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This study explores a capacitated facility location problem where facility capacity and customer demand

are subject to uncertainties simultaneously. This problem decides the subset of facilities to open at the

system design phase to serve customers during the operational phase. The objective is to minimize the

total cost, including the first-stage location cost and the second-stage recourse cost, and guarantee the

system’s reliability, i.e., meeting demand as much as possible when uncertainties arise. A distributionally

robust optimization (DRO) framework is utilized to model the problem. A scenario-wise ambiguity set with

partial distributional information of random variables is constructed, which can capture uncertainties caused

by different random events or different magnitudes of the same event type and explicitly represent the

correlation between facilities’ uncertain capacity and customers’ uncertain demand. We apply an adaptation

policy to the DRO model and reformulate it to a mixed-integer linear programming model, which is solvable

by off-the-shelf solvers. Numerical results show that the scenario-wise DRO framework can provide a better

trade-off between cost and service level than the stochastic programming model and the DRO model with a

marginal moment-based ambiguity set, demonstrating that the proposed scenario-wise DRO model offers a

practical decision-making tool for enhancing supply chain robustness via facility location.

Key words : facility location, capacity failure, demand uncertainty, scenario-wise ambiguity, distributionally

robust optimization
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1. Introduction

Disruptions caused by unexpected events or random factors, such as natural disasters or indus-

trial accidents, can simultaneously affect facility operations and customer demand at a large scale.

Specifically, facilities’ capacity can be partially or completely diminished by random events. Mean-

while, customer demand patterns may also deviate from those in the nominal disruption-free sce-
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nario, e.g., after a disaster, the demand for daily necessities and medical supplies may increase,

and the demand for luxuries may decrease or even vanish (Ergun et al. 2011, An et al. 2014). A

recent example is the supply chain disruptions caused by the coronavirus pandemic, where sup-

plies of personal protective equipment and medical devices have been restricted due to shutdowns

of manufacturing plants, whereas demand has increased (Besson 2020). To enhance supply chain

robustness, decision makers should take these uncertainties into account at the system design phase,

to avoid costly recourse actions during the operational phase.

Moreover, during the lifetime of a supply chain system, its operations can be affected by multiple

types of random events, e.g., natural disasters and man-made interference, each having a different

impact and leading to different levels of uncertainty, thus calling for different recourse actions. Even

under the same type of disruption events, the impact can vary significantly. Thus, it is important for

decision makers to incorporate event-correlated uncertainties when robustifying the supply chain

system. Under event-correlated uncertainties, the impacts of a random event or the uncertainties

caused by the random event are directly related to the event’s category and magnitude.

Facility location, one of the most significant strategic decisions in a supply chain system, deter-

mines the locations of new facilities from a set of candidate sites at the system design phase, to meet

customer demand during the operational phase. However, the aforementioned random events may

affect facilities’ operations such that they do not have enough capacity to satisfy all the demand,

leading to poor service levels. Meanwhile, customer demand patterns may also be influenced by

random events, which further aggravates the impact of random events on facilities, especially when

demand surges after a disruption event. Such an unexpected interruption and disruption can poten-

tially put the supply chain of a firm at risk, and an inability to incorporate disruption risk in

the decision-making process can conceivably result in far more expensive long-run operating costs

(Chopra and Sodhi 2014). Therefore, to improve supply chain robustness and reliability, it is crucial

to consider uncertainties in facility location problems (FLPs) so that the firm can reliably provide

satisfactory customer service (i.e., meet demand as much as possible) at a reasonable cost in both

nominal and disruption situations.

To tackle problems under uncertainties, three frameworks can be considered: stochastic pro-

gramming (SP), robust optimization (RO), and distributionally robust optimization (DRO) (Chen

et al. 2020). In stochastic models, the uncertain parameters are denoted as random variables with

a known probability distribution. The objective function is to minimize/maximize the expected

cost/profit over this distribution. Due to limited samples, it is often difficult or even impossible

to estimate the occurrence probability of some random events, especially natural disasters. Thus,

solutions produced by stochastic models with the assumption of full knowledge about the prob-

ability distribution may lead to disappointing results in out-of-sample tests (Smith and Winkler
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2006). On the other extreme, the RO approach completely ignores the probability distribution.

Instead, it assumes that the uncertain parameters belong to an uncertainty set and then optimizes

the performance of the worst-case scenario within the uncertainty set. As only the worst-case

scenario is considered, the solution produced by RO will be suboptimal for other more-likely sce-

narios. More specifically, RO puts all its weight on the extreme scenario, and its performance

would be poor or even terrible once different scenarios occur. The DRO approach, on the other

hand, provides an alternative framework to combine SP and RO while attempting to address their

shortcomings. With regard to knowing the probability distribution of random variables, DRO takes

a middle-ground approach as opposed to the black-or-white view of the SP and RO approaches.

Specifically, DRO assumes that the probability distribution of uncertain parameters belongs to

a family of distributions (i.e., an ambiguity set) that shares common distributional information

(e.g., mean, variance, and mean absolute deviation), which is often available and reliable (Popescu

2007). Optimization is subsequently performed to hedge against the worst-case distribution within

the ambiguity set. Compared to the SP approach, the DRO approach does not require perfect

distribution information of uncertain parameters, which is more compatible with the uncertainties

considered in this study. Moreover, compared with RO, DRO can take full advantage of available

data to extract statistical information on random variables to characterize randomness. As DRO

considers the worst-case probability distribution rather than the single worst case, its solution is

less conservative than RO’s (Shang and You 2018, Shehadeh 2020, Ash et al. 2022, Wang et al.

2023); thus, it has the potential to save costs for multiple scenarios that may arise throughout a

facility’s life cycle.

This paper studies a capacitated facility location problem (CFLP) with both provider-side and

receiver-side uncertainties, i.e., the uncertain capacity at facilities and the uncertain demand at

customers. To solve the problem, the following research questions should be addressed: (1) the

characterization of uncertainties to reflect the impacts of different random events on facilities’

capacity and customers’ demand; (2) the reformulation of the DRO model into a tractable mixed-

integer linear programming (MILP) model; and (3) the quantification of trade-offs between cost and

service level under different modeling frameworks. To summarize, this study makes the following

contributions to the literature:

• A DRO modeling paradigm is utilized to tackle the FLPs with simultaneous provider-side and

receiver-side uncertainties. Unlike stochastic models, it does not require perfect distribution

information of uncertain parameters. Unlike RO models, it optimizes the performance under

the worst-case probability distribution rather than only the worst-case scenario, reducing the

conservatism of robust solutions.
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• A scenario-wise ambiguity set is constructed to characterize the randomness of parameters,

where the statistical information of random variables in each scenario can be estimated from

historical observations, which can potentially be used in conjunction with human inputs when

historical data is insufficient. The proposed ambiguity set can capture the impacts of different

types of disruption events or different magnitudes of the same event type. More importantly,

it can represent the correlation between the two types of uncertainty considered (via the event

causing these simultaneous uncertainties) instead of assuming they are independent, as is often

seen in the literature.

• A scenario-wise adaptation policy is applied to the second-stage recourse problem of the

DRO model; namely, different recourse actions are used for different scenarios rather than

a single recourse for all the cases, further alleviating the conservatism of robust solutions.

We reformulate the resulting adaptive DRO model to an MILP model, which is solvable by

off-the-shelf solvers.

• The proposed modeling framework is extended to a location and inventory pre-positioning

problem with uncertainty in disaster operations management, for which numerical results are

also provided using instances based on a case study.

• Simulation tests and a case study are conducted to validate the scenario-wise DRO framework.

Results show that the DRO model takes much less computing time in comparison with the

SP model; meanwhile, it achieves a better trade-off between cost and service level in out-of-

sample tests than other modeling schemes, demonstrating that the scenario-wise DRO model

provides a practical decision-making tool for enhancing supply chain robustness.

The rest of this paper is organized as follows. Section 2 reviews related literature. Section 3

describes the problem and presents different formulations to model the problem. Section 4 develops

the solution method for the scenario-wise DRO model. Numerical tests and analyses are provided

in Section 5, which is followed by conclusions in Section 6.

2. Literature Review

This section reviews related research on FLPs under uncertainty and the DRO approach.

2.1. Facility Location Problems Under Uncertainty

In FLPs, there are generally three types of uncertainty: provider-side uncertainty, in-between uncer-

tainty, and receiver-side uncertainty (Shen et al. 2011). Provider-side uncertainty involves uncertain

supply capacity and uncertain lead time. In-between uncertainty refers to uncertain travel time or

cost and uncertain transportation capacity on arcs (due to failures of the transportation network).

Receiver-side uncertainty is the random demand of customers. These three types of uncertainty

have been widely considered in FLPs, for example, FLP under facility disruptions (Snyder and



5

Daskin 2005, An et al. 2014, Lu et al. 2015, Azad and Hassini 2019, Du et al. 2020, Stienen et al.

2021), FLP under edge failures (Xie and Ouyang 2019, Matthews et al. 2019), FLP with uncertain

travel time/cost (Nikoofal and Sadjadi 2010, Gao and Qin 2016, Mǐsković et al. 2017), and FLP

with uncertain demand (Atamtürk and Zhang 2007, Shehadeh and Sanci 2021, Basciftci et al. 2021,

Saif and Delage 2021, Zhang et al. 2023, Kahr 2022). Dönmez et al. (2021) provide a comprehensive

review of humanitarian facility location under uncertainty, where existing works are classified based

on the type of facilities involved, the decision variables, the optimization objective, the modeling

framework, and the solution method.

Although there are many works on FLPs under uncertainty, most of them consider one type of

uncertainty at a time, and only a limited number of prior works study simultaneous uncertainties.

However, the presence of multiple simultaneous uncertainties is common in realistic applications

of facility location. For example, as occurred during the coronavirus pandemic, the demand for

some products, such as domestic toilet rolls, surges, while productivity decreases due to employee

absences and the shutdown of factories (Montgomery 2020). Thus, it is important to consider

multiple uncertainties in the system design phase to enhance supply chain resilience. Noyan et al.

(2016) explore a network design problem that determines the locations and capacities of relief

centers. They consider customers’ uncertain demand for relief items and the uncertain capacity of

transportation links (e.g., roads and bridges). A two-stage SP model is constructed for the prob-

lem, which is solved by a Benders decomposition-based branch-and-cut algorithm. Elçi and Noyan

(2018) explore a stochastic pre-disaster relief network design problem, which decides the locations

and capacities of the response facilities and their inventory levels. Multiple types of parameters

are subject to uncertainty—demand, travel time, supply capacity, unit transportation cost, and

shortage penalty cost—which are represented by scenarios. The authors use a chance-constrained

two-stage mean-risk SP model for the problem. Zetina et al. (2017) study the uncapacitated hub

location problem with uncertain demand and transportation costs using the static RO approach,

where budgeted uncertainty sets are utilized to capture randomness. Wang et al. (2020) apply the

adaptive DRO approach to both the uncapacitated and capacitated hub location problems under

demand and cost uncertainty. Taherkhani et al. (2021) investigate a profit-maximizing capacitated

hub location problem, where demands and revenues are subject to uncertainty. The authors use

both stochastic and robust approaches to model the problem. Mazahir and Ardestani-Jaafari (2020)

study a global sourcing problem under compliance legislation, where a supplier’s compliance capa-

bility to a market is uncertain (resulting in arc disruptions) and customer demand is also uncertain.

They use a two-stage RO approach to formulate the problem. Cheng et al. (2021) study a CFLP

with facility disruptions and uncertain demand using a two-stage RO approach. Specifically, the
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authors employ a budgeted uncertainty set to characterize uncertainties, where a binary random

variable is used to denote whether a facility is (completely) disrupted or not.

The papers reviewed above show that some authors have begun considering the uncertain facility

capacity and customer demand simultaneously. However, they often assume that these two types

of uncertainty are independent, i.e., the correlation between uncertainties is neglected in their

works, whereas this relationship often holds in practical applications. Moreover, the DRO model-

ing framework and its corresponding solution method for FLPs with multiple types of uncertainty

have not been explored. We further emphasize that this work differs from that of Cheng et al.

(2021) in three aspects: First, the proposed ambiguity set can capture the dependency between

facility disruption and uncertain demand, whereas Cheng et al. (2021) assume that the uncertain

capacity of facilities and the uncertain demand of customers are independent. Second, facilities are

assumed to lose their capacities completely in Cheng et al. (2021) once disruptions happen, whereas

this work assumes that facilities can be completely or partially disrupted. This setting provides

more flexibility because facilities may still be able to meet part of the demand in some disruption

scenarios. Third, different modeling paradigms are used to solve the CFLP under uncertainties;

thus, different solution methods are required. In addition, although the DRO modeling paradigm

has been applied by Saif and Delage (2021) to solve the FLP, the authors only consider uncertain

demand. In particular, they construct a Wasserstein ambiguity set, which can be considered equiv-

alent to the scenario-wise ambiguity set with one scenario. Thus, the proposed model generalizes

the approach considered in Saif and Delage (2021) by considering simultaneous supply and demand

uncertainties by constructing a scenario-wise ambiguity set.

