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Allogeneic hematopoietic cell transplantation (allo-HCT) presents a potentially curative treatment for hema-
tologic malignancies yet carries associated risks and complications. Continuous research focuses on pre-
dicting outcomes and identifying risk factors. Notably, the influence of CD34+ cell dose on overall survival
(OS) has been the subject of numerous studies yielding contradictory results. We developed machine learn-
ing (ML) models to predict allo-HCT outcomes and, through the application of SHapley Additive exPlana-
tions (SHAP), an explainable artificial intelligence (XAI) technique enabled the identification of new and
clinically relevant feature-outcome relationships. In particular, we identified a clear interaction between
CD34+ cell dose of peripheral blood stem cell (PBSC) grafts and patient age at allo-HCT for patients with
acute leukemia. Results of multivariable analysis validated the interaction effect: in young patients with acute
leukemia (aged ≤45 years), low dose of CD34+ cells (<4.3 £ 106 CD34+/kg) was associated with better OS
against high dose (≥7£106 CD34+/kg) (hazard ratio [HR], 0.38; p = 0.019), while for older patients with acute
leukemia (>45 years), low CD34+ cell dose (<3.8 £106 CD34+/kg) was associated with worse OS against
high dose (≥6.1 £106 CD34+/kg) (HR, 1.58; p = 0.033). In conclusion, our findings suggest that tailoring
CD34+ cell dose by patient age may benefit patients with acute leukemia undergoing allo-HCT, while XAI
showcases excellent proficiency in revealing such interactions. © 2024 International Society for Experimen-
tal Hematology. Published by Elsevier Inc. All rights are reserved, including those for text and data mining,
AI training, and similar technologies.
HIGHLIGHTS

� We developed machine learning models to predict allo-HCT out-
comes and, through the application of SHAP, identified new and
clinically relevant feature-outcome relationships.

� In particular, we identified a clear interaction between CD34+ cell
dose of peripheral blood stem cell grafts and patient age at allo-
HCT for patients with acute leukemia.

� Through the above methodology, we determined that in young
patients with acute leukemia (aged ≤45 years), a lower dose of
CD34+ cells was associated with better OS, while in older patients
with acute leukemia (aged >45 years), a higher cell dose corre-
lated with improved outcomes.

� Our findings suggest that tailoring CD34+ cell dose by patient age
may benefit patients with acute leukemia undergoing allo-HCT.
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Allogeneic hematopoietic cell transplantation (allo-HCT) is a poten-
tially curative treatment for patients with hematologic diseases. Despite
the significant therapeutic benefits, allo-HCT is associated with many
risks and complications, such as graft-versus-host disease (GVHD) and
relapse. Predicting these risks before transplantation remains a chal-
lenge for oncologists, as it covers a wide range of factors that can inter-
act with each other in complex ways. Compared with the
conventional Cox proportional hazards (CPH) analysis, machine learn-
ing (ML) models exhibit a promising performance that is, at a mini-
mum, on par with the Cox approach, which can be attributed to the
ability to capture complex high-dimensional relationships [1−3]. In
examining interaction effects, CPHmodels require a priori specification
of feature pairs, whereas ML models inherently identify these interac-
tions during the training process without prior definition. In the field of
hematology, more studies have leveraged the power of ML models to
predict transplant outcomes using pretransplant factors [4−7].
0301-472X/© 2024 International Society for Experimental Hematology. Published
by Elsevier Inc. All rights are reserved, including those for text and data mining, AI
training, and similar technologies.

https://doi.org/10.1016/j.exphem.2024.104684

1

http://crossmark.crossref.org/dialog/?doi=10.1016/j.exphem.2024.104684&domain=pdf
mailto:Fotios.Michelis@uhn.ca
https://dx.doi.org/10.1016/j.exphem.2024.104684


2 Y. Qu et al Experimental Hematology
January 2025
However, most ML models possess an inherent “black-box”
nature, which limits the interpretability and transparency of their pre-
dictive outcomes, posing a challenge for adoption in high-stakes deci-
sion-making contexts. To address this challenge, researchers have
developed explainable artificial intelligence (XAI) methods that
enable the interpretation of ML models. Li et al [8] utilized an XAI
approach, SHapley Additive exPlanations (SHAP), to validate, inter-
pret, and visualize nonlinear interactions between clinical variables in
prostate cancer survival. Similarly, Moncada-Torres et al [9] demon-
strated the superiority of the SHAP framework over traditional Cox
regression for predicting breast cancer survival and finding the interac-
tion effects within features.

In the field of hematology, several studies have explored the
impact of CD34+ cell dose on allo-HCToutcomes and yielded con-
troversial results [10−17]. Some studies found that a higher CD34+
cell dose is associated with improved overall survival (OS) rates [15],
shortened engraftment times [13], and decreased relapse rates [14].
However, other studies demonstrated that a higher CD34+ cell dose
is associated with an increase in GVHD along with a decrease in OS
[11,12,18]. On the other hand, Yamamoto et al [16] investigated the
impact of a low CD34+ cell dose of 1�2 £ 106 cells/kg and found
acceptable results. However, to date, no research has conclusively
demonstrated an interaction effect between CD34+ cell dose and
other patient- and transplant-related variables.

In this study, we applied the SHAP XAI method to our existing
ML model [7] for allo-HCT survival prediction to discover a signifi-
cant interaction effect between CD34+ dose and age, which is vali-
dated through conventional statistical survival analysis.

