M2 Pro chip and 16GB memory.

Benchmark Approaches

We evaluate our DRO framework by comparing its solutions with those generated by the four other

benchmark models. The first one is the deterministic model maximizing the slack time. The second

one maximizes the joint on-time service probability. The third one has the same objective function
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as our DRO model, but it is implemented in a stochastic programming framework. The last one

minimizes the maximum ERI.

Deterministic Model (DM). Since the considered problem is service-oriented, a natural objec-

tive is to construct a drone schedule that maximizes the slack time in a deterministic model.

max
∑
d∈[D]

∑
t∈[2]

ldt

s.t.
∑
i∈C̄1

(x1
id(u

1
i + v1

i ) + y1
idu

1
i )≤ τ̄ 1− ld1 ∀d∈ [D],∑

i∈C̄1
(x1
id + y1

id)(u
1
i + v1

i ) +
∑
i∈C̄2

((z2
id +x2

id)(u
2
i + v2

i ) + y2
idu

2
i )≤ τ̄ 2− ld2 ∀d∈ [D],

τ̄ 1 +
∑
i∈C̄2

(z2
idv

2
i +x2

id(u
2
i + v2

i ) + y2
idu

2
i )≤ τ̄ 2− ld2 ∀d∈ [D],

ldt ≥ 0 ∀d∈ [D], t∈ [2],

(x1,y1,x2,y2,z2)∈X .

The first three constraints calculate the slack time ldt for drone d, d ∈ [D] in period t, t ∈ [2].

Since the objective function only captures the magnitude of slack time and does not indicate

its probability, if two solutions have the same magnitude of slack time, the one with a potential

probability of 5% may have the same preference as the other one with a probability of 95%. In

computational experiments, we set the flight times u1, v1, u2, and v2 as their sample means.

Maximizing On-time Probability (MOP). To improve service quality, decision-makers may

prefer to penalize lateness for guaranteeing that drones can serve customers within stipulated time

windows as well as possible. Thus, another benchmark method is to maximize the joint on-time

service probability as follows:

max P [ζ− τ̄ ≤ 0]

s.t. (x1,y1,x2,y2,z2)∈X ,
(19)

where ζ =

ζ1
d , . . . , ζ

1
D

ζ2
d , . . . , ζ

2
D

 and τ̄ = (τ̄ 1, τ̄ 2)′e′, e∈RD. In contrast to the objective of the deterministic

model, the objective of model (19) only captures the lateness probability and ignores the magnitude

of lateness completely. Thus, if the lateness probabilities of two solutions are the same, the one with

a lateness magnitude of 40 minutes may have the same preference as the one with a lateness of 1

minute. Moreover, as the objective to be maximized is not a concave function, we use an empirical
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distribution approximation reformulation to solve model (19) as follows:

max
1

H

∑
h∈[H]

Ih

s.t.
∑
i∈C̄1

(x1
id(u

1
ih + v1

ih) + y1
idu

1
ih)− τ̄ 1 ≤ (1− Ih)M 1

h ∀d∈ [D], h∈ [H],∑
i∈C̄1

(x1
id + y1

id)(u
1
ih + v1

ih) +
∑
i∈C̄2

((z2
id +x2

id)(u
2
ih + v2

ih) + y2
idu

2
ih)− τ̄ 2 ≤ (1− Ih)M 2

h ∀d∈ [D], h∈ [H],

τ̄ 1 +
∑
i∈C̄2

(z2
idv

2
ih +x2

id(u
2
ih + v2

ih) + y2
idu

2
ih)− τ̄ 2 ≤ (1− Ih)M 2

h ∀d∈ [D], h∈ [H],

Ih ∈ {0,1} ∀h∈ [H],

(x1,y1,x2,y2,z2)∈X ,

where utih ∈R and vtih ∈R are the travel times in Period t, t∈ [2] with respect to sample h, h∈ [H].

Variable Ih equals 1 if and only if all drones at all periods serve customers on time under sample h,

h∈ [H]. ParameterM t
h, h∈ [H], t∈ [2] is a sufficiently large number. We chooseM 1

h =
∑
i∈C̄1

(u1
ih + v1

ih)

and M 2
h = max

{ ∑
i∈C̄1

(u1
ih + v1

ih), τ̄ 1
}

+
∑
i∈C̄2

(u2
ih + v2

ih).

Minimizing ERI Using Empirical Distribution (ERI-E). For model (15), we assume the

travel times follow an empirical distribution, thus the expectations in constraints (15a) and (15b)

are now evaluated over a known distribution. The resulting model is

inf
∑
d∈[D]

(γ1
d + γ2

d)

s.t. 1
H

∑
h∈[H]

wtdh ≤ 0 ∀d∈ [D], t∈ [2],

w1
dh ≥

∑
i∈C̄1

(x1
id(u

1
ih + v1

ih) + y1
idu

1
ih)− τ̄ 1 ∀d∈ [D], h∈ [H],

w2
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∑
i∈C̄1

(x1
id + y1

id)(u
1
ih + v1

ih) +
∑
i∈C̄2

((z2
id +x2

id)(u
2
ih + v2

ih) + y2
idu

2
ih)− τ̄ 2 ∀d∈ [D], h∈ [H],

w2
dh ≥ τ̄ 1 +

∑
i∈C̄2

(z2
idv

2
ih +x2

id(u
2
ih + v2

ih) + y2
idu

2
ih)− τ̄ 2 ∀d∈ [D], h∈ [H],

wtdh ≥−γtd ∀d∈ [D], h∈ [H], t∈ [2],

γtd ≥ 0 ∀d∈ [D], t∈ [2],

(x1,y1,x2,y2,z2)∈X ,

where auxiliary variables wtdh ∈R, d ∈ [D], t ∈ [2], h ∈ [H] are introduced to linearize the maximum

terms in constraints (15a) and (15b).

Minimizing the Maximum ERI (M-ERI). Our joint decision criterion (8) minimizes the

sum of the ERIs associated with each drone in each period. As mentioned in Section 3, other joint

decision criteria that preserve salient properties also exist, such as minimizing the maximum ERI.

Thus, we also consider this criterion and implement it using the empirical distribution. To do so,

we replace the objective of the ERI-E model with

minγ
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and add the additional constraints

γ ≥ γtd ∀d∈ [D], t∈ [2].

Note that we can also implement this criterion using the DRO framework, which will be detailed

in the subsequent experiments.

For all methods, we first derive the delivery decisions from training data, then evaluate their out-

of-sample performance using the following four indicators, which are relevant to decision-makers

in a service-oriented system:

• MaxPro: The maximum lateness probability across all customers.

• SumPro: The sum of lateness probabilities of all customers.

• MaxExp: The maximum expected lateness duration across all customers.

• SumExp: The sum of expected lateness durations of all customers.

When calculating the expected lateness, we assume the travel times follow an empirical distribution.

Additionally, for the sequence of customers (except the last customer in Period 1 and the first and

last customers in Period 2), we assume that drones will serve a customer first if the customer is

nearer to the depot.

In the following sections, we first evaluate the performance of the B&C algorithm. We then pro-

gressively compare our DRO framework with the benchmark approaches. Specifically, we compare

the ERI-E model with the DM, MOP, and M-ERI models to evaluate the joint decision criterion

(8). The ERI-E and M-ERI models are subsequently compared with their corresponding DRO

models to justify the robust method for our problem. Finally, we compare the adaptive DRO and

the static DRO to justify the adaptive policy. A figure that summarizes the logic of our model

comparisons is provided in Appendix D.1.

