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Abstract

The multiple depot vehicle scheduling problem (MDVSP) is one of the most studied problems in
public transport service planning. It consists of assigning buses to each timetabled trip while respecting
vehicle availability at each depot. Although service quality, and especially reliability, is the core of most
transport agencies, the MDVSP is more often than not solved solely in a cost-efficient way. This work
introduces a data-driven model to the reliable MDVSP with stochastic travel time (R-MDVSP-STT).
The reliability of a schedule is assessed and accounted for by propagating delays using the probability
mass function of the travel time of each timetabled trip. We propose a heuristic branch-and-price
algorithm to solve this problem and a labeling algorithm with a stochastic dominance criterion for the
associated subproblems. The solutions obtained are compared based on three metrics - under normal
and extraordinary circumstances. Computational results on real-life instances show that our method can
efficiently find good trade-offs between operational costs and reliability, improving the reliability of the
solutions with little cost increase.

1 Introduction

One of the specificities of public transport is its social mission; most transit agencies aim at providing a fair
access to essential services and jobs, and strive to offer a service competitive to single occupant vehicles,
that is both time- and cost-efficient for users. The main goal of the agencies, usually centered on the quality
of service, reflects this mission, whereas almost all other transport organizations, for example trucking or
airline companies, are primarily concerned with making a profit (Desaulniers and Hickman, 2007). However,
agencies have access to a limited budget and therefore seek to provide the best possible service within
this budget. To reach this goal, budget constraints must be considered throughout the whole planning
process which is commonly divided into strategic, tactical, and operational planning steps. Indeed, the
planning process cannot be addressed as a whole due to tractability issues and is therefore often divided into
the following sequential problems. Strategic planning includes the definition of transit routes and networks,
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tactical planning includes setting stops and service frequencies, whereas operational planning concerns vehicle
scheduling, duty scheduling, and crew rostering among others (Desaulniers and Hickman, 2007; Ibarra-Rojas
et al., 2015). As opposed to the strategic and tactical planning steps, the operational planning step is
traditionally addressed only with the objective of cost-efficient running, completely or partially obliterating
the main concern of agencies, namely, service quality. The vehicle scheduling problem (VSP), one of the most
studied operational planning problems and the one we are interested in this work, makes no exception. When
the bus fleet is spread over two or more depots, the VSP is referred to as the multiple depot vehicle scheduling
problem (MDVSP) and is proven to be NP-hard (Bertossi et al., 1987). It takes as input a timetable of trips
- a trip is defined by a start time and a location, an itinerary composed of a sequence of stops, and an end
time and a location - and aims at finding a set of bus schedules that covers exactly once every timetabled
trip while minimizing the operational costs and respecting the capacity at each depot. The operational costs
usually consist of a fixed cost per vehicle used and a variable cost per kilometer and/or minute spent outside
the depot. Bus schedules outputted by the MDVSP are sequences of trips (pull-in, pull-out, deadhead, or
timetabled trips) interspersed by waiting times (or idle times) that must start and end at the same depot.
After completing a timetabled trip, a bus can either stay at its current location before starting another
timetabled trip or move to another bus terminal to start a subsequent timetabled trip, sometimes after some
idle time. This move without passengers is called a deadhead trip. Pull-in and pull-out trips are special
cases of deadhead trips where the departure or arrival terminal is a depot, respectively.

Because the MDVSP is traditionally tailored to minimize only operational costs without considering the
quality of the underlying service, near-optimal bus schedules outputted by the MDVSP are often difficult
to comply with on the day of operation because they typically do not contain much buffer time (Amberg
et al., 2011). Indeed, disruptions and operational variability, for example heavy traffic (Amberg et al., 2011;
Naumann et al., 2011) and fluctuation of passenger volume (Amberg et al., 2011; Chen et al., 2022), can
cause delays that, in turn, can make the planned schedule infeasible when the buffer times cannot absorb
these delays. Thus, dense bus schedules (i.e., schedules with sparse buffer times) are generally less reliable.
In this work, we define schedule reliability in terms of the invariability of service attributes and, specifically,
vehicle timeliness.

In the literature, two types of delays are distinguished: primary (or exogenous) and secondary (or
propagated) delays (Kramkowski et al., 2009; Amberg et al., 2011; Naumann et al., 2011; Amberg et al.,
2019). Primary delays are a measure of the additional time required to complete a trip due to a disruption
or operational variability or, in other words, the difference between the actual and the planned duration of
a trip. When the buffer times of a bus schedule do not allow a full recovery of primary delays, secondary
delays are encountered. The secondary delay of a trip is the difference between its actual departure time and
its planned departure time. Because primary delays are considered unavoidable (Kramkowski et al., 2009;
Amberg et al., 2019) and agencies only have control over secondary delays during the operational planning
step, secondary delays are commonly used in the literature as a measure of the reliability of a bus schedule.
In what follows, this measure is also used.

This work approaches the MDVSP from a stochastic perspective in an attempt to reduce the propagation
of delays in vehicle schedules and hence increase their reliability. Our main contributions are (i) we formulate
a data-driven model for the reliable MDVSP with stochastic travel time (R-MDVSP-STT) that considers
an objective function that combines the operational costs and a penalty for the secondary delays, (ii) we
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introduce a column generation algorithm for solving the R-MDVSP-STT that gives an exact lower bound
on the solution value, is fast enough to be suitable for large-scale instances and is highly adaptable, (iii) we
define three reliability metrics to evaluate the solutions of the R-MDVSP-STT, and (iv) we show throughout
computational tests on five real-world instances of the city of Montréal that our approach provides solutions
that form an approximate Pareto front with good trade-offs between operational costs and the three reliability
metrics. The best probabilistic model for predicting the travel time distributions of the Montréal bus network,
as well as its features and parameters, were selected in a previous work (Ricard et al., 2022) based on a dataset
of various attributes of more than 41,000 trips collected over a two-month period.

The remainder of this paper is organized as follows. In Section 2, we discuss related works on the
MDVSP and methods for addressing MDVSP reliability. The R-MDVSP-STT model and the integration of
a reliability measurement and control method into the model are detailed in Section 3. Section 4 introduces
the branch-and-price algorithm used to solve the R-MDVSP-STT. Notably, we explain how vehicle schedules
are generated in the column generation algorithm by solving shortest path problems with stochasticity. Three
reliability metrics to evaluate the quality of the R-MDVSP-STT solutions are presented in Section 5 with a
Monte Carlo simulation to compute them. Section 6 evaluates the heuristic performance of the R-MDVSP-
STT as well as the trade-off between operational costs and reliability, in terms of the three reliability metrics
proposed, and compares the results of the R-MDVSP-STT with those of the MDVSP with mandatory buffer
times on large-scale instances. The robustness and effectiveness of our method are analyzed in Section 7 for
edge cases and relatively small instances. Section 8 summarizes our findings.

2 Literature review

The MDVSP has been studied since the 1970s (Dell’Amico et al., 1993), but exact algorithms have been
proposed only since the end of the 1980s including those of Carpaneto et al. (1989), Ribeiro and Soumis
(1994), Löbel (1998), Fischetti et al. (1999), Hadjar et al. (2006), and Kliewer et al. (2006). The work of
Ribeiro and Soumis (1994) was a breakthrough that has paved the way for other exact algorithms. The
authors proposed to first model the MDVSP using an integer multicommodity flow formulation and then
reformulated it by applying a Dantzig-Wolfe decomposition to obtain a set-partitioning formulation, where
each variable is associated with a feasible vehicle schedule. This model can be solved by a column generation
algorithm (branch-and-price) that generates new columns (i.e., vehicle schedules) by solving shortest path
problems. This algorithm was later enhanced to a branch-price-and-cut algorithm by Hadjar et al. (2006) who
introduced valid inequalities and a variable fixing technique. Based on a multicommodity flow formulation
similar to that of Ribeiro and Soumis (1994), Löbel (1998) developed a column generation algorithm that
dynamically generates the arc flow variables of this formulation. However, instead of pricing these variables
individually, a so-called Lagrangian pricing which prices groups of variables based on two different Lagrangian
relaxations is performed. Later, Kliewer et al. (2006) modeled the MDVSP using a time-space network. This
type of network contains far fewer arcs and variables than the networks considered by the above authors. The
resulting arc-flow model can then be solved using a commercial mixed-integer programming (MIP) solver.
Furthermore, there are a number of VSP and MDVSP extensions including, among others, the (MD)VSP
with time windows (Desaulniers et al., 1998) and the mixed-fleet (MD)VSP (Li et al., 2019; Rinaldi et al.,
2020; Zhou et al., 2020). We refer interested readers to Bunte and Kliewer (2010) and Desaulniers and
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Hickman (2007) for a detailed review on the VSP, the MDVSP, and some of their extensions.
Methods found in the literature to address the timeliness of buses when forming bus schedules can be

divided into two families: dynamic (or online, real-time) and static (or offline) methods. This work focuses
on static methods, which continue to be essential for many public transport agencies due to technological
and logistical considerations. First, dynamic approaches necessitate technological support for real-time com-
munication between buses and decision-makers (Pillac et al., 2013). However, establishing and maintaining
such technological infrastructure can be costly and may not be readily available in all urban environments.
Second, vehicle schedules must comply with local employment regulations and collective agreements (where
applicable), and respect drivers’ transfer points. Any deviation from these rules can be costly; for example,
extending a driver’s working day can result in high overtime costs. Dynamic approaches require continu-
ous validation of schedules against these criteria, which complicates their implementation in practice. As
a result, many transport agencies decide to react dynamically only in the event of major disruptions, and
therefore rely mainly on static approaches. Nevertheless, it is noteworthy to mention the works of Huisman
et al. (2004) and He et al. (2018), who developed solution approaches to the dynamic VSP. After a major
disruption, dynamic VSP helps recover feasible schedules by rescheduling online new vehicle itineraries.

