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Patrick De Causmaecker
KU Leuven, Kortrijk, Belgium, patrick.decausmaecker@kuleuven.be,

Louis-Martin Rousseau
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Patient scheduling is a difficult task involving stochastic factors such as the unknown arrival times of patients. Similarly,

the scheduling of radiotherapy for cancer treatments needs to handle patients with different urgency levels when allocat-

ing resources. High priority patients may arrive at any time, and there must be resources available to accommodate them.

A common solution is to reserve a flat percentage of treatment capacity for emergency patients. However, this solution

can result in overdue treatments for urgent patients, a failure to fully exploit treatment capacity, and delayed treatments

for low-priority patients. This problem is especially severe in large and crowded hospitals. In this paper, we propose a

prediction-based approach for online dynamic radiotherapy scheduling that dynamically adapts the present scheduling

decision based on each incoming patient and the current allocation of resources. Our approach is based on a regression

model trained to recognize the links between patients’ arrival patterns, and their ideal waiting time in optimal offline solu-

tions where all future arrivals are known in advance. When our prediction-based approach is compared to flat-reservation

policies, it does a better job of preventing overdue treatments for emergency patients, while also maintaining compara-

ble waiting times for the other patients. We also demonstrate how our proposed approach supports explainability and

interpretability in scheduling decisions using SHAP values.
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1. Introduction
According to the WHO 1, cancer is the leading cause of death worldwide, responsible for nearly 10

million deaths in 2020. In Canada, the number of cancer deaths in 2020 was 83,300, accounting for

about 30% of all deaths in the country. The number of cancer incidents is steadily rising in many

countries, which leads to increased stress on treatment facilities and medical staff, while also mak-

ing it more difficult to get timely access to necessary cancer treatments. Numerous studies (Coles

et al. 2003, Mackillop 2007, Chen et al. 2008) have proven that a long waiting time preceding

cancer treatment has a negative impact on the clinical outcome of that treatment (e.g. persistence

of cancer symptoms, psychological distress, increase of death rate). In cancer treatment, waiting

time is referred to as killing time (Mackillop 2007). Therefore, it is essential to improve the

treatment scheduling process, as it will reduce the waiting time before patients start treatment.

In this paper, we focus on radiotherapy (RT), one of the most popular forms of cancer treatment.

About 50% of cancer patients undergo RT treatment (Barton et al. 2014, Tyldesley et al. 2011).

During RT treatment, a patient receives a high dose of radiation divided into small portions (called

fractions) that are delivered to the cancer site over several consecutive days. This treatment is most

commonly delivered by a linear accelerator (linac). As the number of linacs in a hospital is usu-

ally limited, the waiting time for cancer patients to start their RT treatments directly depends on

treatment scheduling. We consider the RT scheduling problem arising at CHUM (Centre hospital-

ier de l’Université de Montréal), a large cancer center in Montréal, Canada. At CHUM, patients

are categorized by the maximum recommended waiting time given by their doctor. Overdue treat-

ments (treatments started after their recommended deadline) are highly discouraged. The objective

is to minimize overdue treatments and patient waiting times. The main challenge presented by

this problem is uncertainty in the demand for treatment by patients with different urgency lev-

els. Palliative patients need urgent care to relieve intense pain, and so their treatment deadline is

set to 1 to 3 days after their admission. In contrast, curative patients can wait for 2 to 4 weeks.

Approximately 70% of patients treated at CHUM are curative. Despite accounting for only 30%

of treatments, palliative treatments are the most challenging group to schedule due to their late

arrivals and short treatment deadlines (Pham et al. 2021). Scheduling curative patients too early

risks leading to overdue treatments in palliative patients by leaving too few reserved treatment

slots available. However, delaying treatments in curative patients for too long could lead to ineffi-

cient capacity usage, while also increasing patient waiting times. Therefore, it is important to take

1 https://www.who.int/news-room/fact-sheets/detail/cancer

https://www.who.int/news-room/fact-sheets/detail/cancer


Pham et al.: A prediction-based approach for online dynamic appointment scheduling
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 3

into account future patient arrivals while making scheduling decisions. Another challenge is the

scheduling methodology employed at CHUM. Currently, scheduling tasks are done manually in

an online fashion, i.e. patients are scheduled one by one as they are admitted. Online scheduling

has many disadvantages compared to batch scheduling, where scheduling decisions are delayed to

the end of the day or week, so that several patients can be scheduled at once. Batch scheduling

can leverage accumulated information, and usually results in better schedules than online schedul-

ing. However, it is difficult to adopt batch scheduling at CHUM. The scheduling staff need to call

patients to confirm appointments and make adjustments when necessary. Online scheduling makes

this communication easier. Therefore, it is required by CHUM to use online scheduling.

We propose a novel online prediction-based approach for dynamic radiotherapy scheduling,

which uses the historical arrival patterns of patients to inform scheduling decisions. An Integer

Programming (IP) model is proposed to derive optimal offline schedules for the variant of the

problem where future arrivals are known in advance. Given a large number of instances with

the same arrival rate and number of linacs, a regression model can be trained to detect the links

between a patient’s features, the (resource) allocation profile of the hospital, and the ideal schedule.

The regression model can then predict a “good” waiting time for a patient. Patients are scheduled

in an online fashion. Palliative patients are always scheduled on the earliest possible date, while

curative patients are scheduled using a prediction model that suggests a waiting time based on

their treatment plan and the present occupancy of the linacs. In other words, the prediction model

is trained to dynamically delay treatments of curative patients, to make space for palliative ones

based on the current allocation profile of the hospital. This results in a robust scheduling approach

that is able to take future arrivals into account. We refer to our proposed machine learning-based

approach as the prediction-based approach. We compare the prediction-based approach to myopic

scheduling strategies, including the online greedy heuristic currently used at CHUM, a batch

scheduling heuristic using a simple ordering rule, and two batch scheduling strategies using the

IP model (daily and weekly). The algorithms are tested in a simulation with a rolling horizon to

evaluate their performance over a fixed-time period. Test datasets are generated using real data

from CHUM. The prediction-based approach outperforms the other approaches for most problem

settings, which vary by the number of linacs and the arrival rate. It results in the lowest average

overdue time and average waiting time for palliative patients, while being comparable to other

approaches with respect to average overdue times and average waiting times for curative patients.

This demonstrates its ability to efficiently integrate information about future arrivals into daily
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scheduling decisions. Notably, the superiority of the prediction-based approach is more prominent

in larger hospital settings with more linacs and more patients to treat (high arrival rate). The pro-

posed approach also proves its robustness in a real problem instance, despite the high fluctuation

in arrival rates observed in reality. Additionally, we demonstrate how our approach supports the

explainability of the decision-making process using SHAP values. Explainability in decision-

making enables better communication with clients. It is especially appreciated in the healthcare

domain where most decisions are human-related. Explainability is a very active domain of research

in Artificial Intelligence, yet receives little attention in the Operations Research community. As a

hybrid method combining techniques from both domains, our approach supports explainable and

interpretable scheduling decisions. Our contributions can be summarized as follows:

• We propose an online machine learning-based scheduling approach for radiation therapy.

The machine learning model is trained on offline optimal solutions obtained via mathematical

optimization to mimic the optimal policy without the online computational burden.

• The proposed approach successfully reduces overdue treatments and waiting times for

patients compared to other optimization-based approaches. We also successfully solve instances

with up to 8 linacs, which represents a larger hospital size than those considered in previous

studies. Furthermore, it is robust to the high fluctuation in arrival rates observed in practice.

• The prediction-based approach is simple, easy to implement and maintain. It also offers

solutions instantly, which makes it suitable for online scheduling problems.