METHODS

Patient Data

The study was retrospective, using data previously collected and
stored within the Hans Messner Allogeneic Transplant Program Data-
base of the Princess Margaret Cancer Centre (PMCC), Toronto, Can-
ada. The single-center registry is routinely updated with new patients
and follow-up data.

The initial study cohort included patients who underwent allo-
HCT for acute myeloid leukemia (AML), acute lymphoblastic leuke-
mia (ALL), lymphoma, myelodysplastic syndromes (MDS), and other
hematologic diseases during the period from January 2010 to August
2019, and the last follow-up date of survivors is August 2021. This
cohort included 1,153 patients with 253 clinical and laboratory pre-
transplant and transplant-related variables collected in the database
(characteristics outlined in the Supplementary File, Table E1).

Development of ML Models

We employed the same ML model development methodology as in
the study by Shourabizadeh et al [7], using an updated, more recent
dataset as previously described, including several additional variables
and fewer missing data. The primary disparity between the two data-
sets lies in the time period and patients covered: the dataset of Shour-
abizadeh et al [7] covered a more extended period from January
1976 to December 2017 and incorporated data from 2,697 patients,
which doubled the number of patients of this study’s initial cohort.
After following the same process of feature selection for the ML
model, the dataset consisted of 52 pretransplant features for predic-
tion with a total missing data rate of 22%, compared with 45 features
with a total missing data rate of 46% in the previous study by Shoura-
bizadeh et al [7], including the components of the Hematopoietic
Cell Transplant Comorbidity Index (HCT-CI) [19] for a subset of
patients (Supplementary Table E3). Finally, the same missing data
imputation method is used [7].

The Extreme Gradient Boosting model (XGBoost) was chosen for
the prediction of 2-year survival outcomes in this study for its high
prediction performance and efficiency in computing SHAP values
due to its tree structure compared with others. Comprehensive infor-
mation on the training and testing process, as well as the tuning of
the model’s hyperparameters, is detailed in the Supplementary File,
Supplementary Text E1.

XGBoost is an extension of gradient boosting, characterized by an
efficient computational speed and performance, which is used for
both regression and classification problems. XGBoost operates by
iteratively constructing weak prediction models (typically decision
trees) to predict the target variable while minimizing the loss function,
which helps to sequentially reduce errors and optimize model perfor-
mance.

It is important to highlight that our model is trained using data
from patients with a variety of diseases. Our goal is to enable the
model to identify pertinent associations that extend across all hemato-
logic conditions. Considering the small size of our dataset, we deliber-
ately selected this strategy, encompassing a spectrum of diseases
within the training set to maximize the model’s learning effectiveness.
Details regarding our ML model training and testing are elaborated in
the Supplementary File, Supplementary Text E1.
ML Interpretation

The complexity of ML models has generated an upsurge in interest in
XAI to augment the transparency and interpretability of black-box
models. XAI methods like Anchors [20], local interpretable model-
agnostic explanations (LIME) [21], and SHAP [22] have been pro-
posed. We used the game theory-based SHAP framework in our
study for model interpretation and feature importance measurement
due to its easily understandable visualizations and indication of the
direction of variable value impact; that is, SHAP indicates not only
which variables are important, but whether high or low values of
those variables correspond to survival, providing significant clinical
insight, and, most importantly, its capability to investigate interaction
effects, which is especially invaluable in complex clinical settings
where variables rarely act in isolation. The SHAP methodology
derives its foundation from the Shapley values in cooperative game
theory. Shapley values allocate a payoff among players in a game
depending on their marginal contribution to the total payout. Simi-
larly, SHAP equitably apportions feature contributions and provides
consistent importance measures per instance (i.e., dataset record)
with the following formula:

Fiðf ; xÞ ¼
X

S�Nfig

jSj! jNj � jSj � 1ð Þ!
jNj! fS[ figðxÞ � fSðxÞ

� �

where x is one instance, i is the feature of investigation, N is the set of
all features, S is a subset of features excluding i, jSj is the size or cardi-
nality of the set S, jNj is the total number of features, and ffS[ figg is
the prediction function of the model conditioned on the subset of
features S along with i. This formula calculates a weighted sum of the
differences in the model’s output when feature i is included and



Experimental Hematology
Volume 141

Y. Qu et al 3
when it is not, across all subsets of features. The sum gives the overall
contribution of feature i to the prediction for instance x.

SHAP values offer comprehensive global explanations, revealing
overall feature importance, identifying trends and biases, and illumi-
nating feature interaction effects. These interaction effects, gauging
the combined impact of multiple features on predictions, heighten
the interpretability and discovery of high-order interactions within
complex ML models, offering a deeper level of understanding. The
SHAP interaction value between features i and j is computed as

Fijðf ; xÞ ¼
X

S�Nfi;jg

jSj! jNj � jSj � 2ð Þ!
jNj! fS[ fi;jgðxÞ � fS[ figðxÞ � fS[ fjgðxÞ þ fSðxÞ

� �

This formula extends the SHAP value calculation by considering
both i and j in the prediction function and measuring the change in
output due to their interaction.

SHAP values are initially computed at the instance level, provid-
ing a comprehensive breakdown of each feature’s contribution to
the prediction for every individual instance. These per-instance
SHAP values can then be aggregated to create a higher level of
interpretability. By categorizing similar instances and examining their
collective SHAP values, it is possible to target specific subgroups for
more in-depth analysis. This level of granular scrutiny not only
enhances the interpretability of ML models but also improves their
transparency.

