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Over recent years, home health care has gained
significant attention as an efficient solution to the
increasing demand for healthcare services. Home
health care scheduling is a challenging problem
involving multiple complicated assignments and
routing decisions subject to various constraints.
The problem becomes even more challenging when
considered on a rolling horizon with stochastic
patient requests. This paper discusses the Online
Dynamic Home Health Care Scheduling Prob-
lem (ODHHCSP), in which a home health care
agency has to decide whether to accept or reject
a patient request and determine the visit schedule
and routes in case of acceptance. The objective
of the problem is to maximize the number of
patients served, given the limited resources. When
the agency receives a patient’s request, a deci-
sion must be made on the spot, which poses many
challenges, such as stochastic future requests or a
limited time budget for decision-making. In this
paper, we model the problem as a Markov deci-
sion process and propose a reinforcement learning
(RL) approach. The experimental results show
that the proposed approach outperforms other
algorithms in the literature in terms of solution
quality. In addition, a constant runtime of less
than 0.001 seconds for each decision makes the

approach especially suitable for an online setting
like our problem.

Highlights

• We introduce a Reinforcement Learning (RL)
algorithm for scheduling home health care
services in real-time. The algorithm opti-
mizes patient acceptance decisions, maximizing
patient care within resource constraints.

• Our RL approach surpasses greedy methods and
delivers solution quality comparable to expen-
sive simulation-based approaches, but with sig-
nificantly faster execution times. This speed
is critical for real-time decision-making. Unlike
simulation-based methods, our approach main-
tains constant decision-making time regardless
of problem size.

• We conduct an extensive analysis of our results,
exploring the correlation between various fac-
tors and the decision to accept or refuse a
patient, providing valuable insights into the
decision-making process. Those analyses can
help the healthcare provider to make proper
policy to improve the quality of service in the
future.
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1 Introduction

Home Healthcare (HHC) is a service that involves
patients receiving care from professional care-
givers in the comfort of their own homes. This
form of care offers numerous advantages to
patients. Firstly, it allows them to remain in
their familiar home environment, benefiting their
mental well-being. Additionally, patients are less
exposed to potential hazards commonly found
in hospital settings. With an aging population
putting immense pressure on the healthcare sys-
tems in many countries, HHC is an effective
solution to lessen the burden on crowded hos-
pitals and retirement facilities. Some countries,
such as Sweden and Japan 1, are reforming their
healthcare systems to integrate HHC services.
The growing demands of HHC require a system-
atic approach to planning and scheduling. HHC
scheduling can be viewed as a blend of assign-
ment and vehicle routing problems. Given a set of
patient requests, the problem consists of assigning
patients to caregivers, deciding their visit sched-
ules, and determining nurses’ traveling routes. The
complexity of this problem is compounded by
a wide array of constraints that can vary from
one HHC agency to another. These constraints
typically encompass factors such as ensuring the
continuity of care, considering the skill levels of
available nurses, adhering to maximum working
hours for nurses, and adhering to specific time win-
dows for both nurses and patients, among others.
In addition to this complexity, we face high uncer-
tainty, including the stochastic arrival of patient
requests. Given that there are often more requests
than the available service capacity, HHC agencies
frequently have to decline some patients.

In this paper, we study the Online Dynamic
HHC Scheduling Problem (ODHHCSP), where an
agency has to decide online whether to accept a
patient request and how to schedule the patient in
case of acceptance upon the patient’s arrival. In
the existing literature, most studies have primar-
ily focused on the static version of the problem,
where requests are scheduled in batches, and
future information is not considered. Despite the
advantage of batch scheduling, which provides
more information for improved decision-making,

1https://www.emerald.com/insight/content/doi/10.1108/
PAP-06-2020-0030/full/html

most HHC agencies, in practice, adopt an online
strategy, making decisions upon receiving each
request. Various practical operational constraints
drive this preference for online decision-making.

Within the literature, two approaches
addressed the problem’s online dynamic ver-
sion. Bennett and Erera (2011) introduced a
greedy heuristic that bases scheduling decisions
on the cheapest insertion cost. This method
remains myopic and does not consider infor-
mation about future arrivals. Demirbilek et al.
(2021) proposed a simulation-based approach
that samples future scenarios to make decisions.
However, this approach requires a long computa-
tion time, especially when the number of nurses
is large. Consequently, it is unsuitable for real-
time decision-making and lacks scalability when
applied to larger scenarios.

We propose using a Reinforcement Learning
(RL) approach for the ODHHCSP to fill this lit-
erature gap. RL learns to make decisions through
a reward system. A RL agent interacts with an
environment by taking action and then receiving
a reward from the environment, which tells how
good the action was. An RL agent can learn a pol-
icy to select a proper action based on the system
state to maximize a cumulative reward through
training.

As the training is done offline, an RL agent
can make fast online decisions during execution,
making it suitable for problems where the time
budget for decision-making is limited.

We propose to model the problem as a Markov
Decision Process (MDP) and use double-deep
Q-Learning with experience replays as the RL
algorithm. The experimental results show that our
algorithm outperforms the existing methods in the
literature. In addition, the approach is suitable for
the problem’s online setting as it can offer high-
quality solutions in a short, constant run time (less
than 0.001 seconds). We also provide analyses on
the contribution of patients’ characteristics and
nurses’ schedules to the decision outcome.

The rest of the paper is organized as follows.
Section 2 presents the literature review on related
problems. The problem description is provided in
Section 3, and the solution methods are presented
in Section 4. Section 5 reports and analyzes the
experimental results, and finally, Section 6 closes
the paper with conclusions and future works.
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2 Literature review

The first attempt to address the home health care
routing and scheduling problem (HHCRSP) can
be dated back to 1997, when Begur et al. inte-
grated a heuristic into a GIS system to develop a
tool for solving the problem. The HHCRSP has
been the subject of extensive research in numerous
studies with different constraints and objective
functions. We refer the readers to Fikar and Hirsch
(2017) and Cissé et al. (2017) for comprehen-
sive literature reviews on models and methods
for this class of problem. More recently, Hech-
ing et al. (2019) proposed a logic-based Benders
decomposition approach for the HHCRSP prob-
lem to maximize the number of patients served
over a given time horizon. The master problem
was solved by Mixed Integer Linear Programming
(MILP), while the sub-problems were tackled
by Constraint Programming (CP). Grenouilleau
et al. (2019) proposed a set partitioning formu-
lation and a Large Neighborhood Search (LNS)
framework to determine the assignment of home
visits to a set of caregivers and the caregivers’
routes over the given horizon to minimize penal-
ties. They also took into account traffic delays
using a time-dependent distance matrix. Grenouil-
leau et al. (2020) later extended the problem with
a logic-based Bender Decomposition based on visit
patterns and developed a metaheuristic based on
LNS. They reduced the average computational
time by 34% compared to Heching et al. (2019).