• We demonstrate how our approach supports explainability and interpretability in scheduling

decisions, to our knowledge for the first time. This is highly appreciated in the healthcare domain.

The rest of the paper is organized as follows. Section 2 provides a problem description and

literature review. Section 3 presents the methodology. Section 4 presents numerical results. Section

5 discusses theoretical and practical implications of our approach, and Section 6 closes the paper

with our conclusions.

2. Problem description and related work
In this section, we describe the radiotherapy scheduling problem arising at CHUM, and then

present related work and situate our work in the literature.

2.1. Problem description

In RT treatment, a patient receives a series of radiation doses (fractions) delivered by a linac to

the cancer site during the treatment course, which typically consists of several consecutive days



Pham et al.: A prediction-based approach for online dynamic appointment scheduling
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 5

with breaks on the weekends. Multiple appointments are required. To simplify the problem, we

assume that all linacs are identical. This does not affect the complexity of the problem, as special

treatments that require special linacs are independent of the rest of the treatments, and can be

scheduled separately in a sub-problem. In practice, each linac is associated with a technician team

that will familiarize themselves with the technical settings of each patient at the beginning of their

treatment. Therefore, hospital policy does not allow switching linacs during treatment. At CHUM,

patients are divided into four categories with different waiting time targets based on their cancer

type and condition. Palliative patients (categories P1 and P2) have their waiting time target set

as 1 and 3 days, respectively. In curative patients (categories P3 and P4), the target is 14 and 28

days, respectively. To minimize the waiting time of patients, one only needs to assign the start

date for treatment, as once a treatment starts it must be carried out daily. There are no treatments

on weekends, but those gaps have been taken into account in the treatment protocols. The hospital

does not allow gaps in treatment induced by planning. The waiting time of a patient is the time

elapsed between their admission date, and the date of their first treatment. If a patient’s treatment

starts after the recommended deadline, the time delay is counted as overdue time.

Cancer treatment is a complicated process with many procedures and parties involved. The

treatment workflow used at CHUM is illustrated in Figure 1. When a new consultation request is

made, a patient first undergoes a consultation session where the doctor explains their condition and

available options. If the patient agrees to proceed with the treatment, they will go through several

preparation steps such as external consultation, exams, and a planification scan. Based on the

patient’s diagnosis, a treatment team then makes a personal treatment plan, which is verified and

approved by a medical physicist before the treatments are prepared. The RT treatments are then

carried out, with review and possible revision during the course of treatment. Finally, the treatment

ends with post-treatments and follow-ups. Currently, the scheduling of treatments is performed

manually at CHUM. Among various technical information, a treatment plan includes information

about the number of fractions that a patient will receive, as well as the duration of each fraction.

Since fraction durations at CHUM are always multiples of 5 minutes, we set the granularity of our

schedules to 5-minute blocks. Each linac has a treatment capacity measured in time blocks.

2.2. Literature review

Patient scheduling has a long history and a rich literature. For a thorough review of the topic, we

refer the readers to (Marynissen and Demeulemeester 2019, Cayirli and Veral 2003, Gupta and

2 Figure provided by CHUM.
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Figure 1 Radiotherapy treatment workflow at CHUM2.

Denton 2008). There are many ways to classify patient scheduling problems. To analyse related

work, we adopt the classification of Saure et al. (2012), which divides patient scheduling into

allocation scheduling (or resource allocation) and appointment scheduling. Appointment schedul-

ing assigns specific appointment times to patients on a given service day. In most appointment

scheduling problems, the main concern is maximizing patient comfort, satisfying precedence

constraints, dealing with uncertainty in appointment duration and cancellations, etc. In contrast,

allocation scheduling schedules patients in advance, taking medical capacity into account, without

giving exact appointment times. Allocation scheduling usually involves patients of different types

and urgency levels, therefore the main challenge is dealing with uncertainty, such as unknown

future demands and cancellations. Algorithms for allocation scheduling are usually dynamic,

meaning they focus on dynamically allocating medical resources on a rolling horizon. Our paper

falls into the category of allocation scheduling. We review the literature on dynamic patient

scheduling and radiotherapy scheduling. The literature is vast, so this not an extensive review, and

only the most relevant papers are mentioned here.

2.2.1. Dynamic patient scheduling. There are different sources of uncertainty in healthcare: can-

cellations, uncertainty in service time, stochastic patient arrivals, deferrals in treatment plans, etc.

While our paper focuses only on uncertainty resulting from stochastic patient arrivals, there are

plenty of studies applying machine learning methods to tackle different sources of uncertainty.

For example, Srinivas and Ravindran (2018) develop predictive models that identify the risk of

a patient no-show and propose different scheduling rules that take into account the risk. A simi-

lar approach is used by Salah and Srinivas (2022) in an appointment scheduling system with the

presence of stochastic factors from no-shows and uncertainty in service time.
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Regarding uncertainty caused by stochastic patient arrivals, operating room (OR) planning

has to deal with a high degree of uncertainty as ORs are usually shared between both elective

(planned) procedures and emergency surgeries. Gerchak et al. (1996) propose a stochastic dynamic

programming model for the OR planning problem, and then analyse the structure of the optimal

policy. In the same problem, Lamiri et al. (2008) propose a Monte Carlo optimization method that

combines Monte Carlo simulation with Mixed Integer Programming (MIP), and show that their

approach yields about a 4% reduction of the overall cost compared to a deterministic model.

Vermeulen et al. (2009) present an adaptive approach to schedule CT scans at a radiology

department. In their approach, the allocation of capacity to different patient groups is flexible and

adaptive to the current and expected future situation. However, the algorithm is specific to their

case study. Patrick et al. (2008) model a similar problem as a Markov decision process (MDP), and

solve it using simulation-based approximate dynamic programming (ADP). Saure et al. (2012)

and Sauré et al. (2020) extend this approach to more complicated problems. Schuetz and Kolisch

(2012) investigate a capacity allocation problem in the service industry with requests of different

priorities. The authors also adopt a similar approach, combined with a discrete event simulation.

In another problem family, patient admission scheduling (PAS), Ceschia and Schaerf (2012)

propose a MIP model and Simulated Annealing heuristic to solve a PAS problem under uncer-

tainty. They propose a degree of dynamism, adopted from dynamic vehicle routing problems, to

denote a level of urgency. Ceschia and Schaerf (2016) then extend the problem with more realistic

constraints and propose a local search-based approach. Zhu et al. (2019) study the compatibility

of short and long-term objectives for the dynamic PAS. The authors propose a short-term MIP

model which adjusts the objective functions based on patient delay or idle resources.

2.2.2. Radiotherapy scheduling. As opposed to patient scheduling, RT scheduling is a relatively

new field of research. A review of RT scheduling can be found in (Kapamara et al. 2006, Vieira

et al. 2016). The first two mathematical models for RT scheduling are proposed by Conforti

et al. (2008) to maximize the number of treated patients within a given horizon with identical

treatment times and a single linac. The model assigns patients to treatment slots of equal length,

which is referred to as block scheduling. The authors then extend their models in (Conforti

et al. 2010) to allow for more realistic settings where treatment duration can vary in length

(non-block scheduling). Petrovic et al. (2006) and Petrovic and Leite-Rocha (2008) propose

several constructive heuristics based on different prioritised rules, and improve the solutions

using metaheuristics. They use block scheduling where treatment on a linac is of fixed duration,
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and depends on the energy type of the linac. Burke et al. (2011) propose a non-block IP model

to assign patients to days and linacs, and perform several simulations to investigate whether

delaying the scheduling decision can lead to better schedules. Heuristic methods are also used by

Kapamara and Petrovic (2009) to schedule patients in both pre-treatment and treatment stages.