Table 1 provides a summary of the relevant literature on offline models and solution approaches for the
reliable (MD)VSP, in particular the works of Kramkowski et al. (2009), Naumann et al. (2011), Shen et al.
(2016), van Kooten Niekerk (2018), Amberg et al. (2011), and Amberg et al. (2019). The columns display
the problem type (either single-depot or multi-depot), whether full delay propagation is considered or not
(Full delay propa.), whether a stochastic programming approach is used or not (Stoch. program.), the type
of model proposed (Model), the solution method (Sol. method), and the size of the largest instance solved.
Instances with fewer than 500 trips, between 500 and 1,000 trips, and more than 1,000 trips are classified as
“small”, “medium”, and “large”, respectively. Kramkowski et al. (2009) presented an offline metaheuristic to
increase the reliability (or delay-tolerance) of the solutions of the VSP with multiple vehicle types. From an
initial solution computed as in Kliewer et al. (2006), a simulated annealing for noisy environments (SANE)
seeks valid neighboring solutions. The method provided small reliability improvements, but SANE appears
to be unable to find solutions with higher reliability gains. A stochastic programming framework for the
VSP with stochastic travel time was proposed by Naumann et al. (2011). The network of Kliewer et al.
(2006) (i.e., a time-space network) is expanded with extra waiting and deadhead arcs in order to add a
penalty in the arc cost for delays between pairwise consecutive timetabled trips (full delay propagation was
not implemented). In experiments on a real-life instance and 100 delay scenarios, several solutions using
the same number of vehicles and with lower penalty costs than the deterministic approach were found.
Shen et al. (2016) introduced two models for the VSP with stochastic travel time featuring stochastic trip
compatibility (i.e., negative buffer times are allowed), stochastic idle time, and a penalty for arc infeasibility.
The first model considers only delays between pairwise consecutive trips, whereas the second enhanced model
considers full delay propagation. A hybrid solution approach combining a matching-based heuristic and a
greedy local search is proposed for the model considering full delay propagation. Experimental results showed
that both models provide more reliable solutions than the deterministic model while using the same number
of vehicles. The model considering full delay propagation achieved higher punctuality than the first model
with a little increase in costs. van Kooten Niekerk (2018) introduced the stochastic departure time dependent
vehicle scheduling problem. The model allows negative buffer times and the cost of the arcs between pairs
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Table 1: Overview of offline models for the reliable (MD)VSP.

Author(s) Problem Full delay Stoch. Model Sol. method Instance
propa. program. size

Kramkowski et al. (2009) single-depot • MCF MH large
Naumann et al. (2011) single-depot • NF BC small
Shen et al. (2016) single-depot • • NF H small
van Kooten Niekerk (2018) single-depot • NF BC large
Amberg et al. (2011) single-depot • MCF CG,LR medium
Amberg et al. (2019) multi-depot • MCF CG,LR medium
This paper multi-depot • • SPP CG large

Model : MCF - multi-commodity, NF - network flow, SPP - set partitioning. Sol. method : MH - metaheuristic, BC - branch-
and-cut, H - heuristic, CG - column generation, LR - Lagrangian relaxation

of trips is modified to include a cost for secondary delays. Different cost calculations with delay propagation
between a maximum of two trips were compared to assess the potential of an approach incorporating full
delay propagation. After carrying out computational experiments, the authors concluded that accounting
for the propagation of delays over longer trip sequences in their model promised little benefit. Solutions 2 to
3% more reliable than the baseline approach of imposing minimum buffer times were achieved. The work of
Amberg et al. (2019) is an extension of Amberg et al. (2011) and they both address the sequential, partially
integrated, and integrated vehicle and crew scheduling problems. In both works, the VSP is modeled as
a multi-commodity problem with an underlying time-space network. In the first paper, mandatory buffer
times between trips covered by the same vehicle are imposed. Furthermore, novel decomposition schemes of
flows (i.e., bundles of equal-cost solutions) taking into account secondary delays were proposed. In Amberg
et al. (2019), the solution approach of Amberg et al. (2011) is used to find a good initial solution to the
Lagrangian relaxation and column generation-based algorithm that takes into account deterministic delay
propagation in vehicle and crew duties. Experiments on real-life instances from Germany showed that the
integrated scheduling scheme provides the best trade-offs between reliability and operational costs, compared
to the sequential and partially integrated schemes.

In Table 1, we can observe that among the literature on offline approaches for the reliable (MD)VSP,
the work of Shen et al. (2016) is the first to introduce a stochastic model that accounts for full delay
propagation. In their model, the cost of each arc (including a penalty for delays) is path-dependent and so
cannot be computed beforehand. This fact renders the network flow model of Shen et al. (2016) impossible
to solve using a conventional MIP solver. Consequently, their approach remains limited to small-scale cases,
such as the single-depot instance used in their experiments. Our work addresses this scalability issue by
introducing an alternative set partitioning formulation for the MDVSP with stochastic travel time and a
tailored branch-and-price heuristic that enables us to tackle instances of up to 2,300 trips and three depots.
The choice of our approach was guided by the needs of our industrial partner, GIRO Inc., for a solution
approach that not only handles the large instances of medium- to large-scale transit agencies effectively but
also easily adapts to the diverse rules and constraints imposed by their customers on vehicle schedules.
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3 Mathematical model

We first present our model for the R-MDVSP-STT and then describe how the reliability is integrated into
the model.

3.1 The reliable MDVSP with stochastic travel time

Let V be a timetable of n trips and D be a set of depots. The number of vehicles available at depot d ∈ D
is denoted bd. Given the long-term prediction of the probability distributions of the travel time and the
expected ridership for all trips i ∈ V, the R-MDVSP-STT consists of finding feasible vehicle schedules over
a one-day horizon that cover exactly every trip i ∈ V while respecting vehicle availability at each depot
d ∈ D. The R-MDVSP-STT is a bi-objective optimization problem that aims at minimizing the operational
costs (including a fixed cost per vehicle used and variable costs) and, at the same time, maximizing a
given service reliability metric. In order to find near Pareto-efficient solutions, we use a linear scalarization
method (Hwang and Masud, 1979). Consequently, the R-MDVSP-STT is reformulated as a single-objective
optimization problem by balancing the values of the two objectives by a weighting factor β.

A vehicle schedule is defined as a sequence of trips starting and ending at a depot. The first trip of
a vehicle schedule is a pull-out trip from a depot d ∈ D to the starting location of the first timetabled
trip of the schedule and the last trip is a pull-in trip from the end location of the last timetabled trip of
the schedule to d. Meanwhile, the vehicle performs connections between one or several pairs of trips i and
j ∈ V. If trip i ends at the same location as the starting location of trip j, the vehicle remains at the same
location and may have to wait at the terminal. Otherwise, the vehicle performs a deadhead trip (i.e., a trip
without passengers) from the end location of trip i to the starting location of trip j. Note that due to data
availability constraints, we are considering deterministic travel times for pull-in, pull-out, and deadhead trips.
These trips are usually short and do not involve passengers, thus eliminating one main source of travel time
variability. However, if data become available in the future, a similar approach could incorporate stochastic
pull-in, pull-out, and deadhead travel times.

A vehicle schedule is deemed feasible if it starts and ends at the same depot d ∈ D and contains a sequence
of pairwise compatible timetabled trips. Let κi,j be the deterministic deadhead travel time between the end
location of trip i and the starting location of trip j and let τ be the minimum layover time between two
trips. Trips i and j ∈ V are deemed compatible if d1i + κi,j + τ ≤ d0j , where d0j and d1i are the departure and
the arrival time of trips j and i, respectively. Let S be the set of all feasible vehicle schedules and Sd ⊂ S
be the subset of these schedules starting and ending at the depot d ∈ D, such that S =

⋃
d∈D Sd.

The proposed model for the R-MDVSP-STT uses the following additional notation. For every vehicle
schedule s ∈ S and trip i ∈ V, let ys be a binary variable that takes value 1 if vehicle schedule s is used in
the solution and ai,s be a binary parameter equal to 1 if schedule s covers trip i. The complete notation for
the R-MDVSP-STT is summarized in Appendix A.

The R-MDVSP-STT can be expressed as the following integer linear program:

6



min
∑
s∈S

csys (1)

s.t.
∑
s∈S

aisys = 1, ∀i ∈ V (2)∑
s∈Sd

ys ≤ bd, ∀d ∈ D (3)

ys ∈ {0, 1}, ∀s ∈ S, (4)

where cs is the total cost (weighted sum of the operational costs and the cost for delays) of vehicle
schedule s.

This set partitioning formulation is similar to those proposed by Ribeiro and Soumis (1994) and Hadjar
et al. (2006). The only difference is in the definition of the cost coefficients cs, s ∈ S, which take into account
the risks of delay propagation in our model. The objective function (1) minimizes the total cost of the
selected vehicle schedules, while constraints (2) ensure that each timetabled trip is covered exactly once by
a schedule and constraints (3) ensure that vehicle availability is respected at each depot.

Because S typically contains a huge number of schedules, it is not computationally efficient to enumerate
them a priori. Rather, as described in Section 4, a column generation algorithm is used to identify vehicle
schedules to include in a restricted version of the model. This is done by solving shortest path problems
by dynamic programming on so-called connection networks similar to those first introduced by Ribeiro and
Soumis (1994) and defined as follows. With every depot d ∈ D, we associate a network Gd = (Vd,Ad)

with node set Vd = V ∪ {nd0,nd1} and arc set Ad. Nodes nd0 and nd1 represent depot d at the beginning
and the end of the day, respectively. Three types of arcs (i, j) are defined: pull-out arcs (i.e., (ndo, i) for
i ∈ V), pull-in arcs (i.e., (i,nd1) for i ∈ V), and arcs between pairs of compatible timetabled trips (i.e., (i, j)
for i, j ∈ V). Since we consider the travel time of timetabled trips to be stochastic, we could also use an
enlarged network with additional arcs between incompatible trips, as long as the incompatibility does not
exceed a few minutes. However, these connections are not considered because they would imply positive
secondary delays on average, which is not welcome in practice.

A path in Gd starting at the source node ndo and ending at the sink node nd1 is a feasible vehicle schedule.
We define the cost of a feasible schedule s associated with the set of arcs A(s) as

cs =
∑

(i,j)∈A(s)

csij , (5)

where csij is the cost of the arc (i, j) when it is covered by vehicle schedule s, defined as shown in Table 2. In
this table, η is the cost per vehicle used, rT is the cost per minute of travel, κd,i and κi,d are the deadhead
travel times between the depot d and the starting location of trip i and the end location of trip i and the
depot d, respectively, rW is the cost per minute of waiting outside a depot, and qsi is the cost associated with
potential delays in trip i when it is covered by vehicle schedule s. The cost of connection arcs is a weighted
sum of the operational costs and the cost for delays (qsi ), with β as the weighting factor. The latter cost
qsi is path-dependent and its value will be discussed in Section 3.2. Notice that, given a schedule, the costs
for deadheading and for waiting outside a depot are deterministic, whereas the delay penalty is stochastic.
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Hence, even if the waiting time may be used to absorb delays due to travel time deviations, we have chosen
to consider predefined costs for waiting outside the depot to simplify the problem. Since these costs are
relatively small compared to the overall cost for the value of rW set in our experiments, this simplification
does not alter our conclusions.