While most studies focused on static prob-
lem settings where all patient requests are known
a priori, few papers considered stochastic vari-
ants. Rodriguez et al. (2015) investigated a version
with uncertainty in patient demands and solved
a multi-objective problem using stochastic pro-
gramming to find the best trade-offs between
coverage on patient demand forecast and resource
costs. Carello and Lanzarone (2014) considered
a nurse-patient assignment problem to minimize
nurses’ overtime. The authors proposed a robust
cardinality-constrained model and ran experi-
ments on a 26-week rolling time horizon to inves-
tigate the impact of stochastic client demand.
Nikzad et al. (2021) developed a matheuristic
to solve multiple decision levels simultaneously,
with uncertainty in terms of traveling and ser-
vice time. Zhan et al. (2021) studied a home

service routing and appointment scheduling prob-
lem with stochastic service time. The objective
function is to minimize travel costs, the idling
time of professional operators (nurses), and cus-
tomers’ waiting time. The problem was modeled
as a MILP and solved using an L-shape method.
A heuristic approach was also proposed to deal
with large instances. However, the authors did not
consider multiple visits and continuity of care.

Shi et al. (2019) proposed a robust optimiza-
tion model for the home health care routing prob-
lem with consideration of uncertain travel and
service times by reducing the problem to a deter-
ministic version, which Gurobi, Simulated Anneal-
ing, Variable Neighborhood Search, and Tabu
Search then solved. In Yang et al. (2018), a chance-
constrained programming model was built with
chance constraints on waiting time and overwork-
ing. The model is then solved by an Ant Colony
Optimization meta-heuristic. Recently, Khorasa-
nian et al. (2024) proposed a variant of HHC-
SRP that considers uncertainty in the number
of required visits. In this problem, the number
of visits for each patient is not predetermined.
The necessity of the next visit is decided during
the previous one: either one more visit is needed,
or no further visits are required. The problem
was conceptualized as a Markov Decision Process
and solved using approximate linear programming
techniques.

In this work, we focus on the dynamic set-
ting of the HHCSP, where patient arrivals are
revealed over time. In practice, many agencies do
not have enough resources to accommodate all
incoming patient requests. Therefore, they must
decide whether to accept or reject a patient upon
receiving a request. Very few studies considered
the HHCSP in such a dynamic setting.

To the best of our knowledge, the first methods
used to solve this problem were developed by Ben-
nett and Erera (2011), in which the authors pro-
posed two greedy insertion heuristics to maximize
the number of patients accepted. The algorithms,
however, were limited to instances with only a sin-
gle nurse and were still myopic, i.e., they did not
consider information on future requests.

Demirbilek et al. (2019) proposed a simulation-
based approach for the same problem. Their
algorithm, the Scenario-Based Approach (SBA),
generated multiple future scenarios and made
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decisions based on the simulation results. Demir-
bilek et al. (2021) extended the algorithm to tackle
instances with multiple nurses. A weakness of
their approach is that it requires multiple sim-
ulations to make a decision, which makes the
algorithm unsuitable for online decisions and pre-
vents it from scaling properly on larger instances.
In this study, we propose a reinforcement learn-
ing approach to fill this methodological gap and
solve more significant instances that arise often in
practice. Unlike the SBA, our method trains the
policy offline from simulations before we can use
it online for decision-making. It provides adaptive
actions for incoming requests with less compu-
tational effort, which is preferable in an online
context.

Dynamic Vehicle Routing Problems

Since the literature on Dynamic Vehicle Rout-
ing Problem (DVRP) is vast, we suggest Soeffker
et al. (2022) for the recent reviews. However,
the number of works that applied RL to the
DVRPs with stochastic customers is limited. Joe
and Lau (2020) proposed a value-function approx-
imation solution approach for the DVRP, in which
they must update the planned routes after real-
izing a new customer. Their algorithm learns to
estimate future rewards by Temporal Difference
Learning and uses simulated annealing to opti-
mize routes regarding immediate and predicted
future rewards. Chen et al. (2022) used Deep Q-
learning agents to decide customer admissions for
trucks and drones in a same-usingy delivery con-
text. The accepted customers are then assigned
to vehicles by the cheapest heuristic. Basso et al.
(2022) proposed a safe RL approach to solve the
Dynamic Stochastic Electric VRP. The authors
used a VFA-based algorithm to decide which next
node to visit each time the vehicle leaves the cus-
tomer’s location. They considered two objective
functions: minimizing energy consumption and
the risk of battery depletion. Additionally, they
proposed a second safety layer that uses energy
cost predictions for the charging stations.

3 Problem definition

A HHC agency has a set of nurses R providing
services for a set of patients P. The studied prob-
lem is a variant of the classical HHCSP where
patient requests arrive dynamically, and a decision

must be made on whether to accept or reject a
patient upon receiving a request. The objective is
to maximize the number of patients served during
a horizon.

Nurse

Each nurse r ∈ R has a working time window
[er, lr], where er is the starting time of the work-
ing day when nurse r leaves home or office and
lr is the end of the working day, before which
nurse r should return home or to office. All nurses
work only during the weekdays, and no service
is provided during the weekends. A nurse visits
each patient at most once a day, provides services
within a predefined duration, and then travels to
the next one. Each nurse has a skill level, denoted
as sr. Some types of services require nurses at a
certain skill level.

