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Abstract

Survival analysis is critical in many fields, particularly in healthcare where it can guide
medical decisions. Conventional survival analysis methods like Kaplan-Meier and Cox
proportional hazards models to generate survival curves indicating probability of
survival v. time have limitations, especially for long-term prediction, due to assumptions
that all instances follow a general population-level survival curve. Machine learning
classification models, even those designed for survival predictions like random survival
forest (RSF), also struggle to provide accurate long-term predictions due to class
imbalance. We improve upon traditional survival machine learning approaches through
a novel framework called classification-augmented survival estimation (CASE), which
treats survival as a classification task that ultimately yields survival curves, beginning
with dataset augmentation to improve class imbalance for use with any classification
model. Unlike other approaches, CASE additionally provides an exact survival time
prediction. We demonstrate CASE on a liver transplant case study to predict >20 years
survival post-transplant, finding that CASE dataset augmentation improved AUCs from
0.69 to 0.88 and F1 scores from 0.32 to 0.73. Compared to Kaplan-Meier, Cox, and RSF
survival models, the CASE framework demonstrated better performance across various
existing survival metrics, as well as our novel metric, mean of individual areas under the
survival curve (mAUSC). Further, we develop novel temporal feature importance
methods to understand how different features may vary in survival importance over
time, potentially providing actionable insights in real-world survival problems.

Introduction 1

Survival analysis, a fundamental principle in medical research [1], economics, and 2

various other fields, focuses on modeling time-to-event data, where the event of interest 3

might be, for instance, a patient’s recovery [1–3], a mechanical failure [4, 5], or a 4

customer’s churn [6]. This type of data is characterized by the occurrence of a key event 5

or failure over time, along with censored records that are incomplete and thus are not 6
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entirely observed [7]. The incomplete observation of data, together with the 7

unpredictability of individual responses to treatment and the multifactorial nature of 8

diseases, presents a particular challenge in survival analysis in medical applications, 9

where the diverse biological characteristics of patients introduce additional complexity. 10

This complexity is compounded in the prediction of long-term survival, where a 11

primary obstacle is the need for historical data with extended follow-up periods, often 12

more than two decades, which can be difficult to acquire [2]. This requirement 13

inherently limits the inclusion of recent cases whose long-term outcomes have not yet 14

happened, restricting the temporal scope of the dataset, resulting in the exclusion of 15

recent patients treated with modern medical approaches whose outcomes may be most 16

relevant to predictions for new patients. Furthermore, the dynamic nature of risk 17

factors over time, i.e., features relevant to further survival may change as time passes, 18

introduces complexity into the prediction task [8–10]. The time-varying variable effect 19

on survival underscores the importance of individual survival curves, especially in 20

clinical settings, as they allow healthcare providers to understand how a patient’s risk of 21

an event changes throughout the course of treatment or disease progression [11–14]. 22

However, challenges remain in both generating accurate and reliable individual survival 23

curves [14] and quantitatively comparing survival curve performance [15]. 24

To address the challenge of censored data impacting survival prediction via machine 25

learning, we introduce classification-augmented survival estimation (CASE), an 26

integrated approach encompassing dynamic record replication, individual survival curve 27

generation, and exact survival time prediction (the only tool capable of such a 28

prediction, to our knowledge). CASE simplifies the survival prediction by reducing class 29

imbalance typical in survival analysis datasets (far more not-survived than survived 30

records) and by allowing the problem to be represented by simple binary classification 31

rather than by traditional, complex survival models. To support analysis of survival 32

curve predictions, we additionally introduce (1) a novel calibration method, adjusted 33

Bayesian binning-in-quantiles (ABBQ) to directly estimate the survival probability at 34

time t for each record; (2) a novel cross-validation method, temporal stratified k-fold 35

cross-validation (TSK-fold), to ensure temporally consistent train/test folds; and (3) 36

two novel survival curve evaluation metrics, individual area under the survival curve 37

(iAUSC) to compare individual curves, and mean AUSC (mAUSC), a dataset-level 38

performance metric. 39

We demonstrate the effectiveness of CASE on the problem of predicting long-term 40

survival (20 years and longer) in liver transplantation. The empirical study analyzes the 41

implications of CASE for clinical decision making, resource management, and 42

personalized patient care, highlighting the importance of understanding dynamic hazard 43

ratios and the variability of survival probabilities over the entire duration of the study 44

in the context of liver transplantation. 45

Related Work 46

Traditionally, long-term survival prediction is examined using established survival 47

analysis techniques, such as Kaplan-Meier (KM) analysis [16] and the Cox proportional 48

hazards model (Cox), also called the Cox model [17]. Although these methods have 49

proven valuable in numerous applications, they face notable limitations when applied to 50

the task of survival analysis in general, particularly in predicting long-term survival [18]. 51

KM curves generate a single survival curve for the entire population without accounting 52

for individual risk profiles and the impact of individual covariates [13,19]. Cox 53

overcomes some limitations of KM by accounting for the effects of variables on the 54

hazard function, with individual curves obtained by adjusting the baseline hazard 55

function; however, Cox requires the assumption of proportional hazards, which implies 56
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Fig 1. Complete CASE pipeline, from data augmentation to survival curve
prediction

that the relative risks associated with different variables remain constant over time for 57

all individuals in the population [3, 20]. 58

Machine learning approaches to generate individual survival curves include random 59

survival forest (RSF) [11], gradient boost survival (GBS) [21], and DeepSurv [22]. RSF 60

struggles with imbalanced survival times [23] which exist in long-term survival 61

prediction. GBS often outperforms Cox and RSF in prediction accuracy but is 62

computationally intensive and provides risk scores that are difficult to translate into 63

survival probabilities [24]. DeepSurv employs deep learning for time-to-event data but 64

inherits proportional hazards limitations and requires large datasets, posing challenges 65

in healthcare settings [22]. DeepSurv additionally does not perform as well as RSF and 66

GBS with tabular data [25,26], which is generally the most widely available type of data 67

in healthcare applications. Furthermore, these models generally provide variable 68

importance measures averaged over the entire follow-up period, making it difficult to 69

isolate importance at specific time points [27]. 70

In addition to the difficulty in generating survival curves, evaluating survival models 71

and comparing survival curves is a significant challenge due to the lack of standardized 72

methods [15]. Common evaluation metrics like the concordance index (C-index) [28] 73

provide insights into patient risk ordering but does not assess the accuracy of the 74

survival predictions. C-index is also sensitive to the distribution of censored data and 75

may not be suitable for long-term survival predictions [29,30]. Time-dependent area 76

under the receiver operating characteristic curves (t-AUC) [31] is an extension of the 77

traditional AUC to dynamically evaluate the performance of survival models, but similar 78

to C-index, t-AUC is challenging to calculate with censored data [29,32] and is also a 79

measure of rank of the data and does not rely on the actual values of the predictions [33]. 80