We utilized the open-source Python package shap (version 0.41.0)
to compute both SHAP and interaction values for each patient in our
dataset. These computations were based on the final XGBoost
model, which was trained using the entire dataset and the optimized
hyperparameters. Subsequently, we produced visualizations to repre-
sent the overall feature importance, drawing on the SHAP values. To
account for disease heterogeneity, we grouped instances according to
their respective diagnoses, thus mitigating potential confusion arising
from mixed impacts. We created SHAP dependence plots for each
pair of features within each diagnosis group. Finally, we examined the
most significant interaction effects, as guided by the interaction matrix
for features, and discovered novel interaction findings of CD34+
Figure 1 SHAP dependence plot for a
dose and age for patients with acute leukemia from these depen-
dence plots.
Cutoff Values for Age and CD34+ Dose

Two groups of cutoff values are determined for the study: cutoff age
and cutoff CD34+ doses for the two age groups. From the SHAP
dependence plot (Figure. 1), we focused on the range of cutoff age to
45−50 years. Young and old cohorts associated with each potential
cutoff age are further divided into three groups according to their
CD34+ doses: low, medium, and high. The CD34+ dose cutoff
points are determined using the maximally selected rank statistics
method twice [23]: the first time to find the lower cutoff point
between low versus medium and high, and the second time to find
the upper cutoff point between medium versus high. This method
identifies cutoff points that maximize the separation between groups
regarding survival outcomes while controlling for multiple testing
parameters to maintain statistical validity. Applying it separately to the
young and old cohorts allowed us to account for heterogeneity in the
impact on outcomes of cell dose between age groups. Biological differ-
ences, such as variations in immune reconstitution and comorbidities,
may influence how cell dose affects outcomes in younger versus older
patients. By determining age-specific cutoff values, we attempted to
reflect risk stratification within each cohort more accurately.

Lastly, we determined the appropriate age cutoff by examining the
log-rank test results corresponding to all possible ages, derived from
the Kaplan-Meier survival curves of both younger and older patient
cohorts.
Statistical Methods

We used the Kaplan-Meier estimator to calculate univariate probabilities
of OS. Log-rank test was used for univariate survival curve comparisons,
although point-wise comparisons were performed using the chi-square
test. Probabilities of relapse, nonrelapse mortality (NRM), acute GVHD
(aGVHD), and chronic GVHD (cGVHD) were calculated with the
cumulative incidence function estimator. Patients were censored at the
ge and CD34+ for acute leukemia.
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time of death or last follow-up. For NRM, relapse was the competing
risk; for relapse, NRM was the competing risk. For aGVHD and
cGVHD, death was the competing risk. Multivariable analysis of OS
was done with CPH regression. Multivariable analyses of relapse and
NRM are done using the Fine-Gray proportional hazard model. Results
are shown as hazard ratio (HR) along with the 95% confidence interval
(CI). Factors included in the regression model are marked by an asterisk
in Supplementary Table E3. The chi-square test is used to compare cate-
gorical variables. For the cause-of-death data, we applied the chi-square
test to compare each cause-of-death category against all other causes
within the stratified groups for both age cohorts.

We used a stepwise selection technique with the Akaike informa-
tion criterion (AIC) as the criteria to evaluate and compare the good-
ness of fit of the finalized regression models while considering model
complexity. p values are two-sided.
RESULTS

SHAP Interpretation

The final model trained by the entire cohort of 1,153 patients
achieved an area under the receiver operating characteristic curve
(AUC) of 0.674 § 0.012 after 5 £10-fold repeated cross-validation.

Figure 2 presents the summary plot with the top 15 features based
on mean absolute SHAP values from the entire ML model for the
entire cohort. Each point in this plot represents a single patient: Its
vertical location shows what feature it is depicting, its SHAP value is
shown by its position on the x axis, and its specific feature value is
indicated by the color of that point according to the color legend on
the right. Points with the same SHAP value are clustered along the y
Figure 2 SHAP s
axis. In the context of our ML model, a higher SHAP value translates
to a higher probability of survival at the 2-year time point. This plot is
a high-level overview of the feature importance for our ML model,
where patient age (age_at_bmt), human leukocyte antigens (HLAs)
mismatch donor, and donor age, which is highly correlated with the
donor type feature, are the top three features that the model deems
important based on SHAP values. It should be noted that the SHAP
value for each feature here combines the main effect from itself and
the interaction effects with other features.

Figure 1 is a SHAP dependence plot between recipient age and
CD34+ cell dose specifically for the acute leukemia cohort
(n = 674). The descending trend of the curve is clear and aligns with
both the literature and intuition, suggesting that younger patients
tend to have a better chance of survival [19]. New insight into the
interaction effect of age and CD34+ dose can be visualized from the
trend of colors, representing the level of CD34+ dose for each
patient. On the left side of the plot, representing the younger patients,
more red points appear on the bottom part of the curve, meaning
young patients with higher CD34+ doses have less favorable survival
outcomes than those with lower CD34+ doses in blue. However,
this pattern switches roughly beyond the age of 45 years, with more
red points appearing on the upper part of the curve, meaning more
older patients have more favorable survival outcomes with higher
CD34+ doses. This interaction effect is particularly noteworthy since
physicians have a certain level of control over CD34+ cell dose
(depending of course on the success of mobilization and CD34+ cell
collection). In contrast to many other immutable factors, this observa-
tion about the relationship between recipient age and CD34+ dose
allows for personalized adjustments, potentially enhancing survival
outcomes.
ummary plot.
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Characteristics of the Acute Leukemia Cohort