2.2. Distributionally Robust Optimization

The concept of DRO can be dated back to the work of Scarf (1957), which addresses an ambiguity-

averse newsvendor problem. Due to the development of RO and statistics, tractable reformulations

for important classes of DRO models have been developed only recently (Saif and Delage 2021). A

key step in employing the DRO approach is the construction of the ambiguity set. In general, there

are two types of uncertainty sets: moment-based and statistical distance-based. The moment-based

ambiguity set includes all the probability distributions that meet specified moment constraints, e.g.,

the first and the second moments. This type of ambiguity set has been widely used in solving various

application problems, for example, portfolio optimization (Delage and Ye 2010), single machine

scheduling (Chang et al. 2017), contract design problem in agricultural supply chains (Zhong et al.

2023), and facility location (Shehadeh and Sanci 2021), among others. In recent years, the statistical

distance-based ambiguity set has gained popularity, which includes all the probability distributions

that are within a certain distance from the given distribution. The proposed distance metrics
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encompass the Wasserstein metric (Mohajerin Esfahani and Kuhn 2018) and the ϕ−divergence

(Ben-Tal et al. 2013). This class of ambiguity set is also used in different applications, e.g., facility

location (Saif and Delage 2021), the unit commitment problem (Hou et al. 2018), and the vehicle

routing problem (Zhang et al. 2021b), to name a few.

Recently, Chen et al. (2020) introduce a new DRO framework, robust stochastic optimization

(RSO), which unifies scenario tree-based stochastic optimization and DRO in a single framework.

The equipped event-wise ambiguity set is rich enough to cover several types of ambiguity sets,

including those generated by statistical-based or machine learning-based methods. The works of

Hao et al. (2020), Shehadeh and Sanci (2021), Perakis et al. (2023), and Li et al. (2022) are novel

applications of the RSO framework. In particular, Hao et al. (2020) study a vehicle allocation

problem with uncertain demand, which is affected by weather conditions, i.e., the demand presents

different patterns with respect to the weather (sunny or rainy). Shehadeh and Sanci (2021) consider

a distributionally robust CFLP with bimodal random demand. Specifically, the authors assume that

customer demand belongs to exactly two spatially distinct distributions—one before the occurrence

of an event and one after it happens. In contrast to the work of Shehadeh and Sanci (2021),

this study considers both provider-side and receiver-side uncertainty, and more importantly, the

proposed ambiguity set can encompass more than two scenarios to differentiate the impacts of

different events, or different magnitudes of the same event type. In addition, we utilize a scenario-

wise adaptation policy for the second-stage recourse problem, while Shehadeh and Sanci (2021)

adopt a static policy—the recourse decisions are the same for all realizations of the uncertain

scenario. Perakis et al. (2023) explore a multi-item joint pricing and production problem, where a

cluster-wise ambiguity set is constructed by applying the K-means clustering algorithm to demand

residuals. Li et al. (2022) study a multi-period inventory routing problem with uncertain demand,

where the first-moment information of demand under each scenario is included in the ambiguity

set.

3. Problem Definition and Formulation

This section introduces the problem, the two-stage SP model, and the two-stage DRO model. A

toy example is also provided to show the value of the scenario-wise ambiguity set.

3.1. Problem Definition

We first define the following notation that will be used throughout the paper. Symbol [S] ≜

{1, . . . , S} denotes the set of positive running indices up to S. Boldface lowercase and uppercase

characters represent vectors and matrices with appropriate dimensions, respectively. aT is the

transpose of a. a · b denotes the dot product of two vectors with the same dimension. Symbol

P(RI) denotes the set of all distributions supported on RI . A random variable d̃i is denoted with a
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tilde sign, and we use d̃∈ P,P∈P(Ω),Ω⊆RI to define d̃ as an I-dimensional random vector with

support Ω and distribution P.
In the CFLP, [J ] is the set of candidate facilities, and [I] is the set of customers. Parameter fj

is the fixed cost of locating a facility at site j ∈ [J ], and cj is the corresponding capacity of facility

j ∈ [J ] if it is open. Parameter di is the demand quantity of customer i ∈ [I]. Parameter tij is the

unit transportation cost for serving customer i ∈ [I] by facility j ∈ [J ]. Parameter pi is the unit

penalty cost at customer i∈ [I] for unmet demand. Binary variable yj equals to 1 if facility j ∈ [J ]

is open, and 0 otherwise. Continuous variable xij denotes the product quantity transported from

facility j ∈ [J ] to customer i∈ [I]. Continuous variable ui is the unmet demand at customer i∈ [I].

In a deterministic environment, facility capacity and customer demand are perfectly known when

making location decisions. In practice, these two parameter types are often subject to uncertainty

during the operational stage of a supply chain system. To reflect this reality, we denote facilities’

uncertain capacities as a random vector c̃ = (c̃1, . . . , c̃J)
T and customers’ uncertain demand as a

random vector d̃ = (d̃1, . . . , d̃I)
T . The event that causes these uncertainties is represented by a

random variable ẽ∈R. The event could be an earthquake, flood, or strike, i.e., ẽ can represent any

type of disruption event that decision-makers are concerned about. If the considered supply chain

system is mainly disrupted by one type of event, ẽ can denote the magnitude or the level of influence

of the event, like a minor, major, or great earthquake. The joint capacity, demand, and related

event is then denoted as (c̃, d̃, ẽ)∈RJ ×RI ×R. The notation suggests that the correlation between

uncertain capacity and demand is captured via the event causing these two types of uncertainties.

3.2. Two-stage Stochastic Programming Model

If the decision maker has perfect knowledge of the joint distribution of (c̃, d̃, ẽ), say, P ∈ P(RJ ×
RI ×R), then the problem can be formulated as the following two-stage SP model:

min
y

∑
j∈[J]

fjyj +EP

[
h(y, c̃, d̃)

]
(1a)

s.t. yj ∈ {0,1} ∀j ∈ [J ], (1b)

where h(y, c̃, d̃) is the second-stage recourse cost. Under a given location decision y and a realization

(c,d) of uncertain parameters (c̃, d̃), h(y, c̃, d̃) is expressed as follows:

h(y,c,d) =min
x,u

∑
i∈[I]

∑
j∈[J]

tijxij +
∑
i∈[I]

piui (2a)

s.t.
∑
j∈[J]

xij +ui ≥ di ∀i∈ [I], (2b)∑
i∈[I]

xij ≤ cjyj ∀j ∈ [J ], (2c)

xij ≥ 0 ∀i∈ [I], j ∈ [J ], (2d)

ui ≥ 0 ∀i∈ [I]. (2e)
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The objective function (1a) minimizes the sum of the first-stage location cost and the expected

second-stage recourse cost. Equation (2a) indicates that the recourse cost comprises two parts:

transportation costs for serving demand and penalty costs for unmet demand. Constraints (2b)

impose that the sum of the quantity received and unmet demand at each customer must be equal to

or larger than that customer’s demand. Constraints (2c) specify that only open facilities can serve

customers and that each facility’s capacity constraint must be respected. Constraints (2d)–(2e)

define the non-negativity of variables.

The SP model (1) assumes that P is perfectly known. However, in practice, it is difficult or even

impossible to obtain the true probability distribution. As an alternative, some studies (e.g., Noyan

et al. (2016) and Xiang and Liu (2021)) use scenarios to represent uncertainty and associate each

scenario with an occurrence probability. For our problem, suppose there are L samples of historical

observations denoted as L= {(ĉ1, d̂1, ê1), (ĉ2, d̂2, ê2), . . . , (ĉL, d̂L, êL)}. Under the scenario-based SP

framework, each sample can be recognized as a scenario with an occurrence probability 1/L, i.e., the

empirical distribution is used to approximate the true distribution. Thus, the two-stage SP model

with a scenario-based representation of uncertainty (abbreviated as SSP) is used to approximate

model (1), which is as follows:

min
∑
j∈[J]

fjyj +
1

L

L∑
l=1

∑
i∈[I]

∑
j∈[J]

tijxijl +
∑
i∈[I]

piuil

 (3a)

s.t.
∑
j∈[J]

xijl +uil ≥ d̂il ∀i∈ [I], l ∈ [L], (3b)∑
i∈[I]

xijl ≤ ĉjlyj ∀j ∈ [J ], l ∈ [L], (3c)

yj ∈ {0,1} ∀j ∈ [J ], (3d)

xijl ≥ 0 ∀i∈ [I], j ∈ [J ], l ∈ [L], (3e)

uil ≥ 0 ∀i∈ [I], l ∈ [L], (3f)

where d̂il and ĉjl are the i-th and j-th components of d̂l and ĉl, respectively. Correspondingly,

xijl and uil are the recourse variables associated with scenario l ∈ [L]. Note that the information

of events êl, l ∈ [L], i.e., the type and the magnitude of events, is not utilized in the SSP model.

Namely, the SP approach treats all the supply-demand samples as a whole and does not consider

the events that have caused these uncertainties.

3.3. Two-stage Distributionally Robust Model

Formulation (3) is an MILP model, which can be solved directly by commercial solvers. Neverthe-

less, the empirical distribution of uncertain parameters is often unavailable, especially when dealing

with disruption. Even in the context where such empirical information can be readily available, the
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solution based on the stochastic model (3) may suffer from the issue of overfitting, resulting in poor

performance when the out-of-sample distribution deviates from the true distribution. Therefore,

instead of specifying P to follow a particular distribution, we assume that it belongs to a set of

distributions (i.e., the distribution is ambiguous) that shares common distributional information,

as these pieces of information are often available and reliable (Popescu 2007). To tackle the distri-

butional ambiguity in our problem, the DRO framework, together with a scenario-wise ambiguity

set, is adopted.

3.3.1. Scenario-wise Ambiguity Set. The DRO framework assumes that the true dis-

tribution of (c̃, d̃, ẽ) : P ∈ P(RJ × RI × R) belongs to an ambiguity set F ⊆ P(RJ × RI × R),
which is characterized by partial distributional information estimated from historical data. The

construction of F is key to the solution of the DRO model and its out-of-sample perfor-

mance. We propose to construct a scenario-wise ambiguity set based on historical samples L =

{(ĉ1, d̂1, ê1), (ĉ2, d̂2, ê2), . . . , (ĉL, d̂L, êL)}. Let E = {ê1, . . . , êL}, and E is subsequently partitioned

into S non-overlapping scenarios: Es, s∈ [S] with Es∩Es′ = ∅, for all s, s′ ∈ [S], s ̸= s′ and ∪s∈[S]Es =

E . That is, (i) each scenario Es contains one or multiple realizations of ẽ; (ii) any two scenarios are

exclusive; and (iii) the union of Es constitutes set E . We will discuss how to do the partition later

in this subsection.

Let qs denote the probability of scenario s ∈ [S]. By definition, we have P(ẽ ∈ Es) = qs and∑
s∈[S] qs = 1. Let Us, s∈ [S] denote the index set associated with Es, that is, Us = {l ∈ [L] | êl ∈ Es}. A

random variable s̃ taking discrete values in [S] is introduced to denote the scenario s̃= s associated

with Es. Accordingly, using historical data, the scenario-wise ambiguity set F ⊆P(RJ ×RI × [S])

associated with the random variable (c̃, d̃, s̃) is constructed as

F =



P∈P(RJ ×RI × [S])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(c̃, d̃, s̃)∼ P

EP [c̃ | s̃= s] =µs ∀s∈ [S]

EP [|c̃−µs| | s̃= s]≤ δs ∀s∈ [S]

EP

[
d̃ | s̃= s

]
= ρs ∀s∈ [S]

EP

[
|d̃−ρs| | s̃= s

]
≤ ζs ∀s∈ [S]

P [(c,d)∈Ωs | s̃= s] = 1 ∀s∈ [S]

P [s̃= s] = qs ∀s∈ [S]



, (4)

where Ωs is the support set associated with scenario s∈ [S], defined as

Ωs =
{
(c,d)∈RJ ×RI

∣∣ cs ≤ c≤ c̄s,ds ≤ d≤ d̄s

}
.

For each scenario s∈ [S], the mean capacity and demand are

µs =
1

|Us|
∑
l∈Us

ĉl, ρs =
1

|Us|
∑
l∈Us

d̂l,
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the mean absolute deviations are

δs =
1

|Us|
∑
l∈Us

|ĉl −µs|, ζs =
1

|Us|
∑
l∈Us

|d̂l −ρs|,

the probability is

qs =
|Us|
L

,

and the parameters of the support set are

[cs]j =min
l∈Us

ĉjl, [c̄s]j =max
l∈Us

ĉjl, ∀j ∈ [J ],

[ds]i =min
l∈Us

d̂il, [d̄s]i =max
l∈Us

d̂il, ∀i∈ [I].