The integrated Brier score (IBS) [34] assesses probabilistic predictions over time, but is 81

sensitive to model calibration and difficult to interpret due to its squared error 82

component, making it challenging to draw specific conclusions from score differences. 83

Materials and methods 84

CASE restructures the survival problem into a classification task rather than a survival 85

task. In the augmentation step, for each record in the dataset, CASE creates a replicate 86

record for each year of the study duration (augmentation step), and performs 87

classification to predict years survived. By introducing numerous additional records 88

representing survival, CASE mitigates the inherent class imbalance in survival data, 89

allowing for a wider variety of potentially successful classification algorithms to be 90

employed with improved accuracy [35]. 91

Figure 1 shows the entire CASE pipeline. Initially, the dataset is augmented via the 92

CASE process to create the CASE-augmented dataset, DCASE, which is suitable for 93

classification-based survival prediction. Then, survival probabilities are calculated by 94

calibrating the classification scores, which are later used in the creation of individual 95

survival curves. Next, the calibration step is followed by a de-augmentation (reduction) 96

step where the survival probabilities are added to the original dataset, creating the 97

CASE-survival dataset, Dsurvival. This final dataset is then used to train a regression 98

model to predict survival times and obtain survival curves. The complete code for 99

implementing the CASE framework is available in our GitHub repository (link: 100

https://github.com/hshurabi/case). 101

Define the original dataset D = {(xi, ti, δi) | i = 1, . . . , N}, where each record i 102
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consists of (1) a feature vector xi ∈ RF ; (2) an observed time to the event or censoring 103

time ti ∈ R+; and (3) a binary event indicator δi ∈ {0, 1}, with 1 indicating the 104

occurrence of the event (e.g., death or graft failure) and 0 indicating censoring. 105

Censoring in this context means that no event has yet occurred, but it is important to 106

recognize that absence of an event in the dataset does not mean that the event will not 107

occur, as all records will eventually experience an event (i.e., all patients will eventually 108

die or experience graft failure). If a record i is censored, the censoring time ti is the 109

elapsed number of time periods from initiation of survival analysis (in this case, from 110

the time of liver transplantation) until the current real-world time period. Thus, both ti 111

and δi are required to indicate whether the event actually occurred and when. The 112

objective is to predict the probability of survival for a given time horizon P , which is a 113

user-defined parameter that represents the maximum number of time periods of interest 114

after the initiation of the survival analysis to an event (in this case, death or graft 115

failure). 116

CASE introduces a transformation operator T that increases the size of the dataset 117

by replicating each record up to P times (number of periods). This expansion depends 118

on the event and the censoring status, so that an uncensored record is replicated P 119

times, each instance corresponding to survival at a distinct period following the study 120

initiation. In contrast, for censored records, replication persists only up to the censoring 121

time ti, thus respecting the bounds of the observed data. This augmentation is 122

illustrated in Figure 2, and the resulting augmented dataset, denoted DCASE, is 123

formally defined as 124

DCASE =

N⋃
i=1

T(xi, ti, δi)

where T(xi, ti, δi) yields a set of tuples 125{
(xi, τ, yiτ ) | τ = 1, . . . ,max

(
δiP, (1− δi)min(P, ti)

)}
. τ is a new feature added to the 126

augmented record indicating the number of periods elapsed from the initiation of 127

survival analysis. yiτ is a second new feature (specifically, the target variable) indicating 128

whether the event was observed by time τ , and is defined as 129

yiτ =


1 if τ ≤ ti and δi = 1

1 if τ < ti and δi = 0

0 otherwise

Fig 2. CASE augmentation process with a study period P = 20 years

For example, if a currently survived patient (δi = 0) had a transplant six years ago 130

and we are interested in P = 20 years of survival, the censoring time is ti = 6, and the 131

patient’s record will be replicated six times, ∀τ ∈ {1, . . . 6}, with positive records 132

yiτ = 1, and no replications with yiτ = 0 (Figure 2, sample ID 7). Conversely, if that 133

patient died (δi = 1) ti = 6 years after transplant (Figure 2, sample ID 8), the record is 134

replicated 20 times with positive records yiτ = 1 for the first six replications, 135

∀τ ∈ {1, . . . , 6}, and negative records (yiτ = 0) for the remaining 14 replications, 136

∀τ ∈ {7, . . . , 20}. 137

In Figure 2, the sample size of DCASE is n = 149 with a positive class ratio of 43%, 138

compared to an original sample size of 10 for a survival study, or a sample size of six 139

with a class ratio of 17% for a 20-year binary classification study. Integrating a 140

temporal dimension within the feature space distinguishes each period, allowing CASE 141

to provide a granular survival probability profile throughout the temporal spectrum. 142

This method not only addresses the problem of imbalanced classes commonly found in 143
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survival datasets, with up to N × P additional survival-positive records added, but also 144

utilizes the predictive value of censored data points, which are often underutilized in 145

traditional survival analysis. Introducing a more varied representation of the positive 146

class by incorporating censored data, allows the model to learn from a wider range of 147

survival patterns. 148

The augmentation process in the CASE framework is designed to replicate 149

real-world clinical follow-up scenarios. For each patient record, new instances are 150

generated for each time period until either the event time or the censoring time. This 151

method reflects how clinicians monitor patient outcomes at regular intervals, capturing 152

the evolution of survival probabilities over time. By creating time-specific records, the 153

approach realistically represents varying survival trajectories, thereby enabling the 154

model to learn temporal risk patterns. Unlike conventional oversampling methods, 155

which repeat the same instances, CASE presents the learning algorithm with more 156

diverse records drawn from real-life observations, avoiding repeating identical patterns. 157

In CASE, the construction of the target variable as a boolean variable capturing 158

survival is a critical step that enables the transformation of survival analysis into a 159

binary classification framework. By conceptualizing the survival problem as a binary 160

classification rather than a traditional survival prediction, each period τ is treated as a 161

separate instance, allowing for discrete survival prediction at that particular point in 162

time. This discrete-time approach contrasts with traditional survival models, which 163

often handle time-to-event data continuously and typically require the proportional 164

hazards assumption. This binary target formulation not only simplifies the predictive 165

modeling task, but also amplifies the dataset’s utility by expanding the number of 166

training instances, particularly for periods where survival data are scarce. Thus, the 167

problem of imbalanced data is effectively addressed by increasing the representation of 168

the survival event at different times, enhancing the robustness of the predictive model. 169