Pre-treatment for RT patients is also considered by Castro and Petrovic (2012). The authors solve

a multi-objective problem by formulating it as a series of single-objective scheduling problems.

Another form of RT treatment is particle therapy, which uses a centralized machine to deliver an

ion beam to different treatment rooms. Most studies in particle therapy focus on assigning specific

appointment times for treatments to optimize the beam’s utilization, i.e., minimizing the idle time

of the machine. Maschler et al. (2016) propose an exact model, which is proven to be highly

intractable. As a result, metaheuristics are widely used for particle therapy treatment scheduling

(Maschler et al. 2016, Maschler and Raidl 2018, Vogl et al. 2019). In another context, Vieira

et al. (2020) point out that most cancer centers in Europe are capable of treating their patients

within the recommended waiting period. Therefore, they focus on meeting patients’ preferences

for treatment times. Frimodig and Schulte (2019) propose an IP and two constraint programming

(CP) models for scheduling RT treatments. Their generated instances include an expected number

of future arrivals, which they use to predict future resource utilization.

All of the aforementioned methods are tested on a static horizon without taking future arrivals

into account. RT scheduling involves patients of different priorities, so using a dynamic resource

allocation scheme that takes uncertainty of treatment demand into account is highly important.

Pham et al. (2021) propose a two-phase approach for RT scheduling, and implement a simulation

to evaluate the algorithm dynamically on a rolling horizon using different scheduling strategies.

However, the approach is still myopic, i.e., it does not take future arrivals into account when

making scheduling decisions. To handle high-priority patients, many cancer centers reserve a

number of treatment slots per day for emergency treatments. This approach is used in several

papers (Petrovic and Leite-Rocha 2008, Legrain et al. 2015, Pham et al. 2021, Frimodig and

Schulte 2019). Nonetheless, it is difficult to set a proper threshold.

To the best of our knowledge, there are only two approaches for dynamic RT scheduling which

take future events into account. The first approach is MDP, used by Saure et al. (2012) to provide a

dynamic policy for RT scheduling. The problem is modeled as a discounted infinite-horizon MDP,

and the equivalent Integer Programming (IP) model is solved using column generation. The same

approach is also used by Gocgun (2018), but they also allow for the cancellation of treatments.
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In contrast, Legrain et al. (2015) propose a hybrid method combining stochastic optimization

and online optimization to solve the problem in an online fashion. Stochastic programming and

MDPs are both prone to scaling problems which makes it difficult to apply either approach in

large hospitals. The example studied by Saure et al. (2012) has an arrival rate of 8.25 requests per

day with 120 appointment slots, which is equivalent to three linacs. Legrain et al. (2015) consider

a 20-minute time slot for each patient, and test the algorithm on instances with up to two linacs

and an arrival rate less than 3.5 requests per day. In addition, they are algorithmically heavy, and

may be difficult to implement and maintain in real-world applications. In the literature, there are

few attempts that tackle the scaling problem resulting from using stochastic programming with

machine learning techniques. One example can be found in the context of two-stage stochastic

programming (Larsen et al. 2021), where the authors use supervised machine learning to predict

the computationally expensive second stage and apply the algorithm to a railway demand and

capacity management problem. Our approach aims to fill this gap in the RT scheduling literature.

We propose an algorithm that dynamically allocates resources based on expected future arrivals,

and targets larger instances than those considered before in the literature, i.e., up to 8 linacs.

3. Methodology
Section 3.1 presents the mathematical model, and Section 3.2 presents several scheduling

strategies. The remainder of Section 3 explains the prediction-based approach.

3.1. Mathematical model

The problem being solved consists of finding the best schedule of treatments for a set of patients

P , given a set of linacs L. The sets of palliative patients and curative patients are denoted as PP

and PC , respectively (so P = PP ∪ PC). Each instance consists of a set of fixed patients with

appointments made from the previous scheduling decisions, denoted as P̄ , while the set of new

patients is denoted as P̂ (so P = P̄ ∪ P̂). The set of working days in the planning horizon is

denoted as T . Each patient i ∈ P has an admission date ai, a ready date ri which is the earliest

date the patient can begin treatment, and a due date di which is the recommended deadline to

start the treatment. Each patient i has a personal treatment plan specifying the number of fractions

Ii, and the duration of each fraction (pi). Each linac l has a capacity (Ct
l ) on day t, measured in

blocks of 5 minutes. Ĉt
l represents the available capacity of linac l on day t after deducting the

fixed appointments from the previous scheduling decisions.

Our objective is to minimize overdue time and waiting time by determining the assignment

of patients’ first fractions to dates and linacs. Once treatment starts, it is carried out every day
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Notation Explanation Notation Explanation
L set of linacs ai admission date of patient i
PP set of palliative patients αi admission time of patient i (consists of date and time)
PC set of curative patients ri ready date of patient i (ri ≥ ai)
P̄ set of fixed patients di due date of patient i (di ≤ ri)
P̂ set of new patients Ii number of fractions of patient i
T set of working days in the planning horizon pi duration of each fraction of patient i
Ct
l total capacity of linac l on day t Ĉt

l available capacity of linac l on day t
Table 1 List of notation.

until the required number of fractions is achieved. Subsequent fractions of each patient should

be carried out on the same linac as the first treatment. A portion of linac capacity is reserved for

palliative patients. Parameter γ (γ < 1) indicates the percentage of reserved capacity. We define a

binary variable xitl on the set of new patients P̂ , that holds value 1 if patient i receives their first

treatment on day t linac l. The model is as follows:

minimize
∑
i∈P̂

∑
t∈T ,t>ri

∑
l∈L

ω1(t− ai)log(t− ai + 1)xitl

+
∑
i∈P̂

∑
t∈T ,t>di

∑
l∈L

ω2(t− di)log(t− di + 1)xitl (1)

Subject to∑
t∈T

∑
l∈L

xitl = 1 ∀i∈ P̂ (2)

xitl = 0 ∀i∈ P̂, l ∈L, t∈ {0, . . . , ri− 1} (3)∑
i∈P̂

t∑
t′=max{0,t−Ii+1}

pix
i
t′l ≤ Ĉt

l ∀t∈ T , l ∈L (4)

∑
i∈PC

∑
t′∈{t−Ii+1,...,t}

pix
i
t′l ≤max{0, Ĉt

l − γCt
l } ∀t∈ T , l ∈L (5)

xitl ∈ {0,1} ∀i∈ P̂, t∈ T , l ∈L (6)

The objective function (1) minimizes waiting time (the first term) and overdue time (the second

term) with the respective weights ω1 and ω2. By setting ω2 � ω1, we heavily penalize overdue

time over waiting time. The log function is a non-linear function utilized to enforce an equal

distribution of waiting time and overdue time between patients. Constraints (2) ensure all patients

are scheduled within the planning horizon. Constraints (3) ensure no patients are scheduled before

their ready date. Constraints (4) make sure linac capacity is respected for the entire course of

treatment. Constraints (5) reserve a portion of linac capacity for palliative patients.
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3.2. Scheduling strategies

In this section, we propose several scheduling strategies for radiotherapy treatments. All strategies

utilize online scheduling for palliative patients, i.e., their treatments are scheduled for the earliest

possible date on an available linac when the treatment request is submitted. A portion of linac

capacity is reserved for palliative patients. The proposed strategies differ in the manner in which

curative patients are handled. All scheduling strategies are summarized in Table 2.