Table 2: Cost of the arcs (i, j) ∈ A(s)

Arc (i, j) Type csij

(ndo, j) pull-out η + rTκd,j
(i, j) connection rTκi,j + rW (d0j − d1i ) + βqsj
(i,nd1) pull-in rTκi,d

To avoid excessive congestion at the terminals and long idle time for the drivers, we impose a threshold
∆ on the waiting time d0j − d1i between two consecutive trips i and j ∈ V. If the waiting time exceeds ∆,
the vehicle must move to the nearest depot after completing trip i, wait at the depot, and then move to the
starting location of trip j. We modified slightly the connection network of Ribeiro and Soumis (1994) to
account for this constraint by adding a new type of connection that artificially includes the wait-at-depot.
The cost of such a connection is computed by summing the additional costs for the travel time between
the end location of trip i and the depot and between the depot and the starting location of trip j. These
modified connections avoid the use of pull-in and pull-out arcs for waiting at a depot, so that an additional
vehicle is not counted for each waiting at a depot.

3.2 Controlling schedule reliability

Delay propagation between all consecutive timetabled trips of a schedule is penalized in the objective function
of the R-MDVSP-STT in an attempt to increase the reliability of the selected vehicle schedules. For each
i ∈ V and s ∈ S, we define the cost for delays as qsi = αiE(Xs

i ), where αi is the relative passenger flow
(or demand volume) on trip i such that

∑
i∈V αi = 1, Xs

i is a random variable representing the secondary
delay of trip i when it is covered by schedule s, and E(Xs

i ) its expectation. The parameters αi, i ∈ V, put
more weight on delays incurred during timetabled trips with a high ridership in the cost function so that,
for example, the penalty assigned to a delayed peak hour trip is larger than the one assigned to a delayed
off-peak hour trip, when the delays of both trips are of the same magnitude.

To be able to compute the expected secondary delay of each trip i ∈ V covered by any schedule s ∈ S,
an estimate of the discretized probability density function of the travel time of each timetabled trip is given
in input to the R-MDVSP-STT. These estimations are taken from Ricard et al. (2022) that compared many
probabilistic models for the long-term prediction of the density of the travel time (PDTT). The PDTT
is framed as a supervised learning problem that aims at predicting, for each trip in a set of unseen (or
future) trips, the probability density function of its travel time based on its attributes (e.g., day of the week,
distance, scheduled departure time, etc.). Several models were trained and tested on a 2-month dataset of
the Montréal bus network including more than 41,000 trips collected by in-car Advanced Public Transport
Systems (APTS). A similarity-based density estimation model using a k-nearest neighbors method and a
log-logistic distribution provided the best results, both in terms of the estimation of the true conditional
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probability density function of the travel time and the approximation of the expected secondary delays,
on this dataset. Thus, this model (and its selected features and parameters) is used here to estimate the
probability density function of the travel time of each timetabled trip. Then, for any given vehicle schedule
s ∈ S, the probability mass function of Xs

i for all i ∈ s is recursively computed based on the latter travel time
distributions from the first to the last timetabled trip of the schedule. Next, we discuss the discretization of
the probability density functions of the travel time and the derivation of the probability mass functions of
Xs

i for each i ∈ V and s ∈ S.
First, for each trip i ∈ V, let Ṫi be a random variable representing its actual travel time and let ḣi(t) =

Pr(Ṫi = t) be the probability density function of Ṫi. The actual travel time Ṫi for all i ∈ V varies from
day-to-day due to random disruptions and demand or capacity reasons that can either be internal or external
to the bus network (Yetiskul and Senbil, 2012; Mazloumi et al., 2010). Due to data availability constraints
and for simplicity, we assume that this uncertainty is exogenous to resource allocation or, in other words,
that ḣi(t), for each i ∈ V, stays the same regardless of the selected bus schedules.

In order to obtain a finite number of possible outcomes, we transpose Ṫi, for all i ∈ V, onto a discrete
space by allocating the density of all non-integer travel times to the closest rounded down travel time (using
minutes as time unit). Furthermore, for each i ∈ V, we truncate the distribution of Ṫi below its 5th percentile
and over its 95th percentile. Let ṫ 5i and ṫ 95i be the value of Ṫi at the 5th and 95th percentiles of its probability
distribution, respectively. For each i ∈ V, let Ti be defined over Φi as

Φi = {
⌊
ṫ 5i
⌋
,
⌊
ṫ 5i
⌋
+ 1, ...,

⌊
ṫ 95i

⌋
− 1,

⌊
ṫ 95i

⌋
}, (6)

and let hi(t) be the probability mass function with a discrete finite support of Ti, where the density of
Pr(Ṫi <

⌊
ṫ 5i
⌋
) and Pr(Ṫi ≥

⌊
ṫ 95i

⌋
+ 1) is uniformly redistributed to Pr(Ti =

⌊
ṫ 5i
⌋
),Pr(Ti =

⌊
ṫ 5i
⌋
+

1), . . . ,Pr(Ti =
⌊
ṫ 95i

⌋
) in order to obtain a proper probability distribution (i.e.,

∑⌊ṫ 95
i ⌋

t=⌊ṫ 5
i⌋
hi(t) = 1).

Second, based on the above probability mass functions and considering that d0i , for all i ∈ V, κi,j , for
all i, j ∈ V, and τ are also stored to the nearest minute, it is possible to derive, for a given vehicle schedule
s ∈ S, the probability mass function of Xs

i for all i ∈ s as follows. For each i ∈ s, let Y s
i be a random

variable representing the actual departure time of trip i and let fsi (y) = Pr(Y s
i = y) be the probability mass

function of Y s
i . We have developed an exact procedure inspired by the works of Errico et al. (2018) and

Shen et al. (2016) to recursively compute fsi (y). This procedure is as follows.
We assume that the first timetabled trip of a schedule is never delayed, i.e., for every schedule s ∈ S,

fsvs
0
(d0vs

0
) = 1, where vs0 ∈ s is the first timetabled trip of s. For the other trips j ∈ s\{vs0}, three cases are

distinguished: when the bus starts trip j on time (i.e., y = d0j ), late (i.e., y > d0j ), and early (i.e., y < d0j ).
The last case has zero probability because we assume a bus cannot start ahead of time. The distribution
fsj (y) of a trip j ∈ s\{vs0} preceded by trip i ∈ s can be computed as

fsj (y) = Pr(Y s
j = y) =


∑

k∈Φi
hi(k)×

∑d0
j−κi,j−τ−k

y′=d0
i

fsi (y
′), if y = d0j ;∑

k∈Φi
hi(k)× fsi (y − κi,j − τ − k), if y > d0j ;

0, otherwise,

(7)

9



where, in the first case, we sum, for each travel time k ∈ Φi, the travel time probability hi(k) multiplied by
the probability that trip i starts before y − κi,j − τ − k. Indeed, if a bus arrives ahead of schedule at the
starting location of a timetabled trip, it must wait until the planned start time of the trip to leave on time.
In the second case, we sum, for each travel time k ∈ Φi, the travel time probability hi(k) multiplied by the
probability that trip i starts exactly at y − κi,j − τ − k.

Let gsj (x) = Pr(Xs
j = x) = Pr(Y s

j = d0j + x) = fsj (d
0
j + x) be the probability mass function of Xs

j . Its
expectation is given by

E(Xs
j ) =

xmax
j,s∑
x=0

x× gsj (x) =
xmax
j,s∑
x=0

x× fsj (x+ d0j ), (8)

where i is the trip that precedes the trip j in schedule s and xmax
j,s = d0i + xmax

i,s + κi,j + τ +
⌊
ṫ95i

⌋
− d0j is the

maximum secondary delay of trip j.
Note that, by definition, Y s

i and Xs
i for all i ∈ V depend on the travel times of the previous timetabled

trips in s; their uncertainty is therefore endogenous to resource allocation. In other words, the random
variables Y s

i and Xs
i for s ∈ S and i ∈ V are likely to have different probability distributions than Y s′

i and
Xs′

i for s ̸= s′ ∈ S. Hence, it is not possible to compute Y s
i and Xs

i for all i ∈ V and s ∈ S beforehand
because, as mentioned earlier, vehicle schedules are not enumerated but rather generated dynamically when
solving the R-MDVSP-STT.

Overall, we have shown in this section how to compute, for a given vehicle schedule, the convolution
of the probability mass function of the secondary delay of every timetabled trip in the schedule. These
distributions are used to assess the reliability of the schedule, measured by the total expected secondary delay
per passenger. With this information, a decision maker can then address the trade-off between operational
costs and the expected secondary delay per passenger by adjusting the weighting factor β that controls the
importance given to the penalty for unreliability.

4 Heuristic branch-and-price algorithm for the R-MDVSP-STT

In real-life R-MDVSP-STT instances, there exists a very large number of feasible vehicle schedules. Instead of
explicitly enumerating the corresponding variables in the integer program (1)-(4), we propose to solve the R-
MDVSP-STT using a column generation algorithm (Irnich and Desaulniers, 2005; Lübbecke and Desrosiers,
2005) embedded in a branch-and-bound tree. This solution method is also referred to as branch-and-price
(Barnhart et al., 1998). Furthermore, we propose to use acceleration strategies to obtain integer solutions
in a reasonable amount of time. On the one hand, we use a heuristic branching strategy and, on the other
hand, we apply a perturbation method to reduce the strong degeneracy inherent to the set partitioning
model (1)-(4).

The algorithmic framework of our tailored branch-and-price algorithm is illustrated in Figure 1. First,
we consider the linear relaxation of (1)-(4). This relaxation, which is called the master problem (MP), is
solved at the root node of the branch-and-bound tree using a column generation algorithm. In each iteration
of the column generation algorithm, a restricted MP (RMP), i.e., the MP restricted to a small subset S ′ ⊆ S
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For each d ∈ D

Column generation

Create a root node

Select a node from node
list and consider its

master problem (MP)

Solve the restricted
MP (RMP) and
get dual solution

Solve pricing prob-
lems (Section 4.1)

Variables with neg-
ative reduced cost?

Add columns to RMP

RMP solution
smaller than UB?

Integer solution?

Update UB

Apply a branching
strategy or remove
perturbation and
add corresponding
node(s) to node list

(Sections 4.2 and 4.3)

Nodes left in list? End

yes no

yes

yes

no

yes

noyes

Figure 1: Flowchart of the branch-and-price algorithm

of the schedule variables ys, is solved. To identify potentially useful columns to add to the RMP, we solve
a set of pricing problems. In our case, there is one pricing problem per depot, corresponding to a shortest
path problem with stochasticity (Wellman et al., 2013; Boland et al., 2015). If we find variables with a
negative reduced cost after solving the stochastic pricing problems, we add them to S ′, initiating a new
column generation iteration. Otherwise, the column generation algorithm terminates, and the current RMP
solution is guaranteed to be optimal for the MP. Subsequently, if the solution to the RMP is integer and its
cost is less that the current upper bound (UB), we update the UB. If this solution is not integer but its cost
is still less than the current UB, we either apply a branching strategy or remove the perturbation and add
the corresponding node(s) to the node list. The branch-and-bound algorithm then checks whether there are
any nodes left in the node list. If there are, a node is removed from the list, and its corresponding MP is
solved using the column generation algorithm. The branch-and-price algorithm stops when the node list is
empty.