Patient

When a service request is received, a patient
p ∈ P is registered to the system. The admission
week of patient p is denoted as ap. The requested
care plan consists of an episode of care wp (the
number of consecutive weeks that the patient
requires the service), a visit frequency fp (the
number of visits per week), a visit duration hp,
measured in minutes, and a minimum level skill
of nurses sp. The assigned nurse must have a
skill level of sp or higher. Each patient has a
set of possible combinations of days to receive
services, depending on their visit frequency. This
combination is referred to as a visit pattern. No
consecutive visits are allowed. The set of valid
visit patterns for patient p is denoted as Ωp. For
example, if a patient p requires two visits per
week, there are five valid visit patterns Ωp =
{(Mon,Wed), (Mon, Thu), (Mon,Fri), (Tue, Thu),
(Tue, Fri), (Wed, Fri)}. Tp is the set of possible
visit times of a patient p in a day. In our problem
settings, the visit time must be selected from
a predefined set of equally-spaced appointment
times of δ in minutes. For example, a typical
patient has Tp = {8 : 00, 8 : 15, ..., 16 : 00} with
δ = 15. Some patients can restrict their visit
times to fit their availability or preferences.

Other constraints

The agency must ensure the care continuity
for accepted patients by assigning the same
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nurse throughout their treatment. Furthermore,
we should maintain consistent appointment times
over treatment days, as well as ensure that
patients receive their treatments on the same set
of weekdays throughout their treatment period.
The nurses’ schedule must ensure they arrive at
the customer locations before the appointment
times. If they come before the visit time window,
they must wait until the appointment to start the
service. Figure 1 demonstrates a feasible weekly
schedule for a single nurse with four patients.

Decision process

When a request is received, the agent must decide
whether to accept or reject a patient. If the patient
is accepted, several decisions need to be made:
the days of the visit (visit pattern), the appoint-
ment time, and which nurse to assign to the
patient. Thanks to the continuity constraints, we
can define an insertion pattern λ = {ωλ, tλ, rλ},
where ωλ is the visit pattern, tλ is the appoint-
ment time, rλ is the nurse’s identification. Let p−wd

and p+wd be the predecessor and the successor of
p on the route of nurse r on day d of week w,
respectively. The time taken by nurse rλ to travel
from p−wd to p, and from p to p+wd are denoted as
c(p−wd, p) and c(p, p+wd), respectively. An insertion
pattern λ is considered feasible for a patient p if
inserting p into the position defined by λ does not
violate the traveling constraints (i.e., the nurse has
sufficient time to travel from the preceding patient
to p, finish the required service, and then travel
to the succeeding one). Formally, an insertion pat-
tern λ is valid for a patient p if it satisfies the
following constraints:

erλ + c(p−wd, p) ≤ tλ ≤ lrλ − c(p, p+wd) (1)

tp−
wd

+ hp−
wd

+ c(p−wd, p) ≤ tλ (2)

∀w ∈ {ap + 1, .., ap + wp}, d ∈ ωλ

tλ + hp + c(p, p+wd) ≤ tp+
wd

(3)

∀w ∈ {ap + 1, .., ap + wp}, d ∈ ωλ

srλ ≤ sp (4)

tλ ∈ Tp (5)

ωλ ∈ Ωp (6)

Constraints (1) guarantee the working time win-
dow of nurse rλ. The traveling constraints are
enforced by inequalities (2) and (3). Constraint

(4) ensures the requirement on the nurse’s skill
level. Finally, constraints (5) and (6) make sure
the appointment time and visit pattern are valid
for the given patient.

4 Methodology

In this section, we first present the cheapest inser-
tion heuristics proposed in Bennett and Erera
(2011) for solving the HHCSP with a single
nurse, which also are the base components of
our approach. The scenario-based approach (SBA)
introduced in Demirbilek et al. (2019) is then
re-described and used as the experiments’ base-
line algorithm. Finally, we provide the theoret-
ical background of reinforcement learning (RL)
and present our RL framework for solving the
ODHHCSP.

4.1 Cheapest insertion heuristics
and scenario-based approach

The cheapest insertion heuristics enumerate all
possible insertion patterns and find the positions
to insert the patient into the schedule to mini-
mize the summation of increased costs. If there is
at least one feasible spot for insertion, the patient
is accepted and scheduled to the cheapest option.
Otherwise, the request is rejected. The procedure
is described in Algorithm 1. Given a request from
patient p, nurse r is checked for sufficient skill level
(Line 4). If the requirement is met, the algorithm
iterates over feasible schedules of p, which include
visit patterns and appointment times (Line 5 -
Line 9). Then, time-related constraints for them
are verified by checking the insertions on future
routes (Line 11), and the total costs of these
schedules are calculated (Line 12). Finally, the
algorithm returns the position with the lowest cost
(Line 25). The authors proposed two versions of
the greedy heuristic. The distance-based heuristic
(DH) minimizes the increase in a nurse’s traveling
distance. In contrast, the capacity-based heuristic
(CH) maximizes the remaining capacity of a nurse
(i.e., maximizing the nurse’s number of remaining
potential service slots).

The scenario-based approach (SBA) was pro-
posed by Demirbilek et al. (2019) to solve the same
problem. The SBA is based on simulating future
scenarios to evaluate whether a request should be
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Fig. 1: An illustration on the schedule of a single nurse in a week.

Algorithm 1 Cheapest insertion heuristic (CIH)

Require: Patient p, nurse r
1: c∗ ←∞
2: λ∗ ← {∅,−1,−1}
3: Ωp ← the list of valid visit patterns of patient p
4: if sp ≤ sr then
5: for all visit pattern ω ∈ Ωp do
6: for all visiting time t ∈ Tp do
7: c← 0
8: for all week w ∈ {ap + 1, .., ap + wp} do
9: for all day d ∈ ω do

10: Γr
wd ← planned route of r on day d, week w

11: if inserting p into Γr
wd at time t does not violate travelling constraints of r then

12: c← c+ insertCost(Γr
wd, p, t)

13: else
14: the insertion pattern {ω, t, r} is invalid
15: end if
16: end for
17: end for
18: if {ω, t, r} is valid and c ≤ c∗ then
19: c∗ ← c
20: λ∗ = {ω, t, r}
21: end if
22: end for
23: end for
24: end if
25: return c∗, λ∗

accepted. A scenario consists of randomly gener-
ated patient requests for a week. Given a current
request from patient p, the algorithm generates
a set of future scenarios. Each scenario is solved
using the cheapest insertion heuristic described in
Algorithm 1. If patient p is accepted in at least
one scenario, the patient is scheduled to the most
recurrent accepted option. Otherwise, the patient
is rejected. The approach is then extended for
multiple nurses in Demirbilek et al. (2021).