Evaluation of the B&C Algorithm

We compare the performance of the B&C algorithm with RSOME by solving the adaptive DRO

model. The optimality gap for both methods is set to the default value in the Gurobi solver,

which is 0.01%. Average results are reported in Table 1, where time ratio is obtained by using the

computing time of the B&C algorithm to divide that of the RSOME. We conduct the comparison

on instances with 15 customers, as RSOME fails to provide a solution within 6 hours for some

instances with N = 20 when K1 ≥ 2.

Table 1 shows that the B&C algorithm can solve instances to optimality within a shorter time

frame in most cases (10 out of 12). In 6 cases, the average CPU time of the B&C is less than half

of the computing time of the RSOME. Therefore, we can conclude that the B&C algorithm can

generally achieve greater scalability for the adaptive DRO model than RSOME.
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Table 1 Performance comparison (CPU time in seconds) between B&C and RSOME on 15-customer instances

(K1,K2) B&C RSOME Time ratio (K1,K2) B&C RSOME Time ratio

(1,1) 1.53 1.18 1.29 (3,1) 14.34 35.31 0.41
(1,2) 3.20 5.23 0.61 (3,2) 75.64 122.76 0.62
(1,3) 6.03 13.86 0.44 (3,3) 688.25 361.52 1.90
(2,1) 5.97 6.77 0.88 (4,1) 49.06 132.32 0.37
(2,2) 15.91 25.79 0.62 (4,2) 2395.28 5873.61 0.41
(2,3) 32.06 83.62 0.38 (5,1) 2156.23 4648.53 0.46

Table 2 Average results of out-of-sample tests under different decision criteria

Model

N = 15 N = 20
MaxPro SumPro MaxExp SumExp CPU time MaxPro SumPro MaxExp SumExp CPU time

DM 0.1835 0.2410 17.17 25.43 0.04 0.1303 0.1809 17.38 29.01 0.04
MOP 0.0362 0.0742 7.93 16.09 2217.70 0.0317 0.0894 7.21 20.49 3600.00

M-ERI 0.0360 0.0732 7.56 15.65 119.46 0.0326 0.1043 7.13 22.61 3600.00
ERI-E 0.0339 0.0668 7.57 14.81 25.82 0.0298 0.0850 7.09 19.86 2392.93

We further study the impact of parameters N , K1, and K2 on the CPU time of the B&C

algorithm for solving the adaptive DRO model. We present the detailed experiment setting and

results in Appendix D.2. The results show that the CPU time increases significantly when the

number of customers increases, especially when it exceeds 20. The CPU time also increases with

the numbers of clusters, K1 and K2. However, the value of K1 has a more significant impact on

the computing time than that of K2. This is because more (adaptive) variables and constraints

are required when K1 increases. In particular, the numbers of constraints (11b), (11c), (11e), and

(11f) increase with K1, as these constraints should hold for each cluster.

Evaluation of the Joint Decision Criterion

In this section, we evaluate the performance of different decision criteria. For models MOP, M-ERI,

and ERI-E, the optimality gap is set to 0.5%, and the time limit for solving each model is set to

3600 seconds. The average results of out-of-sample tests are reported in Table 2.

Table 2 shows that while Method DM consumes the least CPU time, it generates poor solutions,

leading to significant out-of-sample lateness when uncertainty is present. Specifically, the lateness

probability for the worst-case customer, MaxPro, is as much as 18.35% and 13.03% for N = 15 and

20, respectively; however, under other decision criteria, MaxPro is around 3%. Regarding other

service indicators, Method DM also performs much worse. These comparison results underscore

the importance of incorporating uncertainty.

Method ERI-E generally provides better out-of-sample performance than the three other meth-

ods. Specifically, it shows superiority in indicators MaxPro, SumPro, and SumExp. It also consumes

much less CPU time than Methods M-ERI and MOP. Method M-ERI performs slightly better with

regard to MaxExp when N = 15, which is consistent with its objective function; however, it per-

forms worse in other service indicators and requires more CPU time than ERI-E. The comparison

results in this section demonstrate the importance of choosing an appropriate decision criterion,

which is expected to provide generally better performance on all the service indicators. Meanwhile,

the resulting model can be solved in an acceptable time frame.
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Table 3 Average out-of-sample performance of the static DRO model with the decision criterion (8)

N = 15 N = 20
(K1,K2) MaxPro SumPro MaxExp SumExp CPU time MaxPro SumPro MaxExp SumExp CPU time

(1,1) 0.0375 0.0668 8.41 15.17 1.48 0.0361 0.0898 7.93 20.65 7.77
(1,2) 0.0344 0.0654 8.01 15.04 3.12 0.0357 0.0870 8.20 20.55 11.07
(1,3) 0.0331 0.0647 7.70 14.71 5.93 0.0328 0.0839 7.61 20.09 17.95
(2,1) 0.0341 0.0650 7.91 14.87 3.17 0.0314 0.0836 7.28 19.94 10.18
(2,2) 0.0337 0.0654 7.76 14.69 7.38 0.0309 0.0854 7.35 20.18 57.53
(2,3) 0.0350 0.0651 7.86 14.82 13.60 0.0324 0.0838 7.61 19.91 92.97
(3,1) 0.0353 0.0658 8.11 14.86 5.32 0.0345 0.0855 8.00 20.14 29.29
(3,2) 0.0333 0.0645 7.68 14.77 11.82 0.0301 0.0832 7.13 19.81 194.99
(3,3) 0.0325 0.0645 7.83 14.81 19.65 0.0295 0.0826 7.37 19.77 609.69
(4,1) 0.0333 0.0646 7.62 14.82 7.57 0.0306 0.0841 7.27 19.82 58.93
(4,2) 0.0341 0.0647 7.75 14.89 19.75 0.0286 0.0819 6.88 19.73 879.29
(5,1) 0.0336 0.0646 7.48 14.60 10.90 0.0302 0.0841 7.22 19.95 696.31

Performance of the Robust Method

In this section, we compare the out-of-sample performance of the ERI-E model with the static DRO

model that minimizes the joint decision criterion (8), to justify the robust method for our drone

delivery problem. Namely, these two models optimize the same decision criterion while implemented

in different frameworks, i.e., the empirical distribution against the robust optimization. Recall that

in the static (non-adaptive) robust model, the delivery schedule in Period 2 remains the same for

any realization of wind scenario κ̃1. We solve the DRO model via the B&C algorithm, setting the

optimality gap and time limit to be the same as the ERI-E model. The average results are reported

in Table 3, with the outcomes highlighted in bold if the static DRO model provides better out-of-

sample performance in all service indicators than the ERI-E model. Note that we also compare the

M-ERO model with the static DRO model that minimizes the maximum ERI. To keep the paper

concise, we present the results of these comparisons in Appendix D.3.