Strategy Scheduling palliative patients Scheduling curative patients
offline one time one time

online-greedy at admission at admission
daily-greedy at admission every day

daily-IP every day every day
weekly-IP every day every Friday

prediction-based at admission at admission
Table 2 Scheduling strategies.

3.2.1. Online scheduling with a greedy heuristic This strategy is the closest one to the approach

used by scheduling clerks at CHUM. Once a patient is admitted (usually when their treatment plan

is approved), the algorithm looks up the following one or two weeks depending on the patient’s

category (P3 or P4). The first date that can accommodate all of the patient’s fractions is then

chosen. A date is considered eligible if on this day, and the following (Ii− 1) days, there is a linac

with enough remaining capacity to treat the patient, where Ii represents the number of fractions

assigned to the patient. An illustration of the greedy heuristic can be found in Figure 2.

Figure 2 The greedy heuristic for an instance with one linac. A curative patient (category P4) with 3 fractions,

each of which requires 10 time slots, is admitted on day 0. The algorithm looks forward two weeks,

starting from day 10 (only business days are indexed). The patient is scheduled on day 12, the first

day with enough capacity in subsequent days to accommodate the whole treatment.
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3.2.2. Batch scheduling When batch scheduling, treatment requests are accumulated for a

period of time, and then a scheduling decision is made by the end of the period, e.g., daily or

weekly. Each batch of scheduling decisions includes a set of patients admitted the day after the

previous scheduling decision was made. We propose two strategies to schedule patients in batches:

greedy-based, and IP-based. The greedy-based heuristic sorts patients in descending order by

their due day (which is determined by their priorities), numbers of fractions, and fraction lengths.

Patients are then scheduled in a greedy manner following the given order. This prioritizes patients

with more fractions and longer fraction lengths, as it is more difficult to find an eligible start day

for them. In IP-based batch scheduling, patients are scheduled using the IP model in Section 3.1.

3.2.3. Offline scheduling In offline scheduling, we assume that all patient arrivals are known

in advance. First, the algorithm schedules palliative patients for the earliest eligible day after

their arrival. Curative patients admitted during the simulation period are then scheduled using

the IP model in Section 3.1, without reserving a portion of linac capacity for palliative patients.

The scheduling decision is made on the first day of the scheduling period. Having all future

patient arrivals known in advance is an unrealistic assumption, but it provides a bound for other

scheduling strategies. No strategy can bypass offline scheduling due to the lack of information

on future arrivals. It also provides a picture of how a “perfect schedule” would look if we had a

precise prediction of future arrivals.

3.2.4. Online scheduling using regression - a machine learning approach This scheduling

strategy is the main contribution of the paper. Scheduling is carried out in an online fashion

similar to the greedy heuristic. However, instead of looking forward one or two weeks, we apply

a regression model to predict a start date for each patient. The algorithm then looks for an eligible

date starting from the predicted day. An illustration of the algorithm is given in Figure 3. The

details of the regression model will be presented in Section 3.3.

3.3. Prediction-based approach - a machine learning-based algorithm

In most cancer centers, the number of linacs is fixed. The arrival rate of patients is usually stable and

can be modelled as a Poisson distribution. Given an instance with a number of linacs and an arrival

rate, an optimal offline solution (referred to simply as an offline solution) given by offline schedul-

ing (Section 3.2.3) provides an “ideal” schedule where all future arrivals are known in advance. All

other scheduling strategies based on the gradual realization of patient arrivals share the same goal

of achieving solutions as close as possible to offline solutions. The motivation for our approach is
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Figure 3 Prediction-based scheduling for the same instance as Figure 2. The algorithm starts the search

from the predicted starting day (day 13). The patient is scheduled to the first eligible day (day 13).

the idea that given a large enough number of instances and their offline solutions, we might be able

to learn the patterns in the ideal optimal waiting time of patients. Thus, given the present occupancy

of linacs and the treatment plan of a patient, we can predict a “good” waiting time for the patient. In

the following section, we describe our method of training the regression model and applying it in a

machine learning-based scheduling algorithm, which we refer to as a prediction-based approach.

3.4. Training the regression model

A problem instance is characterized by a number of linacs |L| and an arrival rate λ. A pair (|L|, λ)

is referred to as an instance setting, which represents a typical cancer center with a fixed number

of linacs and a stable arrival rate. In all our instances, all linacs have a capacity of 120 blocks

of 5 minutes a day. As each hospital has its own historical ideal scheduling patterns, an instance

setting is associated with a separate regression model. For each instance in the training set, an

offline solution is obtained by solving the offline scheduling as in Section 3.2.3. A set of training

examples is then constructed from the instance and its offline solution.

To explain how training examples are constructed, we first define some terms. A problem

instance has a set of simulation days (denoted as K), each of which observes a set of patients

admitted to the center (denoted as Pd, d ∈ K). A problem instance consists of the daily flows of

patients admitted to the hospital during the simulation period, which is referred to as a patient flow

ζ, where ζ = {Pd,∀d∈K}. A solution to an instance is the assignment of patients to a set of dates

(D) and linacs (L): s :P ×D×L→{0,1}, where sidl = 1 if patient i is assigned to day d linac l.

The present time point at any moment during the simulation period is denoted as φ, and the cor-

responding date is denoted as d(φ). At time point φ, the present capacity of linacs on date d is the

available capacity after removing the treatment slots occupied by patients admitted (and scheduled)

before the time point φ on the corresponding date. ĉφd =C−
∑

i∈P,l∈L|sidl=1,αi<φ
pi, where C is the
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total linac capacity, and pi and αi are the fraction duration and admission time point of patient i,

respectively. Note that αi is the admission time point, which includes both admission date ai and

admission time. We distinguish between αi and ai, because the present capacity Ĉφ varies by time

points during the day. The state of an instance at time point φ, denoted as Ĉφ, is the set of present

capacity of all days in the sample horizon, Ĉφ = {ĉφd ,∀d∈Dφ}, where Dφ is the set of days in the

sampling horizon at the time point φ. In our problem, the sampling horizon is set as 50 days after

d(φ),Dφ = {d(φ), d(φ)+1, . . . , d(φ)+49}, since in our realistic instance settings it is unlikely that

a patient is not scheduled within 50 days of their admission. Therefore, when making a scheduling

decision, the linac capacity search is restricted to a window of 50 days after their admission.

Given an instance and its offline solution s∗, a training example consisting of an input vector and

a label is created for each curative patient in the patient flow. The label of patient i is the patient’s

waiting time wi in the offline solution. The input vector consists of the state measured at the

patient’s admission time φ= αi, and a vector of the patient’s features. We select the features that

are the most relevant to the scheduling task, i.e., the patient’s ready date ri, due date di, number of

sessions Ii, and fraction length pi. Thus, a training example for patient i is a tuple (Xi,wi), with

input vectorXi = {Ĉφ,φ=αi , ri, Ii, di, pi}. The collinearity of the features are tested in Appendix A.

The algorithm for creating training examples is presented in Algorithm 1. As the regression

model is used to schedule curative patients only, one training example is created for each new

curative patient in the instance. At the beginning of the algorithm, the present time point is set as

the beginning of the first day in the simulation period K, and the present capacity Ĉφ is calculated

accordingly. For each day d ∈ K, the set of patients admitted on that day (Pd) is iterated over in

chronological order. If a patient is curative, a training example is created and added to the set of

training examples. After each iteration, regardless of the patient’s priority, the present capacity Ĉφ

is updated with the appointments of the corresponding patient from the offline solution s∗. The

process continues until all patients in the patient flow are visited. Different regression models were

tested (Appendix A), and XGBoost was chosen due to the low training time and high precision.