4.2 Reinforcement learning

The framework of RL provides a mechanism for
learning to take proper actions to gain maxi-
mum rewards over time. An RL agent learns by
interacting with an environment, modeled as a
Markov Decision Process (MDP). At every time
step t, the agent observes an environment state
St, selects and performs an action At, then col-
lects a reward Rt+1 and observes a new state
St+1 from the environment. The behavior of an
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agent is defined by a policy (π) that maps states
into actions. Based on past experiences, the goal
of an agent is to learn an optimal policy that
maximizes the discounted summation of future
rewards Gt =

∑∞
k=t γ

k−tRk+1, where γ is a dis-
count factor. Numerous algorithms for RL are
available in the literature. In value-based RL algo-
rithms, given a policy π, the agent learns a state-
action value function (Q-function) Qπ(s, a) =
E[
∑∞

k=0 γ
kRt+k+1|St = s,At = a] that estimates

the expected cumulative reward at state s if action
a is taken. Q-learning proposed by Watkins (1989)
is a value-based RL algorithm. It updates an esti-
mated Q-function iteratively by sampling based
on the Bellman equation:

Q(St, At)← Q(St, At)

+ α[Rt + γmax
a

Q(St+1, a)−Q(St, At)]

Once learned, the optimal policy Q∗(s, a) can
be derived by selecting the action that results
in the best cumulative future reward aπ(s) =
argmaxa(Qπ(s, a)). In Q-learning, it is impor-
tant to control the trade-off between exploration
(choosing an action randomly) and exploitation
(selecting the best action based on the cur-
rent estimated Q-function). For such purpose,
we employ the classical ϵ-greedy heuristic, which
chooses an action randomly with probability ϵ,
and greedily with probability 1− ϵ, 0 ≤ ϵ ≤ 1.

In the initial stages of training, when data
gathering and exploration are essential, ϵ is often
set high, such as 1. As learning progresses, ϵ is
gradually reduced to a lower bound, such as 0.1.
This approach allows the agent to increasingly
focus on exploiting the learned strategies while
still allowing for a minimal level of exploration to
avoid local optima.

A parameterized function approximator is
often utilized instead of tabular methods to
learn the Q function in applications with a
large state or action space. Deep Q-network
(DQN)(Mnih et al., 2013) uses a neural net-
work as a nonlinear function approximator of
the Q-function. The Q-function approximator is
denoted as Q(s, a, θ), where θ is the parame-
ters of the neural network. To estimate Q-values,
the Q-network learns to minimize the mean
square error (MSE) between the updated target

yDQN
t = rt + γmaxa′ Q(St+1, a

′) and the predic-
tion Q(St, At, θ). A replay buffer stores the agent’s
experience to improve data efficiency by break-
ing correlations between consecutive samples. The
Q-network is trained by sampling mini-batches
uniformly from the replay buffer. It is well-known
that DQN often overestimates the action-state
values, which may prevent the agent from learn-
ing the optimal policy. This phenomenon can be
caused by the fact that using the same network
for selecting and evaluating actions is likely to
choose the overestimated value, which can max-
imize the bias of the Q-network over time. To
tackle this issue, Hasselt et al. (2016) proposed
Double DQN (DDQN), which uses two separate
networks for selecting and evaluating actions. Sim-
ilarly to DQN, DDQN uses a neural network θ to
select actions. An additional target network θ̂ esti-
mates Q-values. The target is updated using the
function:

yDDQN
t = Rt + γQ(St+1, argmax

a′
Q(St+1, a

′, θ), θ̂)

θ̂ is updated periodically by copying the weights
from θ.

4.3 Sequential decision process for
the ODHHCSP

As mentioned above, we model the ODHHCSP as
a MDP and solve it via RL approach. We now
describe the main components of our MDP: the
state space, the action space, the transition, and
the reward function.

Decision point

In our problem setting, a time step t is triggered
when the agency receives a patient’s request. The
corresponding patient is denoted as pt.

State space

A state space consists of the necessary informa-
tion for the agent to decide. The system state St

at time step t consists of two main components:
(1) information on the corresponding request and
(2) information on the current schedules of nurses.
The representation of the state space is presented
in more detail in Section 4.4.
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Action space and transition

At time step t, the agent faces |R| + 1 potential
actions: accepting and assigning the patient to a
specific nurse r ∈ R or rejecting the request. If the
patient is rejected, no further action is required.
However, if a patient is accepted and assigned to
a nurse, denoted as rt, the algorithm proceeds to
update the schedule of nurse rt using the cheapest
insertion heuristic (Algorithm 1). The assignment
uses the distance-based insertion heuristic on Γrt .

Following the processing of the tth request, the
system transitions to a post-decision state denoted
as Ŝt = {∅, Γ̂t}.

Here, Γ̂t represents the updated set of routes
based on At. Furthermore, the model advances
from Ŝt to the subsequent pre-decision state St+1

when the system realizes the arrival of the (t+1)th

request.

Reward function

When a patient is accepted and assigned to a valid
nurse, a reward equal to 1 is returned. Conversely,
the reward is set to 0 if the patient is rejected.
To discourage the agent from choosing invalid
actions, the environment penalizes the agent with
a negative reward of Rinvalid whenever an invalid
assignment is observed. Our implementation uses
Rinvalid = −10.

Rt =


0, if pt is rejected.

1, if pt is assigned to a valid nurse.

−10, if pt is assigned to an invalid nurse.

4.4 State representation

To make proper scheduling decisions, the RL agent
needs access to relevant information on the incom-
ing request and the current nurses’ schedules,
referred to as an observation. We select a subset
of valuable characteristics of the system’s state
as a compact feature vector. The feature vector
consists of the following components:

Incoming patient : The first part of the obser-
vation is the information on the incoming request.
For an incoming patient p, the episode of care
wp, visit frequency fp, and visit duration hp are
required. In addition, we compute the cost of
assigning the patient to each nurse using the

cheapest insertion heuristic. The size of this fea-
ture is hence (|R|+ 3).