Table 3 shows that the DRO model can find solutions with better out-of-sample performance

in all service indicators for N = 15 when (K1,K2) = (5,1) and for N = 20 when (K1,K2) = (4,2),

compared to its empirical counterpart, ERI-E. Moreover, the DRO model consumes less CPU time

in these two cases. In particular, when N = 20, it consumes 879.29 seconds on average, whereas the

ERI-E model requires 2392.93 seconds, as shown in Table 2. Similar observations are also obtained

from the comparisons in Appendix D.3. We note that there may exist other clusters under which the

robust model outperforms its empirical counterpart, whereas our main goal is to identify clusters

that can achieve concurrent benefits in solution quality and scalability. Moreover, increasing clusters

does not necessarily improve out-of-sample performance, which conversely increases the computing

time (Perakis et al. 2023). Thus, we limit our exploration to a limited number of clusters, which

suffice to discover good robust solutions within a reasonable time frame.

In addition, one may find that the robust method does not consistently exhibit superior out-of-

sample performance compared to its empirical counterpart for certain clusters. This observation

aligns with findings in Hao et al. (2020) (Figure 5 therein) and Perakis et al. (2023) (Table 1 and
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Table 4 Average out-of-sample performance of the adaptive DRO model with the decision criterion (8)

N = 15 N = 20
(K1,K2) MaxPro SumPro MaxExp SumExp CPU time MaxPro SumPro MaxExp SumExp CPU time

(2,1) 0.0353 0.0610 7.83 14.07 5.86 0.0342 0.0841 7.77 19.71 552.41
(2,2) 0.0322 0.0597 7.46 13.78 15.35 0.0322 0.0807 7.33 18.92 1672.85
(2,3) 0.0316 0.0599 7.45 13.94 31.68 0.0285 0.0767 6.90 18.49 2239.56
(3,1) 0.0367 0.0624 7.92 14.06 14.30 0.0326 0.0772 7.62 18.11 1976.44
(3,2) 0.0315 0.0594 7.49 13.85 65.64 0.0311 0.0768 7.38 17.95 3088.13
(3,3) 0.0316 0.0596 7.45 13.75 683.08 0.0301 0.0737 7.45 17.75 3600.00
(4,1) 0.0345 0.0622 7.74 14.24 28.63 0.0317 0.0764 7.47 18.11 3234.70
(4,2) 0.0333 0.0600 7.32 13.74 207.88 0.0274 0.0744 6.58 17.46 3600.00
(5,1) 0.0320 0.0602 7.26 13.83 64.17 0.0264 0.0738 6.18 17.06 3600.00

Figure 2 therein). We consider one reason to be the clustering algorithm. Clustering problems,

like the K-means clustering in our study, are typically addressed through heuristic algorithms

in machine learning libraries. Consequently, the resultant clusters lack a guarantee of optimality,

potentially causing variability in the robust model’s solutions. Moreover, when the empirical distri-

butions in the training and testing sets are very similar, one can expect that the model based purely

on the empirical distribution can perform reasonably well. Thus, we cannot statistically establish

the superiority of the robust method over the empirical one. However, we can practically guarantee

the effectiveness of the robust method by leveraging cross-validation techniques. To perform the

cross-validation analysis, we can first divide the historical weather data into training and testing

sets, enabling us to assess the out-of-sample performance of the robust model for specific clusters

and compare it against the empirical model’s performance. Based on these evaluations, we recom-

mend cluster settings. To validate the recommendation, we employ a distinct customer data set

and compare the out-of-sample performance of robust and empirical models. If the recommended

clusters fail to yield satisfactory results, we can repeat the process above by gradually increasing

the number of clusters. Note that these cross-validation steps are implemented in Appendix D.4

to verify the suggested clusters for our drone problem after finishing all the experiments in this

section. Finally, we note that when (K1,K2) = (H,1), the ambiguity set converges to the empirical

distribution, i.e., the static DRO model generalizes the empirical model, indicating that the robust

method can always guarantee that its performance is not inferior to that of the empirical model.

Value of the Adaptive Policy

This section presents the out-of-sample performance of the adaptive DRO model with the joint

decision criterion (8), as shown in Table 4. By comparing the results in Tables 3 and 4, we can gain

insights regarding the effectiveness of the adaptive policy. Under the same clusters, if the adaptive

model outperforms the static model in all service indicators, we highlight the corresponding results

in bold. Note that the adaptive model reduces to the static model when K1 = 1; thus, Table 4 does

not display the results of the adaptive model for this particular case.

Table 4 shows that under the same clusters, in most cases, the adaptive model can find solutions

with better out-of-sample performance in all service indicators, compared to the static model. When
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Table 5 Detailed solutions of the DRO models for one instance

Delivery schedule in Period 1

Adaptive Static
[4, 1, 2, 3], [5, 15, 6] [4, 1, 2, 6], [5, 15, 3]

Centroids of first-period clusters

Delivery schedule in Period 2
Adaptive Static

(-0.76, 0.68) [9, 8, 7, 14], [11, 13, 10, 12]

[13, 8, 11, 12], [10, 9, 7, 14](1.55, 0.15) [11, 9, 14, 10], [7, 8, 13, 12]
(-0.16, -1.23) [7, 9, 8, 14], [10, 11, 13, 12]

N = 20, under some clusters, even though the adaptive model is not solved to optimality, it can still

generate solutions with better out-of-sample performance. For example, when (K1,K2) = (5,1),

the adaptive model cannot be optimally solved within the 3600-second time limit; thus, suboptimal

solutions are produced. In contrast, optimal solutions are generated for the static model, consuming

696.31 seconds on average. Even so, the average out-of-sample performance of the adaptive model

is better than that of the static model. These results emphasize the importance of adaptability.

The previous section shows that the static DRO model performs better in all service indicators

when (K1,K2) = (5,1) forN = 15, compared to the ERI-E model. Table 4 displays that the adaptive

DRO model outperforms the ERI-E under multiple clusters, e.g., (K1,K2) = (2,2), (2,3), and

(3,2). More importantly, the performance of the adaptive model dominates that of the static model

when (K1,K2) = (5,1). In other words, the static model performs better than the ERI-E model

under (K1,K2) = (5,1), while the adaptive model performs even better than the static model.

Likewise, for N = 20, when (K1,K2) = (4,2), the static DRO model delivers better out-of-sample

performance than the ERI-E, while the performance of the adaptive model dominates that of the

static model. Additionally, the adaptive DRO model outperforms the ERI-E model across multiple

clusters, such as (K1,K2) = (2,3) and (5,1). These results indicate that with a small number of

clusters, both robust models, particularly the adaptive one, outperform the empirical distribution.

Table 5 gives the detailed solutions of one instance under (K1,K2) = (3,2) for N = 15. The

centroids of the first-period clusters can be easily obtained after applying the K-means clustering

algorithm, available in many open-source machine learning libraries (e.g., the scikit-learn library

that we use). We can observe that under different clusters (or events), the adaptive DRO model

generates different delivery schedules for Period 2; however, only one schedule is generated by the

static DRO model. For any out-of-sample, when decision-makers have observed the wind realization

in Period 1, they can calculate the distance between that realization and each cluster centroid to

decide which cluster the observation belongs to, then adopt the corresponding delivery schedule in

that cluster for Period 2.

