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Abstract
Constraint programming is known for being an efficient approach to solving combinatorial
problems. Important design choices in a solver are the branching heuristics, designed to lead
the search to the best solutions in a minimum amount of time. However, developing these
heuristics is a time-consuming process that requires problem-specific expertise. This obser-
vation has motivated many efforts to use machine learning to automatically learn efficient
heuristics without expert intervention. Although several generic variable-selection heuristics
are available in the literature, the options for value-selection heuristics are more scarce. We
propose to tackle this issue by introducing a generic learning procedure that can be used
to obtain a value-selection heuristic inside a constraint programming solver. This has been
achieved thanks to the combination of a deep Q-learning algorithm, a tailored reward signal,
and a heterogeneous graph neural network. Experiments on graph coloring, maximum inde-
pendent set, maximum cut, and minimum vertex cover problems show that this framework
competes with thewell-known impact-based and activity-based search heuristics and can find
solutions close to optimality without requiring a large number of backtracks. Additionally,
we observe that fine-tuning a model with a different problem class can accelerate the learning
process.

Keywords Constraint programming · Branching heuristics · Reinforcement learning

1 Introduction

Combinatorial optimization has countless industrial applications, such as scheduling, routing,
or finance. Unfortunately, most of these problems are NP-hard and, thereby, challenging to
solve efficiently. It is why finding good solutions has motivated intense research efforts
for many years. Traditional methods for tackling them are somehow based on a search
procedure: A clever enumeration of the solution space is performed to find a feasible and
possibly optimal solution. Among these methods, constraint programming (CP) is an exact

Tom Marty and Léo Boisvert contributed equally to this work.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10601-024-09377-4&domain=pdf
http://orcid.org/0000-0002-8742-0774


Constraints

procedure. It constitutes a popular approach as it offers the possibility to find the optimal
solution or good feasible approximations by stopping the search early. An additional asset
is its declarative paradigm in modeling, which makes the technology easier for the end-
user to grasp. Introducing solver-agnostic modeling languages, such as MiniZinc [1] has
greatly facilitated this aspect. Aligned with this goal, the propagation engine inside a CP
solver is mostly hidden from the end-user. However, ensuring a generic search procedure is
trickier as non-trivial heuristics must be designed to make the solving process efficient for an
arbitrary problem. That being said, generic variable-selection and value-selection heuristics
have been successfully designed. Notable examples are impact-based search [2] or activity-
based search [3], but they require computationally intensive initialization and yield poor
performance at the beginning of the search. Contrastingly, [4] introduce a generic heuristic
designed to guarantee that the initial solution found is of relatively high quality. However,
its relevance diminishes as the search progresses. This makes these methods not always
appropriate for general use. As a concrete example, the current version of MiniZinc1 does
not propose generic value-selection heuristics, except in(out)domain or impact-based search.
In practice, heuristics are often designed thanks to problem-specific expert knowledge, which
is often out of reach for end-users that do not have a solid background in artificial intelligence.

In another context, machine learning (ML) has been recently considered for automating
the design of heuristics, both in constraint programming [5, 6], mixed-integer programming
[7–9], column generation [10, 11], decision diagrams [12, 13], or SAT solving [14, 15].
Specifically, reinforcement learning (RL) [16] or imitation learning [17] approaches, often
combined with deep learning [18], have gained special attention. Although this idea seems
appealing, this is not an easy task to achieve in practice as several technical considerations
must be taken into account in order to ensure both the efficiency and the genericity of the
approach. In constraint programming, we identified three questions to resolve when learning
a generic branching heuristic inside a solver. They are as follows:

1. How to train the machine learning model? An intuitive way is to leverage an RL agent
that would explore the tree search by making branching decisions and rewarding it based
on the quality of the solution found on a terminal node. This would typically be done with
a depth-first search traversal of the tree for getting a certificate of optimality. However,
as pointed out by several authors [19, 20], the backtracking operations inside a solver
raise difficulties when formalizing the task as aMarkov decision process andmay require
redefining it. Besides, this training scheme intensifies the credit assignment problem [21],
ubiquitous in reinforcement learning.

2. How to evaluate the quality of a value selection?Acore component of anRL environment
is the reward function, which gives a score to each decision performed. The end goal
for the agent is to perform a sequence of decisions leading to the best-accumulated sum
of rewards. In our case, an intuitive solution would be to reward the agent according to
the quality of the solution found. However, this information is only available at terminal
nodes, and only a zero reward is provided in branching nodes. This is related to the sparse
reward problematic, which is known to complicate the training process.