The stochastic pricing problems as well as the two acceleration strategies used, namely a heuristic branch-
ing strategy and a perturbation method, are detailed in the following.

4.1 Stochastic pricing problems

The pricing problem for depot d is defined on the acyclic network Gd (see Section 3.1) with modified arc
costs as detailed next. Let (ui)i∈V and (πd)d∈D be the dual variables associated with constraints (2) and
(3), respectively. The reduced cost c̃s of a vehicle schedule s ∈ Sd housed in depot d is given by

c̃s = cs −
∑
i∈V

aisui − πd, (9)
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with the following cost breakdown per arc

c̃sij =

csij − πd, if i = nd0;

csij − ui, if i ∈ V.
(10)

Because the arc costs are stochastic and path-dependent in the R-MDVSP-STT, the standard labeling
algorithm (Irnich and Desaulniers, 2005) cannot be used directly to solve the pricing problems. The depen-
dence assumption is crucial because, as explained by Wellman et al. (2013), if the arc costs were stochastic
but independent (i.e., if the probability mass function of the secondary delay at each node did not depend
on the ones of the previous nodes in the path), the expected arc costs could be used directly in the standard
labeling algorithm. Faced with path-dependent uncertainty, we must therefore use the modified version of
the labeling algorithm proposed by Wellman et al. (2013) and Boland et al. (2015) that uses a stochastic
dominance criterion.

This modified version of the labeling algorithm simultaneously extends multiple paths in Gd until they
reach the sink node (i.e., the depot). Each of these paths is obtained by starting from a trivial path p and
extending it by adding one vertex at a time. A vertex can be added to a path if the corresponding extended
path is feasible with respect to path-structural constraints. The probability mass functions of the propagated
delay and the reduced costs are used in the algorithm to “discard paths which are not useful either to build
a Pareto-optimal set of paths or to be extended into Pareto-optimal paths”(Irnich and Desaulniers, 2005).
This ability is indeed essential to efficient dynamic programming algorithms (Irnich and Desaulniers, 2005).
In the R-MDVSP-STT, two paths are not comparable if one has a lower reduced cost than the other, but
higher chances of being unreliable. In this case, no path dominates the other and therefore no path can be
discarded.

The labeling algorithm efficiently encodes paths using labels. Each label contains information useful to
identify paths that can be safely discarded. We refer interested readers to the work of Ahuja et al. (1993)
for an overview of the subject. Next, we define the labels, the extension functions of these labels (i.e., a
procedure to compute a label from a previous label), and the stochastic dominance rule used in the dynamic
programming algorithm.

4.1.1 Labels

Each label stores a representation of the actual departure time and the accumulated reduced cost. As of
now, many variables and parameters, notably the arc costs and the probability distributions of both the
actual departure time and the secondary delay of each timetabled trip, have been defined in terms of the
vehicle schedule covering them. We extend these definitions to consider their counterparts in terms of the
path that covers each timetabled trip. To simplify notation, subscripts s and p, associated with a vehicle
schedule and a path, respectively, are used interchangeably in the following.

For each path p in Gd and each trip i ∈ V included in p (written as i ∈ p afterwards), let F p
i (z) be the

cumulative distribution function of Y p
i defined as

F p
i (z) =

z∑
y=d0

i

fpi (y). (11)
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The actual departure time of a trip i ∈ p is represented by F p
i (z) instead of fpi (y) because, as we will

explain in the following, the former is directly used in the dominance rule. The label Lp
i of path p at node i

is defined as

Lp
i = (F p

i (d
0
i ), ...,F

p
i (d

0
i + xmax

i,p ),Cp
i ), (12)

where Cp
i is the current accumulated reduced cost of path p.

4.1.2 Extension functions

Consider the extension of a label Lp′

i = (F p′

i (d0i ), ...,F
p′

i (d0i + xmax
i,p′ ),Cp′

i ) associated with node i along the
arc (i, j) to create a new label Lp

j at node j. First, the equations for the xmax
j,p components of type F p

j (·) are
derived from equation (7) as detailed in Appendix B. This derivation results in

F p
j (z) =

∑
k∈Φi

hi(k)× F p′

i (z − κi,j − τ − k). (13)

When extending a label to the sink node, it is not necessary to update information on the actual departure
time, because a bus cannot be delayed once it is back at the depot.

Second, Cp
j can be decomposed in route segments (see equation (10) for the cost breakdown per arc) as

Cp
j = Cp′

i + c̃pi,j , (14)

where c̃pi,j is path-dependent if i, j ∈ V.

4.1.3 Stochastic dominance rule

Consider two paths p1 and p2 in Gd both ending at node i ∈ V (that is, i is the resident node of p1 and p2) with
labels Lp1

i = (F p1

i (d0i ), ...,F
p1

i (d0i + xmax
i,p1

),Cp1

i ) and Lp2

i = (F p2

i (d0i ), ...,F
p2

i (d0i + xmax
i,p2

),Cp2

i ), respectively.
The path p1 dominates p2 (and therefore p2 can be discarded) when the following two conditions hold:

1. Cp1

i ≤ C
p2

i ,

2. F p1

i (z) ≥ F p2

i (z), for all z ∈ {d0i , d0i + 1, . . . , d0i +max{xmax
i,p1

,xmax
i,p2
}}.

The first condition is straightforward, but we will explain in further detail the second one. In the
shortest path problem with stochasticity, the uncertain element is the cost of the arcs and, more specifically,
the cost for delays. Even though the arc costs are computed using the expected secondary delays, the
dominance condition cannot be based on the mathematical expectation, because the probability distributions
of secondary delay are path-dependent. For example, consider again the two paths p1 and p2. If E(Xp1

i ) ≤
E(Xp2

i ), it does not necessarily imply if we extend p1 and p2 with node j ∈ V that E(Xp1⊕j
j ) ≤ E(Xp2⊕j

j ),
where pk ⊕ j, k = 1, 2, denotes the path resulting from appending node j to path pk. Thus, a stochastic
dominance condition based on the cumulative distribution functions of the actual departure time is used
instead. When F p1

i (z) ≥ F p2

i (z) for some z ≥ d0i , it means that Pr(Y p1

i > z) ≤ Pr(Y p2

i > z) (i.e., path p1 is
less likely to start trip i after time z). The latter situation is desirable as it means that p1 is more likely to
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start on time. If it holds for all z ∈ {d0i , d0i +1, . . . , d0i +max{xmax
i,p1

,xmax
i,p2
}} (i.e., if the second condition holds),

then p1 is undoubtedly more reliable than p2 and if we extend p1 and p2 along the same path, the extension of
p1 will be at least as reliable as the extension of p2. An example of this case is illustrated in Figure 2a. This
figure and Figure 2b display the probability mass functions (PMF) and the cumulative distribution functions
(CDF) of the actual departure time of the resident node i ∈ V of two paths p1 and p2 in Gd. If both conditions
hold, then p2 and the extension of p2 are dominated by p1 and its extension. Path p2 can thus be discarded.
If the second condition does not hold for some z ∈ {d0i , d0i +1, . . . , d0i +max{xmax

i,p1
,xmax

i,p2
}}, as in the example

in Figure 2b, it is not clear if p1 or p2 is more reliable. For example, Pr(Y p1

i > d0i + 1) < Pr(Y p2

i > d0i + 1),
but Pr(Y p1

i > d0i + 2) > Pr(Y p2

i > d0i + 2). Thus, both paths are kept.

(a) Second condition holds (b) Second condition does not hold

Figure 2: Examples of the second dominance condition applied to the trip i of paths p1 and p2

4.2 Heuristic branching

An exact branch-and-price algorithm (Barnhart et al., 1998) can derive an optimal solution to a MDVSP.
However, medium- and large-scale MDVSP instances are difficult to solve using exact methods because too
many branch-and-bound nodes need to be explored. To avoid exploring too many nodes, we apply one type
of branching decision combined with a variable rounding strategy. First, we branch on the number of vehicles
used per depot. This decision leads to the creation of one or two child nodes with upper and lower bounds
on the capacity of a given depot. Second, we impose the rounding of multiple schedule variables. When this
strategy is selected, a single node with one or several schedule variables fixed to 1 is created. To select the
variable(s) fixed to 1, all the variables are first sorted in descending order of their fractional value. Then, a
maximum of three variables with a fractional part greater than or equal to 0.9, namely, those with the largest
fractional parts, are selected. If there are fewer than three variables fulfilling this condition, only one or two
variables are selected, and if no variable has a fractional part greater than or equal to 0.9, the first variable
in the list, i.e., the one with the largest fractional part, is selected. Note that the values of the maximum
number of variables to round and of the fractional part threshold have been determined empirically during
a preliminary test campaign.

For medium-sized instances (less than 1,400 timetabled trips), the first technique (i.e., branching on
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the number of vehicles used per depot) is applied in priority. When this number is integer for all depots,
the algorithm switches to rounding schedule variables to yield integer solutions. Our experimental results
suggest that when this branching decision and this strategy are used to partially explore the branch-and-
bound search tree, a good trade-off between computing time and solution quality is achieved. When the
number of timetabled trips exceeds 1,400, the latter approach is not sufficient to reduce the computing time
and only the rounding strategy is applied. Thus, only one branch is explored, which is equivalent to a diving
heuristic. Our experimental results show that this does not significantly sacrifice the quality of the derived
solutions.

4.3 Constraint perturbation

Problems like (1)-(4) generally exhibit a high degree of degeneracy. In order to cope with this issue, we use
a constraint perturbation strategy (Charnes, 1952). We introduce perturbation variables η+i and η−i that
allow limited under- and over-covering of trip i for all i ∈ V, respectively. The perturbed MP is defined as

min
∑
s∈S

csys +
∑
i∈V

(δ+i η
+
i + δ−i η

−
i ) (15)

s.t.
∑
s∈S

aisys + η+i − η
−
i = 1, ∀i ∈ V (16)∑

s∈Sd

ys ≤ bd, ∀d ∈ D (17)

0 ≤ η+i ≤ ξ
+
i , ∀i ∈ V (18)

0 ≤ η−i ≤ ξ
−
i , ∀i ∈ V (19)

0 ≤ ys ≤ 1, ∀s ∈ S, (20)

where δ+i and δ−i are the penalties in the objective function for under- and over-covering trip i ∈ V, respec-
tively, and ξ+i and ξ−i are the upper bounds of η+i and η−i , respectively, for every trip i ∈ V. Perturbation
is removed when no other branching decision or strategy can be applied.