Training a classification model M on DCASE allows the use of classification 170

algorithms, avoiding the strict proportional hazards assumptions required by 171

conventional survival models. With each record i and the corresponding period τ , the 172

model makes a series of binary predictions that indicate whether a record survives or 173

not at each time point. The prediction for survival at time τ for a test instance xtest is 174

obtained by 175

ŷtest,τ = M(xtest, τ), τ = 1, . . . , P

where ŷtest,τ is a vector of probabilities that describes the survival profile over time. 176

This approach delivers detailed predictions for each interval, capturing the changing risk 177

profile and the dynamic aspect of survival over time. 178

Note that for test data, where the future is unknown, we propagate each instance 179

through the model P times, once for each period, assuming that the status of the 180

instance beyond the current observation point of the study is unknown. This replication 181

enables the model to provide predictions throughout the time horizon, offering a 182

comprehensive view of the survival probabilities at each period. The aggregation of 183

these predictions produces a survival profile over time specific for each instance. 184

Class Ratio Limits 185

In CASE survival analysis, a crucial factor that influences the balance ratio of the class 186

is the interaction between the distributions of events and censoring instances, along 187

with the selection of the prediction horizon P . The CASE approach categorizes dataset 188

records into three distinct types: event cases, survived cases, and censored cases. The 189

creation of new cases in CASE necessarily improves class balance, though how much 190

depends on the distribution of classes in the original dataset, and how events and 191
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censoring are spread over the study period, P . In this context, class ratio is defined as 192

the ratio of positive cases (positive records) to the total number of records in the 193

dataset. In our liver transplant CASE study, the ratio of survived records improved 194

from 3.66% to 35.15%. 195

The resulting CASE class balance ratio can be empirically calculated as follows. 196

Define EP and CP as the sets of event and censored records, respectively, for a particular 197

horizon P in CASE. Each event record i in CASE results in ti positive cases and P − ti 198

negative cases, while each censored record i results in min(ti, P ) positive cases (Figure 199

2). Then, the positive class ratio is given by 200

CASE class ratio =

∑
i∈EP

ti +
∑

i∈CP
min(ti, P )

|DCASE|

As P increases, there are fewer censorings and more events, though the impact on both 201

the numerator and denominator in the ratio is dependent on exactly when the 202

censorings and events occur. Thus, while easy to directly calculate, CASE impact on 203

the class ratio is dependent on the specific records present in the original dataset. 204

High-level observations can be drawn from the CASE class ratio calculation. 205

Consider two extreme scenarios: 206

1. Minimal censoring: In cases where the survival distribution is skewed such that a 207

majority of events occur in the early periods, censoring is minimal or non-existent. 208

Then, the choice of P is less critical. Most records are event cases, leading to a 209

higher representation of the positive class regardless of the length of P . 210

2. Censoring dominance: In contrast, if the dataset is characterized by early 211

censoring, where a significant portion of records are censored in the initial periods, 212

the choice of P becomes crucial. A shorter P might lead to an 213

under-representation of the positive class, as many records would contribute to the 214

negative class only as cases censored. In such a scenario, a longer P can help 215

balance the representation of positive and negative classes. 216

Thus, generally, if P results in minimal censoring, P could be lengthened without 217

significant impact on class balance. Conversely, if P results in censoring dominance, 218

class balance may improved by increasing P . 219

Survival Probability Calibration 220

To transform the classification scores into calibrated survival probabilities, we introduce 221

a novel adjusted Bayesian binning-in-quantiles (ABBQ) calibration method. The BBQ 222

method is a non-parametric approach to probability calibration, allowing for flexibility 223

in handling complex relationships between raw scores and probabilities [36]. Since the 224

CASE model involves restructuring the survival problem into a classification task and 225

generating probabilities for discrete time points, the BBQ method’s ability to handle 226

non-linear relationships and provide calibrated probabilities based on binning and 227

empirical estimation aligns well with the CASE framework. Our ABBQ method 228

incorporates an “intra-bin variability” term to the BBQ adjustment formula to consider 229

the minor deviations in the raw scores distribution within each bin to capture the 230

variability in the probabilities more effectively. 231

In the standard BBQ method, raw scores within each bin are transformed based on 232

the empirical survival probability of the bin. However, this approach assumes 233

uniformity of scores within the bin, potentially overlooking minor variations among the 234

records. To address this issue, we introduce the “intra-bin variability” term, which 235

captures the distribution spread of scores within each bin. This term allows for a more 236
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granular adjustment of survival probabilities, refining the calibration by accounting for 237

slight deviations in raw scores. As a result, the calibrated probabilities better reflect the 238

inherent uncertainty in survival estimates, leading to more stable and accurate survival 239

curves, especially in imbalanced datasets. 240

Say classification model M outputs scores piτ for each record i at time τ . First, we 241

sort the scores piτ and divide them into M bins, B1, B2, ..., BM , such that each bin 242

contains roughly the same number of scores. The number of bins M is a 243

hyperparameter that can be tuned. For each bin Bm, we calculate the empirical 244

probability of survival as follows: 245

p̂emp,m =
nsurvive,m

nm

where nsurvive,m is the number of survived records in bin m and nm is the total number 246

of records in bin m. This empirical probability serves as a reference point for calibrating 247

the raw scores within the bin. Next in the calibration process, we transform the raw 248

scores in each bin to align with the empirical probabilities, effectively adjusting the 249

scores to reflect their true likelihood of survival as follows: 250

p̂iτ = p̂emp,m +
1

M
× piτ −minBM

piτ
maxBM

piτ −minBM
piτ

This formula standardizes each bin’s scores into the range [0, 1], preserving the relative 251

differences in survival likelihood among records within the same bin, and then adds the 252

standardized score to the bin’s overall empirical survival probability. 253

Individual Survival Curves 254

The CASE pipeline introduces a novel method to create individual survival curves Si(t), 255

which show the unique risk paths and survival chances for each individual i over time t. 256