3. How to learn from a CP model? This question relates to the type of architecture that can
obtain a value-selection heuristic from a search node (i.e., a partially solved CP model).
A promising direction has been proposed by [8] for binary mixed-integer programs.
They introduced a bipartite graph linking variables and constraints (i.e., the two types of
nodes) when a variable is involved in a given constraint. The subsequent architecture is a

1 https://www.minizinc.org/doc-2.7.0/en
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heterogeneous graph neural network. However, this encoding is not directly applicable
in constraint programming, as a CP model generally involves non-binary variables and
combinatorial constraints. This has been partially addressed by [22], who introduced a
tripartite graph where variables, values, and constraints are specific types of nodes. How-
ever, this approach lacks genericity as the method requires retraining when the number
of variables changes. Another representation is proposed by [23], but the architecture is
used as a stand-alone heuristic and is not integrated into a CP solver. Another architecture
was proposed by [24]. The core concept involves representing each constraint with its
abstract syntax tree and merging similar elements, such as a single variable occurring
across multiple constraints. Amajor limitation of this method, however, is the substantial
size of the resulting graph.

Answering such questions is still an open challenge in the research community. This
paper proposes to progress in this direction. It introduces a generic learning procedure that
can be used to obtain a value-selection heuristic from a constraint programming model given
as input. The approach has been designed to be generic in that it can be used for any CP
model given as input. In practice, a specificway to extract features from a constraint should be
designed for any available constraint, but this has to be done only once per constraint type.We
limit our experiments to four combinatorial optimization problems, namely graph coloring,
maximum independent set,maximumcut, andminimumvertex cover. Specifically, we propose
three main contributions, each dedicated to addressing one of the aforementioned difficulties.
They are as follows: (1) a learning procedure, based on restarts, for training a reinforcement
learning agent directly inside a CP solver, (2) a reward function able to assign non-zero
intermediate rewards based on the propagation that has been carried out during the search,
and (3) a neural architecture based on a tripartite graph representation and a heterogeneous
graph neural network. Experimental results show that combining these three ideas enables the
search of a CP solver to find good solutions without requiring many backtracks and competes
with the well-known impact-based and activity-based search heuristics. Additionally, we
observe that fine-tuning a model with a different problem class can accelerate the learning
process.

This paper is an extended version of a paper accepted at the 29th International Conference
on Principles and Practice of Constraint Programming (CP 2023) in Toronto, Canada [25].
The main improvements in this version are: (1) additional recent references, (2) a detailed
description of the technical background, (3) formalization and description of the training and
solving algorithms, (4) experiments on the maximum cut problem with 80 nodes, (5) a new
case study on the minimum vertex cover, (6) an analysis of the framework’s generalization
ability, (7) fine-tuning experiments for instances of a different problem class, and (8) identi-
fication of two new challenges for future work. The paper is structured as follows. The next
section presents other approaches related to our contribution. Then, Section 3 introduces
succinctly technical background on reinforcement learning and graph neural networks. The
core contributions are then presented in Section 4 and the resulting CP algorithm is provided
in Section 5. Finally, Section 6 provides experimental results and closes with a discussion of
the results.

2 Related work

Bengio et al. [26] identified three ways to leverage machine learning for combinatorial opti-
mization. First, end-to-end learning aims to solve the problem only with a trainedMLmodel.
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This has been, for instance, extensively considered for the traveling salesman problem [27–
29] and for other combinatorial problems [30, 31]. However, such an approach does not
guarantee the optimality of the solution obtained. Second, learning to configure is dedicated
to providing insights to a solver before its execution. This can be, for instance, the decision to
linearize the problem in the context of quadratic programs [32] or to learn when a decompo-
sition is appropriate [33]. It has also been used in a learning-based approach for optimizing
the neighborhood size in the local branching heuristic for mixed-integer linear programming
[34]. This approach is also referred to as parameter tuning [35]. We refer to the initial survey
for extended information about these two families of approaches. Third, learning within a
search procedure uses machine learning within the solver. Our contribution belongs to this
last category of methods. Although the idea of combining learning and searching for solv-
ing combinatorial optimization problems was already discussed in the nineties [36], it has
re-emerged recently with the rise of deep learning. Most combinatorial optimization solvers
are based on branch-and-bound and backtracking. In this context, ML is often used with
branching rules to follow. Imitation learning [17, 37] has been for instance used to replicate
the expensive strong branching strategy for mixed-integer programming solvers [7, 8, 38].
One limitation of imitation learning is that the performances are bounded by the performance
of the imitated strategy, which remains heuristic and perfectible [39]. This opens the door
for RL approaches [11, 28, 40] that have the guarantee to find the best branching strategy
eventually [41]. A branching strategy can be split into two challenging decisions, variable-
selection and value-selection. Reinforcement learning approaches have been considered for
both of them.