5 Assessing schedule reliability

To mitigate delay propagation, the R-MDVSP-STT selects vehicle schedules that typically include buffers
to absorb recurring delays. Pushed to the extremes, the lowest level of reliability is achieved when these
schedules contain no buffer and the highest level when a different vehicle is assigned to each timetabled trip
(i.e., the number of vehicles is equal to the number of timetabled trips). However, the former solution is likely
to displease passengers and the latter is highly cost-inefficient. The problem is thus to address the trade-
off between operational costs and the expected secondary delay per passenger. This is done by adjusting
the factor β in the cost of connection arcs (see Table 2). After solving several times the R-MDVSP-STT
while adjusting the factor β, it is possible to compare more carefully the solutions thereby obtained. In
this respect, we define next three new reliability metrics that planners can use as a decision-support tool
to navigate the trade-off between operational costs and reliability when faced with multiple feasible vehicle
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scheduling solutions, helping them select the most suitable one. Furthermore, we provide a Monte Carlo
simulation framework (Thomopoulos, 2012; Stevens, 2022) to compute these metrics.

5.1 Reliability metrics

The reliability of a bus service can be assessed at various levels, including the stop, route, and network
levels (Chen et al., 2009). It can also be evaluated from both the passenger and operator perspectives (Ma
et al., 2014; van Oort, 2014). van Oort (2014) pointed out that reliability metrics are typically designed
with a focus on the operator’s viewpoint, primarily considering vehicles rather than passengers and their
perception of service reliability. They recommended that the actual number of passengers be factored into
the aggregation of reliability metrics, in order to take account of passengers’ interests. Additionally, different
reliability metrics are defined in the literature for frequent services (with headways of 10 minutes or less)
and infrequent services. For frequent services, passengers arrive randomly at bus stops, making headway
regularity the most critical factor (Chen et al., 2009). On the other hand, for infrequent services, on-time
performance is typically the primary indicator because passengers plan their arrival time at the bus stop
(Currie et al., 2014). Various reliability metrics have been proposed in the literature, e.g., metrics related
to travel time and waiting time, punctuality, headway variability, additional budgeted travel time, and
overcrowding (see, e.g., Cham, 2006; Chen et al., 2009; van Oort, 2014; Currie et al., 2014; Ma et al., 2014).

When solving the MDVSP, operators can only adjust the allocation of buffer time between timetabled
trips to enhance schedule reliability. Therefore, in the context of the MDVSP with infrequent service,
the most common and relevant approach to measure service reliability is to look at service punctuality,
specifically focusing on secondary delays (as seen in works by Kramkowski et al., 2009; Amberg et al., 2011;
van Kooten Niekerk, 2018; Amberg et al., 2019).

Building upon the insights from the literature, we propose to compare the R-MDVSP-STT solutions
using the following punctuality metrics: the expected secondary delay per passenger, the probability that a
passenger boards a delayed timetabled trip, and the average number of timetabled trips needed to recover
from secondary delays. The first two metrics are inspired by the ones proposed in Kramkowski et al. (2009)
and Amberg et al. (2011), whereas the third is derived from information provided by our industrial partner
on the challenges faced by transport agencies. These three metrics are computed as follows.
Expected secondary delay per passenger (γ):

γ =
∑
s∈S∗

∑
i∈V

aisαiE(Xs
i ), (21)

where S∗ is the set of vehicle schedules selected in a solution.
Probability that a passenger boards a delayed timetabled trip (ψ):

ψ =
∑
s∈S∗

∑
i∈V

aisαiPr(X
s
i > ϵ), (22)

where ϵ is a grace period (i.e., if the secondary delay of a trip i ∈ V is less than or equal to ϵ, the trip is
considered on time and otherwise it is considered delayed).
Average number of timetabled trips needed to recover from secondary delays (θ):
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θ =
1

|S∗|
∑
s∈S∗

Ω̄s, (23)

where Ωs is a set containing, for every timetabled trip in the schedule s, the expected number of trips
needed to get back on schedule every time it is delayed (i.e., if its secondary delay is larger than ϵ) and
Ω̄s its average. To approximate this metric, two counters, φs,k and ρs,k, counting the number of first
delayed timetabled trips and subsequent delayed timetabled trips in schedule s at iteration k, respectively,
are used. If

∑K
k=1 φ

s,k > 0, where K is the number of iterations of the simulation, Ω̄s is approximated by∑K
k=1 ρ

s,k/
∑K

k=1 φ
s,k. Otherwise, the approximation of Ω̄s takes value 0. To better understand how these

counters work, let us consider the toy example presented in Figure 3. The timetabled trips highlighted in
red are delayed whereas the gray ones are on time. In this example, it takes one timetabled trip to recover
the first delay impacting trip vs1, whereas the second delay does not affect the departure time of the next
timetabled trip, and the last delay impacting trip vs7 is never fully recovered before the end of the schedule.
Thus, φs,k = 3 and ρs,k = 1 + 0 + 2 = 3 in this example.

nd
0 vs0 vs1 vs2 vs3 vs4 vs5 vs6 vs7 vs8 vs9 nd

1

E E E

Figure 3: Example of the potential delay propagation in schedule s = {vs0, vs1, . . . , vs9} of 10 timetabled trips
at iteration k. Delayed trips are highlighted in red

Metrics γ and ψ reflect the secondary delay a passenger is expected to encounter in the bus network and
how likely a passenger is to travel on a timetabled trip that is late, respectively. The novelty of these metrics
lies in the addition of the parameters αi, i ∈ V, that weight the contribution of each trip i ∈ V by their
relative passenger flow (or demand volume). Thus, these metrics are user-oriented, a point of view often
overlooked in the evaluation of public transportation services (Oort, 2011). The third metric is more agency-
oriented, as it provides useful information for assessing the potential savings on recovering methods. Indeed,
an extra bus is often dispatched when a severe cascade effect of delays is observed, i.e., when the number of
timetabled trips needed to get back on schedule is relatively large. The first metric is minimized when solving
(1)-(4), whereas the two other metrics are not directly minimized. Thus, the first metric should improve
as β increases and we expect the other two metrics to follow this trend as well, since the three metrics are
interrelated. Indeed, γ and ψ are linked by the following relationship E(Xs

i ) = E(Xs
i |Xs

i > 0)/Pr(Xs
i > 0)

(Kramkowski et al., 2009), whereas θ is positively correlated with E(Xs
i |Xs

i > 0).

5.2 Monte Carlo simulation

In this section, two simulation cases will be presented. We start with the first one. The pseudo-code in
Algorithm 1 summarizes the Monte Carlo simulation of K = 1, 000 iterations performed to compute the
approximations of the three metrics: γ̂, ψ̂, and θ̂. At each iteration k = 1, . . . ,K, delay propagation in each
vehicle schedule s ∈ S∗ is assessed. In Step 8, a travel time tki is randomly sampled from ḣi(t) for each i ∈ s
except for the last timetabled trip in s. Note that, in the simulation, we use the travel time probability
density functions ḣi(t) instead of the probability mass functions hi(t) like in the R-MDVSP-STT because
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the probability density functions offer more complete information. Then, in Steps 6 and 9, the value of ys,ki ,
the actual departure time of trip i covered by schedule s at iteration k, is recursively computed for all i ∈ s,
from the first timetabled trip of the schedule to the last timetabled trip, as

ys,kvs
0

= d0vs
0

(24)

ys,kj = max{ys,ki + tki + κi,j + τ , d0i }, (25)

where, for each j ∈ V, i is the trip preceding j in s and vs0 is the first timetabled trip of s. In Step 10, the
secondary delay xs,kj of trip j covered by schedule s at iteration k is computed for all j ∈ s \ {vso} as

xs,kj = ys,kj − d0j . (26)

Algorithm 1: Monte Carlo simulation to compute γ̂, ψ̂ and θ̂

1 γ̂ ← 0, ψ̂ ← 0, θ̂ ← 0
2 for k ← 1 to K do
3 for s ∈ S∗ do
4 φs ← 0 // counter of the number of first delayed timetabled trips
5 ρs ← 0 // counter of the number of subsequent delayed timetabled trips
6 ys,kvs

0
← dovs

0

7 for i ∈ s \ {vs0} do
8 Randomly generate tki−1 from ḣi−1(t)

9 ys,ki ← max{ys,ki−1 + tki−1 + κi−1,i + τ , d0i }
10 xs,ki ← ys,ki − d0i
11 γ̂ ← γ̂ + (αi × xs,ki )

12 if xs,ki > ϵ then
// delayed timetabled trip

13 ψ̂ ← ψ̂ + αi

14 if xs,ki−1 ≤ ϵ then
15 φs ← φs + 1
16 else
17 ρs ← ρs + 1
18 end
19 end
20 end
21 if φs > 0 then
22 θ̂ ← θ̂ + ρs

φs

23 end
24 end
25 end
26 γ̂ ← γ̂/K

27 ψ̂ ← ψ̂/K

28 θ̂ ← θ̂/|S∗|
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Finally, the approximations of the three metrics are computed in Steps 11-26. When a trip i ∈ s preceded
by trip i − 1 is delayed at iteration k (i.e., when it has a secondary delay larger than ϵ) and when the trip
i − 1 was not delayed, the counter φs,k is incremented by one (see Step 15). Otherwise, the counter ρs,k is
incremented by one (see Step 17).

Furthermore, we study the effect of external and extraordinary factors (e.g., a severe snowstorm) resulting
in delays of the same magnitude on all timetabled trips in the so-called second case of the simulation. For each
trip i ∈ V, let ṫ 75i and ṫ 95i be the values of Ṫi at the 75th and 95th percentiles of its probability distribution,
respectively. To generate random travel time values, we truncate the probability density function ḣi(t) below
ṫ 75i and above ṫ 95i , utilizing the procedure proposed in Thomopoulos (2012). At each iteration and for each
timetabled trip, a random value u ∼ U(0, 1) is generated. Then, we compute v = Ḣi(ṫ

75
i ) + u× (Ḣi(ṫ

95
i )−

Ḣi(ṫ
75
i )), where Ḣi(t) is the CDF of ḣi(t), before finding the travel time value t such that Ḣi(t) = v.

6 Computational results

In this section, we test our model on five real-life instances, I1-I5, with up to 2,341 timetabled trips taken
from the Montréal bus network and provided by our industrial partner. The probability density functions
of the travel time of all the timetabled trips in five instances have been computed as in Ricard et al. (2022)
(see Section 3.2). The main properties of instances I1-I5, namely the instance name (Instance), the number
of timetabled trips (|V|), the number of arcs (|A|), the number of depots (|D|), and the number of bus lines
(# lines), are listed in Table 3.