Patient characteristics of the acute leukemia cohort for developing an
ML model are displayed in Supplementary Table E3. Features that
are included in the multivariable analysis are noted with an asterisk.
After finding the interaction effect for the acute leukemia cohort
from the XAI investigation, we further analyzed other disease cohorts
and found that the interaction effect only occurs within the com-
bined AML and ALL cohort (n = 674). Tables 2 and 3 present the
patient characteristics of the young and old acute leukemia cohorts,
respectively, with a cutoff age of ≤45 years.

Among the 205 patients in the young group (aged ≤45 years), 26
(12.7%) received a low dose of CD34+ (<4.3 £106 CD34+/kg), 56
(27.3%) received a medium dose of CD34+ (4.3−7 £ 106 CD34
+/kg), and 123 (60.0%) received a high dose of CD34+ (>7 £ 106

CD34+/kg). The characteristics of patients receiving different doses
of CD34+ were similar, except that the group with a high dose had a
higher proportion of mismatched donors than the other two groups
(Table 1).

Among the 469 patients in the older group (aged >45 years), 44
(9.4%) received a low dose of CD34+ (<3.8 £106 CD34+/kg), 127
(27.1%) received a medium dose of CD34+ (3.8−6.1 £ 106 CD34
+/kg), and 298 (63.5%) received a high dose of CD34+ (>6.1 £106

CD34+/kg). The characteristics of patients receiving different doses
of CD34+ were similar, except that donor relationship and disease
stage differed among the three groups. The high-dose group reported
more haplo donors than the other two groups, and the low-dose
group reported a higher proportion of patients at stage complete
remission 2 or 3 (CR2/3) (Table 2).

OS

On univariate analysis, within the young cohort, the group with a low
dose of CD34+ resulted in the highest 2-year survival: low versus
high, 84.6% versus 59.1% (p = 0.002), and low versus medium,
84.6% versus 48.2% (p < 0.001) (Figure 3A). However, for the old
cohort, the reverse is observed. The group with a low dose of CD34
+ resulted in the lowest 2-year survival: low versus high, 33.3% versus
55.1% (p = 0.005), and low versus medium, 33.3% versus 48.8%
(p = 0.07) (Figure 3B).

In the multivariable analysis, a lower dose of CD34+ is associated
with superior OS in the young cohort (HR, 0.38; 95% CI, 0.17
−0.85; p = 0.019; Table 3A). For the older cohort, a higher dose of
CD34+ is associated with superior OS (HR, 1.58; 95% CI, 1.04
−2.40; p = 0.033; Table 3B).

Relapse and NRM

On univariate analysis, the cumulative incidence of relapse at 2 years
for the three groups of the young cohort is 4.0% (low), 20%
(medium), and 18% (high) (p = 0.2). However, the low-dose group
retained a lower relapse rate compared with medium and high com-
bined (low, 4.0%; medium and high, 19%; p = 0.059) because there
was only one case of relapse out of 26 patients in the young low-
dose group. For the old cohort, the values are 26% (low), 19%
(medium), and 17% (high) (p = 0.6).

On univariate analysis for NRM at 2 years of the young cohort, the
respective values are 16% (low), 33% (medium), and 24% (high)
(p = 0.4). For the old cohort, the values are 42% (low), 33%
(medium), and 30% (high) (p = 0.3). Figures of cumulative incidence
of relapse and NRM are in the Supplementary File, Supplementary
Figures E7−E10.

Similarly, in the multivariable analysis, the low cell dose group is
not significantly associated with relapse or NRM for either young or
old cohorts.

Engraftment

CD34+ cell dose does not appear to impact neutrophil recovery time
within the young cohort, as all three groups (low, medium, and high
dose) share the same median neutrophil recovery time (at least
0.5 £ 109/L) of 14 days, with ranges of 11−24, 11−22, and 10
−32 days, respectively. In the older cohort, while the median recov-
ery time is consistent at 16 days across the groups, there is greater vari-
ability in the range, with the low-dose group recovering in 11
−40 days, the medium-dose group recovering in 9−66 days, and the
high-dose group recovering in 10−109 days.

GVHD

Among the 674 patients, 373 patients (55.4%) developed aGVHD at
a median of 42 days (range, 6−198 days) after transplantation, and
301 (44.6%) developed grades 2−4 aGVHD. Overall, 248 (36.8%)
developed cGVHD at a median of 170 days (range, 32−2,558 days)
after transplantation.

CD34+ cell dose did not affect the incidence of aGVHD in both
young and old cohorts. In contrast, among the young patients, the
dose of CD34+ cells had a significant influence on the development
of cGVHD. The 2-year cumulative incidence of cGVHD was highest
in patients receiving a low cell dose (58% [95% CI, 36%−74%]),
compared with those receiving medium (32% [95% CI, 20%
−45%]) or high doses (33% [95% CI, 25%−42%]) of CD34+ cells
(p = 0.045). In the old patient cohort, the CD34+ cell dose did not
significantly influence the incidence of cGVHD. Figures for the cumu-
lative incidence of aGVHD and cGVHD are in the Supplementary
File, Supplementary Figures E11−E14.