Concerning the learning for selecting the next variable to branch on, [20] proposed to
combine a double deep Q-network algorithm [42] with a graph neural network for carrying
out this task. The approach is trained to minimize the expected number of nodes to reach a
leaf node using the first-fail principle. Although this is a good proxy for pruning a maximum
of infeasible solutions for a constraint satisfaction problem, it does not extend naturally
to optimization variants, for which one should consider a trade-off between the quality of
the solution found and the number of nodes required to reach that solution. Similarly, [15]
leveraged a graph neural network to initialize a variable-selection heuristic for Chuffed, a
hybrid CP-SAT solver. In an online setting, [6] also proposed to learn variable ordering
heuristics where training time is included in the total solving time. Bandit-based learning
approaches were also considered to automatically select search heuristics [43–45].

For the value-selection heuristic, [46] introduced a scoring function which gives a score
indicating how good an assignation is, given the current domain. A training phase is carried
out in a supervised manner to learn this scoring function. [5] proposed to train a model
with reinforcement learning outside the CP solver and to integrate the agent, once trained,
subsequently in the solver. This has been achieved by reaping the benefits of a dynamic
programming formulation of a combinatorial problem. An important limitation of this work
is that no information related to the CP solver, such as the propagation achieved on a node,
can be used to drive the decision. [22] mitigated this issue by carrying out the learning inside
the solver. The model is trained to find the optimal solution and to prove it with the least
number of explored search nodes. However, this goal is disconnected from finding the best
solution as quickly as possible and is practically hard to achieve, even with a good heuristic.
A more realistic goal is to find a good solution quickly without closing the search. This is
how the contribution of this paper is positioned.

We want to point out that learning how to branch is not the only way to leverage ML
inside a combinatorial optimization solver. Related works have also been proposed on learn-
ing tight optimization bounds [12, 47] or for accelerating column generation approaches [10].
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A recurrent design choice is an architecture based on graph neural networks and a training
with reinforcement learning. We refer to the following surveys for more information about
combinatorial optimization with graph neural networks [48] and with reinforcement learn-
ing [41].

3 Technical background

This section introduces the required background on reinforcement learning and graph neural
networks to grasp the technical aspects of the paper.

3.1 Reinforcement learning

Let 〈S, A, T , R〉 be a 4-tuple representing a Markov decision process where S is the set of
states in the environment, A is the set of actions that the agent can do, T : S × A → S
is a transition function leading the agent from one state to another, given the action taken,
and R : S × A → R is a reward function of taking an action from a specific state. The
sequence [s1, . . . , sT ] from the initial state (s1) of an agent towards a terminal state (sT ) is
referred to as an episode. The returned reward within a partial episode [st , . . . , sT ] can be
formalized as follows: Gt = ∑T

i=t γ
i−t R(si , ai ), where γ ∈ [0, 1] is the discounting factor.

The agent is governed by a policy π : S → A, which indicates the action that must be
taken on a given state. The agent’s goal is to find the policy that will lead it to maximize
the accumulated reward until a terminal state is reached. The core idea of reinforcement
learning is to determine this policy by letting the agent interact with the environment and
increasing the probability of taking action if it leads to high subsequent rewards. There are a
plethora of reinforcement learning algorithmsdedicated to this task, such as trust regionpolicy
optimization [49] or soft actor-critic [50]. We refer to SpinningUp website for explanations
of the main algorithms [51].

This section presents the core principles of deep Q-learning [52], which is the algorithm
used in this paper. The idea is to compute an action-value function Qπ (st , at ) = Gt . Intu-
itively, this function gives the accumulated reward that the agent will obtain when performing
the action a at state s while subsequently following a policy π . The output of this function
for a specific action is referred to as a Q-value. Provided that the action-value function can
be computed exactly, the optimal policy π� turns out to be simply the selection of the action
having the highest Q-value on a specific state: π∗ = argmaxπ Q

π (s, a), ∀(s, a) ∈ (S, A).
Although the exact computation of Q-values can theoretically be performed, a specific value
must be computed for each pair of states and actions, which is not tractable for realistic situa-
tions. It is why a tremendous amount of work has been carried out to approximate accurately
and efficiently Q-values. Among them, deep Q-learning aims to provide a neural estimator
Q̂(s, a, θ) ≈ Q(s, a), where θ is a tensor of parameters that must be learned during a training
phase. This algorithm is commonly enriched with other mechanisms dedicated to speed-up
or stabilizing the training process, such as the double deep Q-network variant [42] or priori-
tized experience replay [53]. Concerning the neural architecture, we opted for a graph neural
network, which is explained in the next section.