It is observed that when S = 1, the scenario-wise ambiguity set (4) reduces to a marginal moment-

based ambiguity set as follows:

F̄ =


P∈P(RJ ×RI)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(c̃, d̃)∼ P

EP [c̃] =µ

EP [|c̃−µ|]≤ δ

EP

[
d̃
]
= ρ

EP

[
|d̃−ρ|

]
≤ ζ

P [(c,d)∈Ω] = 1


, (5)

where the support set is defined as Ω=
{
(c,d)∈RJ ×RI | c≤ c≤ c̄,d≤ d≤ d̄

}
. In this case, only

a single set of parameters will be derived from the entire data. The relationship between the optimal

solutions under F and F̄ is established in the next section. When S =L, each scenario encompasses

exactly one sample, and the scenario-wise ambiguity set only contains the empirical distribution.

For a given set of samples L, decision makers can flexibly construct the scenarios Us, s ∈ [S]

based on the types and the magnitudes of events. Without loss of generality, for example, the set

of samples can take the following form

L= {(ĉ1, d̂1, ê
N
1 ), . . . , (ĉm, d̂m, ê

N
m), (ĉm+1, d̂m+1, ê

I
m+1), . . . , (ĉL, d̂L, ê

I
L)}, (6)

where the subscript N represents the case where events êNl , l ∈ [m] are associated with natural

disasters (like earthquakes and floods). The subscript I represents the case where events êIl , l ∈

{m+1, . . . ,L} are associated with industrial events (such as material shortages or strikes). Based

on the types of disruption events, we can then partition the first m samples to form a scenario,

and the rest L −m samples to form another scenario. Events of the same type can be further

distinguished by their magnitudes. For example, suppose events êNl , l ∈ [m] in set (6) specifically
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refer to earthquakes; in this case, we can further divide samples 1, . . . ,m into different scenarios

according to their associated magnitudes. On the other hand, if the event information is unknown,

i.e., we only have historical capacity and demand samples, we can use clustering algorithms to divide

samples into different scenarios. For example, the well-known and efficient K-means clustering

algorithm can be implemented with a computational complexity of O(KnT ), where K is the

number of clusters, n is the number of samples, and T is the number of iterations(Jain and Dubes

1988, Jain 2010).

3.3.2. Two-stage DRO Model. Under the DRO framework, decision makers aim to min-

imize the sum of the first-stage location cost and the worst-case second-stage expected recourse

cost over all possible distributions in F . Thus, the two-stage DRO model under a scenario-wise

ambiguity set (abbreviated as SDR) is constructed as

min
y

∑
j∈[J]

fjyj +sup
P∈F

EP

[
h(y, c̃, d̃, s̃)

] , (7)

where the second-stage recourse cost relies on the realization s of the uncertain scenario s̃. In

addition, for notational convenience, the DRO model with the marginal moment-based ambiguity

set F̄ is denoted as MDR.

3.4. Value of the Scenario-wise Ambiguity Set

This section first presents a toy example to illustrate the value of the scenario-wise ambiguity set

and then formally establishes the relationship between the optimal solutions generated by the SDR

and MDR models.

Consider a simple supply chain system with one supplier and one retailer. We assume the

underlying true distribution is as follows: ẽ follows a Bernoulli distribution with P(ẽ = 1) = 1/2.

Conditioning on ẽ, we have P(c̃ = ĉ1, d̃ = d̂1 | ẽ = 1) = 1 and P(c̃ = ĉ0, d̃ = d̂0 | ẽ = 0) = 1, where

ĉ1 ≥ ĉ0, d̂1 ≤ d̂0. One can interpret, for example, ẽ = 1 and ẽ = 0 as the cases before and after a

disruption event, respectively. These two cases naturally form S = 2 scenarios, i.e., E1 = {ẽ = 1}
and E0 = {ẽ= 0}. Correspondingly, the scenario-wise ambiguity set is constructed as

F =



P∈P(R×R× [2])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(c̃, d̃, s̃)∼ P

EP [c̃ | s̃= i] = ĉi for i= 0,1

EP [|c̃− ĉi| | s̃= i]≤ 0 for i= 0,1

EP

[
d̃ | s̃= i

]
= d̂i for i= 0,1

EP

[
|d̃− d̂i| | s̃= i

]
≤ 0 for i= 0,1

P
[
(c̃, d̃)∈R×R | s̃= i

]
= 1 for i= 0,1

P [s̃= i] = 1
2

for i= 0,1



,



13

and the marginal moment-based ambiguity set as

F̄ =


P∈P(R×R)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(c̃, d̃)∼ P

EP [c̃] =
ĉ0+ĉ1

2

EP
[
|c̃− ĉ0+ĉ1

2
|
]
≤ |ĉ0−ĉ1|

2

EP

[
d̃
]
= d̂0+d̂1

2

EP

[
|d̃− d̂0+d̂1

2
|
]
≤ |d̂0−d̂1|

2

P
[
(c̃, d̃)∈R×R

]
= 1


.

It is observed that the scenario-wise ambiguity set F contains only a single distribution, i.e.,

P(c̃= ĉ0, d̃= d̂0, s̃= 0) = 1
2
, P(c̃= ĉ1, d̃= d̂1, s̃= 1) = 1

2
, which is the true distribution. In contrast,

the marginal moment-based ambiguity set F̄ contains many possible distributions, for example

P(c̃ = ĉ0, d̃ = d̂0) =
1
2
, P(c̃ = ĉ1, d̃ = d̂1) =

1
2
and P(c̃ = ĉ0+ĉ1

2
, d̃ = d̂0+d̂1

2
) = 1, among others. The

benefits of using a scenario-wise ambiguity set are formally established in the following proposition.

Proposition 1. Let ΠSDR and ΠMDR be the optimal values of models SDR and MDR, respec-

tively. Given ambiguity sets F and F̄ , if (i) µ=
∑

s∈[S] qsµs and ρ=
∑

s∈[S] qsρs, (ii) |µ−µs| ≤
δ− δs and |ρ−ρs| ≤ ζ− ζs for all s∈ [S], and (iii) Ω=∪s∈[S]Ωs, then ΠSDR ≤ΠMDR.

Proof. See Appendix A.1. □

Proposition 1 suggests that the scenario-wise ambiguity set can produce less-conservative solu-

tions for in-sample tests. The three conditions included in the proposition require consistency in

parameter specification for both ambiguity sets, which naturally holds when these parameters are

estimated from the same data set.

4. Solution Method

This section reformulates the SDR model to an MILP model and discusses an extension of the

scenario-wise DRO framework.

4.1. MILP Reformulation of the DRO Model

Based on the work of Wiesemann et al. (2014), auxiliary random vectors w̃ ∈ RJ and ṽ ∈ RI are

first introduced to lift the ambiguity set (4) as

F ′ =



P∈P(RJ ×RJ ×RI ×RI × [S])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(c̃, w̃, d̃, ṽ, s̃)∼ P

EP [c̃ | s̃= s] =µs ∀s∈ [S]

EP [w̃ | s̃= s]≤ δs ∀s∈ [S]

EP

[
d̃ | s̃= s

]
= ρs ∀s∈ [S]

EP [ṽ | s̃= s]≤ ζs ∀s∈ [S]

P
[
(c̃, w̃, d̃, ṽ)∈Ω′

s|s̃= s
]
= 1 ∀s∈ [S]

P [s̃= s] = qs ∀s∈ [S]



, (8)



14

where Ω′
s is the lifted support set, defined as

Ω′
s =

{
(c,w,d,v)∈RJ ×RJ ×RI ×RI | cs ≤ c≤ c̄s, |c−µs| ≤w,ds ≤ d≤ d̄s, |d−ρs| ≤ v

}
.

Compared to the original ambiguity set F , the terms inside the expectation constraints in the

lifted ambiguity set F ′ are all linear, and the nonlinearities have been transferred to the support

set Ω′
s. Next, we reformulate the inner supreme problem in (7). Specifically, under a given location

decision y, P is the decision variable of problem supP∈F EP

[
h(y, c̃, d̃, s̃)

]
, i.e., we are choosing a

distribution that maximizes the expected value of h(y, c̃, d̃, s̃).

Proposition 2. The term supP∈F EP

[
h(y, c̃, d̃, s̃)

]
in (7) is equivalent to

min
∑
s∈[S]

{
(µs)

Tαs +(δs)
Tβs +(ρs)

Tλs +(ζs)
Tγs

+ max
(c,w,d,v)∈Ω′

s

[
qsh(y,c,d, s)−

(
cTαs +wTβs +dTλs +vTγs

)]}
(9a)

s.t. βs,γs ≥ 0 ∀s∈ [S]. (9b)

Proof. See Appendix A.2. □

Note that the model defined by (9a)–(9b) is not yet directly solvable by a commercial MILP

solver in its present form, because an inner maximization problem exists. In the following, we

reformulate the inner maximization problem to transform (9a) into a single minimization problem.

Scenario-wise adaptations. The scenario-wise adaptation policy introduced in Chen et al.

(2020) is adopted for our problem, i.e., different recourse decisions are utilized for different scenarios.

To do this, variables x and u are defined as mappings of scenarios—an additional index s is featured

for variables under each scenario, i.e., xijs and uis for scenario s ∈ [S]. Thus, the second-stage

problem h(y,c,d, s) under scenario-wise adaptations is written as

h(y,c,d, s) = min
xs,us

∑
i∈[I]

∑
j∈[J]

tijxijs +
∑
i∈[I]

piuis (10a)

s.t.
∑
j∈[J]

xijs +uis ≥ dis ∀i∈ [I], (10b)∑
i∈[I]

xijs ≤ cjsyj ∀j ∈ [J ], (10c)

xijs ≥ 0 ∀i∈ [I], j ∈ [J ], (10d)

uis ≥ 0 ∀i∈ [I]. (10e)

Under a given first-stage decision y and scenario s ∈ [S], let Ois and Qjs be the dual variables

associated with constraints (10b) and (10c), respectively. Then the dual problem of h(y,c,d, s) is

max
Os,Qs

∑
i∈[I]

disOis +
∑
j∈[J]

cjsyjQjs (11a)
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s.t. Ois +Qjs ≤ tij ∀i∈ [I], j ∈ [J ], (11b)

Ois ≤ pi ∀i∈ [I], (11c)

Ois ≥ 0 ∀i∈ [I], (11d)

Qjs ≤ 0 ∀j ∈ [J ]. (11e)

Now the inner maximization problem in (9a) can be equivalently reformulated as

max
(c,w,d,v)∈Ω′

s

qs

max
Os,Qs

∑
i∈[I]

disOis +
∑
j∈[J]

cjsyjQjs

+
(
−cTαs −wTβs −dTλs −vTγs

) (12a)

s.t. (11b)–(11e). (12b)

Regarding the inner maximization problem in (12a), only its objective function involves variables

c and d; thus, its optimal value is attained at dis = d̄is (due to Ois ≥ 0) and cjs = cjs (due to

Qjs ≤ 0). Consequently, equation (12a) is rewritten as

qs

max
Os,Qs

∑
i∈[I]

d̄isOis +
∑
j∈[J]

cjsyjQjs

+ max
(c,w,d,v)∈Ω′

s

(
−cTαs −wTβs −dTλs −vTγs

)
(13)

Let xijs and pis be the dual variables associated with constraints (11b) and (11c), respectively.

By using the dual theory, we obtain Proposition 3.