Table 3: Properties of real-life instances I1 - I5

Instance |V| |A| |D| # lines

I1 1,175 628,064 2 8
I2 1,446 928,539 4 6
I3 1,916 1,622,134 3 8
I4 2,195 2,119,534 2 8
I5 2,341 2,434,675 3 10

Throughout our experiments, the cost per vehicle used η, the cost per minute of travel rT (either deadhead
or pull-in/pull-out trips), the cost per minute of waiting time outside a depot rW , the threshold on the
maximum waiting time outside a depot ∆, and the grace period ϵ are set to 1,000, 0.4, 0.2, 45 minutes, and
3 minutes, respectively. The penalties for under- and over-covering trip i ∈ V, δ+i and δ−i , are set to 1 for
every trip i ∈ V and the upper bounds ξ+i and ξ−i are randomly selected in [0, 0.1] for every trip i ∈ V.

We conduct our experiments on a Linux machine equipped with 16 Intel Xeon ES-2637 v4 processors
running at 3.50 GHz and a RAM of 125 GB. The branch-and-price algorithm is implemented using the
GENCOL library, version 4.5, and the pricing problems are solved by the commercial solver CPLEX 12.8.

Next, we compare the R-MDVSP-STT to the traditional MDVSP and the MDVSP with minimum buffer
time. On the one hand, we evaluate the heuristic performance of our algorithm and analyze how the
operational costs and the reliability metrics change with the factor β in the MDVSP and the R-MDVSP-
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STT solutions. On the other hand, we compare the values of the reliability metrics of the solutions of the
R-MDVSP-STT to those of the MDVSP with minimum buffer time to be able to establish the best approach
for improving bus schedule reliability.

6.1 MDVSP results

In this section, we provide baseline results obtained by solving heuristically instances I1-I5 without con-
sidering reliability (i.e., β = 0). This is equivalent to using the traditional MDVSP formulation. We first
study the performance of our algorithm in terms of computing time and solution quality and then we assess
the trade-off between operational costs and reliability of MDVSP solutions in terms of the three reliability
metrics.

Table 4 reports the UB and the lower bound (LB) obtained, the relative difference in percentage between
the UB and the LB (Gap), the number of branching nodes explored (BBn), and the computing times (CPU
time) in seconds, including the total CPU time (Total), the percentage of the total time spent to solve the
root node (Root), and the percentage of the total time spent to solve the pricing problems (Pricing).

Table 4: Heuristic performance without considering reliability (MDVSP)

CPU time (seconds)

Instance UB LB Gap (%) BBn Total Root (%) Pricing (%)

I1 78,850.8 78,846.3 0.01 58 2,706.8 28.5 56.1
I2 94,853.6 94,848.5 0.01 56 3,231.2 56.5 67.2
I3 135,920.4 135,912.2 0.01 91 6,297.5 45.6 60.0
I4 167,751.2 167,742.9 <0.01 120 9,000.4 41.6 53.6
I5 182,792.8 182,783.5 0.01 126 10,991.2 40.9 54.2

All instances are solved in less than about 3 hours with approximately one third to half of the computing
time spent on solving the root node. Also, the optimality gaps are small (below 0.01%), suggesting that our
heuristic algorithm can find near-optimal solutions.

The trade-offs between operational costs and the three reliability metrics for the instances I1-I5 solved
without considering reliability are presented in Table 5. The columns display the operational costs (Op.
costs), the number of vehicles used (# Bus), the average number of timetabled trips per bus (# trips/bus),
and the reliability metrics (γ,ψ and θ) based on the first and the second cases (i.e., normal conditions and
external and extraordinary factors, respectively). The definition of the two simulation cases as well as the
method to approximate these metrics using the travel time probability density functions were presented in
Section 5.

Of instances I1-I5, I5 is the most prone to unreliability. It has an expected secondary delay per passenger
of 8.50 minutes, a probability that a passenger boards a delayed timetabled trip of 30%, and an average
number of timetabled trips needed to recover from secondary delays of 0.68 trips. These values are not
negligible, especially for the last metric if we consider that each bus performs an average of 13 timetabled
trips per day, but were expected because no buffer time nor stochastic optimization is considered.
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Table 5: Operational costs versus the three reliability metrics of solutions obtained without considering
reliability (MDVSP)

Reliability

Instance Op. costs # Bus # trips/bus 1st case 2nd case

γ ψ θ γ ψ θ

I1 78,850.8 75 16 0.67 0.07 0.43 3.03 0.27 1.05
I2 94,853.6 91 16 1.45 0.17 0.65 9.57 0.55 1.63
I3 135,920.4 131 15 2.11 0.23 0.92 11.96 0.64 1.33
I4 167,751.2 162 14 1.45 0.17 0.71 9.24 0.58 1.77
I5 182,792.8 176 13 8.50 0.30 0.68 18.58 0.75 1.52

6.2 R-MDVSP-STT results

This section investigates the performance of our algorithm when solving the R-MDVSP-STT, i.e., when
taking into account reliability (β > 0). Moreover, we present the operational costs and the reliability metrics
of several R-MDVSP-STT solutions. This allows us to compare the solutions of our model with the baseline
MDVSP solutions and assess how the reliability metrics and operational costs fluctuate. Given the bi-criteria
nature of the objective function, we obtained multiple R-MDVSP-STT solutions (an approximate Pareto
frontier) for each instance by solving the problem multiple times with a different β value each time. A total
of 10 values within the range of η/20 to 20η, where η = 1, 000 is the cost per vehicle used, have been tested.

Table 6 provides the heuristic performance of our algorithm for different β values. The upper bounds
(UB) and lower bounds (LB) on the optimal values include the cost related to delays, whereas it is not the
case in Table 4 because β = 0. It may be noted that the optimality gaps of the R-MDVSP-STT are similar
to those of the MDVSP. Furthermore, the total computing times do not increase much compared to those
obtained for the MDVSP, thanks to the use of a branching heuristic that controls the number of branching
nodes explored (see Section 4.2). However, the proportion of time dedicated to solving pricing problems is
increased. For example, 54.2% of the computing time for instance I5 is spent on the pricing problems for
the MDVSP, and this proportion increases to 80.2% to 86.9% for the R-MDVSP-STT.

The trade-offs between operational costs and the three reliability metrics of the vehicle schedules obtained
with different β values are provided in Table 7. The operational costs displayed in this table are computed
by subtracting to the solution values (UBs) the costs related to delays. Since, in our experiments, all the
solutions to the R-MDVSP-STT use the same number of vehicles as the corresponding MDVSP schedules, the
cost increase is evaluated in terms of the variable operational costs (that exclude the cost per vehicle used).
The variable operational costs increase (Va. cost inc.) values are obtained by comparing the R-MDVSP-STT
solutions to the corresponding solutions of the MDVSP found in Table 5.

The R-MDVSP-STT solutions have variable operational costs up to 35.66% higher than the base solutions,
but all use the same number of buses. This is desirable in practice because it implies that taking reliability
into account does not affect the optimal fleet size. Significant reliability gains can be achieved without much
deterioration in operational costs. For example, with β = η/5, the probability that a passenger boards a
delayed timetabled trip in instance I5 is reduced from 30% to 13% with a variable operational costs increase
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Table 6: Heuristic performance considering reliability (R-MDVSP-STT)

CPU time (seconds) CPU time (seconds)

β UB Gap BBn Total Root Pric. UB Gap BBn Total Root Pric.
(%) (%) (%) (%) (%) (%)

Instance I1 Instance I4

η/20 78,881.1 0.01 43 3,716.0 43.8 81.6 167,821.9 <0.01 58 14,512.4 60.8 85.4
η/10 78,907.4 0.01 42 3,940.0 43.1 81.0 167,886.7 0.01 74 14,109.5 57.6 84.1
η/5 78,953.9 0.01 49 3,079.1 49.4 81.1 168,002.4 0.01 92 14,682.6 54.2 83.0
η/2 79,051.3 0.01 45 3,118.7 49.1 80.3 168,250.8 0.01 76 14,188.1 55.1 82.9
η 79,169.9 0.01 43 3,352.4 47.0 79.3 168,525.4 0.01 126 16,177.3 45.9 80.5
2η 79,340.0 0.01 43 3,684.6 41.3 78.8 168,852.2 0.01 99 13,696.4 53.1 79.7
4η 79,582.1 0.01 42 4,287.8 35.6 78.2 169,232.0 0.01 106 13,342.7 51.8 77.6
8η 79,940.0 0.01 43 4,216.2 34.4 76.9 169,667.9 0.01 70 12,058.3 59.1 79.3
10η 80,097.6 0.01 60 5,277.0 27.5 77.2 169,814.9 0.01 85 11,466.7 59.7 78.6
20η 80,734.6 0.01 63 6,170.7 22.7 74.5 170,370.0 <0.01 62 13,661.5 61.6 78.0
avg. 79,465.8 0.01 47 4,084.3 39.4 78.9 168,842.4 0.01 85 13,789.6 55.9 80.9

Instance I2 Instance I5

η/20 94,933.1 0.01 49 9,376.0 60.4 91.2 182,980.7 <0.01 63 17,610.5 61.7 85.1
η/10 95,005.3 0.01 55 10,144.4 57.1 91.4 183,104.3 <0.01 69 16,815.7 61.4 84.9
η/5 95,111.5 0.01 42 8,820.9 57.2 91.2 183,295.8 <0.01 72 16,664.1 60.9 84.6
η/2 95,321.4 0.01 65 8,890.2 52.0 90.0 183,636.3 0.01 102 17,545.9 56.0 82.6
η 95,544.5 0.01 63 7,607.9 56.9 87.9 183,993.2 0.01 89 18,419.1 57.5 86.9
2η 95,824.9 0.01 69 8,092.0 48.8 86.2 184,441.1 <0.01 88 16,282.0 57.4 81.7
4η 96,184.4 0.01 46 5,718.0 65.4 85.5 185,086.6 0.01 73 15,250.5 61.7 81.1
8η 96,704.2 0.01 60 6,222.4 59.5 81.3 186,046.9 0.01 93 15,672.9 58.7 80.2
10η 96,926.9 0.01 51 7,103.8 54.5 79.5 186,480.7 0.01 85 15,549.5 61.3 80.7
20η 97,922.4 0.01 47 6,547.3 65.0 82.2 188,499.8 <0.01 61 15,425.0 63.4 81.5
avg. 95,947.9 0.01 55 7,852.3 57.7 86.7 184,756.5 0.01 80 16,523.5 60.0 82.9