Cause of Death

Focusing on causes of death (Table 4), distinct patterns emerge when
comparing the young and old age cohorts. Although the old cohort
demonstrates a pronounced susceptibility to infections/sepsis, with
the old-medium cell dose group leading at 34.21%, this difference
across cell dose groups is not statistically significant (p = 0.140). The
young cohorts reveal a distinct pattern concerning GVHD-related
deaths. Specifically, there is a marked uptick in GVHD-related deaths
with increasing CD34+ doses among the younger demographic. The
younger group with the highest dose registers a significant 25.93% of
GVHD-related deaths. Additionally, the young low cell dose group
stands apart by displaying no deaths due to relapse, whereas the
higher dose groups exhibited relapse rates of 38.71% and 35.19%,
respectively, though this difference was also not statistically significant
(p = 0.138). Notably, in the young cohort, there was a statistically sig-
nificant difference in graft failure between the cell dose groups (p <
0.001).

DISCUSSION

In the present study, we successfully utilized the SHAP framework
with an ML model we developed to investigate complex interaction



Table 1 Patient characteristic table for young patients with acute leukemia (aged ≤45years) separated by CD34+ cell dose

Variables Missing Overall
Low <4.3 £ 106

CD34+/kg
Medium 4.3−7 £ 106

CD34+/kg
High >7 £ 106

CD34+/kg p value

n 205 26 56 123

Age at transplant (y), mean (SD) 0 32.8 (8.0) 35.9 (7.8) 33.6 (8.0) 31.8 (7.9) 0.038

Sex, n (%) 0 0.541

Female 108 (52.7) 14 (53.8) 26 (46.4) 68 (55.3)

Male 97 (47.3) 12 (46.2) 30 (53.6) 55 (44.7)

Donor type, n (%) 0 0.142

Haplo 25 (12.2) 1 (3.8) 3 (5.4) 21 (17.1)

Related 64 (31.2) 9 (34.6) 19 (33.9) 36 (29.3)

Unrelated 116 (56.6) 16 (61.5) 34 (60.7) 66 (53.7)

Diagnosis, n (%) 0 0.438

ALL 70 (34.1) 8 (30.8) 23 (41.1) 39 (31.7)

AML 135 (65.9) 18 (69.2) 33 (58.9) 84 (68.3)

ABO compatibility, n (%) 0 0.598

Bidirectional 10 (4.9) 3 (5.4) 7 (5.7)

Compatible 97 (47.3) 15 (57.7) 29 (51.8) 53 (43.1)

Major 48 (23.4) 7 (26.9) 12 (21.4) 29 (23.6)

Minor 50 (24.4) 4 (15.4) 12 (21.4) 34 (27.6)

TBI dose, n (%) 0 0.468

None 11 (5.4) 1 (3.8) 1 (1.8) 9 (7.3)

LD 61 (29.8) 6 (23.1) 15 (26.8) 40 (32.5)

MD 91 (44.4) 15 (57.7) 26 (46.4) 50 (40.7)

HD 42 (20.5) 4 (15.4) 14 (25.0) 24 (19.5)

Stage, n (%) 17 0.164

Advanced 6 (3.2) 2 (3.8) 4 (3.6)

CR1 131 (69.7) 20 (83.3) 30 (57.7) 81 (72.3)

CR2/3 27 (24.1) 4 (16.7) 51 (27.1) 20 (38.5)

Conditioning regimen, n (%) 0 0.417

MAC 140 (68.3) 20 (76.9) 40 (71.4) 80 (65.0)

RIC 65 (31.7) 6 (23.1) 16 (28.6) 43 (35.0)

HLA mismatch, n (%) 6 0.040

Negative 148 (74.4) 20 (80.0) 47 (85.5) 81 (68.1)

Positive 51 (25.6) 5 (20.0) 8 (14.5) 38 (31.9)

Graft, n (%) 0 0.832

Fresh 149 (72.7) 19 (73.1) 39 (69.6) 91 (74.0)

Frozen 56 (27.3) 7 (26.9) 17 (30.4) 32 (26.0)

Days Dx to Tx, mean (SD) 1 452.4 (672.4) 403.6 (446.8) 512.6 (815.9) 435.9 (643.6) 0.724

Donor age (y), mean (SD) 0 33.3 (11.3) 34.8 (9.5) 32.0 (12.5) 33.6 (11.2) 0.525

GVHD prophylaxis, n (%) 0 0.632

In vivo T-cell depletion 133 (64.9) 16 (61.5) 34 (60.7) 83 (67.5)

Other 72 (35.1) 10 (38.5) 22 (39.3) 40 (32.5)

(continued )
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Table 1 (Continued)

Variables Missing Overall
Low <4.3 £ 106

CD34+/kg
Medium 4.3−7 £ 106

CD34+/kg
High >7 £ 106

CD34+/kg p value

CMV pair, n (%) 0 0.789

D+R+ 83 (40.5) 13 (50.0) 25 (44.6) 45 (36.6)

D+R� 19 (9.3) 2 (7.7) 6 (10.7) 11 (8.9)

D�R+ 54 (26.3) 7 (26.9) 13 (23.2) 34 (27.6)

D�R� 49 (23.9) 4 (15.4) 12 (21.4) 33 (26.8)

-5,-7,-17 cytogenetics
abnormality, n (%)