Managerial Implications and Discussions

The numerical results in this section produce several managerial implications. First, it is essential

to consider the uncertain travel times resulting from random weather conditions in drone delivery
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problems. Otherwise, once uncertainty arises, the decisions provided by the deterministic model

would lead to poor performance, causing significant delays in package delivery. Second, although

there exist multiple service-oriented decision criteria, the modeler should consider at least two

aspects when choosing a criterion: (i) the criterion’s capability of accounting for both the probabil-

ity of an undesirable event and its magnitude; (ii) the model’s complexity (tractable or intractable)

under the candidate decision criterion. Fortunately, our joint decision criterion based on the ERI

offers a solution to the abovementioned two points. Third, utilizing realized first-period information

to flexibly adjust the second-period decision can improve the DRO model’s performance in out-of-

sample tests even though the model may not be optimally solved. This observation underscores the

importance of information utilization in decision-making. In general, with the cluster-wise ambi-

guity set, our proposed adaptive DRO model offers a practical decision-making tool for planners

to schedule drone operations to reduce service lateness at customers.

Next, we discuss the choice of clusters. As indicated before, a practical way is to employ a cross-

validation method and treat the numbers of clusters as hyperparameters in order to evaluate the

solution performance based on different clusters on an out-of-sample basis (Perakis et al. 2023).

When studying the joint pricing and production problem, Perakis et al. (2023) observe diminishing

benefits with increasing clusters. Our numerical results in Table 4 support this observation. Thus,

based on our empirical results, we recommend that decision-makers set the clusters to be (K1,K2) =

(2,3) for the drone delivery problem, which is sufficient to ensure satisfactory performance. This

suggestion is validated by additional numerical results in Appendix D.4.

Finally, we note that when observing the resolution process of the B&C algorithm for the adaptive

DRO model, we find that, in many cases, the B&C algorithm can reduce the gap between the upper

and lower bounds to be within 2% quickly. Most of the time is consumed to improve the lower

bound to close the optimality gap. Thus, we increase the optimality gap threshold and analyze

its impacts on solution performance and computing time. The detailed experiment settings and

results are reported in Appendix D.5. The results show that slightly increasing the optimality

gap threshold can significantly reduce the computing time without sacrificing solution quality too

much. More importantly, the suboptimal solutions generated by the adaptive model still provide

better out-of-sample performance than the static model with a smaller optimality gap threshold.

Thus, in practical applications, decision-makers can consider sacrificing solution quality slightly to

achieve greater scalability, striking a balance between solution performance and computing time.

6. Conclusions

This paper introduces a DRO model to solve a two-period drone scheduling problem with uncer-

tain flight times, which can be implemented in a data-driven framework using historical weather
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information. We propose a cluster-wise moment-based ambiguity set by partitioning the wind vec-

tor chart into different clusters, which allows us to adapt the delivery schedule in the afternoon

to updated weather information available by midday. A branch-and-cut algorithm is developed to

solve the adaptive robust model efficiently. To evaluate the proposed robust scheme, we benchmark

our method against other classical models. Numerical results demonstrate that our robust frame-

work, especially the adaptive robust model, can effectively reduce the service lateness at customers

in out-of-sample tests. Since it is difficult to obtain analytical solutions for the case of a delivery

network considered in this work, one potential future research direction is to derive analytical

results that could be possible for a simple delivery network. Another direction is to develop power-

ful metaheuristic algorithms, such as tabu search (Glover 1990) and variable neighborhood search

(Mladenović and Hansen 1997), within robust optimization frameworks (e.g., Li et al. (2023) and

Zhang et al. (2021)) to achieve greater scalability with guaranteed out-of-sample performance.
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Appendix A Explicit Expression of the Ambiguity Set

The explicit form of the ambiguity set, F , is as follows:

F =



Q∈P(R4N × [S])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ1, ṽ1, ũ2, ṽ2, s̃)∼Q

∃P∈P(R4N ×W) :

(ũ1, ṽ1, ũ2, ṽ2, (κ̃1, κ̃2, s̃))∼ P

EP [ũ1 | κ̃1 = k] =µ1
k ∀k ∈ [K1]

EP [ṽ1 | κ̃1 = k] = ν1
k ∀k ∈ [K1]

EP [|ũ1−µ1
k| | κ̃1 = k]≤σ1

k ∀k ∈ [K1]

EP [|ṽ1−ν1
k | | κ̃1 = k]≤ ς1

k ∀k ∈ [K1]

EP [ũ2 | s̃= s, κ̃2 = g] =µ2
sg ∀s∈ [S], g ∈ [K2]

EP [ṽ2 | s̃= s, κ̃2 = g] = ν2
sg ∀s∈ [S], g ∈ [K2]

EP
[
|ũ2−µ2

sg| | s̃= s, κ̃2 = g
]
≤σ2

sg ∀s∈ [S], g ∈ [K2]

EP
[
|ṽ2−ν2

sg| | s̃= s, κ̃2 = g
]
≤ ς2

sg ∀s∈ [S], g ∈ [K2]

P


u1
k ≤ ũ1 ≤ ū1

k

v1
k ≤ ṽ1 ≤ v̄1

k

u2
sg ≤ ũ2 ≤ ū2

sg

v2
sg ≤ ṽ2 ≤ v̄2

sg

∣∣∣∣∣∣∣∣∣∣∣
κ̃1 = k,

κ̃2 = g,

s̃= s

= 1 ∀(k, g, s)∈W

P [(κ̃1, κ̃2, s̃) = (k, g, s)] = qkgs ∀(k, g, s)∈W



.

Appendix B Example for the Ambiguity Set and Adaptive Policy

We use Figure B1 to show the construction of the cluster-wise ambiguity sets and the definition

of the event-wise adaptations. Suppose there are 280 samples, including only the wind conditions.

To construct the ambiguity set associated with the random flight times in Period 1, we partition

(r1
h, θ

1
h)h∈[280] into K1 = 4 clusters. Since no other weather information is provided in the samples,

we obtain S =K1 = 4, |V1|= 40, |V2|= 60, |V3|= 100, and |V4|= 80. Subsequently, for each scenario

s∈ [S], we partition the wind vectors (r2
h, θ

2
h)h∈Vs into K2 = 2 clusters, resulting in

|L11|= 25, |L12|= 15, |L21|= 20, |L22|= 40,

|L31|= 60, |L32|= 40, |L41|= 33, |L42|= 47.

For this example, we arbitrarily define two events as S = {{1,3},{2,4}}. Then, under the event-wise

adaptive policy, the drone schedule decisions in Period 2 should satisfy the following constraints

x2
id(s) = x2

id(s
′), y2

id(s) = y2
id(s

′), z2
id(s) = z2

id(s
′)
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25 samples

15 samples

60 samples

40 samples

20 samples

40 samples

33 samples

47 samples

1
3

2

4

40 samples 100 samples

60 samples

80 samples

<latexit sha1_base64="SQVV/u9+yFlpi0EZThhBKPlmkR8=">AAACJXicbVDLSsNAFJ3UV62vqks3g61QQUpS8LFwUXTjUsFWIYlhMp02g5NJmLkRSujPuPFX3LhQRHDlrzh9CLZ6YODcc+7lzj1hKrgG2/60CnPzC4tLxeXSyura+kZ5c6utk0xR1qKJSNRtSDQTXLIWcBDsNlWMxKFgN+H9+dC/eWBK80ReQz9lfkx6knc5JWCkoHxareVqcOcE0QHOPYgYkJ/KyI0p2VT7QR55XLqNE9sfVINyxa7bI+C/xJmQCprgMii/eZ2EZjGTQAXR2nXsFPycKOBUsEHJyzRLCb0nPeYaKknMtJ+PrhzgPaN0cDdR5knAI/X3RE5irftxaDpjApGe9Ybif56bQffEz7lMM2CSjhd1M4EhwcPIcIcrRkH0DSFUcfNXTCOiCAUTbMmE4Mye/Je0G3XnqH541ag0zyZxFNEO2kU15KBj1EQX6BK1EEWP6Bm9ojfryXqx3q2PcWvBmsxsoylYX98eG6PO</latexit>