Proposition 3. For any y ∈ {0,1}J , max
Os,Qs

∑
i∈[I]

d̄isOis +
∑

j∈[J]

cjsyjQjs is equivalent to

min
xs,us

∑
i∈[I]

∑
j∈[J]

tijxijs +
∑
i∈[I]

piuis (14a)

s.t.
∑
j∈[J]

xijs +uis ≥ d̄is ∀i∈ [I], (14b)∑
i∈[I]

xijs ≤ cjsyj ∀j ∈ [J ], (14c)

xijs ≥ 0 ∀i∈ [I], j ∈ [J ], (14d)

uis ≥ 0 ∀i∈ [I]. (14e)

Proposition 4. The term max
(c,w,d,v)∈Ω′

s

− (cTαs +wTβs +dTλs +vTγs) in (13) is equivalent to

the following minimization problem

min
∑
j∈[J]

{
c̄jsAjs − cjsBjs +µjs (Djs −Ejs)

}
+
∑
i∈[I]

{
d̄isFis − disGis + ρis (His −Kis)

}
(15a)

s.t. Ajs −Bjs +Djs −Ejs =−αjs ∀j ∈ [J ], (15b)

Djs +Ejs = βjs ∀j ∈ [J ], (15c)

Fis −Gis +His −Kis =−λis ∀i∈ [I], (15d)
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His +Kis = γis ∀i∈ [I], (15e)

Ajs,Bjs,Djs,Ejs ≥ 0 ∀j ∈ [J ], (15f)

Fis,Gis,His,Kis ≥ 0 ∀i∈ [I]. (15g)

Proof. See Appendix A.3. □

Based on Propositions 2–4, the SDR model under the scenario-wise adaptation policy is finally

reformulated to an MILP model, i.e.,

min
∑
j∈[J]

fjyj +
∑
s∈[S]

{ ∑
j∈[J]

(
δjsβjs + c̄jsAjs − cjsBjs +µjs (αjs +Djs −Ejs)

)
+
∑
i∈[I]

(
ζisγis + d̄isFis − disGis + ρis (λis +His −Kis)

)
+
∑
i∈[I]

∑
j∈[J]

qstijxijs +
∑
i∈[I]

qspiuis

}
(16a)

s.t. (9b), (14b)–(14e) for each s∈ [S],and (15b)–(15g) for each s∈ [S]. (16b)

In the case of a non-adaptive (or static) policy, there will be xijs = xij, uis = ui, s ∈ [S], so that

the allocation decisions in the second stage do not change its solutions in response to the outcome

of the scenario s̃. Correspondingly, constraints (14b) and (14c) become∑
j∈[J]

xij +ui ≥max
s∈[S]

d̄is ∀i∈ [I],
∑
i∈[I]

xij ≤min
s∈[S]

cjsyj ∀j ∈ [J ].

This would be far more conservative, as the sum of satisfied and unsatisfied demand at a customer

is equal to its maximal demand across all the scenarios, whereas the available capacity at a newly

opened facility takes the minimal value in all the scenarios.

Note that the scenario-wise DRO framework can be directly applied to the case of CFLPs

with provider-side or receiver-side uncertainty (Baron et al. 2011, Zeng and Zhao 2013, An et al.

2014), which are the special cases of our problem. Specifically, for distributionally robust CFLPs

with provider-side uncertainty, parameters ρs, s∈ [S] are set to the nominal demand at customers

(denoted as dn) and parameters ζs, s ∈ [S] are set to 0 in the ambiguity set (4). The bounds

of demand can be set as ds = d̄s = dn, s ∈ [S]. Similarly, for distributionally robust CFLPs with

receiver-side uncertainty, parameters µs, s∈ [S] are set to facilities’ nominal capacities (denoted as

cn), and parameters δs, s∈ [S] are set to 0. The bounds of capacities are set to cs = c̄s = cn, s∈ [S].

The CFLP with bimodal demand uncertainty in Shehadeh and Sanci (2021) is also a special case of

our problem. In particular, to construct their ambiguity set, let S = 2. As the authors only specify

the mean of demand in their ambiguity set, we can further let ζs = 0, s∈ [S].

The scenario-wise DRO framework can also be applied to uncapacitated FLPs under simultane-

ous provider-side and receiver-side uncertainties or only one type of uncertainty (Snyder and Daskin

2005, Cui et al. 2010, Zetina et al. 2017), which are the special cases of our problem. Specifically, in
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the nominal disruption-free scenario, facilities are uncapacitated and can serve any customer once

open; therefore, the capacity parameter µj, j ∈ [J ] can be set to a sufficiently large number. In a

disruption scenario, facility j will lose its service capability completely if it is disrupted, and thus

µj = 0. For customers, they have different patterns of demand in the nominal and the disruption

scenarios.

4.2. An Extension of the Scenario-wise DRO Framework

To prepare for disaster threats, decision makers can simultaneously optimize the location decision,

the inventory pre-positioning, and the relief delivery operations by solving a location and inventory

pre-positioning problem (LIPP) (Ni et al. 2018, Velasquez et al. 2020, Shehadeh and Tucker 2022),

which is an extension of the FLP presented in this paper. Under multiple disasters of different

levels, or the same type of disaster with different damage levels, system parameters like the usable

proportion of pre-positioned inventories, the capacity of transportation links, and the demand for

emergency commodities, are subject to different levels of uncertainty. To solve the LIPP with

simultaneous provider-side, in-between, and receiver-side uncertainties, Ni et al. (2018) propose

a min-max robust model and use three budgeted uncertainty sets to characterize randomness.

Velasquez et al. (2020) utilize a two-stage RO approach for the LIPP with simultaneous provider-

side and receiver-side uncertainties. Shehadeh and Tucker (2022) use a DRO approach, together

with a marginal moment-based ambiguity set and a static policy, to solve the LIPP under multiple

types of uncertainties. Note that the scenario-wise DRO framework, together with the adaptation

policy proposed in this work, can be directly adopted to solve the LIPP with simultaneous provider-

side and receiver-side uncertainties. The corresponding DRO model is provided as follows, and the

empirical insights for this problem are presented in Section 5.3.

The LIPP is defined as follows. Consider a single-commodity network for the distribution of

emergency supplies to prepare for a disaster event, which is characterized by an undirected graph

containing J candidate facilities and I customers. The maximal capacity at facility j ∈ [J ] is Mj.

A total amount of emergency supplies, denoted as R, is available before the disaster. In the pre-

disaster phase, the decision maker decides where to open facilities and how much inventory to

pre-position at each opened facility. Binary variable yj equals 1 if a facility is opened at site j ∈ [J ],

and 0 otherwise. The fixed cost of locating a facility at site j ∈ [J ] is fj. Continuous variable aj is

the quantity of commodity pre-positioned at facility j ∈ [J ] if opened. For each unit of commodity

handled (including purchasing, transporting, and storing) at site j ∈ [J ], there is an associated

cost hj. After a disaster, the proportion of pre-positioned inventory that is still usable at a facility

and the demand at customers are subject to uncertainties, which are denoted as r̃j, j ∈ [J ] and

d̃i, i ∈ [I], respectively. There are two types of post-disaster (continuous) decision variables: xij is



18

the commodity quantity transported from facility j ∈ [J ] to customer i∈ [I] and z−i is the quantity

of unmet demand at customer i ∈ [I]. For these variables, the corresponding cost parameters per

unit are tij and q−i , respectively. In addition, a penalty cost q+j is associated with each unit of

unused inventory at facility j ∈ [J ].

The following scenario-wise ambiguity set is used to characterize distribution ambiguity

F =



P∈P(RJ ×RI × [S])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(r̃, d̃, s̃)∼ P

EP [r̃ | s̃= s] =µr
s ∀s∈ [S]

EP [|r̃−µr
s| | s̃= s]≤ δr

s ∀s∈ [S]

EP

[
d̃ | s̃= s

]
=µd

s ∀s∈ [S]

EP

[
|d̃−µd

s| | s̃= s
]
≤ δd

s ∀s∈ [S]

P [(r,d)∈Ωs | s̃= s] = 1 ∀s∈ [S]

P [s̃= s] = qs ∀s∈ [S]



, (17)

where Ωs is the support set associated with scenario s∈ [S], defined as

Ωs =
{
(r,d)∈RJ ×RI

∣∣ rs ≤ r≤ r̄s,ds ≤ d≤ d̄s

}
.

The corresponding two-stage distributionally robust model is formulated as

min
y,a

∑
j∈[J]

(fjyj +hjaj)+ sup
P∈F

EP

[
Q(y,a, r̃, d̃, s̃)

] , (18a)

s.t.
∑
j∈[J]

aj =R, (18b)

aj ≤Mjyj ∀j ∈ [J ], (18c)

yj ∈ {0,1} ∀j ∈ [J ], (18d)

aj ≥ 0 ∀j ∈ [J ]. (18e)

Under a given first-stage decision (y,a) and a realization (r,d, s) of uncertain parameters (r̃, d̃, s̃),

the second-stage problem is defined as

Q(y,a,r,d, s) =min
x,z−

∑
i∈[I]

∑
j∈[J]

tijxij +
∑
j∈[J]

ajrj −
∑
i∈[I]

xij

 q+j +
∑
i∈[I]

q−i z
−
i (19a)

s.t.
∑
i∈[I]

xij ≤ ajrj ∀j ∈ [J ], (19b)∑
j∈[J]

xij + z−i ≥ di ∀i∈ [I], (19c)

xij ≥ 0 ∀i∈ [I], j ∈ [J ], (19d)

z−i ≥ 0 ∀i∈ [I]. (19e)
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The objective function (18a) minimizes the sum of the first-stage cost (including the location cost

and the inventory pre-positioning cost) and the worst-case second-stage expected cost. Constraint

(18b) means that all the available commodities are pre-positioned at facilities before the disaster.

Constraints (18c) denote that decision-makers can only pre-position inventories at open facilities

and that facilities’ capacities must be respected. Equation (19a) refers to the second-stage objective

function, which minimizes the sum of the transportation cost, the penalty cost of unused inventory,

and the penalty cost of unmet demand under a given first-stage decision (y,a) and an uncertainty

realization (r,d, s). Constraints (19b) suggest that the total commodities delivered from a facility

to customers cannot surpass the usable quantity at that facility. Constraints (19c) indicate the

sum of met and unmet demand must be equal to or larger than a customer’s demand. Constraints

(18d), (18e), (19d), and (19e) define the type and non-negativity of variables.

5. Numerical Experiments

This section evaluates the performance of the scenario-wise DRO framework via extensive simula-

tion tests and a case study. The SSP, SDR, and MDR models are compared in terms of cost and

service level. For each model, we first solve it to generate a location decision and then evaluate

its performance using out-of-sample tests. All models were coded in Python 3.8 programming lan-

guage, using Gurobi 9.1.1 as the solver. The calculations were run on a personal computer with a 2

GHz Quad-Core Intel Core i5 processor and 16 GB of memory under the macOS Catalina system.

In the following tables, the Time column reports the CPU time in seconds consumed to solve the

models. Cost1 is the first-stage location cost, and Cost2 is the expected second-stage recourse cost

in out-of-sample tests. Costt is the expected total cost, defined as the sum of Cost1 and Cost2. #U

is the average quantity of unmet demand per customer per sample. #O is the number of facilities

opened. A superscript qd is used to denote the quantity difference in a performance indicator,

obtained by using the value of this indicator in the SDR model to subtract the corresponding value

in another model. For example, symbol Costqdt refers to the quantity difference in the expected total

cost. Thus, a negative value suggests that the SDR model performs better in that corresponding

indicator.

5.1. Simulation Tests

This section first introduces the instance set and then presents the results of different models.

5.1.1. Instance Set. Number-, coordinate-, and cost-related parameters are generated based

on the settings and assumptions widely made in the literature on facility location under uncertainty

(Lei et al. 2016, Basciftci et al. 2021, Shehadeh and Sanci 2021). Specifically, the number of facilities

ranges from 5 to 100, and the number of customers is between 10 and 100. In total, there are
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12 combinations of (J, I). The facilities and customers are uniformly distributed on a 100 by 100

plane. Parameter tij is set to the Euclidean distance between customer i ∈ [I] and facility j ∈ [J ].

The unit penalty cost at customer i ∈ [I] is set as pi = maxj∈[J] tij. The fixed cost fj, j ∈ [J ] of

facilities is a random integer in the interval [2000,5000].

To generate samples of capacity and demand, two data sets are considered: the in-sample training

data to derive the location decision yj, j ∈ [J ] and the out-of-sample testing data to evaluate its

performance. As the simulation experiments in Hao et al. (2020), we set S = 4 scenarios for both

data sets, where each has an equal probability of qs = 1/4, s ∈ [S]. We generate 20 samples under

each scenario, for a total of 80 training samples and 80 testing samples for each instance. For

each scenario, the capacity and demand samples are generated from uniform distributions with

different means. For the training data, cjs ∼ U [a1
s, b

1
s] and dis ∼ U [a2

s, b
2
s], where a1

s = 280 − 30s,

b1s = 330−30s, a2
s = 10+10s, and b2s = 30+10s. In this way, facility capacity and customer demand

are connected by scenarios. Specifically, as index s increases, the mean capacity decreases while

the mean demand increases. This data construction method can simulate the case that as the level

of disruption increases, facilities are more seriously affected, and customers need more relief items.

For the testing data, cjs ∼U [a1
s(1−∆1), b1s(1−∆1)] and dis ∼U [a2

s(1+∆2), b2s(1+∆2)], where ∆1

and ∆2 are perturbations used to capture the possibility that an out-of-sample distribution may

deviate from the in-sample distribution. ∆1 and ∆2 take values from the set {0.10,0.15, . . . ,0.30}

and {−0.30,−0.25, . . . ,−0.10,0.10,0.15, . . . ,0.30}, respectively. For a fixed value of (I, J,∆1,∆2),

5 instances are generated, and thus there are 3000 instances in total. The parameters of the two

ambiguity sets are calculated based on the training samples. The solutions of SSP are derived and

evaluated only using the supply and demand information contained in the training and testing

samples, respectively.