This approach is a departure from traditional survival analysis methods, such as Cox 257

proportional hazards model, which often generate survival curves as variations of a 258

baseline hazard function to indicate the probability that subject i survives beyond time 259

t. Traditional models assume constant hazard ratios over time for different individuals, 260

meaning that individual risk is just the baseline hazard function, h0(t), adjusted by a 261

set of variables xi for each individual i and their corresponding coefficients β, such that 262

hi(t) = h0(t)× exp(β⊤xi)

where h0(t) is the baseline hazard function estimating the probability of surviving 263

beyond time t using non-parametric methods such as the KM estimator, which 264

considers the observed survival times as follows. The survival function in these 265

non-parametric approaches at time t is defined as the probability of surviving beyond t, 266

given survival up to t: 267

Si(t) = exp

(
−
∫ t

0

hi(u)du

)
The result is a set of survival curves for different individuals that maintain constant 268

proportional separation, represented as Si(t)/Sj(t) = constant, thus failing to capture 269

the complex interaction of risk factors that can vary significantly throughout the 270

timeline of an instance. 271

In contrast, CASE focuses on discrete-time instances, allowing dynamic survival 272

predictions not tied to an a priori baseline survival function or to hazards rates that 273

may not be applicable past a certain time. For example, an instance might face a higher 274
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risk of adverse events in the first 0-5 years, then enter a stable period. In contrast, 275

another instance might start with a lower risk, but then see a significant increase in risk 276

after 15-20 years. These variations are crucial for understanding and predicting 277

outcomes and are not adequately represented by traditional methods. Moreover, in 278

constructing individual survival curves, censored data are incorporated by limiting the 279

augmentation process to the censoring time for each record ensuring that the survival 280

probabilities are calculated based only on the available observed data. For censored 281

records, the model estimates survival probabilities up to the last observed point, 282

without making assumptions beyond the censoring time. 283

Within the CASE framework, the survival probability Si(τ) at time τ is directly 284

estimated as 285

Si(τ) = p̂iτ

where p̂iτ is the probability of survival obtained by calibrated classification scores for 286

the survived class (positive class) from the classification model’s output. As CASE 287

provides survival probabilities only for discrete time points, an interpolation method is 288

then used to estimate the survival probability for any non-discrete time t: 289

Si(t) = p̂iτ1 + (p̂iτ2 − p̂iτ1)× (t− τ1)

where τ1 = ⌊t⌋ and τ2 = ⌈t⌉ are the nearest discrete time points to t. Note that t− τ1 is 290

the fractional part of t, representing the proportion of time between the lower and 291

upper discrete time points. 292

Estimation of Survival Time 293

The probability scores p̂iτ create a timeline showing how survival chances change over 294

time, helping to estimate when an event might occur. Define time-to-event, or survival 295

time of a record, as Ti. In the original dataset definition, D = {(xi, ti, δi) | i = 1, . . . , N}, 296

for an event, if δ = 1, the survival time will be Ti = ti. Note that Ti is unknown for 297

censored cases (δ = 0), Ti is unknown, and it is only known that Ti ≥ ti. To determine 298

survival time predictions, we investigate conventional threshold-based estimations, and 299

develop two novel approaches using gradient-based and regression-based estimations. 300

The simplest method to predict the actual time of an event is to set a threshold θ 301

such that if p̂iτ > θ, the instance is considered to survive at period τ [37]. The 302

predicted survival time would then be the maximum period τ for which p̂iτ > θ. 303

However, thresholds do not consider the unique risk profiles of individuals and how 304

survival probabilities can change over time. It is especially limited when survival 305

probabilities remain relatively stable from year to year, leading to oversimplified and 306

possibly incorrect estimates of when an event might occur. 307

In our gradient-based approach, we look for the period τ with the maximum 308

negative gradient, indicative of a significant decrease in the probability of survival based 309

on the assumption that the steepest decline in survival probability signals the most 310

critical transition period. 311

In our regression-based approach, we first extend the original dataset with 312

individualized time-dependent survival information by appending each record’s survival 313

probabilities p̂iτ for each period as additional features to the original feature set xi, 314

creating dataset Dsurvival: 315

Dsurvival = [X, P̂τ ], ∀τ ∈ [1, . . . , P ]

The regression model R is then trained on Dsurvival to minimize the difference between 316

predicted survival time T̂i and the actual survival time Ti only for i ∈ EP to ensure 317
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accuracy of predictions. In the regression, the predictor variables, which include both 318

survival probabilities and original features, are weighted to minimize the difference in 319

actual v. predicted survival time over the whole population. 320

Temporal-Stratified k-Fold 321

We introduce temporal-stratified k-fold (TSK-Fold), a novel cross-validation technique 322

specifically designed for survival analysis using the CASE. Traditional k-fold methods 323

randomly select records to be in test/train sets, possibly resulting in some folds having 324

over/underrepresented time intervals in the study period, leading to unrealistic 325

test/train sets and unrealistic model performance assessments for survival curve 326

predictions. 327

TSK-fold divides the DCASE into k folds, ensuring that each fold contains a 328

representative sample of the entire study period by stratifying the data based on both 329

the time periods and the outcome variable (event occurrence). This dataset is split into 330

time intervals and then stratified within each interval: 331

Foldk =

T⋃
t=1

(
Positivekt ∪Negativekt

)
where Positivekt and Negativekt represent the positive and negative cases for time t in 332

fold k, respectively. Then, the stratified time intervals are combined to form K folds, 333

each of which preserves the temporal structure and maintains class balance (Figure 3). 334

Each fold is used as a validation set once, while the remaining K − 1 folds are used for 335

training. 336

Fig 3. Survived class ratio compared for stratified K-fold and TSK-fold. The
plot is generated for 10× 10-fold on the DCASE for liver transplant.

Individual and Mean Area Under the Survival Curve 337

To evaluate the accuracy of individual survival curves generated by different models, we 338

introduce a new metric called the individual area under the survival curve (iAUSC), 339

adapted from the widely used Area Under the Receiver Operating Characteristic Curve 340

(AUC) [38] in classification analysis and the Brier score [39], a common metric for 341

assessing the accuracy of probabilistic predictions in survival analysis. iAUSC measures 342

the overall survival probability for each person across the whole study period. In an 343

ideal model, the probability of an observed event is a step function, with 1 for the time 344

leading up to the event, then 0 afterwards. A continuous version of this model follows a 345

sigmoid function (Figure 4): 346

S(t) =
1

1 + e−(M×(t−Ti))

where S(t) is the survival function, Ti is the event time for record i and acts as a 347

threshold parameter shifting the function on the x-axis, and M a scaling parameter that 348

indicates the steepness of the curve and the extent of separability between survival 349

outcomes. As M approaches ∞, the sigmoid curve exhibits increasingly sharp 350

transitions, resulting in near-perfect discrimination between survival and non-survival 351

events. 352

Fig 4. Predicted survival curve derived from an ideal survival model
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To calculate iAUSC for record i ∈ EP , we first determine the weighted area under 353

the survival curve until the event time, and the weighted area above the survival curve 354

after the event time. Unlike the Brier score, which uses squared prediction error, we use 355

absolute prediction error for better interpretability, and emphasize prediction 356

importance around the actual event time with the following weight function: 357

w(t) = exp

(
− 1

P
|t− Ti|

)
where for Ti > P , we assume Ti = P . The iAUSC for record i is then defined as 358

iAUSCi =

∫ P

0

∣∣∣Ŝ(t|Xi)− δi(t)
∣∣∣w(t)dt∫ P

0
w(t)dt

(1)

where Ŝ(t|Xi) represents the predicted survival probability at time t given the variables 359