Instance I3

η/20 136,021.0 0.01 64 13,812.6 57.0 87.4
η/10 136,114.5 0.01 76 15,521.0 54.8 87.0
η/5 136,275.5 0.01 95 15,768.2 51.1 86.3
η/2 136,605.0 0.01 94 15,513.4 51.1 86.0
η 136,966.4 0.01 106 14,531.5 47.6 84.5
2η 137,451.7 0.01 92 12,320.2 52.0 82.5
4η 138,152.7 0.01 87 11,135.1 53.5 81.6
8η 139,234.8 0.01 81 9,948.8 55.1 80.5
10η 139,716.8 0.01 90 9,569.6 57.3 80.3
20η 141,917.0 0.01 84 10,599.3 53.0 78.4
avg. 137,845.5 0.01 87 12,872.0 53.2 83.4

of 2.88%. Furthermore, all three reliability metrics, namely γ, ψ, and θ, improve almost monotonically when
the penalty factor β increases in the first and second simulation cases, i.e., under normal conditions and
under extraordinary factors, respectively (compare columns under “1st case” and “2nd case” in Tables 5 and
7). Overall, our model produces good trade-offs between the three reliability metrics and operational costs,
even if some minor inconsistencies are observed. We will analyze in the next section how our model compares
to a classical approach to address bus schedules’ reliability.
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Table 7: Operational costs versus the three reliability metrics of the R-MDVSP-STT solutions

Reliability Reliability

β Va. cost 1st case 2nd case Va. cost 1st case 2nd case
inc.(%) inc.(%)

γ ψ θ γ ψ θ γ ψ θ γ ψ θ

Instance I1 Instance I4

η/20 0.06 0.47 0.05 0.31 2.12 0.22 0.98 0.06 1.14 0.14 0.54 7.62 0.57 1.98
η/10 0.23 0.39 0.05 0.23 1.86 0.21 0.91 0.18 1.06 0.13 0.47 7.25 0.55 1.99
η/5 0.58 0.33 0.04 0.20 1.60 0.19 0.84 0.70 0.88 0.11 0.39 6.08 0.52 1.85
η/2 1.57 0.22 0.02 0.13 1.00 0.13 0.46 2.86 0.55 0.07 0.24 3.70 0.41 1.18
η 2.95 0.16 0.02 0.07 0.68 0.08 0.30 5.62 0.35 0.04 0.16 2.34 0.29 0.92
2η 5.46 0.10 0.01 0.04 0.42 0.04 0.18 10.44 0.19 0.02 0.08 1.01 0.12 0.37
4η 8.06 0.08 0.01 0.03 0.29 0.03 0.11 15.23 0.11 0.01 0.04 0.50 0.05 0.18
8η 11.60 0.06 0.01 0.01 0.21 0.02 0.04 22.30 0.06 0.00 0.01 0.22 0.02 0.05
10η 13.02 0.06 0.01 0.01 0.19 0.02 0.03 24.14 0.05 0.00 0.01 0.18 0.02 0.05
20η 19.50 0.05 0.01 0.01 0.14 0.02 0.03 29.40 0.03 0.00 0.01 0.12 0.01 0.03

Instance I2 Instance I5

η/20 0.06 1.31 0.16 0.60 8.65 0.53 1.98 0.64 2.65 0.20 0.40 9.64 0.68 1.60
η/10 0.55 1.11 0.13 0.49 7.18 0.52 2.50 1.32 2.00 0.17 0.36 8.20 0.65 1.55
η/5 1.99 0.76 0.10 0.35 5.24 0.48 1.88 2.88 1.35 0.13 0.29 6.52 0.58 1.33
η/2 4.94 0.45 0.06 0.23 3.03 0.34 1.14 5.78 0.76 0.08 0.19 3.70 0.43 0.89
η 8.84 0.27 0.03 0.15 1.44 0.19 0.65 9.33 0.47 0.04 0.11 2.00 0.24 0.50
2η 13.02 0.18 0.02 0.09 0.88 0.11 0.34 13.23 0.31 0.02 0.07 1.03 0.11 0.25
4η 18.67 0.12 0.01 0.05 0.45 0.05 0.17 17.30 0.23 0.02 0.03 0.63 0.05 0.12
8η 23.71 0.09 0.01 0.03 0.32 0.04 0.09 21.43 0.19 0.01 0.01 0.43 0.03 0.05
10η 25.54 0.08 0.01 0.03 0.29 0.03 0.09 23.12 0.19 0.01 0.02 0.39 0.03 0.04
20η 30.24 0.07 0.01 0.03 0.25 0.03 0.07 26.47 0.18 0.01 0.01 0.34 0.03 0.03

Instance I3

η/20 0.08 1.65 0.20 0.71 10.34 0.63 1.27
η/10 0.30 1.53 0.19 0.63 9.48 0.62 1.34
η/5 1.37 1.20 0.15 0.54 7.95 0.60 1.35
η/2 5.02 0.71 0.09 0.36 5.05 0.50 1.48
η 8.80 0.50 0.06 0.25 3.07 0.37 1.09
2η 14.48 0.33 0.04 0.14 1.57 0.20 0.59
4η 20.30 0.25 0.03 0.10 1.02 0.13 0.41
8η 27.46 0.20 0.03 0.10 0.75 0.10 0.34
10η 29.49 0.19 0.02 0.09 0.70 0.09 0.31
20η 35.66 0.18 0.02 0.09 0.62 0.08 0.26

6.3 Comparison with the MDVSP with minimum buffer time

In Naumann et al. (2011), van Kooten Niekerk (2018), Amberg et al. (2011), and Amberg et al. (2019),
models that are aimed to improve the reliability of vehicle schedules are compared to a simple approach:
adding hard minimum buffer time constraints to the traditional MDVSP. As in Naumann et al. (2011), van
Kooten Niekerk (2018), Amberg et al. (2011), and Amberg et al. (2019), we have observed that all solutions
found using the latter approach are very costly, use many additional vehicles, and most of them are largely
dominated by the R-MDVSP-STT solutions (see Appendix C for a comparison of our approach with the

23



MDVSP with hard minimum buffer time on instances I4 and I5). Instead, we propose to compare our
model to the MDVSP with soft minimum buffer time constraints. The soft constraints penalize, in the cost
function, connections that do not meet the minimum buffer time. In our experiments, we set the numerical
values of this penalty to 0.2, 0.4, 0.8, 1.2, and 2.4 per minute below the minimum buffer time.

We tested several minimum buffer time rules that are drawn from the literature. The rules and the
numerical values tested are the following:

• Global buffer time, i.e., the same buffer time is imposed after each timetabled trip (1, 2, 3, 4, 5, and
10 minutes);

• Buffer times proportional to the duration of each timetabled trip (5%, 10%, 15%, and 20% of the
expected trip duration);

• Buffer times to cover the primary delay of each timetabled trip x% of the time (50th, 75th, 90th, and
95th percentiles of Ṫi, for i ∈ V);

• Buffer times provided by our industrial partner.

Figures 4 and 5 show the relationship between the value of the reliability metrics and the increase in
variable operational costs (relative to the corresponding baseline solution) of the MDVSP, MDVSP with soft
minimum buffer time and R-MDVSP-STT solutions for the two largest instances I4 and I5, respectively.
Non-dominated solutions are circled. The simulation results under normal conditions and under external
and extraordinary factors are displayed in the left-hand and right-hand side graphs, respectively.

Under normal and extraordinary circumstances, the large majority of R-MDVSP-STT solutions for in-
stances I4 and I5 are non-dominated by those of the MDVSP and the MDVSP with soft minimum buffer time.
Conversely, a large portion of the solutions of the MDVSP with soft minimum buffer time are dominated by
those of our approach. Additionally, for instance I5, many of the minimum buffer time rules exhibit a large
disparity in terms of their effectiveness in improving reliability compared to our approach. The minimum
buffer time rule that delivers the best results corresponds to the third rule, which involves setting buffer
times to cover the primary delay of each timetabled trips x% of the time. As this rule is the only one to
use information on the probability distributions of the travel time, it suggests that taking into account the
stochasticity of travel time is also relevant in deterministic approaches.

The proportion of all non-dominated solutions that are R-MDVSP-STT solutions for all combinations of
instance, scenario, and metric is summarized in Table 8. Each entry of this table represents the number of
non-dominated R-MDVSP-STT solutions (where the maximum possible value is 10) on the total number of
non-dominated solutions (including MDVSP, MDVSP with soft minimum buffer time, and S-MDVSP-STT).
The table reports that the number of non-dominated R-MDVSP-STT solutions for instances I1-I3 is similar
to the number for instances I4 and I5. Specifically, at least 90% of the R-MDVSP-STT solutions are non-
dominated for the first and second reliability metrics in both simulation cases and the third reliability metric
in the first simulation case. Also, at least 60% of the R-MDVSP-STT solutions are non-dominated for the
third metric under extraordinary factors.

Furthermore, the solutions of the R-MDVSP-STT form approximate Pareto-fronts in both simulation
cases. This feature is interesting for transport agencies because it allows them to easily adjust the level
of reliability. Note that the shape of the travel time probability distributions, such as their skewness, can
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(a) 1st case (b) 2nd case

Figure 4: Reliability metrics - instance I4

impact the form of the approximate Pareto frontier. Specifically, it may cause the frontier to shift either
downward or upward, and it can also influence the curvature, either compressing it or spreading it out.

6.4 Analysis of the algorithm performance and parameters selection

The algorithmic parameters were set in order to achieve reasonable computing times and ensure high-quality
solutions. The parameter setting tests for the upper bound values of the perturbation method (ξ+i , ξ

−
i ) and
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(a) 1st case (b) 2nd case

Figure 5: Reliability metrics - instance I5

the maximum number of schedule variables rounded at each branching are illustrated in Figure 6. These
tests were carried out on instance I1 by varying one algorithmic parameter at a time and keeping all the
other ones constant.

On the one hand, the values of ξ+i and ξ−i are set to 0.01. We observe that this value results in the
shortest computing time and the best gap between the UB and the LB. For these parameters, we find that
when values are less than 0.0005 or greater than 0.01, both the computing time and the gap between the
UB and the LB increase. On the other hand, we set the value of the maximum number of schedule variables
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Table 8: Proportion of all non-dominated solutions that are R-MDVSP-STT solutions

Instance 1st case 2nd case

γ ψ θ γ ψ θ

I1 10/11 10/11 9/10 10/11 10/11 10/11
I2 10/11 9/10 9/10 10/11 10/11 7/9
I3 10/11 10/11 10/11 10/11 10/12 6/9
I4 10/11 10/11 9/10 10/12 10/11 7/8
I5 10/11 10/11 9/10 10/11 10/11 8/12

(a) Upper bound values ξ+i , ξ−i (b) Maximum number of schedule variables rounded at
each branching

Figure 6: Parameter setting tests - instance I1

rounded at each branching to 3. The variation of this algorithmic parameter does not affect the gap between
the UB and the LB, while it does have an impact on the computing time.