5.1.2. Comparisons of Models. Tables 1–3 summarize the comparison results among differ-

ent stochastic and robust models, where columns 95th report the 95th percentiles of the expected

total cost. The detailed results are reported in Tables D1 and D2 in Appendix D.

Comparison between SDR and SSP. The MILP reformulation of SDR can be efficiently

solved—all the instances are solved optimally within 2.08 seconds (refer to Table D1). The average

computing time of SSP is greater than that of SDR for all the instances, as shown in Table 1. In

particular, when (J, I)=(100,100), the average CPU time of SSP is more than 145 seconds longer

than that of SDR.

From Table 1, it is observed that SDR opens more facilities than SSP, resulting in a higher first-

stage location cost. However, these additional facilities can significantly reduce the second-stage

recourse cost and the quantity of unmet demand in out-of-sample tests. When ∆2 is negative, i.e.,
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Table 1 Quantity differences in average results of SDR and SSP models

∆2 < 0 ∆2 > 0

No. (J, I) Timeqd #U qd #Oqd Costqd1 Costqd2 Costqdt 95thqd Timeqd #U qd #Oqd Costqd1 Costqd2 Costqdt 95thqd

1 (5, 10) -0.10 -2.20 0.50 1835.33 -1171.36 663.97 1172.29 -0.09 -3.92 0.42 1462.45 -1837.84 -375.39 -571.97

2 (10, 10) -0.14 -0.94 0.59 1841.07 -1074.02 767.05 174.33 -0.14 -3.80 0.65 2040.29 -2781.43 -741.14 -463.48

3 (10, 20) -0.24 -1.54 1.05 3725.36 -2166.57 1558.79 771.44 -0.24 -4.10 1.02 3625.53 -5137.28 -1511.75 -2759.90

4 (20, 20) -1.98 -1.07 1.41 4489.12 -2307.98 2181.14 1277.30 -2.02 -4.69 1.52 4773.24 -7450.70 -2677.46 -4240.82

5 (15, 30) -1.05 -1.48 1.59 5911.36 -3314.32 2597.04 237.86 -1.06 -4.07 1.57 5796.56 -8651.48 -2854.92 -5845.55

6 (30, 30) -8.11 -0.91 2.19 6863.73 -3053.73 3810.00 1000.84 -7.79 -4.38 2.15 6691.20 -10529.98 -3838.78 -5698.04

7 (20, 40) -2.45 -1.52 2.18 8054.79 -4659.87 3394.92 1429.43 -2.32 -3.90 2.03 7507.17 -11500.55 -3993.38 -5873.04

8 (40, 40) -16.36 -0.82 2.94 9200.14 -3675.38 5524.76 3396.49 -15.66 -4.19 2.91 9291.51 -14297.34 -5005.83 -9268.72

9 (25, 50) -4.52 -1.32 2.48 9313.50 -5322.59 3990.91 379.58 -4.15 -3.74 2.43 9054.63 -14230.03 -5175.40 -7185.63

10 (50, 50) -28.06 -0.73 3.82 11923.04 -4350.58 7572.46 2960.65 -25.15 -4.21 3.69 11470.12 -17995.81 -6525.69 -9851.95

11 (50, 100) -28.72 -0.98 4.20 16308.28 -8621.45 7686.83 1053.65 -30.49 -2.90 4.00 15258.74 -24850.32 -9591.57 -14678.97

12 (100, 100) -145.82 -0.67 8.39 25811.21 -7870.88 17940.33 8014.54 -147.62 -4.53 8.43 26137.27 -41134.03 -14996.75 -27555.56

the out-of-sample demand is lower than the in-sample expected value, the expected total cost of

SDR is higher than that of SSP. This is because the additional facilities opened in SDR cannot

be fully utilized for the recourse problem when demand is lower than expected. In this case, the

increase in the first-stage location cost surpasses the saving in the recourse cost, leading to a higher

total cost. Note that the objective of SSP is to minimize the expected total cost, which is different

from the robust objective. In this simulation, since the scenarios are sampled and tested using

known distributions (with correlated demand), SSP is expected to perform relatively well when

the demand is lower than expected. In contrast, when ∆2 is positive, which is the case when a

firm faces surge demand such as panic buying, the expected total cost of SDR is lower. It is also

observed that SDR generally saves more recourse costs when ∆2 is positive, compared to the case

of a negative ∆2. This can be explained by the fact that the additional facilities opened in SDR can

be used to satisfy increased demand and thus reduce the quantity of unsatisfied demand and the

penalty cost. To summarize, the solutions provided by SDR can better satisfy customer demand,

compared to those of SSP. If customer demand has a positive deviation from the predicted value

in disruption scenarios, the solutions of SDR can significantly help mitigate the impact of such

disruption in the supply chain system.

As the objective of SDR focuses on the extreme case, besides comparing it with SSP, it is also

compared with a risk-averse two-stage SP model, where the conditional-value-at-risk (CVaR) is

used as the risk measure. According to Rockafellar et al. (2000), Rockafellar and Uryasev (2002),

and Noyan (2012), the CVaR with a confidence level α (α ∈ (0,1]), denoted by CVaRα, is defined

as

CVaRα(z) = inf
η∈R

{
η+

1

1−α
E[(z− η)+]

}
, (20)

where z is the random variable and (z − η)+ = max{0, z − η}. Parameter α denotes the level of

conservatism of a decision maker. When α is close to 1, the measure focuses on more extreme

losses. For our problem, we are interested in controlling the risk of the second-stage recourse cost.
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When the samples of historical observations and the corresponding probabilities are known, the

second-stage cost can be calculated as

h(y,c,d, e) =min

η+
1

1−α

L∑
l=1

1

L

∑
i∈[I]

∑
j∈[J]

tijxijl +
∑
i∈[I]

piuil − η


+

 . (21)

Thus, the risk-averse two-stage SP model with the risk measure CVaR, denoted by SSP-CVaR,

can be formulated as an MILP, which is provided in Appendix B.

The comparison results between the SDR and the SSP-CVaR models are presented in Table 2.

Note that since some instances with (J, I) = (100,100) cannot be solved optimally within the 1800-

second time limit for the SSP-CVaR model, their results are not included here. Table 2 shows that

SDR produces solutions with a lower total cost than SSP-CVaR in most cases, further confirming

the superiority of the scenario-wise DRO framework. When α= 0.99, the cost difference between

the two models is generally greater than that under α= 0.90, because when α is closer to 1, the

SSP-CVaR model is more conservative.

Table 2 Quantity differences in average results of SDR and SSP-CVaR models

∆2 < 0 ∆2 > 0

α= 0.90 α= 0.99 α= 0.90 α= 0.99

No. (J, I) #Uqd Costqdt #Uqd Costqdt #Uqd Costqdt #Uqd Costqdt

1 (5, 10) 0.80 -692.53 0.92 -1071.48 2.85 -113.48 3.76 -282.13

2 (10, 10) 0.32 -852.57 0.36 -1026.62 1.80 -26.02 2.12 -73.48

3 (10, 20) 0.57 -1825.50 0.61 -2061.01 2.23 -144.79 2.32 -189.99

4 (20, 20) -0.06 290.58 -0.06 -28.24 -1.11 -735.77 -0.94 -766.91

5 (15, 30) 0.22 -1242.38 0.30 -2029.33 0.87 -181.33 1.49 -190.65

6 (30, 30) -0.25 1620.21 -0.13 840.51 -1.92 -1724.02 -1.31 -1432.20

7 (20, 40) 0.17 -1645.91 0.29 -2833.50 0.88 -24.46 1.36 52.31

8 (40, 40) -0.14 2595.31 -0.13 2361.81 -1.92 -2144.17 -1.77 -2106.42

9 (25, 50) 0.23 -2126.38 0.25 -2426.26 0.85 -89.13 0.89 -362.93

10 (50, 50) -0.30 4736.08 -0.30 4467.76 -2.38 -3638.45 -2.37 -3874.62

11 (50, 100) 0.04 -1435.07 0.08 -2650.57 -0.08 -1884.33 0.15 -1768.99

Comparison between SDR and MDR. Table 3 provides the comparison results between the

SDR and the MDR models. Note that we do not compare their computing times, because the MDR

is a special case of the SDR, i.e., SDR with one scenario. As reported before, the reformulation of

SDR can be optimally solved within 2.08 seconds for all the instances; therefore, the reformulation

of MDR is expected to be solved in a shorter time. Table 3 shows that MDR provides solutions

with higher expected total costs compared to SDR whether ∆2 is negative or positive. This is

because, among the three models, MDR opens the largest number of facilities, resulting in the

highest first-stage location cost. When demand is lower than the expected value after a disruption,

i.e., ∆2 is negative, the solutions of MDR would be much more conservative, resulting in higher

costs. However, the quantity of unmet demand in SDR is only slightly higher—the difference in
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unmet demand varies between the interval [0.03,1.34]. When ∆2 is positive, the difference in the

total cost between MDR and SDR decreases because the additional opened facilities in MDR can

be utilized to satisfy the increased demand. However, SDR still has a lower value for the expected

total cost. Note that although MDR sometimes provides lower 95th percentiles of the expected

total cost than SDR when ∆2 is positive, the differences are smaller, compared to the case of a

negative ∆2 where SDR provides better 95th percentile values. The results in this section further

confirm the necessity of using SDR to model scenario-wise uncertainties and capture the correlation

between facilities’ uncertain capacity and customers’ uncertain demand in different scenarios.

Table 3 Quantity differences in average results of SDR and MDR models

∆2 < 0 ∆2 > 0

No. (J, I) #U qd #Oqd Costqd1 Costqd2 Costqdt 95thqd #U qd #Oqd Costqd1 Costqd2 Costqdt 95thqd

1 (5, 10) 1.34 -0.92 -3469.70 937.25 -2532.45 -3200.15 5.62 -0.86 -3167.01 2414.66 -752.35 -421.93

2 (10, 10) 0.44 -0.94 -3439.88 966.37 -2473.51 -3228.28 3.67 -0.94 -3363.50 2757.35 -606.15 219.67

3 (10, 20) 0.86 -2.11 -8316.67 1578.27 -6738.40 -5842.69 5.41 -2.11 -8330.51 6482.09 -1848.42 -1376.16

4 (20, 20) 0.22 -1.64 -6105.11 1188.11 -4917.00 -5427.39 2.89 -1.50 -5676.17 4873.10 -803.07 266.48

5 (15, 30) 0.65 -3.10 -12636.13 2051.40 -10584.72 -10795.08 5.33 -3.26 -13269.33 10390.37 -2878.96 -358.22

6 (30, 30) 0.15 -1.70 -6848.16 1343.02 -5505.14 -5950.47 2.33 -1.74 -6687.25 6055.59 -631.66 1323.29

7 (20, 40) 0.58 -3.92 -15933.73 2602.47 -13331.26 -12407.67 4.78 -3.89 -16086.31 13421.26 -2665.05 2611.55

8 (40, 40) 0.14 -1.90 -8110.42 1480.56 -6629.86 -6528.33 1.79 -1.86 -7854.58 6950.54 -904.04 278.13

9 (25, 50) 0.60 -5.01 -20593.23 3296.48 -17296.75 -14281.22 4.92 -5.11 -21089.78 18044.00 -3045.77 189.69

10 (50, 50) 0.08 -2.46 -9996.84 1647.70 -8349.14 -8496.47 2.00 -2.67 -10673.30 9391.58 -1281.72 2734.10

11 (50, 100) 0.55 -9.99 -42687.25 6438.97 -36248.27 -26744.32 4.60 -9.77 -41235.20 37471.27 -3763.93 6356.96

12 (100, 100) 0.03 -2.78 -12775.30 1849.79 -10925.50 -10822.51 1.02 -2.79 -13160.05 11250.52 -1909.53 777.54

5.2. An Earthquake Case Study

In 2010, a magnitude 7.1 earthquake hit Yushu County in Qinghai Province, PR China, causing

social and economic damages on a massive scale. The network of affected areas includes 13 nodes

and 15 links, as shown in Figure 1. The numbers next to the links are the unit transportation costs.