(r1
h, ✓1

h, r2
h, ✓2

h)h2[280]

<latexit sha1_base64="GGXsIErPTPqsbi1t4CJ2vAYjDyY="></latexit>

Partition (r2
h, ✓2

h), h 2 Vs

into 2 clusters

<latexit sha1_base64="bY3segK8xv1bNCLpymVtTujtHXo=">AAACKXicbVDLSgMxFM3UVx1fVZdugq1QQcpM8dFl0Y3LCvYB03HIpGknNJMZkoxQhv6OG3/FjYKibv0RM+0stHogcHLOvTe5x48ZlcqyPozC0vLK6lpx3dzY3NreKe3udWSUCEzaOGKR6PlIEkY5aSuqGOnFgqDQZ6Trj68yv3tPhKQRv1WTmLghGnE6pBgpLXmlZgsJ3aY5rFRTMb2zveAEpn0VEIVmt2MvDfqUO/WG5U4rpkm5iuApxCyRSg/2SmWrZs0A/xI7J2WQo+WVXvqDCCch4QozJKVjW7Fy0+wbmJGp2U8kiREeoxFxNOUoJNJNZ5tO4ZFWBnAYCX24gjP1Z0eKQiknoa8rQ6QCuehl4n+ek6hhw00pjxNFOJ4/NEwY1LtmscEBFQQrNtEEYaEDwxAHSCCcZWDqEOzFlf+STr1mn9fOburl5mUeRxEcgENQBTa4AE1wDVqgDTB4AE/gFbwZj8az8W58zksLRt6zD37B+PoGS/+lbQ==</latexit>

Partition (r1
h, ✓1

h)h2[280]

into 4 clusters

<latexit sha1_base64="+xb9WpWOJOqMfGTV813bxvgVc5w=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CbaCp7Jb8OMiFL14rOC2hXYp2TTbhibZJckKZelv8OJBEa/+IG/+G9N2D9r6YODx3gwz88KEM21c99sprK1vbG4Vt0s7u3v7B+XDo5aOU0WoT2Ieq06INeVMUt8ww2knURSLkNN2OL6b+e0nqjSL5aOZJDQQeChZxAg2VvKr+sar9ssVt+bOgVaJl5MK5Gj2y1+9QUxSQaUhHGvd9dzEBBlWhhFOp6VeqmmCyRgPaddSiQXVQTY/dorOrDJAUaxsSYPm6u+JDAutJyK0nQKbkV72ZuJ/Xjc10XWQMZmkhkqyWBSlHJkYzT5HA6YoMXxiCSaK2VsRGWGFibH5lGwI3vLLq6RVr3mXtYuHeqVxm8dRhBM4hXPw4AoacA9N8IEAg2d4hTdHOi/Ou/OxaC04+cwx/IHz+QOLa43d</latexit>

s = 1
<latexit sha1_base64="fOcvgVj7gT4Y1m6aqrw2q4GHOXc=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CbaCp7Jb8OMiFL14rOC2hXYp2TTbhmaTJckKZelv8OJBEa/+IG/+G9N2D9r6YODx3gwz88KEM21c99sprK1vbG4Vt0s7u3v7B+XDo5aWqSLUJ5JL1QmxppwJ6htmOO0kiuI45LQdju9mfvuJKs2keDSThAYxHgoWMYKNlfyqvqlX++WKW3PnQKvEy0kFcjT75a/eQJI0psIQjrXuem5iggwrwwin01Iv1TTBZIyHtGupwDHVQTY/dorOrDJAkVS2hEFz9fdEhmOtJ3FoO2NsRnrZm4n/ed3URNdBxkSSGirIYlGUcmQkmn2OBkxRYvjEEkwUs7ciMsIKE2PzKdkQvOWXV0mrXvMuaxcP9UrjNo+jCCdwCufgwRU04B6a4AMBBs/wCm+OcF6cd+dj0Vpw8plj+APn8weM8I3e</latexit>

s = 2
<latexit sha1_base64="FsnvbUk0+gK0DvVkkb+/2+DqbUI=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CbaCp7Jb8eMiFL14rODaQruUbJptQ5PskmSFsvQ3ePGgiFd/kDf/jWm7B219MPB4b4aZeWHCmTau++0UVlbX1jeKm6Wt7Z3dvfL+waOOU0WoT2Ieq3aINeVMUt8ww2k7URSLkNNWOLqd+q0nqjSL5YMZJzQQeCBZxAg2VvKr+vqs2itX3Jo7A1omXk4qkKPZK391+zFJBZWGcKx1x3MTE2RYGUY4nZS6qaYJJiM8oB1LJRZUB9ns2Ak6sUofRbGyJQ2aqb8nMiy0HovQdgpshnrRm4r/eZ3URFdBxmSSGirJfFGUcmRiNP0c9ZmixPCxJZgoZm9FZIgVJsbmU7IheIsvL5PHes27qJ3f1yuNmzyOIhzBMZyCB5fQgDtogg8EGDzDK7w50nlx3p2PeWvByWcO4Q+czx+OdY3f</latexit>

s = 3
<latexit sha1_base64="rDOQ86WYmOi6yLFzVx6AOO9MB0E=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CbaCp7Jb/LoIRS8eK7i20C4lm2bb0CS7JFmhLP0NXjwo4tUf5M1/Y9ruQVsfDDzem2FmXphwpo3rfjuFldW19Y3iZmlre2d3r7x/8KjjVBHqk5jHqh1iTTmT1DfMcNpOFMUi5LQVjm6nfuuJKs1i+WDGCQ0EHkgWMYKNlfyqvj6r9soVt+bOgJaJl5MK5Gj2yl/dfkxSQaUhHGvd8dzEBBlWhhFOJ6VuqmmCyQgPaMdSiQXVQTY7doJOrNJHUaxsSYNm6u+JDAutxyK0nQKboV70puJ/Xic10VWQMZmkhkoyXxSlHJkYTT9HfaYoMXxsCSaK2VsRGWKFibH5lGwI3uLLy+SxXvMuauf39UrjJo+jCEdwDKfgwSU04A6a4AMBBs/wCm+OdF6cd+dj3lpw8plD+APn8weP+o3g</latexit>

s = 4

1

2

1

2 2
1 1 2

Figure B1 Partitioning wind samples to construct the cluster-wise ambiguity sets.

for (s, s′) = (1,3) and (s, s′) = (2,4).

Appendix C Proofs and Reformulation

C.1 Proof of Proposition 1

For each drone d, d∈ [D], in each period the arriving time at the last assigned customer is always

larger than the arrival times at other assigned customers, i.e.,

ξ̃`1
d
≥ ξ̃i ∀i∈K1

d, ξ̃`2
d
≥ ξ̃i ∀i∈K2

d.