Xi. The normalization term in Eq 1 ensures that the iAUSC score appropriately reflects 360

the balance between survival probabilities before and after the event, relative to the 361

overall study duration. 362

To measure iAUSC performance across the dataset population, we use mean area 363

under the survival curve (mAUSC), the average iAUSC across the set of events in the 364

dataset: 365

mAUSC =
1

NEP

∑
i∈EP

iAUSCi

Unlike time-dependent AUC [40] or IBS [34], mAUSC does not require period-specific 366

calculations, as iAUSC spans the entire study period for each individual. Additionally, 367

because we focus solely on the accuracy of the model for observed cases, there is no 368

need to weight the scores based on the distribution of censored cases. 369

Temporal Variable Importance 370

To analyze these time-varying effects of variables, we leverage SHAP (SHapley Additive 371

exPlanations) [9] values within the CASE pipeline. SHAP values quantify the 372

contribution of each feature to the model’s prediction for each record, adapted to CASE 373

augmentation by defining the SHAP value ϕi,j(τ) for feature j in instance (i, τ) as the 374

effect of feature j on the prediction for instance i at time τ . The importance of feature 375

j at time τ is then just the average of these SHAP values for all records that survived τ 376

periods: 377

ϕ̄j,τ =
1

|Iτ |
∑
i∈Iτ

ϕi,j(τ)

where Iτ is the set of instances survived at time τ . 378

These time-varying SHAP values can provide population-level insights into 379

important features, and individual-level insights can be obtained by examining a single 380

record’s time-varying SHAP values. 381

Case Study: Long-Term Graft Survival in Liver 382

Transplant Patients 383

Orthotopic liver transplantation is a critical intervention for end-stage liver disease 384

patients, offering a renewed opportunity for extended survival and improved quality of 385
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life [41]. Although the field has seen many machine learning studies focusing on short- 386

to mid-term post-transplant outcomes (see, e.g., the systematic review [42]), only one 387

study examined survival longer than 10 years [43] and few studies used exclusively 388

pre-transplant information [43–46]. 389

We apply CASE to the task of predicting long-term, specifically 20-year, graft 390

survival in liver transplant patients using only pre-transplant information. The lengthy 391

survival period creates challenges in that only patients who received transplants 30+ 392

years ago have known (non-censored) graft survival, these account for 3.66% of all 393

patients. Our objective is to generate predictive insights that could be used at the time 394

of transplantation, helping physicians understand the survival probabilities of 395

patient-donor matches where multiple donors may be available and the overall patient 396

survival profile before surgery. 397

Data was compiled from the publicly available Scientific Registry of Transplant 398

Recipients (SRTR) in the United States [47], also called the UNOS/OPTN dataset, 399

which contains records of liver transplant recipients from 1987 to 2021. We applied the 400

following pre-processing criteria for SRTR records to be included in our dataset. We 401

limited the patient records to those with transplants in February 14, 2016 or earlier, 402

ensuring at least a five-year follow-up period. We excluded pediatric cases (age ≤ 18 403

years), instances of multi-organ transplants, and variables related to perioperative and 404

post-transplantation periods or that had more than 80% missing data. The only 405

exception was the split liver variable, which was included due to its clinical significance, 406

despite having more than 80% missing. A mean imputation strategy was used to fill in 407

missing data in the remaining variables, as more sophisticated algorithms often do not 408

improve the predictive performance of machine learning models applied in healthcare 409

data [48]. 410

The final dataset D included 118,419 records and 107 pre-transplant variables (26 411

numerical, 81 categorical). Among these variables, 36 were donor-specific, while 71 were 412

recipient-specific. The details of these variables, along with their definitions and 413

information regarding missing data, are available in S1 Table. The 5-, 20-, and 30-year 414

graft survival percentages (class ratios) are 66.63%, 14.82%, and 3.66%, respectively. 415

After implementing the CASE model, the augmented dataset included 2,568,202 records 416

with a 35.15% class ratio. The survival distribution of the final dataset is shown in 417

Figure 5. Note that there is an increase in probability of long-term survival after about 418

17.5 years post-transplant, indicating that patients who survived 17.5 years are more 419

likely to survive to about 20 years. This observation demonstrates that common 420

monotonically decreasing survival curves may not provide the most accurate survival 421

curve shape for all datasets. 422

Fig 5. Distribution of observed survival times in the liver transplant SRTR
dataset

Results 423

We first evaluate CASE’s ability to predict long-term survival at 20-, 25-, and 30-years 424

post-transplant via classification, testing both Random Forest (RF) [49] and XGBoost 425

(XGB) [50] models, both of which have had widespread adoption and successful 426

applications in numerous studies [25,51]. Bayesian optimization [52] was employed for 427

hyperparameter tuning ( S2 Appendix). 428

We then evaluate CASE’s survival model performance in comparison to common 429

survival curve models—RSF, Cox, and KM—and examine temporal variable 430

importance. 431
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t-Year Survival Prediction 432

To demonstrate the effectiveness of CASE augmentation, RF and XGB models are 433

trained on DCASE and also on D for classification of 20-, 25-, and 30-year survival 434

post-transplant. Both CASE-augmented models produced notable improvements in 435

performance (Table 1), with 27% AUC and 56% F1 score improvement. Additionally, 436

the Matthews correlation coefficient (MCC) [53,54] showed significant improvements, 437

69% with RF, and 65% on XGB. It is important to note that in the context of a 438

CASE-augmented model, the AUC reflects the model’s performance in distinguishing 439

between the survived and non-survived classes across the entire time spectrum, as 440

opposed to a binary classification model’s AUC that predicts the class at a single time 441

period t, and thus is only a measure of model performance at time t and not over a full 442

study period. 443

Table 1. 20-, 25-, and 30-year graft survival prediction performance. Bold
indicates best performance.