3.5. Using the regression model

The regression model is embedded in the prediction-based algorithm (Algorithm 2) to schedule

RT treatments. When a new patient is admitted, there are two possibilities. If the patient is pallia-

tive, they will be scheduled on the first eligible date. Otherwise, an input vector is constructed as

described in Section 3.4. The input vector is fed to the trained regression model to get a predicted

waiting time, from which a predicted starting date is derived and utilized in the prediction-based

algorithm to construct a schedule.
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Algorithm 1: Generating training examples
input : instance ins, its offline solution s∗

output: set of training examples E

1 E ← {} ;

2 φ← the beginning of the first day in the simulation period K ;

3 calculate Ĉφ ;

4 foreach day d in the simulation period K do
5 foreach patient i in Pd do
6 if i is curative then
7 Xi←{Ĉφ, ri, Ii, di, pi} ;

8 wi← waiting time of i in s∗ ;

9 E ← E ∪ (Xi,wi) ;
10 end

11 φ← αi ;

12 update Ĉφ with appointments of patient i ;
13 end
14 end

Algorithm 2: Prediction-based scheduling
input : instance ins, a trained regression modelM

output: schedule s

1 Initialize an empty schedule s ;

2 φ← the beginning of the first day in the simulation period K ;

3 calculate Ĉφ ;

4 foreach day d∈K do
5 foreach patient i in Pd do
6 if i is palliative then
7 d∗← the first eligible date for i starting from max(d, ri) ;

8 end

9 if i is curative then
10 Xi←{Ĉφ, d, ri, Ii, di, pi} ;

11 w̄← predicted waiting time given byM(Xi) ;

12 d∗← the first eligible starting date for i from max(d+ w̄, ri) ;
13 end

14 s← update the schedule by scheduling all fractions of i with the starting date d∗ ;

15 φ← αi ;

16 update Ĉφ with new appointments of patient i ;
17 end
18 end
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Category Proportion (%) Treatment deadline
(days)

Percentage of
overdue treatment (%)

Average
waiting time (days)

P1 0.44 1 14.29 1.09
P2 27.14 3 79.89 6.91
P3 41.36 14 74.55 18.11
P4 31.06 28 29.89 22.59

Table 3 Overdue treatment and average waiting times for cancer patients at CHUM in 2017-2018.

4. Numerical results
Three experiments were carried out. The first experiment (Section 4.3) examines the behaviour

of the proposed approaches at different reservation rates. The second experiment (Section 4.4)

evaluates the algorithms on generated data in different scenarios. Finally, the third experiment

(Section 4.5) shows the results on real patient flow at CHUM. For each instance setting, 500

instances were generated, 400 of which were used for training the regression model, while the

remaining 100 were used for testing. We compare the six scheduling strategies listed in Section

3.2. All of the algorithms are implemented in Python. We used CPLEX 20.1 as the MIP solver. The

experiments were run on a Linux-based PC cluster. To generate offline solutions, each instance

was solved using a single thread with a budget of 15 Gb of RAM, and a time budget of 15 hours.

4.1. Data overview

We have access to historical data from CHUM for a 2-year period, from September 2017 to July

2019, which includes 4,538 patients. CHUM is equipped with 12 treatment rooms, 5 of which

contain identical generic linacs. 4 rooms are dedicated to special treatments that must be bound to

those specific rooms. The remaining 3 rooms can be used for generic treatments, as well as a small

percentage of specialized treatments. Patients are classified into four categories with different

treatment deadlines. The majority of patients are curative (more than 70%) with 14-day or 28-day

treatment deadlines. The remaining patients are mostly palliative type P2 with 3-day treatment

deadlines. A small portion of patients (type P1) requires urgent treatment with a 1-day deadline. In

the given period, more than 70% of P2 and P3 patients at CHUM did not meet their recommended

treatment deadline. Patient categories along with their waiting time targets, percentage of overdue

treatments, and average waiting time, are listed in Table 3. The fraction length of patients at

CHUM ranges from 10 to 165 minutes, with the majority of patients having 25-minute fractions

(more than 50%). The number of fractions varies from 1 to up to 45 sessions. Most palliative

patients have less than 5 fractions, while the number of fractions of curative patients ranges from

1 to 35 sessions, with peaks at 5, 15, 20, 25, 30, and 33 sessions.
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4.2. Data generation

Before describing the process of generating our instances from CHUM’s real data, we introduce

some technical terms. A personal treatment plan, which provides information such as the number

of fractions and fraction length, is tailored for an individual patient by a team of physicians and

specialists based on the patient’s diagnosis and condition. For convenience, we use the term

treatment plan to refer to a personal treatment plan. A patient pool consists of all historical

treatment plans taken from CHUM’s dataset. A problem instance consists of an instance scenario

and a patient flow. An instance scenario specifies a number of linacs and their capacity, along

with a set of appointments made during the previous batch of scheduling decisions. A patient flow

is the daily flow of new patients admitted to the hospital during a simulation period. Given an

arrival rate λ and a set of simulation days K, a set of |K| numbers is generated using a Poisson

distribution with an event rate of λ. For each day d ∈ K, a set of virtual patients is generated

by randomly selecting a corresponding number of treatment plans from the patient pool. Then a

ready date is generated for each patient based on their category. The ready date for P1 patients is

always the same as their admission date. P2 patients have ready dates ranging from 0 days after

their admission date to 2 days after their admission date, while curative patients (P3 and P4) have

ready dates ranging from 5 to 7 days after their admission date. The due date is calculated from

the admission date and the patient’s category listed in Table 3.

An instance scenario is generated as follows. First, we generate an instance flow, which then

serves as an input for “warm-up” simulation using the greedy heuristic (Section 3.2.1) to fill up the

linacs, starting from an empty schedule. The warm-up simulation stops when the occupancy of the

linacs reaches 90% of its capacity on any day. The 90% threshold is based on the real schedules

at CHUM. The following day is usually almost full, with a couple of available slots that normally

account for no more than 10% of the total capacity. All appointments on the dates after the end of

the warm-up period are used as the new instance scenario. An illustration is shown in Figure 4.

4.3. Tuning the reservation rates for palliative patients

The reservation rate plays a different role in the prediction-based approach than it does in myopic

approaches. In myopic approaches, the reserved capacity makes space for future arrivals of

palliative patients. A low reservation rate might lead to a shortage of treatment slots for urgent

cases. In contrast, a high reservation rate does not fully exploit the treatment facility, which leads

to delayed treatments for curative patients. In the prediction-based approach, an implicit “dynamic

reservation” is applied by delaying the treatments of curative patients dynamically to make space
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Figure 4 Illustration on how an instance scenario is generated.

for palliative ones based on the present allocation profile. Hence, the reserved capacity plays the

role of a “safe corridor” to absorb the effect of unexpected high arrival. The goals of the experiment

in this section are twofold: (1) to examine the behaviour of approaches with different reservation

rates; and (2) to identify the reservation rate that yields the best performance for all approaches.

The experiment was carried out using a setting with 4 linacs and an arrival rate of 6.0. 100

instances were tested with five different reservation rates: 0%, 5%,10%,15%, and 20%. As there is

no reservation in offline scheduling, five scheduling strategies were tested: online greedy heuristic,

daily greedy heuristic, daily-IP, weekly-IP, and prediction-based. The results are shown in Figure

5. We can see from the figure that a higher reservation rate is indicative of a lower overdue time

for palliative patients. However, the trade-off that comes with a low overdue rate, is a high number

of overdue times for curative patients. Among all tested reservation rates, the prediction-based

approach always gives lower overdue times in palliative patients by a large magnitude. Consider

a reservation rate of 10%; other myopic approaches result in around 20 days of overdue time on

average in palliative patients, while the prediction-based approach keeps that metric below 2 days.