12 0.762

Negative 182 (94.3) 20 (90.9) 51 (94.4) 111 (94.9)

Positive 11 (5.7) 2 (9.1) 3 (5.6) 6 (5.1)

DRI 26 0.546

0 13 (5.5) 7 (5.2) 1 (3.4) 5 (6.7)

1 189 (79.4) 103 (76.9) 26 (89.7 60 (80.0)

2 36 (15.1) 24 (17.9) 2 (6.9) 10 (13.3)

+=Positive; �=negative; ALL=acute lymphoblastic leukemia; AML=acute lymphoblastic leukemia; CMV=cytomegalovirus; CR1=first complete
remission; CR2/3=second or third complete remission; Dx to Tx=from diagnosis to transplantation; D=donor; DRI=disease risk index;
GVHD=graft-versus-host disease; HD=high dose; HLA=human leukocyte antigens; LD=low dose; MAC=myeloablative conditioning; MD=me-
dium dose; R=recipient; RIC=reduced intensity conditioning; TBI=total-body irradiation.
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relationships between variables characterizing a large single-center
allo-HCT cohort. By applying this methodology to our registry con-
taining data from patients with acute leukemia who underwent allo-
HCTover the time period of 2010−2019, we have discovered a sig-
nificant interaction between patient age and the CD34+ cell dose: a
lower dose of CD34+ (<4.3 £ 106 CD34+/kg) is associated with an
improved OS for adult patients aged 45 years or younger, whereas a
higher dose of CD34+ (≥6.1 £ 106 CD34+/kg) is associated with
better OS for patients older than 45 years.

We showed that using SHAP values to illustrate nonlinear relation-
ships and interactions presents potential benefits over traditional
regression methods. A primary advantage is the elimination of the
need to predefine pairs of interaction variables. A sophisticated ML
model is capable of learning high-dimensional feature interactions
during training, allowing SHAP to subsequently extract and elegantly
visualize these interactions. In contrast, conventional methods usually
necessitate a priori specification based on clinical assumptions, often
infeasible without specific domain knowledge about the interaction
in question.

The dose of CD34+ cells administered in allo-HCT for hemato-
logic malignancies has been scrutinized in connection with transplant
outcomes such as OS, relapse, NRM, and the incidence of GVHD.
Yet, different studies present conflicting results. Historical studies from
the early 2000s suggested that a higher CD34+ cell dose was associ-
ated with unfavorable outcomes. For instance, Zaucha et al [18]
noted that doses surpassing 8.0 £ 106 CD34+/kg were linked to a
heightened risk of cGVHD. Similarly, Perez-Simon et al [12] corrobo-
rated this finding in a multicenter study. They defined their higher
dose group using the 75th percentile as a threshold to account for
varying site-specific thresholds. The study reported median doses
of 5.68 £106 CD34+/kg and 7 £ 106 CD34+/kg in the two partici-
pating centers. Further supporting this view were findings by Urbano-
Ispizua et al [24], identifying over 3 £ 106 CD34+/kg as a high-dose
threshold, and Mohty et al [11], using a threshold of 8.3 £106 CD34
+/kg, both associating higher doses with reduced OS and disease-
free survival.

However, this perspective began to shift over the following
decade, with more recent investigations presenting an opposing view.
Pulsipher et al [25] highlighted the advantages of higher CD34+ cell
doses over 4.5£106 CD34+/kg, noting faster immune recovery and
improved OS. This positive association between CD34+ cell dose
and OS was further reinforced by T€orl�en et al [15] and Remberger et
al [13] with higher dose thresholds in the range of 4−6.5 £ 106

CD34+/kg, emphasizing the potential benefits of faster engraftment
and reduced risks related to post-transplantation infections.

Over the last two decades, significant advancements in transplant
techniques, notably the introduction of reduced intensity condition-
ing (RIC) and nonmyeloablative (NMA) conditioning regimens,
have broadened the demographic spectrum of eligible patients,
now covering those in their advanced years, often extending into
their 60s or even 70s [26]. Such transformative shifts are evident in
the evolving age distributions across various study cohorts. Earlier
studies document a median transplant age up to the early 50s
[11,12,18,24], while more recent research cites a median age of
56 years and above [13,15]. Pulsipher et al [25] describe median
age of 38 (range, 1−65) for patients undergoing myeloablative con-
ditioning (MAC), 56 (1−75) for the RIC cohort, and 57 (17−73)
for the NMA cohort.



Table 2 Patient characteristic table for older patients aged (> 45 years) separated using CD34+ cell dose

Variables Missing Overall
Low <3.8 £ 106

CD34+/kg
Medium 3.8−6.1 £106

CD34+/kg
High >6.1 £ 106

CD34+/kg p value

n 469 44 127 298

Age at transplant (y), mean (SD) 0 58.6 (7.2) 57.9 (8.0) 59.1 (7.1) 58.5 (7.2) 0.574

Sex, n (%) 0 0.381

Female 220 (46.9) 19 (43.2) 54 (42.5) 147 (49.3)

Male 249 (53.1) 25 (56.8) 73 (57.5) 151 (50.7)

Donor type, n (%) 0 0.003

Haplo 40 (8.5) 2 (4.5) 6 (4.7) 32 (10.7)

Related 149 (31.8) 18 (40.9) 54 (42.5) 77 (25.8)