Model Metric
D DCASE20-year 25-year 30-year

RF
AUC 0.69 0.71 0.73 0.87
F1 Score 0.32 0.24 0.20 0.73
MCC 0.18 0.14 0.12 0.58

XGB
AUC 0.69 0.71 0.73 0.88
F1 Score 0.32 0.25 0.21 0.73
MCC 0.19 0.16 0.20 0.57

As the survival year to be predicted increases from 20 to 25 to 30 years, AUC 444

predictions increase in the standard models, which could be misinterpreted as indicating 445

more accurate or simpler predictions for longer-term survival. However, a higher AUC 446

in this context more likely means that the model guesses the majority class correctly for 447

most instances while failing to correctly identify minority class instances due to the 448

increasing class imbalance [55]. The F1 and MCC scores likely provide a more accurate 449

understanding of model performance, as they provide a balance between precision and 450

recall, especially important in imbalanced datasets [56]. 451

Given the similar performance of the RF and XGB models (Table 1) and the fact 452

that both models are tree-based, we proceed with XGB for subsequent analysis. XGB 453

holds an additional advantage over RF in the context of variable importance analysis 454

using SHAP values, shown to yield actionable clinical insights in a bone marrow 455

transplant survival prediction [57], though such analysis is out of scope here. 456

ABBQ Calibration 457

To find the optimal value of hyperparameter M in the ABBQ method, we employed 458

Bayesian optimization. We tested values of M within a predefined range (e.g., 5 to 100) 459

and selected the value that maximized calibration performance based on the validation 460

set. This approach ensured that the chosen M provided the best balance between 461

calibration accuracy and model stability. Figure 6 shows the reliability diagrams 462

comparing the calibrated and uncalibrated models. For the uncalibrated model, we 463

observe that predicted probabilities tend to underestimate the actual event rates for 464

lower probability predictions, whereas, for higher probability predictions, the 465

uncalibrated model is almost perfectly aligned with the ideal calibration line. 466

Fig 6. LT: Reliability diagram for ABBQ calibration
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After calibration, the predicted probabilities aligned better with the observed 467

outcomes, particularly in the low and mid-range probability regions. The expected 468

calibration error (ECE) for the uncalibrated model was 0.1117, whereas, after 469

calibration, the ECE decreased to 0.1061, indicating an improvement in how well the 470

predicted probabilities reflect the true event likelihood. 471

Survival Curve Model Performance 472

The performance of CASE, RSF, Cox, and KM survival models was examined with 473

C-index [28], IBS [34], t-AUC [40], and mAUSC (Table 2). Note that KM offers a single 474

survival function estimation for the entire population, so it has no C-index calculation. 475

CASE demonstrated superior performance on all metrics, though all metrics ranked the 476

models in the same order (CASE, Cox, RSF, then KM), with the exception of mAUSC, 477

which ranked KM slightly ahead of Cox. 478

Table 2. Survival model performance. Bold indicates best performance.

Model C-index IBS t-AUSC mAUSC
KM N/A 0.3182 0.50 0.60
Cox 0.53 0.3138 0.55 0.59
RSF 0.51 0.3167 0.52 0.56
CASE 0.58 0.2899 0.60 0.62

The survival lines in Figure 7 show survival curve predictions for five randomly 479

selected patients, numbered in order of increasing actual survival. Patients 1–3 are the 480

shortest-surviving, with survivals of 1-6 years, while patients 4 and 5 survived 15-18 481

years. Interestingly, CASE, Cox, and RSF all show curve separation of the 482

shortest-surviving and longest-surviving patients. However, Cox and RSF curves for 483

long-surviving patients are very similar, indicating that while these models can 484

distinguish between short and long survival times, they may fail to capture the 485

differences between varying medium- and long-term survivals (e.g., 6, 14, and 20 years). 486

CASE is the only model able to differentiate the medium-surviving patient 3, but it is 487

important to note that only a small sample of individual curves are analyzed here. 488

Additionally, all the models poorly capture patient 3’s actual graft survival, and the 489

iAUSC of this patient is correspondingly the lowest of the five patients for all models 490

except KM, which generally has worse iAUSC for these patients than the other models. 491

Fig 7. Survival curves for five randomly selected patients with actual time
marked. Note that KM produces only a single population curve. A: actual
graft survival; P: predicted graft survival.

For patient 5, the CASE curve begins with a high survival probability but shows a 492

gradual decline over time, notably more gradual than for the other patients. This 493

pattern could reflect a patient whose post-transplant condition is declining at a 494

predictable rate, allowing timely clinical interventions. In contrast, patient 3 initially 495

follows a similar trajectory with a high survival probability, but then shows a sharper 496

decline around year 11. 497

In contrast, the Cox curves follow a consistent pattern of proportional hazards, a 498

direct consequence of the model’s underlying assumption. In some cases, such as 499

patients 1 and 2, the Cox model provides inaccurate relative curves, where patients who 500

survived longer have higher risk than those who survived for shorter time, although all 501

the models experience some level of this discrepancy according to the C-index values in 502

Table 2. 503
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We additionally analyzed the predicted probabilities of survival at the time of the 504

event through density plots of predicted survival probability at time of event for short 505

(<5 years), medium (5-15 years), and long survival (>15 years) patients (Figure 8). 506

Better-performing models should have distributions shifted to the left, indicating a 507

lower, more accurate probability of survival at the time of the event. CASE noticeably 508

outperforms Cox and RSF in this regard for short and especially long survival patients, 509

and all three models are similar for medium survivals, though the CASE plot falls off 510

more sharply, which is preferred. 511

Fig 8. Distribution of predicted survival probabilities at the time of event.

Point-Estimation of Survival Time 512

To our knowledge, CASE is the only survival model able to produce a point estimate of 513

survival time, that is, predictions of exact survival time. We evaluate the accuracy of 514

CASE’s point-estimate survival predictions using threshold-based, gradient-based, and 515

regression-based estimations, specifically predicting a five-year window of graft survival 516

(Figure 9). As expected, the regression-based method significantly outperforms the 517

other approaches with 73% prediction accuracy, defined as the percent of patients with 518

a survival time correctly predicted within a five-year window. 519

Fig 9. CASE difference between actual and predicted survival times. Top:
Prediction error, with negative values indicating an overestimation of
survival times by the model and positive values indicating an
underestimation. Bottom: Prediction distribution.