This section uses this earthquake case study to compare models and perform sensitivity analyses

based on the following reasons: (1) It has been widely used in the literature on facility location

under uncertainty (e.g., Ni et al. (2018), Shehadeh and Tucker (2022), and Zhang et al. (2021a))

to explore the impact of disasters on supply chain systems; (2) Earthquakes are one of the random

events that we hedge against to improve supply chain robustness; and (3) The assumptions and

parameter settings in Ni et al. (2018) can be directly adopted to accommodate our problem. In the

following, the performance of SDR and MDR are compared to assess the value of the scenario-wise

ambiguity set. The results of SSP are also reported to provide insights with respect to the costs of

the robust solutions.

In the case study, each node is treated as both a candidate facility site and a demand site, i.e.,

[J ] = [I]. The unit transportation cost tij is set to the shortest path distance between nodes i and

j, which is given in Table C1. Two scenarios are considered, where s= 1 and s= 2 denote a major
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Figure 1 Network of affected areas in the earthquake case study

and a minor earthquake, respectively. The capacity of each facility in the nominal disruption-free

scenario is set to 800 as in Ni et al. (2018), and the usable portion of the capacity at facility j

after disaster s is denoted by r̃js. For the in-sample training data, the demand d̃is and the usable

portion of capacity r̃js are generated from truncated normal distributions N(µds
i , σds

i ,0,+∞) and

N(µrs
j , σrs

j ,0,1), respectively. When s= 1, the means and the standard deviations are set as in Ni

et al. (2018) to denote the Ms7.1 major earthquake, i.e., for all i ∈ I, j ∈ J , µd1
i = 100, σd1

i = 10,

σr1
j = 0.1, and µr1

j is given in Table C2. When s = 2, we let µd2
i = 70, σd2

i = 10, σr2
j = 0.1, and

µr2
j = 1.3µr1

j , which indicate that the expected demand is smaller and the expected residual capacity

is larger under a minor earthquake than under a major earthquake. For the out-of-sample testing

data, the means are set to µds
i (1+ ς1) and µrs

j (1+ ς2), and the values of other parameters are the

same as those for generating the training data. ς1 and ς2 are perturbations, which both take values

from the set {−0.3,−0.2,−0.1,0.1,0.2,0.3}. For a fixed value of (ς1, ς2), 5 instances are generated,

so there are 180 instances in total. For each instance, 50 samples are generated under each scenario,

for a total of 100 training samples and 100 testing samples.

5.2.1. Results of Different Models. The results of different models are provided in Table

4. It shows that on average SSP (MDR) opens the lowest (largest) number of facilities, leading to

the lowest (highest) first-stage location cost and the highest (lowest) second-stage recourse cost.

Regarding the expected total cost, the average result of SDR is the best among the three models.

Moreover, SDR also has the lowest 95th percentile value for the expected total cost, whereas SSP

has the highest value. In addition, the cost of SSP has the largest variation, with a standard

deviation up to 471.15; whereas the standard deviations of SDR and MDR are 71.15 and 59.86,

respectively. Regarding unmet demand, the out-of-sample mean, 95th percentile, and standard

deviation produced by SSP are also much greater than those of the two other models.
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Table 4 Results of different models for the case study

Average 95th percentile Standard deviation

Model Cost1 Cost2 Costt #U #O Costt #U Costt #U

SSP 836.11 727.27 1563.38 1.134 5.07 2659.60 7.620 471.15 2.823

SDR 1268.59 270.72 1539.32 0.001 8.11 1658.67 0.001 71.15 0.012

MDR 1389.22 212.37 1601.58 0.000 8.77 1681.38 0.000 59.86 0.000

(a) SSP under (ς1, ς2) = (−0.3,−0.3) (b) SDR under (ς1, ς2) = (−0.3,−0.3) (c) MDR under (ς1, ς2) = (−0.3,−0.3)

(d) SSP under (ς1, ς2) = (−0.3,0.1) (e) SDR under (ς1, ς2) = (−0.3,0.1) (f) MDR under (ς1, ς2) = (−0.3,0.1)

(g) SSP under (ς1, ς2) = (0.3,0.1) (h) SDR under (ς1, ς2) = (0.3,0.1) (i) MDR under (ς1, ς2) = (0.3,0.1)

Figure 2 Illustrations of location decisions produced by the three models for some instances
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Figure 2 illustrates the location decisions provided by the three models for some instances (the

detailed results are presented in Table D3). Figures 2(b)–2(c) show that sometimes SDR and MDR

may produce the same location decision. These two models also make different location decisions

from two aspects: (1) Locating a different number of facilities, as shown in Figures 2(e)–2(f); and

(2) Locating the same number of facilities while at different sites, as shown in Figures 2(h)–2(i).

5.2.2. Sensitivity Analyses. This section analyzes the sensitivity of solutions to three types

of parameters: facilities’ fixed costs, the support set’s size, and the simultaneous variations of in-

sample facility capacity and customer demand. Graphical results are reported in Figures 3–5 and

detailed results are provided in Tables D4–D6 in Appendix D.
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Figure 3 The impact of facilities’ fixed costs

Impact of facilities’ fixed costs. We set facilities’ fixed costs as f ′
j = ϵfj, j ∈ [J ] and vary the

value of ϵ to study the impacts. Figures 3(a) show that MDR (SSP) opens the highest (lowest)

number of facilities as before under a fixed value of ϵ, leading to the highest (lowest) location cost.

That is to say, even when facilities are cheap, MDR (SSP) still produces the most conservative
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(optimistic) solutions. As a result, the recourse cost of SSP is much higher than those of the two

other models as plotted in Figure 3(b). From Figure 3(c), it is found that when ϵ is between 0.5

and 0.9, the expected total cost of SSP is lower than those of the robust models. However, the

95th percentile of the expected total cost produced by SSP is the highest, especially when ϵ is

between 0.8 and 1.0, as shown in Figure 3(d). SSP also has the largest number of unmet demands

in out-of-sample tests, as shown in Table D4. Thus, we can conclude from the analyses that SDR

can still achieve a better trade-off between cost and service level even when it is inexpensive to

open facilities.

Impact of the support set’s size. When introducing the ambiguity set (4), the lower (upper)

bounds of capacity and demand for each scenario are defined as the minimal (maximal) values

across all the samples within a scenario. Sometimes this setting may lead to conservative solutions

when extreme cases exist in the samples. This section studies the impact of the support set’s size.

The support set is shrunk by reducing the upper bounds as c̄′s = (1− ϱ)c̄s, d̄
′
s = (1− ϱ)d̄s, s ∈ [S].

A similar operation is also applied to the marginal moment-based ambiguity set (5) of MDR.
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Figure 4 The impact of the support set’s size
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Figure 4 shows that for both DRO models, narrowing the range of the support set can help

reduce the number of open facilities (thus the location cost), the expected total cost, and the 95th

percentile of the expected total cost, as expected, and thus alleviate the conservatism of robust

solutions. On the other hand, when we try to further reduce the upper bounds by setting ϱ= 10%,

SDR becomes infeasible for some instances. Thus, the parameters of the support set should be

carefully decided to control the conservatism of robust solutions and also guarantee the feasibility

of models. Figure 4 further shows that the recourse cost increases when the support set shrinks.

However, it has almost no effect on the quantity of unmet demand, as shown in Table D5.

Impact of in-sample facility capacity and customer demand. We simultaneously change

in-sample facility capacity and customer demand and study their impacts on DRO models’ costs.

Specifically, we set c′s = νccs and d′
s = νdds for all s ∈ [S], where νc and νd take values in

{0.90,0.95,1.00,1.05,1.10}. Thus, there are 25 combinations of (νc, νd).

Figure 5(a) shows that both models have the minimal location cost under (νc, νd) = (1.10,0.90),

i.e., under the case of the highest facility capacities and the lowest customer demands. As expected,

the location cost gradually increases when νc decreases or νd increases. The MDR has a higher

location cost under all the cases than the SDR. On the other hand, the additionally opened facilities

by the SDR can mitigate the recourse cost in the second stage, as shown in Figure 5(b). Both

models have the lowest recourse costs when (νc, νd) = (0.90,1.10), because they open the most

facilities for this case. Figure 5(c) shows that the MDR has a higher total cost than the SDR for

all the situations. This is because its location costs are much higher than those of SDR, although

it has relatively lower recourse costs. In addition, it is observed that (1) when νd takes a larger

value, e.g., νd = 1.1, the total cost increases more quickly as νc decreases; and (2) when νc takes a

smaller value, e.g., νc = 0.9, the total cost increases more quickly as νd increases.

Based on the results in Sections 5.1 and 5.2, the following conclusions for the CFLP with simulta-

neous provider-side and receiver-side uncertainties are made: (1) SSP produces relatively optimistic

location decisions, while MDR provides the most conservative location decisions. The location cost

of SDR is between those of the two other models; (2) SDR can achieve a better trade-off between

cost and service level. Specifically, compared to SSP, the solutions of SDR have lower values of

unmet demand and, thus, a higher service level in out-of-sample tests. Moreover, SDR can also

save the expected total cost when demand experiences positive deviations in out-of-samples. Com-

pared to MDR, the solutions of SDR result in a lower expected total cost for the supply chain

system, especially where demand has a negative deviation in out-of-samples; (3) SSP has signifi-

cant performance variations both in terms of the total cost and the unmet demand, whereas the

performance of MDR is the most stable among the three models, and SDR is in the middle; and

(4) The performance of SDR can be further improved by adjusting the size of the support set, e.g.,

shrinking the support set can help SDR find solutions with lower expected total costs.
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Figure 5 The simultaneous impact of in-sample facility capacity and customer demand

5.3. Results for Location and Inventory Pre-Positioning Problem with Uncertainty

This section provides numerical results for the LIPP with uncertainty. As in Section 5.2, two

scenarios are considered to represent a major and a minor earthquake, respectively. The total supply

R can take any value in the set {2400,2600,2800,3000}. The in-sample random residual inventory,
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in-sample random demand, and out-of-sample random demand under each scenario are generated

using the same methods as in Section 5.2. For the out-of-sample random residual inventory, we

set the means µr
j1, j ∈ [J ] under scenario s= 1 as in Ni et al. (2018) and µr

j2 = 1.3µr
j1 for scenario

s= 2. All the related parameters are given in Table C2. For a fixed value of (R, ς1), 50 instances

are generated, so there are 1200 instances in total. We generate 50 samples under each scenario,

for a total of 100 training samples and 100 testing samples for each instance. The average results

are reported in Table 5, where CostL1 and CostI1 are the first-stage location cost and inventory

pre-positioning cost, respectively.

Table 5 Average results of different models for the location and inventory pre-positioning problem

Average 95th percentile Standard deviation

Model CostL1 CostI1 Cost1 Cost2 Costt #U #O Costt #U Costt #U

SSP 731.54 6275.64 7007.18 3660.10 10667.28 20.75 4.63 14110.04 50.72 1986.34 15.22

SDR 616.00 7011.45 7627.45 2537.55 10165.00 8.28 3.75 12380.33 30.15 1259.04 9.66

MDR 501.37 6854.78 7356.14 3098.57 10454.71 14.36 3.75 16152.90 67.78 2121.55 17.68

Table 5 shows that SDR produces solutions with the lowest expected total cost and unmet

demand, whereas SSP has the highest expected total cost and unmet demand. Moreover, SSP opens

the most facilities among the three models, which is different from what we have observed in the

previous sections. We consider the reason is that besides location decisions, decision makers can

also adjust the inventory pre-positioning decisions in the LIPP to improve supply chain robustness.

That is, in the LIPP, decision makers have two types of strategies to enhance supply chain resilience,

whereas they can only make location decisions in the CFLP for higher resilience. This also explains

why SDR has the highest inventory pre-positioning cost and the lowest recourse cost. Finally, we

emphasize that SDR outperforms MDR in both the expected total cost and the unmet demand for

this case study, which further confirms the value of the scenario-wise ambiguity set for capturing

event-correlated uncertainty.

Besides the FLP and the LIPP presented in this paper, the scenario-wise DRO framework also

applies to other applications that involve supply and/or demand uncertainties caused by different

events. An example is the sectors that require global supply chains (e.g., the automobile and

electronic industries). These companies’ operations often involve multiple participants and facilities

dispersed across different nations. Political instabilities in some countries may make their supply

chains experience disruptions, leading to uncertainties. For example, the Russia-Ukraine war has

disrupted some facilities and reduced the supply of crucial resources (e.g., nickel for batteries

powering automobiles and electronics, natural gas, and oil). Thus, multinational companies that

rely on these resources face supply-side uncertainty. Meanwhile, they also face demand fluctuations

in local markets due to the soaring product prices caused by the disruption event. Moreover,
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economic and cultural issues in some countries, such as the 2023 Canadian federal worker strike,

may also expose multinational companies to uncertainties. Thus, companies involving global supply

chains can use the proposed approach to consider all the disruption events of interest and make

their decisions (e.g., location, production, inventory, and transportation). Besides, the scenario-wise

framework also applies to local businesses with obvious supply or demand patterns under different

scenarios (e.g., seasons and weather conditions), like the apparel and festival gift industries.