Based on the monotonicity property of %τ (ξ̃), we have

ρτ̄1
(
ξ̃`1

d

)
≥ ρτ̄1

(
ξ̃i

)
∀i∈K1

d, ρτ̄2
(
ξ̃`2

d

)
≥ ρτ̄2

(
ξ̃i

)
∀i∈K2

d,

which indicate that

ρτ̄1
(
ξ̃`1

d

)
= max

i∈K1
d

{
ρτ1(ξ̃i)

}
and ρτ̄2

(
ξ̃`2

d

)
= max

i∈K2
d

{
ρτ2(ξ̃i)

}
.
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C.2 Proof of Theorem 1

Because of the feasibility and the linearity of the ambiguity set (see, for instance, Bertsimas et al.

2019, Chen et al. 2020, Mohajerin Esfahani and Kuhn 2018), strong duality holds, thus we can

reformulate Problem (16) as the following minimization problem, with α,β,δ,ε, η as the dual

variables associated with the expectations and probability in G1
k:

min (µ1
k)
′α+ (ν1

k)′β+ (σ1
k)
′δ+ (ς1

k)′ε+ η

s.t. (u1)′α+ (v1)′β+ (a1)′δ+ (b1)′ε+ η

≥ ∑
i∈C̄1

(x1
id(u

1
i + v1

i ) + y1
idu

1
i )− τ̄ 1 ∀(u1,a1,v1,b1)∈Ξ1

k,

(u1)′α+ (v1)′β+ (a1)′δ+ (b1)′ε+ η≥−γ1
d ∀(u1,a1,v1,b1)∈Ξ1

k,

δ,ε≥ 0,

α,β,δ,ε,∈RN , η ∈R.

(C.1)

Using the duality result of RO, i.e., the dual of the robust counterpart (‘primal worst’) is equal

to the optimistic counterpart of the dual problem (‘dual best’) (Beck and Ben-Tal 2009), Problem

(C.1) is equivalent to the following maximization problem:

max
(u1

j ,a
1
j ,v

1
j ,b

1
j)∈Ξ1

k
∀j∈[2]

min (µ1
k)
′α+ (ν1

k)′β+ (σ1
k)
′δ+ (ς1

k)′ε+ η

s.t. (u1
1)′α+ (v1

1)′β+ (a1
1)′δ+ (b1

1)′ε+ η

≥
(∑
i∈C̄1

(x1
id + y1

id)ei

)′
u1

1 +

(∑
i∈C̄1

x1
idei

)′
v1

1 − τ̄ 1

(u1
2)′α+ (v1

2)′β+ (a1
2)′δ+ (b1

2)′ε+ η≥−γ1
d

δ,ε≥ 0,

α,β,δ,ε,∈RN , η ∈R.

By duality of the inner linear optimization problem, we have, equivalently,

max

(∑
i∈C̄1

(x1
id + y1

id)ei

)′
u1

1p1 +

(∑
i∈C̄1

x1
idei

)′
v1

1p1− τ̄ 1p1− γ1
dp2

s.t. u1
1p1 +u1

2p2 =µ1
k

v1
1p1 +v1

2p2 = ν1
k

a1
1p1 +a1

2p2 ≤σ1
k

b1
1p1 + b1

2p2 ≤ ς1
k

p1 + p2 = 1

u1
k ≤u1

j ≤ ū1
k ∀j ∈ [2]

a1
j ≥ |u1

j −µ1
k| ∀j ∈ [2]
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v1
k ≤ v1

j ≤ v̄1
k ∀j ∈ [2]

b1
j ≥ |v1

j −µ1
k| ∀j ∈ [2]

p1, p2 ≥ 0

u1
j ,a

1
j ,v

1
j ,v

1
j ∈RN ∀j ∈ [2].

By perspective transformation, i.e., u1
1p1→u1

1, v1
1p1→ v1

1, we obtain the linear optimization model

presented in Equation (17), noting that the equivalence holds because the feasiblity Y1
kd requires

u1
j = a1

j = v1
j = b1

j = 0 whenever pj = 0.

C.3 Reformulation of Constraints (15b)

Under the law of total probability, constraints (15b) is equivalent to

∑
(k,g,s)∈W

qkgs sup
P∈Fkgs

EP

[
max

{
max

{∑
i∈C̄1

(x1
id + y1

id)(ũ
1
i + ṽ1

i ) +
∑
i∈C̄2

z2
id(s)ũ

2
i , τ̄

1

}

+
∑
i∈C̄2

(
z2
id(s)ṽ

2
i +x2

id(s)(ũ
2
i + ṽ2

i ) + y2
id(s)ũ

2
i

)
− τ̄ 2,−γ2

d

}]
≤ 0 ∀d∈ [D] (C.2)

where

Fkgs =



Q∈P(R8N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ1, ṽ1, ã1, b̃1, ũ2, ṽ2, ã2, b̃2)∼ P

EP [ũ1] =µ1
k

EP [ṽ1] = ν1
k

EP [ã1]≤σ1
k

EP

[
b̃1
]
≤ ς1

k

EP [ũ2] =µ2
sg

EP [ṽ2] = ν2
sg

EP [ã2]≤σ2
sg

EP

[
b̃2
]
≤ ς2

sg

P
[
(ũ1, ṽ1, ã1, b̃1, ũ2, ṽ2, ã2, b̃2)∈Ξ2

kgs

]
= 1



,

and

Ξ2
kgs =


(u1,v1,a1,b1,u2,v2,a2,b2)∈R8N

∣∣∣∣∣∣∣∣∣∣∣

u1
k ≤u1 ≤ ū1

k, v1
k ≤ v1 ≤ v̄1

k,

a1 ≥ |u1−µ1
k|, b1 ≥ |v1−ν1

k |,
u2
sg ≤u2 ≤ ū2

sg, v
2
sg ≤ v2 ≤ v̄2

sg,

a2 ≥ |u2−µ2
sg|, b2 ≥ |v2−ν2

sg|


.

Similar to the proof of Theorem 1, the supremum in Problem (C.2) is equivalent to the following

minimization problem:

min (µ1
k)
′α1 + (ν1

k)′β1 + (σ1
k)
′δ1 + (ς1

k)′ε1 + (µ2
sg)
′α2 + (ν2

sg)
′β2 + (σ2

sg)
′δ2 + (ς2

sg)
′ε2 + η



Author: Robust Drone Delivery

38 Article submitted to ; manuscript no.

s.t. (u1)′α1 + (v1)′β1 + (a1)′δ1 + (b1)′ε1 + (u2)′α2 + (v2)′β2 + (a2)′δ2 + (b2)′ε2 + η

≥
∑
i∈C̄1

(x1
id + y1

id)(u
1
i + v1

i ) +
∑
i∈C̄2

(
(z2
id(s) +x2

id(s))(u
2
i + v2

i ) + y2
id(s)u

2
i

)
− τ̄ 2

∀(u1,v1,a1,b1,u2,v2,a2,b2)∈Ξ2
kgs

(u1)′α1 + (v1)′β1 + (a1)′δ1 + (b1)′ε1 + (u2)′α2 + (v2)′β2 + (a2)′δ2 + (b2)′ε2 + η

≥ τ̄ 1 +
∑
i∈C̄2

(
z2
id(s)v

2
i +x2

id(s)(u
2
i + v2

i ) + y2
id(s)u

2
i

)
− τ̄ 2 ∀(u1,v1,a1,b1,u2,v2,a2,b2)∈Ξ2

kgs

(u1)′α1 + (v1)′β1 + (a1)′δ1 + (b1)′ε1 + (u2)′α2 + (v2)′β2 + (a2)′δ2 + (b2)′ε2 + η≥−γ2
d

∀(u1,v1,a1,b1,u2,v2,a2,b2)∈Ξ2
kgs

δn,εn ≥ 0 ∀n∈ [2]

αn,βn,δn,εn ∈RN , η ∈R ∀n∈ [2].