Temporal Variable Importance 520

The temporal variable importance in Figure 10a shows how the significance of different 521

variables changes over time using four recipient variables as examples: 522

REC HBV ANTIBODY pos (HBV antibody positive), REC CMV IGG Pos (CMV IgG 523

positive), REC WGT KG (weight), and REC CMV STAT pos (CMV status at time of 524

transplant). The presence of HBV antibodies in the patient has a nearly constant 525

near-zero impact on survival throughout the post-transplant study period, while CMV 526

status has slightly less stable but fairly low negative impact on survival. Interestingly, 527

CMV IgG positive status has almost no importance for the first four years, after which 528

it becomes a strong positive indicator for survival. The recipient’s weight has a steadily 529

increasing negative influence on survival up to around 27 years post-transplant, possibly 530

due to its association with other long-term health conditions, after which it decreases in 531

importance, but is still negatively associated with survival. 532

Fig 10. Temporal variable importance analysis. A: Actual survival time,
D CMV+/−: positive/negative donor anti CMV status.
(a) Selected recipient features (b) Donor CMV for selected patients

To analyze how individual variable importance might differ from the overall trend, 533

Figure 10b shows the SHAP importance for the donor’s CMV antibody status 534

(DON ANTI CMV) over time for four selected patients: CMV+ and CMV− for short 535

(< 5 years) and long (> 20 years) survival. The overall mean SHAP value for 536

DON ANTI CMV remains relatively stable over time, but the individual trends for the 537
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four patients vary significantly from the mean curve, indicating that not only do feature 538

importances change over time, but they may have different impacts on different patients. 539

While both patients with a CMV− donor (patients 8 and 9) exhibit a similar trend of 540

steady influence until about 28 years post-transplant, the feature has a positive impact 541

on patient 8 (who had a long survival) and a negative impact on patient 8 (who had a 542

short survival). A similar pattern can be observed for patients 6 and 7, who had CMV+ 543

donors. These observations may indicate that although donor CMV status seems 544

relatively unimportant when looking at mean importance, it may be a useful individual 545

indicator of short survival, and an indicator for very long survival (>25 years). 546

Discussion 547

To our knowledge, the proposed CASE approach is the first to transform survival 548

analysis into a classification task using machine learning techniques, thereby enhancing 549

predictive accuracy and managing complex, non-linear relationships. It is additionally 550

the only survival model capable of providing exact survival time estimates, to our 551

knowledge, and yielded 73% prediction accuracy on the liver transplant long-term 552

survival case study. The data augmentation in CASE is an alternative to oversampling 553

to improves class imbalance, and resulted in improved prediction performance compared 554

to KM, Cox, and RSF in the case study. While it is common to utilize oversampling 555

techniques to overcome class imbalance [58], oversampling often fails when put to 556

real-world problems since the synthesized samples may not truly belong to the minority 557

class [59]. 558

The visibly different individual survival curves generated by CASE compared to the 559

single population KM curve or the same-trajectory individual Cox curves support 560

previous findings that KM and Cox may fail to identify time-varying covariates and 561

capture the complexities of survival data, especially for long-term survival [10, 19, 60, 61]. 562

CASE’s approach to generate individual survival curves by the ABBQ method ensures 563

robust calibration of predicted survival probabilities, reflecting true survival chances 564

more accurately according to the examined metrics. Our TSK-fold cross-validation 565

method ensures that the temporal structure of the data is preserved while maintaining 566

balanced classes within each fold, unlike traditional k-fold methods that randomize this 567

temporal structure, leading to unrealistic training and validation sets [62]. In survival 568

analysis, preserving the temporal order of events is crucial because the risk of events 569

and covariates may change over time [10,63], e.g., as medical standards and technologies 570

change through the years. CASE’s ability to capture these risks and provide improved 571

survival curves is indicated by its performance in the liver case study, where RF and 572

XGB classifier AUCs improved from 0.69-0.73 to 0.87-0.88 (mean 0.16 improvement) 573

and F1 scores from 0.20-0.32 to 0.73 (mean 0.61 improvement); similarly, survival model 574

C-index and t-AUC metrics improved by an average of 0.06 and 0.08, respectively, while 575

IBS and mAUSC showed more modest average improvements of 0.03 and 0.04, 576

respectively. 577

While there are statistical studies to predict liver transplant survival (e.g., [64–66]), 578

we focus our discussion on machine learning methods, which include RF [67], RSF [68], 579

logistic regression [69], Cox regression [70], artificial neural networks [43,67,68,71–73], 580

Bayesian networks [44], deep learning [69], PSSP [45], and even unsupervised and 581

semi-supervised methods [46,74]. Many of these studies only considered survival times 582

of three months or less [44,67,71,72], while a 13-year prediction time [43] is the only 583

study period greater than 10 years. Despite the short- and medium-term survival 584

predictions, most AUCs were ≈0.56-0.73, and few studies obtained AUCs over 585

0.85 [43,73]. The differences in study periods and datasets make direct comparison to 586

CASE performance difficult, but the fact that only one study [43] exceeded our 0.88 587
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AUC (only for some years in the 1-10 year survival range) despite our more challenging 588

>20-year prediction indicates that the CASE framework is likely an improvement over 589

conventional machine learning methods. For a more direct comparison, of the three 590

studies that used the same SRTR dataset as our case study (though in different 591

years) [43–45,68–70] and exclusively pre-transplant variables [43–45], one only examined 592

three-month survival with an AUC of 0.64 [44] and another did not provide any 593

conventional performance metrics for their 10-year survival prediction [45]. The most 594

recent of these studies [43] used a highly curated patient set (383 patients of the 595

available 65 535), which may explain their very unusual oscillating AUCs in the range 596

≈0.85-0.99 for one- to 10-year predictions, after which AUCs fell sharply to ≈0.45 at 13 597

years. It is therefore reasonable to conclude that CASE outperforms other machine 598

learning methods for survival prediction, at least in the liver transplant context, even 599

with a significantly longer study period and exclusion of post-transplant information. In 600

particular, our exclusion of post-transplant variables while maintaining high accuracy 601

allows clinicians to make more individualized patient decisions before transplant, 602

possibly guiding the patient-donor matching process. 603

To the best of our knowledge, there is no established score for evaluating the 604

accuracy of the survival curves [15]. In the survival literature, visually identifying the 605

curve that outperforms others is the primary method [75]. While the log-rank test is 606

commonly used for comparing KM curves, its power diminishes in cases of 607

non-proportional hazards [76]. C-index is a measure of the rank of the data and does 608

not rely on the actual values of the predictions. It is also highly sensitive to the 609

distribution of censored cases and is usually upward biased [29], and therefore may not 610

be suitable for evaluating long-term survival or t-year survival probabilities [30]. t-AUC 611

is also rank-based, with the same limitations as C-index [29,32,33]. The novel mAUSC 612

metric we introduced attempts to address the limitations of inflated C-index and t-AUC 613

scores, a common challenge in long-term survival, by incorporating time-weighted 614

considerations, which may make mAUSC more reliable under varying study periods. 615