Furthermore, the proposed approach may also affect planners’ decision-making process. Specifi-

cally, it may inspire planners to think more carefully about the reasons or events behind uncertain-

ties and then distinguish the impacts of different events. In addition, the scenario-wise adaptation

policy is more compatible with the human decision-making process, i.e., adopting different recourse

actions for different events. Thus, the policy is more interpretable and likely to be adopted by

practitioners. Finally, we emphasize that although the SDR does not show superior performance

for all the cases, it gives better trade-offs between cost and service level in most situations. Thus,

practitioners can utilize the SDR to solve most FLPs under uncertainty. On the other hand, the

SSP may be preferable for cases where the probability distribution of random variables is available,

or the demand decreases after disruption events.

6. Conclusions

This paper studies a capacitated facility location problem, considering facilities’ uncertain capacity

and customers’ uncertain demand. A DRO framework is used to solve the problem, where the joint

distribution of uncertain parameters is assumed to lie in a scenario-wise ambiguity set, which can

capture different levels of uncertainty resulting from different random events. Correspondingly, a

scenario-wise adaptation policy is adopted for the second-stage recourse problem to further mitigate

the conservatism of robust solutions. The resulting adaptive DRO model is reformulated to an

MILP model, which can be efficiently solved by off-the-shelf solvers. Simulation and case study

results show that the scenario-wise DRO framework can achieve a better trade-off between cost and

service level. In particular, it provides less-conservative solutions and thus reduces the overall cost

compared to the DRO model with a marginal moment-based ambiguity set. Compared with the

stochastic programming model, the scenario-wise DRO model has lower values of unmet demand

in out-of-sample tests, and thus it can better serve customers. The proposed modeling scheme is

also extended to the location and inventory pre-positioning problem under uncertainties and shows

satisfactory performance.

Future research could be conducted from two aspects: (1) The recourse variables x and u can

be extended to scenario-wise affinely adaptive to random variables (c̃, w̃, d̃, ṽ), i.e., x and u are

affine functions of these variables in each scenario. This extension is expected to further reduce the
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conservatism of DRO solutions and thus achieve even better performance when the demand has

negative deviations from the expected values. (2) Besides reallocating customers to facilities with

residual capacity, other recourse actions can be considered to serve customers after a disruption

event, such as goods sharing (goods are shipped from one facility to another) and subcontracting

(a fraction of customer demand is satisfied by external subcontracting facilities).
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Appendix A Proof of Propositions

This section provides completed proofs of propositions.

A.1 Proof of Proposition 1

It is sufficient to show that for all P ∈ F , P ∈ F̄ as well. If P ∈ F , according to the law of total

expectation and condition (i), we have

EP [c̃] =
∑
s∈[S]

qsEP [c̃ | s̃= s] =
∑
s∈[S]

qsµs =µ,

EP

[
d̃
]
=

∑
s∈[S]

qsEP

[
d̃ | s̃= s

]
=

∑
s∈[S]

qsρs = ρ.

From |µ−µs|= |(c̃−µ)− (c̃−µs)| ≥ |c̃−µ| − |c̃−µs| and condition (ii), we have

|c̃−µ| − |c̃−µs| ≤ δ− δs ⇐⇒ |c̃−µ| − δ≤ |c̃−µs| − δs.

According to the law of total expectation, we have

EP [|c̃−µ|]− δ=
∑
s∈[S]

qsEP [|c̃−µ| − δ | s̃= s]

≤
∑
s∈[S]

qsEP [|c̃−µs| − δs | s̃= s]

≤ 0.

Similarly, we can get EP

[
|d̃−ρ|

]
− ζ ≤ 0.

The above inequalities suggest that P ∈ F satisfy the first four constraints of set F̄ . Moreover,

combining P [(c,d)∈Ωs | s̃= s] = 1, s ∈ [S] and condition (iii), we have P [(c,d)∈Ω] = 1. Thus,

P∈ F̄ .

A.2 Proof of Proposition 2

We apply duality theory to reformulate the sup term in (7). Using the law of total probability,

we can construct the joint distribution P of (c̃, w̃, d̃, ṽ, s̃) from the marginal distribution P̂ of s̃

supported on [S] and the conditional distribution Ps of (c̃, w̃, d̃, ṽ) given s̃= s, s∈ [S]. In this way,

supP∈F EP [h(y,c,d, s)] can be rewritten as

sup
∑
s∈[S]

qsEPs

[
h(y, c̃, d̃, s̃)

]
(A.1a)

s.t. EPs [c̃] =µs ∀s∈ [S], (A.1b)

EPs [w̃]≤ δs ∀s∈ [S], (A.1c)

EPs

[
d̃
]
= ρs ∀s∈ [S], (A.1d)

EPs [ṽ]≤ ζs ∀s∈ [S], (A.1e)

Ps

[
(c̃, w̃, d̃, ṽ)∈Ω′

s

]
= 1 ∀s∈ [S]. (A.1f)
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Let αs ∈ RJ , βs ∈ RJ , λs ∈ RI , γs ∈ RI , and θs ∈ R be the dual variables associated with con-

straints (A.1b)–(A.1f), respectively. Then we can derive the dual problem of model (A.1) as

min
∑
s∈[S]

[
(µs)

Tαs +(δs)
Tβs +(ρs)

Tλs +(ζs)
Tγs + θs

]
(A.2a)

s.t. cTαs +wTβs +dTλs +vTγs + θs ≥ qsh(y,c,d, s) ∀(c,w,d,v)∈Ω′
s, s∈ [S], (A.2b)

βs,γs ≥ 0 ∀s∈ [S]. (A.2c)

Due to the feasibility and the linearity of the lifted ambiguity set (see, for instance, Mohajerin Esfa-

hani and Kuhn (2018) and Bertsimas et al. (2019)), the strong duality condition holds. Moreover,

for a fixed value of (αs,βs,λs,γs, θs), constraints (A.2b) are equivalent to

θs ≥ max
(c,w,d,v)∈Ω′

s

[
qsh(y,c,d, s)−

(
cTαs +wTβs +dTλs +vTγs

)]
∀s∈ [S].

Since we are minimizing θs in the objective function (A.2a), the dual formulation can be further

written as in the form of the model defined by (9a)–(9b).

A.3 Proof of Proposition 4

Under scenario s ∈ [S] and a given value of (αs,βs,λs,γs), we solve the following optimization

problem to reformulate the term:

max
∑
j∈[J]

(−cjαjs −wjβjs)+
∑
i∈[I]

(−diλis − viγis)

s.t. cj ≤ c̄js ∀j ∈ [J ] · · ·dual variable :Ajs ∈R,

− cj ≤−cjs ∀j ∈ [J ] · · ·dual variable :Bjs ∈R,

cj −wj ≤ µjs ∀j ∈ [J ] · · ·dual variable :Djs ∈R,

− cj −wj ≤−µjs ∀j ∈ [J ] · · ·dual variable :Ejs ∈R,

di ≤ d̄is ∀i∈ [I] · · ·dual variable : Fis ∈R,

− di ≤−dis ∀i∈ [I] · · ·dual variable :Gis ∈R,

di − vi ≤ ρis ∀i∈ [I] · · ·dual variable :His ∈R,

− di − vi ≤−ρis ∀i∈ [I] · · ·dual variable :Kis ∈R.

Since the above model is feasible and the lifted support set is bounded, the strong duality condition

holds. We can derive its dual problem as given in formulation (15).
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Appendix B Reformulation of the Risk-averse Stochastic Model

The risk-averse two-stage stochastic programming model with the risk measure CVaR can be

reformulated as

min
∑
j∈[J]

fjyj + η+
1

1−α

L∑
l=1

1

L
vl

s.t. vl ≥
∑
i∈[I]

∑
j∈[J]

tijxijl +
∑
i∈[I]

piuil − η ∀l ∈ [L],∑
j∈[J]

xijl +uil ≥ d̂il ∀i∈ [I], l ∈ [L],∑
i∈[I]

xijl ≤ ĉjlyj ∀j ∈ [J ], l ∈ [L],

yj ∈ {0,1} ∀j ∈ [J ],

vl ≥ 0 ∀l ∈ [L],

η ∈R,

xijl ≥ 0 ∀i∈ [I], j ∈ [J ], l ∈ [L],

uil ≥ 0 ∀i∈ [I], l ∈ [L].

Appendix C Data Related to the Earthquake Case Study

The unit transportation cost between any two nodes is given in Table C1, which is set to the

shortest path distance between two nodes. Other parameters are given in Table C2, where the

values of fj, pi, hj, q
+
j , q

−
i , µ

r1
j , µr

j1, i∈ [I], j ∈ [J ] are directly adopted from Ni et al. (2018), and the

values of µr2
j and µr

j2 are set as µ
r2
j = 1.3µr1

j , µr
j2 = 1.3µr

j1, j ∈ [J ] to accommodate the scenario-wise

DRO framework. Note that pi and q−i both denote the unit penalty cost of unmet demand, so their

values are the same. However, as they are used in different models, we give their values in two

different rows for notational clarity. In addition, µr1
j and µr2

j denote the means of in-sample random

residual inventory. Whereas µr
j1 and µr

j2 represent the means of out-of-sample residual inventory

used in the location and inventory pre-positioning problem.

Appendix D Detailed Results of Numerical Experiments

Table D3 illustrates the location decisions provided by the three models, where Ins is the instance

number (recall that 5 instances are generated for each (ς1, ς2)) and circles are used to distinguish

the decisions from the two robust models.
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Table C1 The unit transportation costs between nodes

Node 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.00 0.89 0.35 0.80 1.40 0.52 1.32 1.11 2.30 1.58 2.11 2.67 2.60

2 0.89 0.00 0.78 1.69 0.51 1.41 2.21 1.54 1.41 2.47 3.00 3.56 1.71

3 0.35 0.78 0.00 1.15 1.29 0.87 1.67 0.76 2.19 1.93 2.46 3.02 2.49

4 0.80 1.69 1.15 0.00 2.20 1.32 2.12 1.91 3.10 2.38 1.31 1.87 3.40

5 1.40 0.51 1.29 2.20 0.00 1.92 2.72 1.24 0.90 2.98 3.51 4.07 2.22

6 0.52 1.41 0.87 1.32 1.92 0.00 0.80 1.63 2.82 1.06 2.63 3.19 3.12

7 1.32 2.21 1.67 2.12 2.72 0.80 0.00 2.43 3.62 1.86 3.43 2.94 3.92

8 1.11 1.54 0.76 1.91 1.24 1.63 2.43 0.00 2.14 2.69 3.22 3.78 3.25

9 2.30 1.41 2.19 3.10 0.90 2.82 3.62 2.14 0.00 3.88 4.41 4.97 3.12

10 1.58 2.47 1.93 2.38 2.98 1.06 1.86 2.69 3.88 0.00 3.69 4.25 4.18

11 2.11 3.00 2.46 1.31 3.51 2.63 3.43 3.22 4.41 3.69 0.00 0.56 4.71

12 2.67 3.56 3.02 1.87 4.07 3.19 2.94 3.78 4.97 4.25 0.56 0.00 5.27

13 2.60 1.71 2.49 3.40 2.22 3.12 3.92 3.25 3.12 4.18 4.71 5.27 0.00

Table C2 Parameters of each node

Node 1 2 3 4 5 6 7 8 9 10 11 12 13

fj 203 193 130 117 292 174 130 157 134 161 234 220 170

pi 11.48 14.32 12.14 16.19 12.01 14.90 9.42 11.91 10.68 11.24 13.10 11.09 10.18

µr1
j 0.46 0.49 0.51 0.45 0.46 0.52 0.55 0.51 0.44 0.51 0.57 0.45 0.49

µr2
j 0.60 0.64 0.66 0.59 0.60 0.68 0.72 0.66 0.57 0.66 0.74 0.59 0.64

µr
j1 0.05 0.05 0.20 0.18 0.18 0.72 0.76 0.70 0.60 0.70 0.78 0.62 0.68

µr
j2 0.07 0.07 0.26 0.23 0.23 0.94 0.99 0.91 0.78 0.91 1.01 0.81 0.88

hj 3.40 2.33 2.00 2.69 2.63 3.44 3.43 3.53 2.33 2.50 3.37 2.84 3.76

q+j 2.81 2.58 2.86 2.42 3.28 3.05 2.77 2.68 2.52 3.14 2.93 2.85 2.87

q−i 11.48 14.32 12.14 16.19 12.01 14.90 9.42 11.91 10.68 11.24 13.10 11.09 10.18

■ Note that the third and fourth (fifth and sixth) rows are means for generating in-sample (out-of-sample) data.