In this paper, we refine the standard deep Q-learning framework through a series of
modifications designed to enhance the stability and efficiency of the learning process. Amain
element of our methodology is the adoption of theHuber loss function, as introduced by [54],
for the update of Q-values. This approach is further complemented by the incorporation of
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multi-step bootstrapping, a concept detailed by [55]. The Huber loss is defined as follows:

Lδ(be, θ) =
{

1
2b

2
e for |be| ≤ δ,

δ(|be| − 1
2 δ) otherwise.

(1)

Here, δ represents a hyper-parameter set to 1 in our case, and be denotes the temporal
difference error related to a sample e = 〈s, a, r〉, which is calculated across multiple steps.
The temporal difference for an n-step lookahead is as follows:

be =
(
t+n−1∑

i=t

γ i−t R(si , ai ) + γ n max
a′∈A

Q̂(st+n, a
′, θ target)

)

− Q̂(s, a, θ). (2)

This equation sums up rewards over n steps, beginning from the current step t , and applies
a discount factor γ n to the future Q-value, which is predicted using the target network with
parameters θ target. It then calculates the difference between this future Q-value and the
estimated Q-value at the current state, Q̂(s, a, θ). Intuitively, the goal is to minimize this
difference, aiming for precise Q-value estimations that reflect the true expected rewards. Let
us note the use of a target network θ target, as proposed by [52]. This architectural choice
aims to diminish the correlations between the networks, fostering more stable updates. By
updating the target network’s parameters less frequently, we ensure a more constant target
over extended periods, which significantly improves the reliability of the learning signals.

Furthermore, employing an n-step lookahead strategy in reinforcement learning enhances
the learning mechanism, especially in complex scenarios where the consequences of actions
extend far into the future. This method, by incorporating a sequence of forthcoming rewards
into its updates, provides a richer signal to the learning process. This leads to a quicker
convergence of the estimated Q-values to their actual values. Additionally, the n-step method
reduces the bias inherent in single-step updates by decreasing reliance on the immediately
following state. Instead, it spreads the learning update over a sequence of future states. This
approach results in a more comprehensive and balanced learning trajectory, significantly
improving the robustness of the learning process.

Another standard mechanism is the ε-greedy policy for action selection, providing a
balance between exploration and exploitation. The key idea is to periodically perform a
random action. The policy is defined as follows, where ε ∈ [0, 1] is an hyper-parameter:

π(a|s) =
⎧
⎨

⎩

argmax
a∈A

Q̂(s, a, θ) with probability 1 − ε,

a ∼uniform A with probability ε.
(3)

A last component of our methodology is experience replay [52]. Consider a sample e =
〈s, a, r〉 that encapsulates an action a executed in state s and resulting in reward r . Every time
an action is done during training, this sample is stored in a replay buffer D. Subsequently,
when updating the weights θ , a mini-batch B consisting of randomly selected samples from
D is utilized. The final loss calculation for these updates is described mathematically as
follows:

L(B, θ) = 1

|B|
∑

e∈B

[
Lδ(be, θ)

]
(4)

Experience replay brings forth two significant advantages: first, it disrupts the correlation
among sequential learning samples, thereby diminishing the variance in updates. Second, it
boosts data efficiency through the reuse of past experiences across multiple updates. Then,
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we address the challenges posed by correlated data and the scarcity of diverse samples,
thus elevating the efficacy of the deep Q-learning framework. The incorporation of these
improvements improves the conventional deep Q-learning approach, aiming to forge a more
resilient and efficient learning framework.

3.2 Graph neural network

Intuitively, the goal of a graph neural network (GNN) is to embed information contained in a
graph (e.g., the structure of the graph, spatial properties, local features of the nodes, etc.) into
a task-specific d-dimensional embedding for each node u ∈ V of the graph [56, 57]. To do
so, information on a node is iteratively refined by aggregating information from neighboring
nodes. Each iteration of aggregation is referred to as a layer of the GNN and involves
parameters that can be learned depending on the downstream application. Let hku ∈ R

d×1

be the tensor representation of node u at layer k of the GNN, hk+1
u ∈ R

l×1 be the tensor
representation of this node at the next layer (l being the dimension of a node at the layer
k+1), and θ1 ∈ R

l×d and θ2 ∈ R
l×d be two matrices of parameters, respectively. Each GNN

layer carries out the following update:

hk+1
u = g

⎛

⎝θ1h
k
u �

⎛

⎝
⊕

v∈N (u)

θ2h
k
v

⎞

⎠

⎞

⎠ ∀u ∈ V . (5)