Unrelated 280 (59.7) 24 (54.5) 67 (52.8) 189 (63.4)

Diagnosis, n (%) 0 0.847

ALL 55 (11.7) 4 (9.1) 15 (11.8) 36 (12.1)

AML 414 (88.3) 40 (90.9) 112 (88.2) 262 (87.9)

ABO compatibility, n (%) 0 0.775

Bidirectional 32 (6.8) 2 (4.5) 11 (8.7) 19 (6.4)

Compatible 258 (55.0) 24 (54.5) 70 (55.1) 164 (55.0)

Major 88 (18.8) 10 (22.7) 26 (20.5) 52 (17.4)

Minor 91 (19.4) 8 (18.2) 20 (15.7) 63 (21.1)

TBI dose, n (%) 0 0.325

None 15 (3.2) 1 (2.3) 3 (2.4) 11 (3.7)

LD 310 (66.1) 24 (54.5) 83 (65.4) 203 (68.1)

MD 144 (30.7) 19 (43.2) 41 (32.3) 84 (28.2)

Stage, n (%) 14 0.010

Advanced 5 (1.1) 3 (2.4) 2 (0.7)

CR1 367 (80.7) 26 (63.4) 100 (79.4) 241 (83.7)

CR2/3 45 (15.6) 15 (36.6) 83 (18.2) 23 (18.3)

Conditioning regimen, n (%) 0 0.075

MAC 155 (33.0) 21 (47.7) 43 (33.9) 91 (30.5)

RIC 314 (67.0) 23 (52.3) 84 (66.1) 207 (69.5)

HLA mismatch, n (%) 21 0.036

Negative 336 (75.0) 27 (65.9) 102 (82.9) 207 (72.9)

Positive 112 (25.0) 14 (34.1) 21 (17.1) 77 (27.1)

Graft, n (%) 0 0.824

Fresh 345 (73.6) 32 (72.7) 91 (71.7) 222 (74.5)

Frozen 124 (26.4) 12 (27.3) 36 (28.3) 76 (25.5)

Days Dx to Tx, mean (SD) 1 376.8 (637.0) 377.3 (375.3) 413.1 (801.1) 361.2 (588.0) 0.746

Donor age (y), mean (SD) 1 38.1 (15.4) 43.3 (18.4) 41.0 (16.1) 36.1 (14.3) 0.001

GVHD prophylaxis, n (%) 1 0.117

In vivo T-cell depletion 325 (69.4) 27 (61.4) 82 (64.6) 216 (72.7)

Other 143 (30.6) 17 (38.6) 45 (35.4) 81 (27.3)

(continued )
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Table 2 (Continued)

Variables Missing Overall
Low <3.8 £ 106

CD34+/kg
Medium 3.8−6.1 £106

CD34+/kg
High >6.1 £ 106

CD34+/kg p value

CMV pair, n (%) 0 0.307

D+R+ 211 (45.0) 125 (41.9) 23 (52.3) 63 (49.6)

D+R� 26 (5.5) 19 (6.4) 0 (0.0) 7 (5.5)

D�R+ 162 (34.5) 110 (36.9) 12 (27.3) 40 (31.5)

D�R� 70 (14.9) 44 (14.8) 9 (20.5) 17 (13.4)

-5,-7,-17 cytogenetics abnormality,
n (%)

16 0.547

Negative 420 (92.7) 39 (95.1) 115 (94.3) 266 (91.7)

Positive 33 (7.3) 2 (4.9) 7 (5.7) 24 (8.3)

DRI 12 0.379

0 22 (3.7) 14 (3.7) 4 (7.5) 4 (2.5)

1 467 (79.6) 392 (80.1) 39 (73.6) 126 (80.3)

2 93 (15.8) 56 (14.9) 10 (18.9) 27 (17.2)

3 5 (0.9) 5 (1.3)

+=Positive; �=negative; ALL=acute lymphoblastic leukemia; AML=acute myeloid leukemia; CMV=cytomegalovirus; CR1=first complete remis-
sion; CR2/3=second or third complete remission; Dx to Tx=from diagnosis to transplantation; D=donor; DRI=disease risk index; GVHD=graft-ver-
sus-host disease; HLA=human leukocyte antigens; LD=low dose; MAC=myeloablative conditioning; MD=medium dose; R=recipient;
RIC=reduced intensity conditioning; TBI=total-body irradiation.
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Of note, some earlier studies like Ringd�en et al [14] and Singhal et
al [27] posited that higher doses of CD34+ cells were correlated
with superior OS; however, the threshold delineating low from high
doses in the study by Singhal et al [27] was comparatively modest,
standing at 2 £ 106/kg—nearly half of the thresholds used in this
study.
Figure 3 OS for diffe
The shift toward an older cohort in recent studies may offer insights
into the divergent observations regarding the impact of CD34+ cell
dose on survival outcomes. Notably, the potential interaction between
patient age and CD34+ cell dose remains an uncharted domain.
Guided by XAI, our study aspired to reconcile the prevailing contro-
versy surrounding CD34+ cell dose impact by investigating this
rent age cohorts.