Nurses’ schedules: To capture the nurses’ avail-
ability, we include the number of assigned visits,
total idle time, and total traveling time in the next
w̄ weeks for each nurse, where w̄ is the maximum
episode of cares allowed in a problem setting. This
component comprises (3|R|) numbers. An illustra-
tion of the idle and traveling time during a nurse’s
working day can be found in Figure ??.

Additional information: The third component
consists of other relevant information, including:

• A binary vector indicating which nurses are
valid and available for the current request (|R|
variables, one for each nurse).

• A binary variable implying whether the current
state is post-decision.

• A binary variable indicating if there is at least
one nurse available for the current request.

• A variable representing the time left in the
week, measured in minutes from the decision
point until the finish.

• For each nurse r ∈ R, we calculate the minimum
reduction in the number of consecutive appoint-
ments in the best scenario when p is inserted
into r’s planned routes. The number of available
slots in the best scenario within an interval [l, e]
between two corresponding patients pl and pe is
given by the equation from Bennett and Erera
(2011):

nbbest(l, e) =

min(⌊e− l − wp − δ

wp + δ
⌋, ⌊

e− l − δ⌈ c(p
+
l ,p−

e )

δ ⌉
wp

− 1⌋)

The reduction then can be calculated by search-
ing for the cheapest insertion pattern. Then, we
compute the total reduction over all days in the
pattern. We need to use |R| variables, one cor-
responding to each nurse, to record this total
reduction.

In our implementation, with the post-decision
state, the value of the feature vectors related to the
patient’s information is set to zero. Each feature
value is extracted from the state and is normalized
to the [0, 1] range before being passed to the agent.
The feature vector’s total length is 6|R|+ 6.
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Fig. 2: The timeline of a nurse’s working day.

4.5 Scheduling a patient

When a request of a patient is received, the
algorithm makes a decision using the procedure
outlined in Algorithm 2. Initially, the algorithm
examines the current state of the schedule to
determine if it can feasibly accommodate the
patient’s request, respecting all constraints (Line
1). If no slot is found, the request is marked as
invalid. It is therefore denied 2. In contrast, when
a slot is available, a trained RL model deter-
mines whether to accept or reject the patient. To
this end, the algorithm extracts a feature vec-
tor from the current state (Line 3). This vector
is used in the RL model to estimate the action
value (Line 4). As such, an action is derived (Line
5) to decide whether the request is accepted or
rejected. If accepted, it also determines which
nurse is assigned to the patient. When the request
is approved, the patient is assigned to the corre-
sponding nurse, and the schedule is updated using
Algorithm 1.

2It is worth noting that during the training phase, we
consider invalid requests as they allow the agent to observe
environmental changes. However, during the deployment, it is
not required to consider invalid requests.

Algorithm 2 Decision method

Require: Patient pt
1: St ← observe the current state
2: if There is an available slot for accepting pt then
3: ft← Extract feature from St

4: Q(St)← Estimate value of ft from the neutral
network

5: At ← argmaxa′(Q(St, a
′)) ▷ Derive action

6: if At is accepted then
7: rt ← nurse’s ID from At

8: Assign patient pt to rt and determine the
schedule using Algorithm 1

9: else
10: Reject patient pt
11: end if
12: else
13: Reject patient pt
14: end if

5 Experimental results

In this section, we present the results of our
computational experiment. First, we discuss the
generation of test instances and the experimen-
tal setup in Section 5.1. Then, we compare the
performance of the benchmarks with that of the
RL-based algorithm in Section 5.2. An analy-
sis of the algorithm is presented in Section 5.3.
Experiments were conducted on an AMD Ryzen
7 3700X @3.600GHz CPU running Pop!OS 22.04.
The algorithms were implemented in Python 3.10.

5.1 Data generation

All instance settings are adopted from Bennett
and Erera (2011), which are generated to mimic
real data. In the following, we describe the com-
ponents of the test data in more detail.

Nurses

All nurses work from 08:00 to 16:30, five days a
week, from Monday through Friday. A nurse can
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have a skill level of 1, 2, or 3. The higher the level,
the more tasks the nurse can perform.

Patients

All patients have the same set of possible appoint-
ment times with intervals of 15 minutes: T = {08 :
00, 08 : 15, 08 : 30, ..., 16 : 30}. The episode of care
for each patient lasts four weeks. A care plan can
have a frequency of 1, 2, or 3 visits per week with
probabilities of 0.05, 0.35, and 0.60, respectively.
Each visit lasts 1 hour. Visits on consecutive days
within a week are prohibited (e.g., a visit pattern
of (Monday, Tuesday) is forbidden).

Locations

The patient locations are generated within a
squared geographic region represented by a 60x60
grid (units in kilometers). The traveling time
between locations is 3 minutes per one grid unit.
The coordinates of the home depot for nurses are
generated randomly. Three location distributions
are considered: Uniform (U), Clustered (C), and
Uniform-Clustered (UC).

In U instances, the patient locations are dis-
tributed uniformly over the entire geographic
region. In C instances, they are sampled from
three square sub-regions in the considered region.
The sub-regions are defined by the coordinates of
two opposite corners of the corresponding squares:
[(8, 20), (18, 30)]; [(52, 64), (67, 79)]; and [(43, 27),
(63, 47)]. In UC instances, 30% of the requests
come from these sub-regions, while the remain-
ing patients are drawn randomly from the entire
region.

Patient arrivals

Inter-arrival times between patient requests are
modeled with an exponential distribution. The
rate of this distribution determines the average
number of patient requests per time unit, and
requests can arrive at any point during the 8-
hour working day. The selected arrival rate of each
instance setting is influenced by the number of
nurses available: more nurses might correlate with
a capacity for a higher request rate. We choose
specified arrival rates for each setting related to
the number of nurses to represent low, medium,
and high-demand scenarios. Based on the number
of nurses, a detailed list of these arrival rates can
be found in Table 1. For the purpose of this paper,

Parameters Inter-arrival Avg. patient

# Nurses Demand time (minutes) per day

3

low 640 0.80

medium 300 1.70

high 120 4.25

6

low 320 1.59

medium 150 3.40

high 60 8.50

12
low 160 3.19

high 75 6.80

15
low 128 3.98

high 60 8.5

Table 1: Inter-arrival time and average number
of patients for each instance setting

we generated patient requests in the simulations
over ten weeks.