7 Discussion on robustness and effectiveness

To evaluate how effective our approach is compared to the traditional MDVSP, we start by examining
edge cases where our approach and its benchmark (i.e., the MDVSP) produce identical solutions. Then,
we determine the minimum prerequisites needed for our approach to offer solutions with lower expected
secondary delay per passenger than the MDVSP. Finally, we present additional results on relatively small
instances to demonstrate the impact of key factors on our approach’s relevance and robustness.

In the R-MDVSP-STT, we achieve more reliable solutions by managing the allocation of buffer times in
vehicle schedules. When a timetabled trip might be delayed, we allocate buffer time to absorb such delays.
If the MDVSP solution already includes sufficient buffer time after each timetabled trip, our approach yields
the same solution. This is because the part of our objective function related to expected secondary delay
per passenger becomes zero, regardless of its weight. An example of this edge case is shown in Figure 7. For
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this instance, our approach with β ∈ {η/20, η/10, η/5, η/2, η, 2η, 4η, 8η, 10η, 20η} and the MDVSP (without
considering reliability) provide the same solution with an expected secondary delay per passenger of 0 minute.
The solution consists of two vehicle schedules, the first containing five timetabled trips highlighted in green
and the second containing two timetabled trips highlighted in yellow.

station A

station B

time

> 30 min > 30 min > 30 min > 30 min

connection arcs
trip arcs

vehicle 2
vehicle 1

Figure 7: Optimal solution of an edge case (for β ≥ 0)

Building upon this edge case, we aim to identify the minimum requirements for our approach to offer so-
lutions with lower expected secondary delay per passenger. We find that at least one tight connection in the
MDVSP solution is necessary for this. Tight connections occur when buffer time is insufficient to accommo-
date all potential travel time deviations. To show this, we have modified the edge case presented in Figure 7
by shifting only the last timetabled trip. The solution obtained by the MDVSP to this modified edge case
(see Figure 8a) has one tight connection, operational costs of 2,042, and an expected secondary delay per pas-
senger of 0.32 minutes. For this instance, our approach with β ∈ {η/20, η/10, η/5, η/2, η, 2η, 4η, 8η, 10η, 20η}
finds another solution, that we have illustrated in Figure 8b. The operational costs of this solution are
slightly higher, at 2,054, but the expected secondary delay per passenger is down to 0 minute.

We have observed that our approach becomes effective when the MDVSP solution contains at least one
tight connection. Such instances typically involve dense vehicle schedules, where there are many timetabled
trips per bus. We confirm this through tests on smaller, single-line, and single-depot instances denoted S1-
S6, each containing 197, 100, 394, 354, 264, and 288 timetabled trips, respectively. In Figure 9, we compare
the MDVSP solution and the R-MDVSP-STT solutions for the complete instances S1-S6 with the solutions
of the corresponding reduced versions.1 These reduced instances are created by randomly eliminating half
of the timetabled trips from instances S1-S6. We notice that by reducing the size of instances S1-S6, the
average density of vehicle schedules in the MDVSP solutions decreases. For example, the average density of
the MDVSP solution for the full S6 instance is 18.0 trips per vehicle schedule, and drops to 11.1 trips per
schedule for the reduced S6 instance. Comparing solutions between complete and reduced instances allows
us to examine how schedule density affects the effectiveness of our method.

Figure 9 shows that when the density of vehicle schedules decreases (i.e., when instance size is reduced),
the expected secondary delay per passenger (γ) obtained by the MDVSP also decreases. In such cases, our
approach may offer fewer improvements compared to the MDVSP. Indeed, the approximate Pareto frontiers
in red (associated with the reduced instances) generally present less advantageous gains in terms of expected

1All instances are solved under 774.6 seconds, with an average computing time of 94.2 seconds. Furthermore, the average
relative difference in percentage between the UB and the LB (gap) is always less than 0.03% and the average gap is 0.01%. The
parameters used are the same as the ones presented in Section 6.
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station A

station B

time

> 30 min > 30 min > 30 min

Short buffer
of 3 min.

connection arcs
trip arcs vehicle 1

vehicle 2

(a) Optimal solution for β = 0

station A

station B

time
Short buffer
of 3 min.

> 30 min > 30 min > 30 min

(b) Optimal solution for β ≥ η/20

Figure 8: Modified edge case with one timetabled trip shifted

secondary delay per passenger compared to the blue ones (associated with the full instances). However, in
larger, real-life instances where vehicle schedule density is usually high, our approach provides a good balance
between operational costs and expected secondary delay per passenger (see Section 6 for more details).

8 Conclusions

In this work, we proposed a model for the R-MDVSP-STT that can be solved using MIP technology featuring
column generation. This model addresses the trade-off between two conflicting objectives, namely minimizing
the operational costs and minimizing the expected secondary delay per passenger. To evaluate the second
objective, we introduced a method to compute the convolution of the probability mass function of the
secondary delay of every timetabled trip in a vehicle schedule based on the discretized probability density
functions of the travel time. Furthermore, a heuristic branch-and-price algorithm for solving the R-MDVSP-
STT is proposed. In order to generate new columns (i.e., vehicle schedules) that are both cost- and delay-
efficient, a modified version of the labeling algorithm that features a stochastic dominance criterion is used
to solve the pricing problems.

We introduced three reliability metrics, two of which are passenger-oriented, and a simulation framework
to compute them after solving the R-MDVSP-STT. Two simulation cases are tested. Delay propagation is
assessed, first, under normal conditions (i.e., when travel times are subject to day-to-day variability) and
second, under external and extraordinary factors (e.g., a severe snowstorm).

We conducted our experiments on five real-world instances of 1,175 to 2,341 timetabled trips and 2 to 4
depots from the city of Montréal. Our experimental results indicate that our approach provides near-optimal
trade-offs between operational costs and reliability in a reasonable amount of time. Specifically, under normal
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(a) Instance S1 (b) Instance S2 (c) Instance S3

(d) Instance S4 (e) Instance S5 (f) Instance S6

Figure 9: Additional results on small, single-line, single-depot instances

conditions, the R-MDVSP-STT solutions are more reliable in terms of the three reliability metrics than the
corresponding solutions of the MDVSP. A large majority of the solutions of our model were not dominated
by a MDVSP or MDVSP with minimum buffer time (enforced by soft or hard constraints) solution in both
simulation cases. What is more, our approach allows to easily reach a targeted reliability level by tuning
the value of a weighing factor and selecting the solution in the approximate Pareto frontier with the desired
trade-off between operational costs and reliability.

Further research avenues include extending this work to electric buses where recharging operations can
induce even more delays, especially if energy consumption is also considered stochastic.
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A Overview of the notation of the R-MDVSP-STT

Notation Description

Set
V set of n timetabled trips
D set of depots
S set of feasible vehicle schedules
Sd set of feasible vehicle schedules starting and ending at depot d ∈ D
Vd node set of network Gd for depot d ∈ D
Ad arc set of network Gd for depot d ∈ D
Parameter
bd capacity of depot d ∈ D
β weighting factor of the two objectives of the R-MDVSP-STT
κi,j deadhead travel time between the end and starting locations of trips i, j ∈ V, respectively
κd,i deadhead travel time between the depot d ∈ D and the starting location of trip i ∈ V
κi,d deadhead travel time between the end location of trip i ∈ V and the depot d ∈ D
τ minimum layover time between two trips
d0i departure time of trip i ∈ V
d1i arrival time of trip i ∈ V
ais binary parameter equal to 1 if schedule s ∈ S covers trip i ∈ V
cs cost of vehicle schedule s ∈ S
csij cost of arc (i, j) when covered by schedule s ∈ S
η cost per vehicle used
rT cost per minute of travel (either deadhead or pull-in/pull-out trips)
rW cost per minute of waiting outside depot
qsi cost associated with potential delays in trip i ∈ V covered by schedule s ∈ S
∆ maximum waiting time between two trips in V
αi relative passenger flow on trip i ∈ V
c̃s reduced cost of schedule s ∈ S
c̃sij reduced cost of arc (i, j) when covered by schedule s ∈ S
Cp

i accumulated reduced cost of path p in a network ending at node i ∈ V
η+i , η−i penalties in the objective function for under- and over-covering trip i ∈ V
ξ+i , ξ−i upper bounds of η+i and η−i
Decision variable
ys binary variable equal to 1 if schedule s ∈ S is selected
(ui)i∈V dual variables associated with constraints (2)
(πd)d∈D dual variables associated with constraints (3)
η+i , η−i perturbation variables that allow limited under- and over-covering of trip i ∈ V
Random variable
Xs

i random variable of the secondary delay of trip i ∈ V covered by schedule s ∈ S
Ṫi random variable of the actual travel time of trip i ∈ V
Ti random variable with discrete and finite supports of the actual travel time of trip i ∈ V
Y s
i random variable of the actual departure time of trip i ∈ V covered by schedule s ∈ S

Function
ḣi(t), hi(t) PDF of Ṫi and Ti
fsi (y) PDF of Y s

i

F s
i (z) CDF of Y s

i

gsi (x) PDF of Xs
i
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B Derivation of the cumulative distribution functions of the actual

departure time

F p
j (z) =

z∑
y=d0

j

fpj (y) (27)

=

∑
k∈Φi

hi(k)×
d0
j−κi,j−τ−k∑

y′=d0
i

fp
′

i (y′)

+

z∑
y=d0

j+1

[∑
k∈Φi

hi(k)× fp
′

i (y − κi,j − τ − k)

]
(28)

=
∑
k∈Φi

hi(k)

d0
j−κi,j−τ−k∑

y′=d0
i

fp
′

i (y′) +

z∑
y=d0

j+1

fp
′

i (y − κi,j − τ − k)

 (29)

=
∑
k∈Φi

hi(k)

z−κi,j−τ−k∑
y′=d0

i

fp
′

i (y′) (30)

=
∑
k∈Φi

hi(k)× F p′

i (z − κi,j − τ − k) (31)

The term on the right-hand side of (29) reduces to
∑z−κi,j−τ−k

y′=d0
i

fp
′

i (y′) because
∑d0

j−κi,j−τ−k

y′=d0
i

fp
′

i (y′) can

be expressed as fp
′

i (d0i ) + · · ·+ fp
′

i (d0j − κi,j − τ − k) and
∑z

y=d0
j+1 f

p′

i (y − κi,j − τ − k) can be expressed as

fp
′

i (d0j + 1− κi,j − τ − k) + · · ·+ fp
′

i (z − κi,j − τ − k).
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C Additional results

Figure 10 compares the results for the MDVSP, R-MDVSP-STT and the MDVSP with hard minimum buffer
time that were obtained for instances I4 and I5 under the first simulation case.

(a) Instance I4 (b) Instance I5

Figure 10: Reliability metrics for the first simulation case
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