Table 3Multivariable analysis for OS

Young cohort

Characteristic HR 95% CI p value

CD34 group

High (>7 £ 106 /kg) — —
Medium (4.3�7 £ 106/kg) 1.17 0.73−1.86 0.5

Low (<4.3 £ 106/kg) 0.38 0.17−0.85 0.019

Donor age (y) 1.02 1.00−1.04 0.057

Diagnosis

ALL — —
AML 0.48 0.28−0.85 0.011

Conditioning regimen

MAC — —
RIC 3.72 1.02−13.6 0.047

Days Dx to Tx 1.00 1.00−1.00 0.011

BMT year 0.88 0.80−0.98 0.019

CMV pair

D�R� — —
D�R+ 2.19 1.14−4.22 0.019

D+R� 0.95 0.39−2.30 > 0.9

D+R+ 1.71 0.92−3.18 0.092

TBI dose

HD — —
LD 0.50 0.12−2.04 0.3

MD 1.97 0.96−4.04 0.064

None 1.56 0.39−6.34 0.5

Old cohort

Characteristic HR 95% CI p value

CD34 group

High (>6.1 £ 106/kg) — —
Medium (3.8−6.1 £ 106/kg) 1.24 0.93−1.64 0.14

Low (<3.8 £ 106/kg) 1.58 1.04−2.40 0.033

Donor type

Haplo — —
Related 0.58 0.34−0.98 0.044

Unrelated 0.89 0.54−1.46 0.7

Diagnosis

ALL — —
AML 0.70 0.48−1.04 0.075

BMT year 0.92 0.88−0.96 < 0.001

Stage Advanced — —

(continued )

Table 3 (Continued)

Old cohort

Characteristic HR 95% CI p value

CR1 0.22 0.08−0.58 0.002

CR2/3 0.19 0.07−0.53 0.001

+=Positive; �=negative; ALL=acute lymphoblastic leukemia;
AML=acute myeloid leukemia; BMT=bone marrow transplantation;
CI=confidence interval; CMV=cytomegalovirus; CR1=first complete
remission; CR2/3=second or third complete remission; D=donor;
Dx to Tx=from diagnosis to transplantation; HD=high dose; HR=ha-
zard ratio; LD=low dose; MAC=myeloablative conditioning;
MD=medium dose; R=recipient; RIC=reduced intensity condition-
ing; TBI=total-body irradiation.
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interaction. The detrimental effect of a higher cell dose in younger
patients may be associated with more robust engraftment in these
younger patients with a subsequent increase in the incidence of
aGVHD. On the other hand, in older patients who seem to demon-
strate graft failure as a more significant cause of death (Table 4), it may
be that the higher cell dose associated with improved outcomes seems
to overcome the increased graft failure risk these patients have, with-
out significantly increasing GVHD severity and risk.

At this point, it is important that we raise awareness regarding
responsible artificial intelligence (AI). Given the inherent limitations
of single-center registry data, often characterized by its modest size,
we trained our model on a diverse array of diseases to capture univer-
sal patterns, resulting in optimal performance. However, we must
acknowledge an imbalanced disease distribution, with acute leukemia
as the predominant class. Consequently, when utilizing SHAP across
the whole cohort without considering disease heterogeneity, interac-
tion values from this dominant class could disproportionately influ-
ence results, potentially creating a misconception that these findings
are universal. It underscores the necessity of practicing AI with cau-
tion and responsibility to ensure that insights derived from SHAP are
interpreted both accurately and meaningfully.

Our study demonstrates additional limitations. First, it is retrospec-
tive and registry-based from a single-center cohort with a limited
number of patients, which may impact the generalizability of our find-
ings. Because transplantation protocols and treatment management
can vary significantly among different centers, it would be ideal to val-
idate these interactions using multicenter data for further examina-
tion. Second, SHAP explanations are not causal; the underlying
mechanisms causing differences in OS remain unclear. No statistically
significant links were observed between the CD34+ cell dose and
either relapse or NRM. However, there was a noticeable trend sug-
gesting a reduced relapse rate in the young low-dose group. Further
research is warranted for the validation of our findings in a separate
cohort as well as further investigation of the biological mechanisms
that drive the interaction between CD34+ cell dose, patient age, and
allo-HCToutcomes.

We conclude that by applying a novel XAI method with our ML
model, we were able to uncover an interaction between CD34+ cell
dose and patient age for patients with acute leukemia undergoing
allo-HCT. Patients with different ages at transplant may benefit from
a tailored CD34+ cell dose, potentially leading to improved survival.



Table 4 Distribution of causes of death across groups

Cause Old_low Old_medium Old_high p value Young_low Young_medium Young_high p value

GVHD-related 6 (20.0%) 9 (11.84%) 32 (19.63%) 0.312 1 (14.29%) 6 (19.35%) 14 (25.93%) 0.672

Graft failure 2 (6.67%) 1 (1.32%) 1 (0.61%) 0.042 2 (28.57%) 0 (0.0%) 0 (0.0%) <0.001

Infections/sepsis 5 (16.67%) 26 (34.21%) 41 (25.15%) 0.140 2 (28.57%) 8 (25.81%) 9 (16.67%) 0.526

Organ failure 3 (10.0%) 6 (7.89%) 15 (9.2%) 0.924 1 (14.29%) 1 (3.23%) 5 (9.26%) 0.472

Relapse 11 (36.67%) 25 (32.89%) 53 (32.52%) 0.905 0 (0.0%) 12 (38.71%) 19 (35.19%) 0.138

Other 3 (10.0%) 9 (11.84%) 21 (12.88%) 0.899 1 (14.29%) 4 (12.9%) 7 (12.96%) 0.994

GVHD=Graft-versus-host disease.
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