Generating initial schedules

A warm-up period is utilized to generate initial
schedules. The process begins with an empty cal-
endar, and the first three weeks of patient requests
are scheduled using the distance-based cheapest
insertion heuristic (Section 4.1).

5.2 Comparison between the RL
approach and the baselines

We re-implemented the scenario-based approaches
(SBA) proposed in Demirbilek et al. (2021) and
both versions of the cheapest insertion heuristics
in Bennett and Erera (2011): the distance-based
(DH) and capacity-based (CH); and used them as
baselines. The SBA simulated over 75 scenarios
for each patient request to make decisions.

Our RL approach utilized a feed-forward neu-
ral network comprising two hidden layers. Each
layer contained 60 · |R| neurons. The ReLU activa-
tion function was used for function approximation.
The agent’s exploration was guided by the param-
eter ϵ, which decayed from 1 to 0.1 throughout
the initial 20% of the time steps. We sampled a
batch of 2048 transitions from the replay buffer
at each iteration to train the Q-network. Every
100 time steps, we performed gradient descent to
update the Q-network’s parameters, using a step
size of α = 0.01 ·0.99910000·#time steps/H , where H
is the total number of time steps of the training
phase. The target network receives updates every
5000 steps. We set the discount factor γ to 0.998.
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We trained the models in 4 · 107 time steps based
on preliminary experiments to ensure convergence.
For every 2 ·104 time step, we evaluated the model
using the same testing set of 3 instances. We
plotted the training curves and, for comparison,
included results from the testing set produced by
the baseline methods. We trained an RL model for
each instance set, which varied by the number of
nurses, arrival rates, and patient location distribu-
tion. For each instance size (the number of nurses),
we tested three demand levels (high, medium, and
low) and three location distributions (uniform,
clustered, and uniform-clustered). An example of
the training curves for the instance settings with
three nurses is shown in Figure 3 where the x-axis
represents the training epoch and the y-axis indi-
cates the total number of accepted patients on the
validation set. As the training phase progresses,
we notice that the solution quality significantly
improves until reaching 107 trained time steps.
After around 2 ·107 time steps, the validated value
reaches stability.

To provide a detailed examination of the
algorithms’ performance, we conducted additional
tests on the trained RL model and the four base-
line methods (DH, CH, SBA + DH, and SBA +
CH) over 30 instances. The results are reported
in Table 2. For each instance, we computed the
total number of accepted patients (#patients)
over the whole planning horizon. For better read-
ability, we use the number of accepted patients
provided by DH as the reference baseline. For the
other approaches, we calculated the improvement
(in percentage) on the total number of accepted
patients compared to DH as follows:

impA(%) = 100 × #patientsA−#patientsDH

#patientsDH
,

where #patientsA is the number of accepted
patients provided by approach A.

The results in the table represent averages over
the 30 instances. Given the considerably slower
speed of the SBA-based methods to make deci-
sions, we report their running times (in seconds,
denoted as time). We do not provide in details
the computation time of other approaches, includ-
ing the greedy heuristics (DH, CH) and RL-based
ones, because they have a negligible running time,
less than 1 second per request.

The first observation from Table 2 is that CH
generally underperforms compared to DH in both
low and medium-demand scenarios. However, in
high-demand scenarios, CH tends to exhibit slight

improvements over DH. Consequently, SBA based
on DH also outperforms the one based on CH.
SBA+DH consistently improves upon the results
from DH across all tested instances, with the most
significant improvements noted in higher-demand
scenarios. This can be attributed to low-demand
environments, where the benefit of rejecting a
client is minimal. Yet, the decision-making time
per patient for SBA+DH is considerably long,
especially in high-demand scenarios. SBA+CH
takes up to 20 seconds to decide for a single
patient in high-demand cases. In contrast, the
RL approach consistently outperforms the other
methods in both solution quality and computa-
tional speed. RL delivers the highest improve-
ment across almost all instance settings, with one
exception: the high-demand scenario with cluster
distribution. In this particular setting, while the
improvement percentages for RL and SBA+DH
over DH are closely matched (2.49% vs. 2.62%),
RL has a constant runntime and is significantly
faster than SBA+DH.

To examine the algorithms’ performance on
the larger instances, we also tested them on
instance settings with 6, 12, and 15 nurses. The
results are reported in Tables 3, 4, and 5, respec-
tively. As can be seen in the obtained results, in
settings with 6 nurses, our RL approach achieves
the best performance among all tested methods in
low and medium-demand scenarios. However, in
high-demand situations, the SBA+CH approach
outperforms the RL approach regarding solu-
tion quality. Nevertheless, it is important to note
that the SBA+CH approach requires significantly
more time to make decisions. In high-demand UC
instances, SBA+CH takes up to 113 seconds to
make decision for a single patient. It is five times
higher than that required in a similar setting with
3 nurses, highlighting that SBA-based algorithms
are not scalable for larger scenarios. In contrast,
while the improvement provided by RL is slightly
lower than that of SBA+CH, the RL approach is
significantly faster than SBA+CH, making it more
suitable for larger instances.

In the case of settings with 12 nurses, we con-
ducted tests using algorithms for both low and
high-demand scenarios with a uniform patient
distribution (U). The results, as presented in
Table 4, show that the RL approach outper-
forms other methods in low-demand scenarios,
exhibiting an improvement of 3.57% over DH.
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Fig. 3: Learning curves for instance settings with three nurses.