Using the duality result of robust optimization we have, equivalently,

max
(u1

j ,v
1
j ,a

1
j ,b

1
j ,u

2
j ,v

2
j ,a

2
j ,b

2
j )∈Ξ2

kgs
∀j∈[3]

min
(

(µ1
k)
′α1 + (ν1

k)′β1 + (σ1
k)
′δ1 + (ς1

k)′ε1

+ (µ2
sg)
′α2 + (ν2

sg)
′β2 + (σ2

sg)
′δ2 + (ς2

sg)
′ε2 + η

)
s.t. (u1

1)′α1 + (v1
1)′β1 + (a1

1)′δ1 + (b1
1)′ε1 + (u2

1)′α2 + (v2
1)′β2 + (a2

1)′δ2 + (b2
1)′ε2 + η

≥
(∑
i∈C̄1

(x1
id + y1

id)ei

)′
(u1

1 +v1
1) +

(∑
i∈C̄2

(z2
id(s) +x2

id(s))ei

)′
(u2

1 +v2
1) +

(∑
i∈C̄2

y2
id(s)ei

)′
u2

1− τ̄ 2

(u1
2)′α1 + (v1

2)′β1 + (a1
2)′δ1 + (b1

2)′ε1 + (u2
2)′α2 + (v2

2)′β2 + (a2
2)′δ2 + (b2

2)′ε2 + η

≥ τ̄ 1 +

(∑
i∈C̄2

z2
id(s)ei

)′
v2

2 +

(∑
i∈C̄2

x2
id(s)ei

)′
(u2

2 +v2
2) +

(∑
i∈C̄2

y2
id(s)ei

)′
u2

2− τ̄ 2

(u1
3)′α1 + (v1

3)′β1 + (a1
3)′δ1 + (b1

3)′ε1 + (u2
3)′α2 + (v2

3)′β2 + (a2
3)′δ2 + (b2

3)′ε2 + η≥−γ2
d

δn,εn ≥ 0 ∀n∈ [2]

αn,βn,δn,εn ∈RN , η ∈R ∀n∈ [2].

By duality of the inner optimization problem, we have, equivalently,

max

(∑
i∈C̄1

(x1
id + y1

id)ei

)′
(u1

1 +v1
1)p1 +

(∑
i∈C̄2

(z2
id(s) +x2

id(s))ei

)′
(u2

1 +v2
1)p1

+

(∑
i∈C̄2

y2
id(s)ei

)′
u2

1p1− τ̄ 2p1 + τ̄ 1p2 +

(∑
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sg ∀j ∈ [3]

v2
sg ≤ v2

j ≤ v̄2
sg ∀j ∈ [3]

a2
j ≥ |u2

j −µ2
sg| ∀j ∈ [3]

b2
j ≥ |v2

j −ν2
sg| ∀j ∈ [3]

p1, p2, p3 ≥ 0

By perspective transformation, it is equivalent to the following linear optimization problem

max

(∑
i∈C̄1

(x1
id + y1

id)ei

)′
(u1

1 +v1
1) +

(∑
i∈C̄2

(z2
id(s) +x2

id(s))ei

)′
(u2

1 +v2
1)

+

(∑
i∈C̄2

y2
id(s)ei

)′
u2

1− τ̄ 2p1 + τ̄ 1p2 +

(∑
i∈C̄2

z2
id(s)ei

)′
v2

2

+

(∑
i∈C̄2

x2
id(s)ei

)′
(u2

2 +v2
2) +

(∑
i∈C̄2

y2
id(s)ei

)′
u2

2− τ̄ 2p2− γ2
dp3

s.t. u1
1 +u1

2 +u1
3 =µ1

k (C.3)

v1
1 +v1

2 +v1
3 = ν1

k (C.4)

a1
1 +a1

2 +a1
3 ≤σ1

k (C.5)

b1
1 + b1

2 + b1
3 ≤ ς1

k (C.6)

u2
1 +u2

2 +u2
3 =µ2

sg (C.7)

v2
1 +v2

2 +v2
3 = ν2

sg (C.8)

a2
1 +a2

2 +a2
3 ≤σ2

sg (C.9)



Author: Robust Drone Delivery

40 Article submitted to ; manuscript no.

b2
1 + b2

2 + b2
3 ≤ ς2

sg (C.10)

p1 + p2 + p3 = 1 (C.11)
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Appendix D Supplementary Descriptions and Results of Numerical
Tests

D.1 Logic of Model Comparisons

Figure D1 summarizes the logic of our model comparisons in the numerical experiments.

DM

MOPERI-E

M-ERI

Models

Evaluate the 
decision criteria

Empirical model 
against 

robust model

Evaluate the 
adaptive policy

Purposes

Indicators

MaxPro
SumPro
MaxExp
SumExp

Static DRO minimizing the sum of ERIs

Adaptive DRO minimizing the sum of ERIs

Static DRO minimizing 
the sum of ERIsERI-E

M-ERI Static DRO minimizing 
the maximum ERI

Figure D1 The logic of our model comparisons in the numerical experiments.

D.2 Impacts of Parameters on Computing Time

This section explores the impacts of parameters N , K1, and K2 on the adaptive DRO model’s

computing time. The optimality gap is set to 0.5%, and no time limit is imposed.

To study the impact of N , four combinations of clusters, i.e., (K1,K2) = (1,1), (1,2), (2,1), and

(2,2), are selected. We further generate instances of 10 and 25 customers, where 2 and 4 drones

are used, respectively. We tried to generate 30-customer instances; however, the gap between the

upper and lower bounds was up to 8% after 17 hours, even though the numbers of clusters were set

to small values, like (K1,K2) = (2,1). Figure D2 shows that the computing time increases quickly

with N , especially when it increases from 20 to 25.

Figure D3 shows that the computing time generally increases with the number of clusters. How-

ever, the value of K1 has a more significant impact than that of K2. For example, when K2 is fixed

to 2 and K1 increases from 1 to 4, the CPU time increases from 3.12 seconds to 207.88 seconds.

However, when K1 is fixed to 2 and K2 varies from 1 to 4, the CPU time just increases from 5.86

seconds to 33.12 seconds. This comparison result can be explained by the fact that more (adaptive)

variables and constraints are required when K1 increases. In particular, the number of constraints

(11b), (11c), (11e), and (11f) increases, as these constraints should hold for each cluster (recall that

we have K1 = S and define each first-period cluster as an event in our experiments).
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Figure D2 The impact of the number of customers on the adaptive DRO model’s computing time

D.3 Supplementary Results of the Robust Method

This section compares the M-ERI model and the static DRO model that minimizes the maximum

ERI (M-ERI-RO for short). The average results of the M-ERI-RO model in out-of-sample tests are

reported in Table D1, where we also present the results of the M-ERI model in the last row for easy

comparison. We mark the outcomes in bold if the M-ERI-RO model provides better out-of-sample

performance in all service indicators than the M-ERI model.