The prediction-based approach yields a slightly higher average overdue time for P3 compared

to other approaches, while maintaining similar values for P4. A similar profile can be seen for

other reservation rates. Nevertheless, one can observe that as the reservation rate increases, the

overdue times for curative patients increase significantly when using myopic approaches, while

the decrease for palliative patients is not proportional. From the aforementioned observations, we

conclude that the prediction-based approach offers a dynamic reservation that outperforms the

flat reservation policy of other myopic approaches, regardless of the reservation rate used. After

discussing our results with a consultant from CHUM, we decided that a reservation rate of 10%

results in the best trade-off between the delays in curative and palliative patients. This choice

is further supported by the data showing that the total treatment duration of palliative patients
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Figure 5 Average overdue time with different reservation rates - 4 linacs, arrival rate of 6.0.

accounts for around 8% of the total treatment duration for all patients. Therefore, we adopt a

reservation rate of 10% for all scheduling approaches.

4.4. Numerical results on generated instances

To examine the algorithms’ performance on different hospital sizes and crowding levels, we gen-

erated instances with a wide range of linac numbers and arrival rates. First, we identified a realistic

range of arrival rates for a hospital with a given number of linacs using two types of capacity

simulation. For the first capacity simulation, we ran the greedy algorithm in Section 3.2.1 without

imposing the capacity constraints. We then measured the average weekly occupancy rate. Figure

6a shows the results of the first capacity simulation for 4 linacs with arrival rates of 5.0, 5.5, 6.0,

and 6.5, respectively. The red dotted line represents the linac capacity. Arrival rates 6.0 and 6.5

result in overload for multiple weeks during the simulation period. An arrival rate of 5.0 is in the

safe zone, with the occupancy rate remaining mostly below the linac capacity. However, an arrival

rate of 5.5 can cause overload in some weeks, but generally stays within the safe zone.

For the second capacity simulation, we ran the greedy algorithm with capacity constraints and

then observed the progression of the weekly average waiting time. If the average waiting time

increased over time, the arrival rate was too high for a hospital of the given size to handle. A stable

average waiting time indicates that the arrival rate is reasonable. Figure 6b shows the results of the
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second capacity simulation for 4 linacs. Observe from the figure that an arrival rate of 6.5 causes

the average waiting time to increase rapidly over time. This matches the observation from the first

capacity simulation. The remaining arrival rates result in stable lines, with some peaks in the arrival

rates of 5.5 and 6.0. The two capacity simulations complement each other, and we can conclude

that arrival rates from 5.0 to 6.0 are reasonable for a hospital with 4 linacs.

Figure 6 Simulation on 4 linacs with arrival rates of 5.0, 5.5, 6.0 and 6.5.

After identifying a reasonable range of arrival rates, we performed experiments using our

realistic instance settings. Figure 7 shows the results for 4 linacs with an arrival rate of 5.0. Observe

from the figure that in an ideal situation where all future arrivals are known in advance, the overdue

time is insignificant in all patient categories. The greedy heuristic and the three batch scheduling

strategies are similar in both waiting time and overdue time. Overdue treatments mostly occur in

P2 and P3 patients. The prediction-based approach shows a slightly better average waiting time and

overdue time in all patient categories. It also results in less deviation in waiting time and overdue

time between patients. For each priority group, we performed an one-way ANOVA test. The results

confirm that the difference between the tested algorithms are statistically significant, with p-values

in all four priority groups less than 1E-5. The post hoc paired t-tests confirm that the results for

the prediction-based approach for P1, P2, and P4 are substantially different from the results for the

other four approaches. However, in priority group P3, there is no significant difference between

the prediction-based approach and the weekly-IP-based approach (p-value = 0.33).

Figure 8 shows results for the same hospital size in a more crowded scenario with an arrival rate

of 6.0. We can observe from the figure that the more crowded a hospital is, the better the prediction-

based approach performs compared to batch scheduling strategies and the greedy heuristic. The

most significant difference is for P2 patients, the most challenging category for other algorithms.

As P2 patients account for almost 30% of patients, and their treatment deadlines are urgent (only 3

days after their admission date), it is difficult to decide how much space should be reserved for their
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arrivals when scheduling curative patients. Despite having less information than batch scheduling

strategies, the prediction-based approach demonstrates an ability to learn good decision-making

from offline schedules. Specifically, it learns to dynamically delay treatment for curative patients

in order to make space for palliative treatments based on the present state of the schedule. This

explains the lower overdue rates associated with prediction-based scheduling in palliative patients.

Figure 7 Simulation on 4 linacs - arrival rate 5.0. Figure 8 Simulation on 4 linacs - arrival rate 6.0.

For the next experiment, we tested the algorithms on a much larger hospital with 8 linacs. The

reasonable arrival rates suggested by the capacity simulations are less than 12 patients per day, as

an arrival rate of 13.0 causes the weekly average waiting time to increase over time (Figure 9). We

tested two settings with arrival rates of 10.0, and 12.0. The results are shown in Figures 10, and

11, respectively. We derive two observations from these results. First, the experiment matches our

earlier observation from experiments using 4 linacs that the larger and more crowded a hospital

is, the better the prediction-based approach performs compared to other scheduling strategies.

Second, our approach scales well on large instances. To our knowledge, most experiments in the

literature tested their ideas on much smaller hospital sizes. Furthermore, most real hospitals do

not have more than 8 linacs operating full-time. In large hospitals, as the number of linacs and

patients grows, the scheduling task becomes extremely challenging for most algorithms. Our

prediction-based approach offers a fast online approach with superior results.
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Figure 9 Capacity simulation on 8 linacs with arrival rates of 10, 11, 12 and 13. Starting from an arrival rate

of 13, the average waiting time of patients increases over time.

Figure 10 Simulation on 8 linacs - arrival rate 10.0. Figure 11 Simulation on 8 linacs - arrival rate 12.0.

4.5. Numerical results on real instances

In a real-world scenario, we might observe a high fluctuation in arrival rate. In this experiment,

we aim to test the model’s sensitivity to real patient flow with an unstable arrival rate. We extract

the real patient flow for the period from May 2018 to June 2019. As mentioned in Section 4.1,

CHUM’s facility consists of 12 linacs, 3 of which are for special treatments. Therefore, we remove

all patients bound to special linacs, which accounts for 9% of patients. Among the remaining 9

linacs, only 5 generic linacs operate full-time (10 hours a day). The remaining 4 linacs operate

only half of each working day on average due to a lack of technicians. We construct real instances

using the extracted patient flow and 7 linacs operating full-time. Then we use the first 100 days

to initialize a partially-filled schedule using the method described in Section 4.2. Finally, the
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Figure 12 Real patient flow at CHUM (from May 2018 to June 2019).

remaining days of data are used as the patient flow for the instance. The patient flow of the real

instance consists of patient arrivals for 180 days, from October 2018 to June 2019. In Figure 12,

we plot the real arrival rates at CHUM for the period from May 2018 to June 2019. The blue line

represents the real daily arrivals of patients, and the red line represents the average arrival rate of a

10-day interval prior to a given date. Observe from the figure that the average arrival rate fluctuates

significantly, reaching 7.75 patients/day at its lowest, and reaching 13.42 patients/day at its highest.