DH CH SBA+DH SBA+CH RL

# patients # patients imp (%) # patients imp (%) time # patients imp (%) time # patients imp (%)

U

low 30.70 30.17 -1.57 31.00 0.95 2.59 30.40 -0.81 4.97 31.50 2.68

medium 51.97 50.47 -2.71 52.57 1.25 4.10 50.63 -2.38 7.84 53.33 2.73

high 74.90 75.37 0.82 76.77 2.56 10.51 76.40 2.19 17.85 77.30 3.22

C

low 36.23 36.60 1.27 36.63 1.21 2.81 36.70 1.50 5.83 37.07 2.43

medium 61.13 61.17 0.18 61.60 0.72 4.95 61.57 0.86 10.39 62.43 2.12

high 94.63 92.97 -1.61 97.10 2.62 7.28 94.03 -0.53 15.42 96.97 2.49

UC

low 34.33 34.13 -0.35 34.43 0.24 2.76 34.07 -0.57 5.77 35.07 2.10

medium 59.40 57.73 -2.62 59.67 0.50 4.70 58.47 -1.41 9.43 60.20 1.47

high 88.07 88.20 0.33 90.50 2.85 9.72 88.50 0.67 19.85 91.40 3.92

Table 2: The total number of accepted patients for instance settings with 3 nurses.
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DH CH SBA+DH SBA+CH RL

# patients # patients imp (%) # patients imp (%) time # patients imp (%) time # patients imp (%)

U

low 67.40 66.43 -1.23 67.97 0.94 8.93 66.70 -0.87 18.73 69.23 2.79

medium 112.20 109.63 -2.24 113.13 0.85 14.22 110.70 -1.28 28.77 114.30 1.92

high 168.43 169.73 0.86 173.13 2.81 60.72 172.03 2.21 109.42 170.97 1.52

C

low 75.53 75.63 0.19 75.90 0.47 10.00 75.67 0.23 25.14 77.87 3.11

medium 131.50 130.63 -0.64 132.53 0.81 18.11 131.53 0.05 42.02 135.23 2.88

high 199.13 199.17 0.08 206.90 3.94 68.09 201.30 1.16 145.40 203.87 2.41

UC

low 71.57 70.87 -0.81 71.83 0.37 9.78 71.37 -0.19 23.29 73.20 2.27

medium 126.10 124.43 -1.26 128.13 1.64 16.17 125.13 -0.68 35.38 129.83 3.02

high 185.67 187.47 1.12 192.70 3.88 55.42 190.10 2.56 113.55 189.60 2.20

Table 3: The total number of accepted patients for instance settings with 6 nurses.

DH CH SBA+DH SBA+CH RL

# patients # patients imp (%) # patients imp (%) time # patients imp (%) time # patients imp (%)

U
low 136.60 135.80 -0.57 137.87 0.94 50.84 137.40 0.62 126.15 141.43 3.57

high 240.13 237.87 -0.92 243.30 1.31 102.27 239.40 -0.27 199.74 242.43 0.97

Table 4: The total number of accepted patients for instance settings with 12 nurses.

In comparison, SBA+DH and SBA+CH show
improvements of only 0.94% and 0.62%, respec-
tively. In high-demand scenarios, the SBA+CH
approach stands out as the top performer, achiev-
ing a notable improvement of 1.31% over DH.
However, it requires on average, more than 100
seconds to make decision for a single request.

As can be seen in Table 5 representing
the result of 15-nurse instances, SBA+CH and
SBA+DH achieve the best performance on low-
and high-demand instances, respectively. The
reinforcement learning agent outperforms DH and
CH. In these cases, the running time of the SBA-
based approaches rapidly increases, taking more
than 600 seconds to solve the problem in the high-
demand setting, which is three times longer than
the time taken to solve instances with 12 nurses.
This shows the disadvantage of the reference
approaches in terms of scalability.

In summary, the experimental results across
four different instance sizes consistently demon-
strate that the RL approach provides high-quality
solutions with rapid running times, making it well-
suited for real-time decision-making in problems
like the one under consideration.

5.3 The impact of patients’
characteristics on decision
outcomes

In this section, we analyze the impact of patients’
characteristics on the RL agent’s decision. Our
initial analysis focuses on the correlation between
patient locations and the acceptance rate. As illus-
trated in Figure 4, we present heat maps depicting
a total number of accepted patients based on their
respective locations across multiple simulations
for instance settings with 3 nurses. The locations
of nurses’ home depots are highlighted with orange
points for reference.

We begin by examining instances with a uni-
form patient distribution. In the low-demand set-
ting, the acceptance rate is relatively consistent
across the geographic region. In contrast, the high-
demand scenarios result in a more concentrated
acceptance rate, with the highest acceptance rate
observed in the vicinity of the depot. This can
be explained by the fact that in the low-demand
setting, nurses have more availability, and most
requests can be accepted. Conversely, in a high-
demand setting, the agency has to reject some
requests, and those requests closer to the depot
are more likely to be accepted due to shorter travel
times for nurses.

In simulations featuring a uniform clustered
distribution setting, it is evident that patients
within the clusters have a higher acceptance rate
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DH CH SBA+DH SBA+CH RL

# patients # patients imp (%) # patients imp (%) time # patients imp (%) time # patients imp (%)

U
low 156.73 157.67 0.60 158.07 0.85 59.20 159.13 1.53 158.56 158.93 1.40

high 248.83 248.90 0.03 254.50 2.28 286.77 252.80 1.60 634.94 249.03 0.08

Table 5: The total number of accepted patients for instance settings with 15 nurses.

(a) Uniform distribution

(b) Uniform - Clustered distribution

Fig. 4: Heat maps of patient acceptance by locations over 1000 simulations for 3-nurse, low-demand
(left), and high-demand (right) instances.

.

than those outside the clusters. This can be
attributed to patients located in densely popu-
lated neighborhoods benefiting from shorter travel
times for nurses providing services to their neigh-
bors, resulting in a higher acceptance rate. Fur-
thermore, the cluster closest to the depot has
a higher acceptance rate than the more distant
clusters. Similar to the uniform distribution, the
acceptance rate is more evenly distributed in low-
demand scenarios compared to high-demand sce-
narios, which exhibit a higher acceptance rate in
the vicinity of the depot. These analyses highlight

that the relative distance between nurses’ loca-
tions and patients’ locations plays a crucial role
in determining the acceptance rate. This suggests
that healthcare agencies should consider hiring
nurses in more distant locations to increase the
chances of patients in remote areas being served.