Table D1 Detailed results of the SDR and SSP models for the simulation tests

SDR SSP

∆2 No. (J, I) Time Cost1 Cost2 Costt #U #O Time Cost1 Cost2 Costt #U #O

< 0 1 (5, 10) 0.01 9889.70 10475.17 20364.87 1.64 2.99 0.10 8054.38 11646.52 19700.90 3.84 2.50

2 (10, 10) 0.01 10578.13 8121.14 18699.27 0.44 3.58 0.15 8737.06 9195.17 17932.22 1.39 2.99

3 (10, 20) 0.02 20133.52 15010.19 35143.71 0.90 6.34 0.26 16408.16 17176.76 33584.92 2.44 5.29

4 (20, 20) 0.05 21386.78 11722.77 33109.55 0.22 7.35 2.03 16897.66 14030.75 30928.41 1.28 5.94

5 (15, 30) 0.04 30755.88 18153.02 48908.90 0.66 9.74 1.09 24844.52 21467.34 46311.86 2.14 8.14

6 (30, 30) 0.11 31727.10 14390.89 46117.99 0.15 11.30 8.22 24863.38 17444.62 42307.99 1.07 9.10

7 (20, 40) 0.07 41341.84 21205.27 62547.11 0.58 13.07 2.52 33287.05 25865.14 59152.19 2.10 10.90

8 (40, 40) 0.23 42939.48 16520.31 59459.79 0.14 15.32 16.59 33739.34 20195.68 53935.03 0.96 12.38

9 (25, 50) 0.11 51117.29 24046.40 75163.69 0.61 16.41 4.63 41803.79 29368.99 71172.78 1.92 13.93

10 (50, 50) 0.39 54129.70 18184.77 72314.48 0.08 19.52 28.46 42206.66 22535.35 64742.02 0.81 15.70

11 (50, 100) 0.60 103182.52 35678.14 138860.66 0.55 33.00 29.32 86874.24 44299.58 131173.82 1.53 28.80

12 (100, 100) 2.08 109065.76 25804.34 134870.10 0.03 40.22 147.89 83254.55 33675.22 116929.77 0.70 31.83

> 0 1 (5, 10) 0.01 9515.26 18652.43 28167.70 10.22 2.92 0.10 8052.82 20490.27 28543.09 14.14 2.50

2 (10, 10) 0.01 10849.51 14685.33 25534.84 5.52 3.63 0.15 8809.22 17466.76 26275.98 9.33 2.98

3 (10, 20) 0.02 20230.14 29842.56 50072.71 7.96 6.33 0.25 16604.62 34979.84 51584.45 12.06 5.31

4 (20, 20) 0.05 21410.36 22840.97 44251.33 4.50 7.50 2.07 16637.12 30291.67 46928.79 9.19 5.98

5 (15, 30) 0.04 30812.01 39907.02 70719.03 7.51 9.67 1.10 25015.45 48558.50 73573.95 11.58 8.10

6 (30, 30) 0.11 31567.58 30411.40 61978.97 4.40 11.26 7.90 24876.38 40941.37 65817.75 8.77 9.11

7 (20, 40) 0.07 40724.48 49422.98 90147.46 7.15 13.07 2.38 33217.31 60923.53 94140.84 11.05 11.04

8 (40, 40) 0.21 43222.70 36028.50 79251.19 3.90 15.43 15.87 33931.18 50325.84 84257.02 8.09 12.52

9 (25, 50) 0.12 51218.66 58583.67 109802.33 7.12 16.33 4.26 42164.02 72813.70 114977.73 10.85 13.90

10 (50, 50) 0.38 53868.14 41958.09 95826.22 3.87 19.33 25.53 42398.02 59953.90 102351.91 8.07 15.64

11 (50, 100) 0.57 102438.95 100606.99 203045.94 6.77 33.22 31.06 87180.21 125457.30 212637.51 9.66 29.22

12 (100, 100) 2.06 110219.98 66146.81 176366.79 3.19 40.21 149.68 84082.70 107280.84 191363.54 7.72 31.78
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Table D2 Detailed results of the MDR model for the simulation tests

∆2 < 0 ∆2 > 0

No. (J, I) Cost1 Cost2 Costt #U #O Cost1 Cost2 Costt #U #O

1 (5, 10) 13359.40 9537.92 22897.32 0.30 3.91 12682.27 16237.77 28920.04 4.60 3.78

2 (10, 10) 14018.01 7154.77 21172.78 0.01 4.53 14213.02 11927.98 26140.99 1.86 4.58

3 (10, 20) 28450.19 13431.92 41882.11 0.04 8.45 28560.66 23360.47 51921.13 2.54 8.44

4 (20, 20) 27491.90 10534.66 38026.56 0.00 8.99 27086.53 17967.87 45054.40 1.62 9.00

5 (15, 30) 43392.01 16101.62 59493.62 0.01 12.84 44081.34 29516.65 73597.99 2.19 12.93

6 (30, 30) 38575.26 13047.86 51623.13 0.00 13.00 38254.82 24355.81 62610.63 2.06 13.00

7 (20, 40) 57275.57 18602.80 75878.37 0.00 16.99 56810.79 36001.72 92812.51 2.37 16.96

8 (40, 40) 51049.90 15039.74 66089.64 0.00 17.22 51077.27 29077.96 80155.23 2.11 17.30

9 (25, 50) 71710.52 20749.92 92460.44 0.00 21.42 72308.43 40539.67 112848.10 2.20 21.44

10 (50, 50) 64126.54 16537.07 80663.61 0.00 21.98 64541.43 32566.51 97107.94 1.86 22.00

11 (50, 100) 145869.77 29239.16 175108.93 0.00 42.99 143674.15 63135.72 206809.87 2.16 42.99

12 (100, 100) 121841.06 23954.55 145795.61 0.00 43.00 123380.02 54896.30 178276.32 2.17 43.00

Table D3 Illustrations of location decisions produced by the three models for the case study

Case (ς1, ς2) Ins Model Facilities opened #O Cost1 Cost2 Costt

1 (-0.3, -0.3) 1 SSP 2, 5, 8, 11, 12 5 828 400.34 1228.34

SDR 1, 2, 3, 6, 8, 9, 10, 12 8 1269 178.98 1447.98

MDR 1, 2, 3, 6, 8, 9, 10, 12 8 1269 178.98 1447.98

2 (-0.3, 0.1) 1 SSP 2, 5, 8, 11, 12 5 828 1433.74 2261.74

SDR 2, 3, 6, 7, 8, 9, 10, 12 8 1233 346.64 1579.64

MDR 1 , 2, 3, 6, 7, 8, 9, 10, 12 9 1426 220.93 1646.93

4 (0.3, 0.1) 5 SSP 2, 5, 8, 11, 12 5 828 600.36 1428.36

SDR 1, 2 , 3, 6, 8, 9, 11, 12 8 1255 281.92 1536.92

MDR 1, 3, 6, 7 , 8, 9, 11, 12 8 1282 323.71 1605.71

Ins is the instance number (recall that 5 instances are generated for each (ς1, ς2)).
Circles are used to distinguish the decisions from the two robust models.

Table D4 Sensitivity analysis on facilities’ fixed costs based on the case study

SSP SDR MDR

ϵ Cost1 Cost2 Costt 95th #U #O Cost1 Cost2 Costt 95th #U #O Cost1 Cost2 Costt 95th #U #O

0.5 627.50 262.85 890.35 994.89 0.28 8.00 776.23 141.95 918.19 963.65 0.00 9.73 809.57 119.84 929.41 988.16 0.00 10.07

0.6 637.20 382.43 1019.63 1206.26 0.03 7.00 867.35 184.16 1051.51 1113.55 0.00 9.12 922.18 149.87 1072.06 1137.26 0.00 9.62

0.7 743.40 382.43 1125.83 1312.46 0.03 7.00 985.83 199.34 1185.17 1252.42 0.00 8.90 1023.80 178.07 1201.88 1282.98 0.00 9.21

0.8 759.12 505.85 1264.97 1687.42 0.28 6.03 1094.71 218.81 1313.51 1391.68 0.00 8.66 1146.92 190.19 1337.11 1425.94 0.00 9.03

0.9 849.92 508.92 1358.84 1781.92 0.28 5.99 1177.66 249.02 1426.68 1533.42 0.00 8.32 1271.67 199.33 1471.01 1542.88 0.00 8.92

1.0 836.11 727.27 1563.38 2659.60 1.13 5.07 1268.59 270.72 1539.32 1658.67 0.00 8.11 1389.22 212.37 1601.58 1681.38 0.00 8.77

Table D5 Sensitivity analysis on the size of the support set based on the case study

SDR MDR

ϱ (%) Cost1 Cost2 Costt 95th #U #O Cost1 Cost2 Costt 95th #U #O

0 1268.59 270.72 1539.32 1658.67 0.001 8.11 1389.22 212.37 1601.58 1681.38 0.000 8.77

2 1256.00 277.35 1533.35 1636.40 0.001 8.03 1371.51 220.80 1592.30 1677.73 0.000 8.66

4 1244.68 281.97 1526.65 1635.24 0.001 7.97 1350.31 231.61 1581.92 1677.73 0.000 8.54

6 1235.88 285.41 1521.29 1630.45 0.001 7.92 1331.70 240.34 1572.04 1673.15 0.000 8.43

8 1220.28 294.61 1514.89 1630.92 0.002 7.83 1312.44 249.40 1561.85 1672.09 0.000 8.31
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Table D6 Sensitivity analysis on in-sample facility capacity and customer demand

SDR MDR

νc νd Cost1 Cost2 Costt #U #O Cost1 Cost2 Costt #U #O

0.90 0.90 1246.79 282.75 1529.54 0.00 7.99 1345.84 235.61 1581.46 0.00 8.52

0.90 0.95 1279.99 267.77 1547.76 0.00 8.19 1413.99 200.40 1614.39 0.00 8.92

0.90 1.00 1336.84 238.54 1575.38 0.00 8.52 1438.13 190.12 1628.25 0.00 9.06

0.90 1.05 1410.34 203.07 1613.41 0.00 8.92 1474.16 177.66 1651.82 0.00 9.24

0.90 1.10 1465.32 179.93 1645.25 0.00 9.21 1539.89 157.10 1696.99 0.00 9.58

0.95 0.90 1227.87 291.60 1519.47 0.00 7.88 1317.30 248.07 1565.37 0.00 8.34

0.95 0.95 1258.59 276.68 1535.28 0.00 8.06 1370.94 221.81 1592.75 0.00 8.66

0.95 1.00 1294.54 258.32 1552.86 0.00 8.27 1420.68 197.25 1617.93 0.00 8.96

0.95 1.05 1349.91 232.27 1582.18 0.00 8.59 1448.04 185.64 1633.68 0.00 9.11

0.95 1.10 1419.81 196.30 1616.10 0.00 8.97 1481.36 175.07 1656.42 0.00 9.28

1.00 0.90 1198.91 307.36 1506.27 0.01 7.71 1293.36 258.75 1552.10 0.00 8.20

1.00 0.95 1239.57 284.64 1524.21 0.00 7.94 1336.69 237.76 1574.45 0.00 8.46

1.00 1.00 1268.59 270.72 1539.32 0.00 8.11 1389.22 212.37 1601.58 0.00 8.77

1.00 1.05 1309.91 249.71 1559.62 0.00 8.34 1424.07 195.52 1619.59 0.00 8.98

1.00 1.10 1380.93 214.48 1595.41 0.00 8.75 1453.26 183.35 1636.61 0.00 9.14

1.05 0.90 1159.12 328.18 1487.30 0.02 7.48 1277.41 266.30 1543.71 0.00 8.10

1.05 0.95 1220.15 294.14 1514.29 0.00 7.82 1314.14 248.27 1562.41 0.00 8.32

1.05 1.00 1251.63 278.41 1530.04 0.00 8.01 1360.78 225.60 1586.38 0.00 8.60

1.05 1.05 1283.71 262.68 1546.39 0.00 8.18 1403.09 204.78 1607.87 0.00 8.86

1.05 1.10 1333.73 238.42 1572.15 0.00 8.47 1431.41 192.15 1623.56 0.00 9.02

1.10 0.90 1122.48 352.07 1474.55 0.02 7.26 1257.42 275.63 1533.05 0.00 7.99

1.10 0.95 1194.42 308.14 1502.56 0.01 7.67 1293.98 256.47 1550.45 0.00 8.21

1.10 1.00 1240.81 281.41 1522.22 0.00 7.93 1333.39 238.20 1571.59 0.00 8.43

1.10 1.05 1271.58 267.45 1539.03 0.00 8.11 1374.64 219.05 1593.70 0.00 8.68

1.10 1.10 1303.70 251.41 1555.11 0.00 8.29 1411.28 200.14 1611.42 0.00 8.91
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