The regression model for the real instance is trained on the setting with 7 linacs and an arrival

rate of 10.1, which is the average arrival rate in the first 3 months of the data. Similar to Section

4.4, we ran all proposed scheduling strategies on 100 test instances. The results are presented in

Figure 13. Similar to the results from generated instances in Section 4.4, the results here show

that the prediction-based approach outperforms other approaches in palliative patients while

maintaining a comparable waiting time and overdue time for curative patients. Observed from

Figure 12 that the arrival rate fluctuates by time in real life, we also train a regression model

on a variable arrival rate. The training instances are generated with a dynamic arrival rate that

changes every 10 days within the range of [λ− 1.5, λ+ 1.5], with λ being the average arrival rate

(10.1 patients per day in our case). The parameters of the data generator are chosen based on the

observation of the real arrival rate’s fluctuation (the red line in Figure 12). The 10 days-interval

and the deviation of ±1.5 in arrival rate mimic the fluctuation of the real data while preventing

sudden changes in arrival rate. The online prediction-based approach using the variable arrival

rate is labeled as prediction-based*. As the fluctuated model is trained on a different dataset, we

do not include its results in Figure 13.

Then we test the trained regression model on the real patient flow. Due to the long simulation

period, the result of the offline scheduling is not available. We first analyse the results given by

the prediction-based approach with a stable arrival rate. The results presented in Table 4 and Fig-

ure 14 show that the prediction-based approach results in the lowest average overdue time in both
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Figure 13 Simulation on 7 linacs, arrival rate

10.1.
Figure 14 Simulation on the real instance.

P1 (3.29 days) and P2 (1.99 days). The greedy algorithms (both online and daily) perform rela-

tively well on palliative patients, but result in 2 extra days of average overdue time compared to

the prediction-based approach. Statistical tests (one-way ANOVA and post-hoc paired t-test) con-

firm the differences between the results of the tested algorithms on P2 (all p-values are less than

7E-31) are statistically significant. On P1, even though the one-way ANOVA finds no significant

differences in the results (p-value= 0.073), the statistical differences between the prediction-based

approach and the other four approaches are significant. The paired t-tests between the results on P1

given by the prediction-based approach and other approaches all have p-values of less than 0.05. In

curative patients, we observe little difference in the results. The average overdue time in P3 given

by the prediction-based approach is about one day higher than other approaches. This small delay

is compensated for by the large reduction in overdue treatments of palliative patients.

Looking at the results given by the prediction-based approach trained on a variable arrival rate

(prediction-based*), we observe that the approach reduces even further the overdue time in pal-

liative patients (1.21 days in P1 and 1.0 in P2, compared to 3.29 days in P1 and 1.99 days in P2

given by the model trained on a stable arrival rate). The box-plots in Figure 14 shows that there

are also less outliers in overdue time of palliative patients. However, there is a trade-off of a higher

overdue time in curative patients (0.27 days higher in P3 and 0.86 days higher in P4) compared to

the prediction-based approach with a stable arrival rate. We conclude that the prediction approach



Pham et al.: A prediction-based approach for online dynamic appointment scheduling
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 25

Scheduling
strategy

avg.
occupancy

Waiting time (days) Overdue time (days)
overall P1 P2 P3 P4 overall P1 P2 P3 P4

online-greedy 97.45 33.02 5.14 6.13 3.67 44.02 17.80 5.14 3.91 29.74 16.18
daily-greedy 97.51 32.91 6.00 6.23 43.48 43.80 17.71 6.00 3.99 29.58 16.00

daily-IP 97.72 33.53 9.79 9.63 42.87 43.44 18.25 9.79 7.15 28.93 15.65
weekly-IP 97.61 33.04 7.86 7.72 42.42 44.10 17.76 7.86 5.37 28.51 16.19

prediction-based 97.14 32.93 3.29 4.05 44.21 44.94 17.69 3.29 1.99 30.22 16.96
prediction-based* 96.89 33.02 1.21 3.03 44.46 45.80 17.79 1.21 1.00 30.49 17.82
Table 4 Average waiting time of patients for different scheduling strategies on the real instance.

shows its robustness in real-life scenarios where there is a high fluctuation in patient arrivals. This

allows us to avoid the cost of retraining the model, as that would be necessary only when hospitals

upgrade their infrastructure or experience a significant change in arrival rates.

4.6. Explainable decision-making with SHAP value

In this section, we use SHAP (SHapley Additive exPlanations) to analyse the regression model

used in our prediction-based approach, and show how it can assist explainability in scheduling

decisions. SHAP values represent the relative impact of a variable on the outcome. To demonstrate

the methodology for our analysis, we use the regression model for the instance setting with 6

linacs and an arrival rate of 9.0. We first look at a global interpretation of the model, which

gives us an overview of the impact each feature has on the decision. A beeswarm plot (Figure

15) is an information-dense summary of how top features impact the model’s output. Each point

corresponds to an observation in the training set. The y-axis indicates the feature name, and the

higher a feature is, the more impact it has on the output. The x-axis indicates the SHAP values of

the data points. All the values to the left of the centre line represent the observations that shift the

output in the negative direction (reducing the prediction of waiting time), while the points on the

right shift the prediction in a positive direction (increasing the waiting time). The colors represent

the values of the features from low to high. Observe from Figure 15 that for the given model,

the number of sections has the highest impact on the decision. A high number of sections has a

positive impact on the output, i.e. a high number of sections is likely to result in a large waiting

time and vice versa. The contribution of the remaining features can be interpreted similarly, e.g, a

large due day has a high and positive impact on the waiting time (patients with high due days have

more waiting times), while a low remaining capacity on day 49 results in a higher waiting time.

To explain an individual scheduling decision we need to look at a plot that offers local

interpretability. A waterfall plot visualizes how the feature values contribute to the final prediction

of an individual observation. Two examples of waterfall graphs for two different patients can be

found in Figures 16 and 17. The x-axis shows the value of the output (number of waiting days
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Figure 15 Beeswarm plot for the instance setting with 6 linacs and an arrival rate of 9.0.

in our problem). E[f(x)] is the base value, which is generally the average output of the training

set. To explain a decision, we start from the base value at the bottom of the plot, then add up the

contribution of each feature (positive for red and negative for blue) one row at a time, until we

reach the actual model output f(x) at the top of the plot. The gray text before the feature names

shows the value of each feature for this sample. Thus, the waterfall plot explains how much each

feature contributes to the final decision.

Figure 16 The waterfall plot for a P4-patient. Figure 17 The waterfall plot for a P3-patient.
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5. Discussion and future work
In this section, we discuss the potential impact and challenges of our implementation in the real

world, as well as possible future research directions. Currently, our industrial partner, the oncology

department of CHUM, is collaborating with Gray3 (a patient scheduling start-up), to develop an

application for their scheduling tasks. The goal of the collaboration is to automate the scheduling

tasks that are currently done manually. We have been actively collaborating with Gray from the

beginning. The scheduling system is based on a modified IP model. It was deployed in early 2022,

and Gray is constantly using feedback from CHUM to improve the system. The system is still

myopic, i.e. it does not take stochastic information into account when making scheduling deci-

sions. Overdue treatments, especially in P2 and P3 patients, remain a big challenge. We hope to be

able to conduct tests using the predictive model in the second half of 2022. Supporting explainable

decisions is another advantage of our approach. From our experience deploying the system,

building confidence is the most challenging task, as it is difficult to convince the scheduling staff

to “trust” the algorithm, especially when decisions are human-sensitive. Therefore, transparent

scheduling systems are highly appreciated by the industry.