Interestingly, the existing C-index, IBS, and t-AUSC metrics all rank the models in the 616

same order (CASE, Cox, RSF, then KM), while mAUSC differs in that it ranks KM as 617

the second-best model. The individual iAUSC metrics used to calculate overall mAUSC 618

may also provide insight into how much confidence a clinician should place on one 619

particular patient’s predicted survival curve. 620

Our novel SHAP-based temporal variable importance curves provide a continuum of 621

individualized variable importance over time, unlike other previous attempts to evaluate 622

time-varying importance through successive hazard ratios [10,77], simple statistical 623

analysis [63], or one-off classifications for different survival times to illustrate differences 624

in variable importances [78], which is not the same as variable importances dynamically 625

changing over time. Additionally, these previous approaches examined population risk 626

changes, not individual changes. Our approach may provide more accurate lifetime 627

information for clinicians, and indicate future periods during which interventions may 628

be appropriate for individual patients. We found some similar trends to mortality in 629

kidney dialysis in that patient weight is less significant for early survival but becomes 630

increasingly important for long-term survival [10]. 631

While CASE represents a significant advancement in survival analysis by improving 632

long-term survival predictions and personalized patient care, it is not without 633

limitations. One major issue is the impact of censoring and event distributions on 634

CASE’s augmentation process. The choice of study period P is crucial; we recommend 635

choosing a P less than the maximum survival time in the dataset, ensuring that most of 636

the survived cases are captured. 637

While the ABBQ method enhances the calibration of survival probabilities, it has 638

potential limitations. The method generally performs best when there is a sufficient 639
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amount of data within each bin, as too few records can reduce the reliability of the 640

calibrated estimates. Additionally, ABBQ may be sensitive to highly skewed data 641

distributions, where extreme values or imbalanced class ratios could impact the binning 642

process and overall calibration accuracy. In addition, while temporal stratification in 643

TSK-Fold ensures a more realistic evaluation of survival models, it can face challenges if 644

certain time intervals contain very few events. To address this issue, we select time 645

intervals and the number of folds (k) based on event density, aiming to balance 646

representation across folds. While TSK-Fold is primarily beneficial for medical 647

applications, it can also be adapted for financial risk analysis, engineering reliability, 648

and customer churn prediction, where time-dependent patterns are crucial. However, 649

alternative validation methods such as walk-forward validation [79] may offer more 650

flexibility depending on the dataset. 651

While metrics like the C-index [28] and time-dependent AUC [40] primarily assess 652

the ranking accuracy of predicted survival probabilities, they do not directly evaluate 653

the calibration of survival curves over time. The Brier score [34] measures the squared 654

error between predicted and actual outcomes but does not offer clear interpretability for 655

individual predictions. In contrast, iAUSC and mAUSC provide a more direct 656

evaluation of survival probability accuracy at each time point, making them more 657

suitable for applications where individual survival estimation is critical. These metrics 658

offer complementary insights to traditional measures, with iAUSC focusing on 659

individual-level accuracy and mAUSC capturing population-level performance. Despite 660

the advantages of mAUSC, it only assesses model performance for observed cases, 661

making it less effective for datasets with a low incidence of events. It is important to 662

acknowledge that in extremely imbalanced datasets, any performance metric may not 663

fully reflect the model’s accuracy [29,32]. Another limitation of our framework is the 664

computational intensity of calculating SHAP values for temporal variable importance, 665

especially given that the CASE-augmented dataset will be much larger than the original 666

dataset. 667

Finally, CASE was tested on a single US national dataset (SRTR), and should be 668

trained and tested on a hospital’s own past patient data prior to implementation. More 669

testing on a variety of survival-oriented datasets is necessary to understand CASE’s 670

generalizability, though the improved class imbalance alone should provide improved 671

prediction performance. We only tested CASE using RF and XGB classifiers, and 672

further testing with other classifiers could prove interesting, though may impact feature 673

interpretability since RF and XGB lend themselves to human-understandable feature 674

importance. 675

1 Conclusion 676

We introduced the CASE framework, which offers an innovative approach to survival 677

analysis by transforming it into a classification task. CASE integrates effectively with 678

established machine learning algorithms, providing a practical solution for handling 679

censored data. With its unique augmentation process, CASE addresses the dataset 680

imbalance issue, which is common in most survival analysis studies, especially in 681

long-term survival prediction. The ability to generate accurate individual survival 682

curves sets CASE apart from traditional methods like Kaplan-Meier and Cox models, 683

offering a more detailed and personalized understanding of patient outcomes. 684

Additionally, the novel regression method within the CASE framework offers direct 685

prediction of survival times, further enhancing its utility. Clinicians can use the insights 686

provided by CASE to move beyond binary paradigm of survival predictions toward a 687

more holistic approach that considers survival probabilities over time. However, it is 688

essential to interpret these findings with caution. Although model predictions can be 689
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valuable for identifying periods of increased risk, actual clinical outcomes may depend 690

on many factors, including interventions taken, changes in patient health or behavior, or 691

advancements in medical care throughout the patient’s post-transplant life. 692

Additionally, CASE generates temporal variable importance curves using SHAP 693

values, which evaluate the impact of variables on survival over time, aiding in the 694

development of personalized treatment strategies. The introduction of the iAUSC and 695

mAUSC metrics provide new tools for evaluating the accuracy of survival predictions for 696

individuals and for whole datasets. The CASE framework yielded improved survival 697

curve accuracy across all tested metrics—C-index, IBS, t-AUC, mAUSC—and 698

additionally significantly improved AUC and F1 scores in classification survival 699

methods. These more accurate survival predictions and facilitate the patient-donor 700

matching process. Its ability to forecast critical health events within a time frame that 701

is significant for clinical decision making may lead to better individualized health care 702

strategies and improved patient outcomes. 703

Future work will focus on improving the practical application of CASE, including 704

optimizing the computational efficiency of SHAP value calculations and testing the 705

generalizability of CASE across different datasets, particularly small datasets and those 706

with high proportions of censored data, as well as exploring the application of additional 707

classification models to assess the robustness of the method. We also encourage future 708

work to explore different values of P across various diseases and datasets to identify the 709

optimal prediction horizon for specific applications, where no medical constraints on the 710

study period exist and sufficient follow-up data is available. In addition, the broader 711

adoption of iAUSC and mAUSC metrics requires validation and consensus within the 712

research and clinical communities, as well as comparative studies to establish their 713

advantages over traditional survival metrics. It is worth mentioning that although our 714

case study and analysis focus on a healthcare survival problem, CASE is broadly 715

applicable to any survival prediction problem, including equipment reliability, finance, 716

and customer relationship management. 717
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