Table D1 Average out-of-sample performance of the DRO model minimizing the maximum ERI

N = 15 N = 20

Model (K1,K2) MaxPro SumPro MaxExp SumExp CPU time MaxPro SumPro MaxExp SumExp CPU time

M-ERI-RO

(1,1) 0.0335 0.0712 7.44 15.43 1.59 0.0388 0.1021 7.47 22.10 4.97

(1,2) 0.0360 0.0675 8.13 15.11 3.66 0.0320 0.0880 7.50 20.73 1080.52

(1,3) 0.0337 0.0656 7.70 14.98 4.81 0.0312 0.0832 7.49 20.00 737.96

(2,1) 0.0369 0.0712 7.86 15.60 3.14 0.0377 0.1311 7.14 26.28 515.78

(2,2) 0.0332 0.0705 7.56 15.42 6.72 0.0483 0.1148 8.02 23.60 1849.69

(2,3) 0.0334 0.0664 7.58 15.14 11.10 0.0320 0.0870 7.06 20.30 1138.50

(3,1) 0.0345 0.0791 7.85 16.44 5.21 0.0787 0.1974 8.79 31.41 361.56

(3,2) 0.0420 0.0828 7.70 16.65 12.41 0.0619 0.1594 8.83 28.19 2544.44

(3,3) 0.0340 0.0704 7.84 15.50 16.31 0.0310 0.0905 7.50 21.02 2366.00

(4,1) 0.0869 0.1371 9.97 20.69 7.93 0.0991 0.2160 10.16 33.02 741.30

(4,2) 0.0542 0.0971 8.47 17.76 13.75 0.0474 0.1476 7.61 27.46 2221.46

(5,1) 0.0500 0.0970 7.97 17.72 8.96 0.0677 0.1856 8.09 30.54 1661.02

M-ERI 0.0360 0.0732 7.56 15.65 119.46 0.0326 0.1043 7.13 22.61 3600.00

Table D1 shows that the M-ERI-RO model provides better out-of-sample performance in all ser-

vice indicators for N = 15 when (K1,K2) = (1,1) and for N = 20 when (K1,K2) = (2,3), compared
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(a) The impact of parameter K1 on computing time

(b) The impact of parameter K2 on computing time

Figure D3 The impact of the numbers of clusters on the adaptive DRO model’s computing time when N = 15
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to its empirical counterpart, M-ERI. These results highlight the effectiveness of the robust method

in mitigating service lateness for our drone delivery problem.

D.4 Experiments for Verifying the Suggested Numbers of Clusters

In this section, we conduct numerical tests to verify the suggested choice of clusters by randomly

generating 50 instances for N = 15 and 20, respectively. We set (K1,K2) = (2,3) and other param-

eters be the same as in the main paper. The statistical results are provided in Table D2, where

row Std reports the standard deviations and row 90th (95th) provides the 90th (95th) percentile

values. We highlight the results in bold if the adaptive model performs better in a service indicator.

Table D2 Average out-of-sample performance of the DRO models when (K1,K2) = (2,3)

Static DRO Adaptive DRO

N MaxPro SumPro MaxExp SumExp CPU time MaxPro SumPro MaxExp SumExp CPU time

15

Average 0.0362 0.0636 6.88 12.45 11.62 0.0333 0.0606 6.52 11.99 28.50

Std 0.0393 0.0667 5.07 9.28 3.83 0.0366 0.0634 4.89 8.88 14.96

90th 0.1081 0.1858 16.06 27.71 17.83 0.0728 0.1582 12.23 24.69 52.21

95th 0.1281 0.2196 18.18 32.99 19.55 0.1272 0.2145 17.73 31.81 65.79

20

Average 0.0127 0.0319 3.08 7.66 453.44 0.0117 0.0295 2.81 7.15 2739.60

Std 0.0183 0.0486 3.35 9.12 733.16 0.0165 0.0435 3.08 8.28 1331.19

90th 0.0335 0.0945 8.08 21.75 928.34 0.0310 0.0833 7.26 18.92 3600.00

95th 0.0558 0.1434 11.05 29.37 2534.18 0.0504 0.1300 10.07 27.24 3600.00

Table D2 reveals that the adaptive DRO model consistently outperforms the static DRO model

across all service indicators in the out-of-sample analysis. Moreover, the adaptive model exhibits

lower 90th and 95th percentile values. The variations of the adaptive model’s performance, i.e.,

the standard deviations, are also smaller. Based on these observations, we can conclude that the

suggested numbers of clusters, (K1,K2) = (2,3), adequately ensures excellent performance for our

drone delivery problem.

D.5 Impacts of the Optimality Gap Threshold

In this section, we analyze the impacts of the optimality gap threshold (denoted by ε here for

convenience) set in the solver on solution quality and computing time, using the 50 instances with

N = 20 generated in Section D.4. We solve the adaptive DRO model and set ε to 1.5% and 2.0%,

respectively. Table D3 reports the average out-of-sample performance.

Table D3 Average out-of-sample performance of the adaptive DRO under different optimality gap thresholds

1.5% optimality gap 2.0% optimality gap

MaxPro SumPro MaxExp SumExp CPU time MaxPro SumPro MaxExp SumExp CPU time

Average 0.0120 0.0299 2.91 7.27 1319.56 0.0121 0.0304 2.88 7.33 1015.18

Std 0.0166 0.0434 3.13 8.31 1510.87 0.0164 0.0435 3.07 8.30 1395.81

90th 0.0331 0.0831 7.56 18.93 3600.00 0.0299 0.0833 7.23 18.93 3600.00

95th 0.0504 0.1300 10.07 27.24 3600.00 0.0504 0.1300 10.07 27.24 3600.00
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Table D3 shows that the average CPU time is 1319.56 seconds when ε= 1.5%, only half of that

under ε= 0.5%. The CUP time is further reduced to 1015.18 seconds when increasing ε to 2.0%.

Importantly, the adaptive model’s solutions under these two cases still outperform those of the

static model as presented in Table D2, even though the optimality gap threshold is set to 0.5% for

the static model. Notably, among the three settings, the solutions under ε= 0.5% perform the best,

followed by the case of ε = 1.5%. Thus, in practical applications, decision-makers may consider

sacrificing solution quality slightly to achieve greater scalability, striking a balance between solution

performance and computing time.

Additionally, since the suboptimal solutions provided by the adaptive model still exhibit good

out-of-sample performance, powerful metaheuristic algorithms, such as tabu search (Glover 1990)

and variable neighborhood search (Mladenović and Hansen 1997), can be developed within robust

optimization frameworks (e.g., Li et al. (2023) and Zhang et al. (2021)) to achieve greater scalability

with guaranteed out-of-sample performance. Nevertheless, developing metaheuristic algorithms lies

outside the scope of the current paper, as our main focuses are to model drones’ uncertain travel

times using historical data, propose an index to capture the risk of tardy delivery, and enhance the

performance of solutions utilizing realized weather information. Thus, we present the development

of metaheuristics as a future research direction.
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