When implementing a machine learning-based approach for a real world application, it is

important to consider computing costs. In our approach, the most expensive cost is associated

with computing offline solutions. For our largest instance size (8 linacs, arrival rates of 12.0), the

average run time is 47,522 seconds (∼13 hours). Generating offline solutions for 500 instances

requires about 7000 hours of CPU time. It is our opinion that this is both reasonable and feasible

for large hospitals, and can be done easily with a computer cluster or server. Additionally, the

regression model adapts well to fluctuation in arrival rates and does not need to be retrained often,

as shown in Section 4.5. However, for hospitals of larger size than the one in this study, generating

offline solutions might become a problem. Moving forward, we plan to apply unsupervised

learning to train the regression model and overcome this obstacle.

Patient scheduling consists of allocation scheduling and appointment scheduling. Solving both

problems at once is difficult due to the high complexity. Studies that consider both problems

either (1) decompose the problem into 2 phases (Pham et al. 2021, Vieira et al. 2020) where

appointment scheduling is solved either in the second phase or as a post-processing step, or (2)

use (meta)heuristics (Maschler et al. 2016, Maschler and Raidl 2018, Vogl et al. 2019). However,

3 https://www.graysuite.com/

https://www.graysuite.com/
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those approaches do not guarantee the best performance. It is an open question if compromising

some objectives in allocation scheduling would lead to a better solution in appointment scheduling

in terms of the number of fixed appointments that were rescheduled, patient satisfaction, etc. We

plan to investigate this in future research.

6. Conclusions
Scheduling radiotherapy treatment is difficult due to the stochastic arrival rate of patients with dif-

ferent priorities who require multiple appointments. In this paper, we proposed an online machine

learning-based approach that makes scheduling decisions dynamically based on the present allo-

cation profile of the hospital. The algorithm was evaluated on a rolling horizon and compared with

several myopic approaches, both heuristic-based and IP-based. The test instances were generated

based on real data from CHUM to simulate different hospital sizes and crowding levels. The results

show that our prediction-based approach outperforms other approaches. The prediction-based

approach results in a lower average overdue time and lower average waiting time for palliative

patients when compared with myopic strategies, while maintaining the same performance for

curative patients. Our approach also scales decently with instance size, and we successfully solve

instances with up to 8 linacs. We proved the robustness of our prediction-based approach in a real

problem instance from CHUM, despite the high fluctuation of arrival rates observed in reality.

Finally, we demonstrated how our approach supports explainability and interpretability.
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Figure 18 The correlation heatmap of input features.

Appendix A: Training regression models

Before training the regression model, we test the collinearity of the features to verify if there are highly correlated

features that should be removed. A correlation heatmap can be found in Figure 18. We can see from the figure that there

is a certain correlation between the available capacity of consecutive days (the capacity reduces gradually over time).

We plotted only one-third of the considered days. However, we consider that information is relevant to the decision.

After confirming the independence of input features, different regression models are tested. We present the results

on different instance settings, from easiest to hardest. Eight regression models were tested. For each model and

instance setting, we report the training time, mean squared error (MSE), mean absolute error (MAE), and R-squared

value on both the training set and the testing set.

Three instance settings were tested, from the easiest to the most difficult:

• 4 linacs, arrival rate of 5.0

• 6 linacs, arrival rate of 9.0

• 8 linacs, arrival rate of 12.0

The training results for the three settings are presented in Table 5, 6, and 7, respectively. Random Forest and XGBoost

consistently gave the best results on both the training set and the testing set. However, Random Forest requires more

time for training, and it performs worse in difficult settings, i.e., when the size of the training test increases (69.12,

212.88, and 294.18 seconds in instance settings of 4, 6, and 8 linacs, respectively). Meanwhile, XGBoost takes only

6.56 seconds in 4 linacs and 2.86 seconds in 8 linacs. Random Forest gives the lowest error rates, but the MAE in the

testing set given by Random Forest and XGBoost are very close. A lower differences between the error rates in the
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Training Testing
Training time MSE MAE R-squared MSE MAE R-squared

MLP 29.7 6.28 1.8 0.81 5.94 1.76 0.82
SGD 0.15 12.82 2.78 0.61 12.38 2.75 0.62
Lasso 0.96 12.79 2.78 0.61 12.36 2.75 0.62
ElasticNet 0.72 13.06 2.81 0.6 12.62 2.77 0.61
Decision Tree 1.22 3.6 0.59 0.89 9.85 1.8 0.7
Random forest 69.12 0.6 0.49 0.98 4.43 1.35 0.86
XGBoost 6.56 1.5 0.85 0.95 4.3 1.34 0.87

Table 5 Training results for instance setting with 4 linacs, and an arrival rate of 5.0.

Training Testing
Training time MSE MAE R-squared MSE MAE R-squared

MLP 139.93 10.55 2.34 0.85 10.31 2.29 0.85
SGD 0.65 24.6 3.68 0.66 23.71 3.61 0.65
Lasso 1.65 24.31 3.66 0.66 23.4 3.59 0.66
ElasticNet 1.13 24.51 3.66 0.66 23.56 3.58 0.66
Decision Tree 3.54 8.11 1.16 0.89 14.42 2.13 0.79
Random forest 212.88 0.92 0.56 0.99 6.7 1.55 0.9
XGBoost 2.37 3.45 1.26 0.95 6.78 1.64 0.9

Table 6 Training results for instance setting with 6 linacs, and an arrival rate of 9.0.

Training Testing
Training time MSE MAE R-squared MSE MAE R-squared

MLP 159.35 7.27 1.91 0.87 7.46 1.94 0.87
SGD 0.89 18.93 3.25 0.67 19.34 3.27 0.67
Lasso 1.3 18.88 3.23 0.67 19.26 3.25 0.67
ElasticNet 0.57 19.03 3.23 0.67 19.45 3.26 0.67
Decision Tree 4.82 5.49 0.9 0.9 10.11 1.76 0.83
Random forest 294.18 0.57 0.44 0.99 4.36 1.27 0.93
XGBoost 2.86 2.57 1.08 0.95 4.54 1.37 0.92

Table 7 Training results for instance setting with 8 linacs, and an arrival rate of 12.0.

training test and the setting test from XGBoost also indicate that it is less prone to overfitting compared to Random For-

est. The R-squared values given by XGBoost in the three test cases are approximate 90%, which shows that the data fits

the regression model well. Based on the above analysis, we choose XGBoost as the regression model for our algorithm.

Appendix B: Additional results on generated instances

In this section, we provide the results for additional instance settings with a hospital size of 6 linacs. The realistic

arrival rates identified through the capacity simulations are between 7.0 and 9.0 (see Figure 19).

The waiting times and overdue times given by the proposed algorithms using those settings are shown in Figures

20, and 21, respectively. Observe that the differences between the algorithms are more profound than in the previous

smaller settings with 4 linacs, especially when the arrival rate increases. The prediction-based approach offers better

waiting times and overdue times for palliative patients (both P1 and P2) than scheduling methods, while maintaining

a comparable waiting time for curative patients. Similar to the case with 4 linacs, the more crowded a hospital is, the

better the prediction-based approach performs over other approaches. Another observation from the boxplots is that the

average waiting time (and overdue time) of P4 patients in greedy heuristic and batch scheduling is lower than the others,

which also leads to higher overdue time in palliative patients. This shows that the greedy heuristic and batch scheduling
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Figure 19 Capacity simulation on 6 linacs with arrival rates of 7.0, 8.0, 9.0 and 10.0. Starting from an arrival

rate of 10.0, the average waiting time of patients increases over time.

are not effective in delaying curative treatments to accommodate palliative ones. The results are in line with the results

in Section 4.4, and confirm that the prediction-based approach performs better in large and crowded hospitals.

Figure 20 Simulation on 6 linacs - arrival rate 7.0. Figure 21 Simulation on 6 linacs - arrival rate 9.0.
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