We then analyze the relationships between the
total service time, the cheapest insertion cost, and
the acceptance rate. The calculation of the total
service time for patient p is the product of their
episode of care wp, visit frequency fp, and visit
duration hp. A scatter plot representing the cor-
relations between the total service time required,
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Fig. 5: The impact of varying acceptance probabilities (ϕ) and distance thresholds (θ) on the total
number of accepted patients in a high-demand scenario involving three nurses.

the cheapest insertion cost, and the acceptance
rate on the 6-nurse, high-demand, and clustered
instances can be found in Figure 6. The plot
makes it evident that patients with longer ser-
vice time requests face a higher likelihood of being
rejected. This correlation is intuitive, as patients
with longer service time requirements consume
more resources. The required service times can be
categorized into three groups: 4 hours, 8 hours,
and 12 hours. Most patients requesting 4 hours
of service are accepted. For patients requesting
8 hours of service, the deciding factor becomes
the cheapest insertion cost, with patients having

a lower cheapest insertion cost being more likely
to be accepted. For patients asking for 12 hours
of service, the majority are rejected, except when
their cheapest insertion cost is exceptionally low.

5.4 Addressing fairness for distant
patients: an alternative policy

As highlighted in the previous analysis, our stan-
dard policy tends to reject patients located far
from nurse depots to optimize decision-making
efficiency. We now introduce an alternative pol-
icy designed to enhance the fairness and ensure

15



Fig. 6: The correlations between the total service time, the cheapest insertion cost, and the decision
outcome on 6-nurse, high-demand, and clustered instances.

broader spatial coverage. This policy modifies our
existing framework to allow for the acceptance of
distant patients based on certain probabilities. We
define two additional parameters: θ, the minimum
distance from the patient to the nearest nurse
depot, identifying a patient as distant; and ϕ, the
probability of accepting a distant patient.

The policy is defined by adding a decision layer
to our standard policy. When a feasible patient
arrives, at first the standard policy on current
state is run. If the decision is to reject the arriv-
ing patient, we check the distance from the patient
to the nearest nurse depot. If the distance is
greater than or equal to θ, we classify the patient
as distant and assign them a probability ϕ of
being accepted and scheduled using the cheapest
insertion heuristic.

We conducted simulations with various set-
tings of θ and ϕ in a high-demand scenario involv-
ing three nurses. The impact of the probability ϕ
on the average number of accepted patients over
30 simulations for each setting is illustrated in
Figure 5. As can be seen from the figure, the accep-
tance rate of patients begins to decline at a ϕ value
of 0.25 and continues to decrease significantly as
ϕ increases. For θ ≥ 70, significant changes in
the policy only occur at higher values of ϕ. This
is because the distant patients are rarely feasible
for assignment and thus are few in number. Con-
versely, lowering θ results in greater degradation
in policy performance, affected by the increase in
the number of patients considered distant. These
patterns are consistent across all tested scenarios:
Uniform, Clustered, and Uniform-Clustered.

The results demonstrate a clear trade-off
between accommodating distant patients and the
total capacity of a home healthcare center, con-
strained by limited resources. These findings pro-
vide valuable empirical insights, helping policy-
makers adjust their strategies to achieve greater
equity in patient care.

6 Conclusions

In this paper, we investigated the Online
Dynamic Home Health Care Scheduling Problem
(ODHHCSP), where healthcare agencies face real-
time decisions regarding patient acceptance upon
receiving requests. These decisions involve com-
plex scheduling and routing tasks, all with the
overarching goal of maximizing the number of
patients served. We formulated this challenging
problem as a Markov Decision Process (MDP) and
applied a reinforcement learning (RL) approach.
Our experimental findings demonstrate that the
RL approach significantly improves the number of
patients served compared to existing approaches
in literature while maintaining a notably shorter
computational runtime. This efficiency makes our
approach well-suited for real-time decision-making
scenarios. We conducted thorough analyses to
explore the relationships between patients’ char-
acteristics and decision outcomes. These analy-
ses provide valuable recommendations for health-
care agencies to enhance service quality. For
future research, we aim to diversify our objectives
beyond maximizing the patient acceptance rate.
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For instance, we intend to minimize nurses’ aver-
age travel time per visit and balance workloads
among nurses. Finally, we recognize the impor-
tance of considering stochastic factors, such as
variable travel times and nurses’ availability, in
problem formulation to enhance the realism of our
model.
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C. Lenté, A. Matta (2017) Or problems related
to home health care: A review of relevant
routing and scheduling problems. Operations
Research for Health Care 13:1–22

M. Demirbilek, J. Branke, A. Strauss (2019)
Dynamically accepting and scheduling patients
for home healthcare. Health Care Management
Science 22(1):140–155

M. Demirbilek, J. Branke, A.K. Strauss (2021)
Home healthcare routing and scheduling of mul-
tiple nurses in a dynamic environment. Flexible
Services and Manufacturing Journal 33(1):253–
280

C. Fikar, P. Hirsch (2017) Home health care rout-
ing and scheduling: A review. Computers &
Operations Research 77:86–95

F. Grenouilleau, A. Legrain, N. Lahrichi, L.M.
Rousseau (2019) A set partitioning heuristic
for the home health care routing and schedul-
ing problem. European Journal of Operational
Research 275(1):295–303

F. Grenouilleau, N. Lahrichi, L.M. Rousseau
(2020) New decomposition methods for home
care scheduling with predefined visits. Comput-
ers & Operations Research 115:104855

H.v. Hasselt, A. Guez, D. Silver (2016) Deep rein-
forcement learning with double q-learning. In:
Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence. AAAI Press, AAAI’16,
p 2094–2100

A. Heching, J.N. Hooker, R. Kimura (2019) A
logic-based benders approach to home health-
care delivery. Transportation Science 53(2):510–
522

W. Joe, H.C. Lau (2020) Deep reinforcement
learning approach to solve dynamic vehicle
routing problem with stochastic customers. In:
Proceedings of the International Conference on
Automated Planning and Scheduling, pp 394–
402

D. Khorasanian, J. Patrick, A. Sauré (2024)
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