Three operations are involved in this update: (1)
⊕

is anaggregation operator that is dedicated
to aggregating the information of neighbors (e.g., mean-pooling or sum-pooling), (2) � is a
merging which enables to combine of the information of a node with the ones from the
neighbors (e.g., a concatenation), and (3) g is an element-wise non-linear activation function,
such as the ones commonly used in fully-connected neural networks (e.g., ReLU introduced
by [58]). Without loss of generality, the bias term is not included in the equation. Through
this operation, also known as message passing, features associated with a specific node are
disseminated to its neighboring nodes. After T message-passing iterations, each node will
have accumulated features from its T -hop neighbors. This dynamic is depicted in Fig. 1, with
T representing the number of time-steps involved in the process. A concrete implementation
of a GNN defines these three functions adequately, as we do later in our methodology. The

Fig. 1 Information propagation
in a graph neural network. After a
single message passing step, node
x1 receives information from its
direct neighbors (x2 and x3).
After two steps, it will also have
the information of its 2-hops
neighbors (x4 and x5). After three
steps, it will have the information
of its 3-hops neighbors (x6 and
x7). Such an operation is carried
out for each node

123



Constraints

training is conducted through back-propagation and an optimizer based on stochastic gradient
descent such as Adam [59].

4 Learning value-selection heuristics inside a solver

This section presents how a value-selection heuristic can be learned with reinforcement
learning in a CP solver from a model given as input. This is the core contribution of the
paper. Three mechanisms are introduced: (1) a training procedure based on restarts, (2) a
reward function leveraging propagation of domains, and (3) a heterogeneous graph neural
network architecture. They are described individually in the next subsections. They have been
implemented in the recently introduced SeaPearl.jl solver [22]. Inspired by the architecture
of MiniCP [60], the main specificity of SeaPearl is to natively integrate support for learning
inside the search procedure. This facilitates the prototyping of new search algorithms based
on learning.

4.1 Restart-based training

Generally speaking, the performance of a reinforcement learning agent is tightly correlated
with the definition of an episode. This corresponds to the agent’s interactions with the CP
solver’s search procedure and is related to the goal desired for the agent. Two options are
discussed in this section, (1) an episode based on depth-first search, introduced by [22], and
(2) an episode based on restarts, which is our first contribution.

4.1.1 Formalization of an episode

Building branching heuristics for solving exact combinatorial optimization problems often
concurrently targets two objectives: finding quickly good solutions and proving the optimality
of a solution. The approach of [22] relies heavily on the second objective and aims tominimize
the number of visited search nodes before proving optimality (e.g., closing the search). To
do so, they defined a training episode as a complete solving process carried out by the
depth-first search of a solver and penalized through the reward function the generation of
each node. This is illustrated in the left picture of Fig. 2. However, this approach suffers
from an important difficulty. An episode only terminates when the search is completed,
which is often intractable for realistic problems as it requires exploring an exponentially

Fig. 2 Visualization of the two training procedures. The left figure presents the depth-first search of [22] and
the right figure presents our restart-based approach
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large search tree. This is especially problematic during training, where the heuristic is still
mediocre. In addition, using a depth-first search algorithm in a Markov Decision Process
(MDP) framework requires additional considerations not considered by [22]. For example,
using a backtracking algorithm in a regular temporal MDP renders their method prone to
the credit assignment problem [21]. These considerations have been pointed out by [19] for
mixed-integer programming.

Unlike this approach, we propose to train the model to find high-quality solutions quickly.
To do so, we followed the approach proposed by [5]: an episode is defined as a single dive in
the search tree. No backtrack is allowed; the episode stops when a complete solution is found
or when a failure results from the last branching decision. Once the episode is terminated, a
restart from the root node is performed, and a new episode is generated, hence the name of
restart-based episode. This is illustrated in the right picture of Fig. 2.

One limitation of [5] is that episodes are executed outside the CP solver during the training
and cannot use the information updated during propagation for the branching. Inspired by
[20] for variable-selection heuristics, we addressed this limitation by executing each episode
inside the solver during the training. Formally, this requires defining the dynamics of the
environment as a Markov Decision Process (i.e., a tuple 〈S, A, T , R〉, see Section 3.1). It is
defined as follows.

Set of states Let P = 〈X , D(X),C, O〉 be the expression of a combinatorial optimization
problem (COP), defined by its variables (X ), the related domains (D), its constraints (C),
and an objective function (O). Each state st ∈ S is defined as the pair st = (Pt , xt ), where
Pt is a partially solved COP (i.e., some variables may have been assigned), and xt ∈ X is a
variable selected for branching, at step t of the episode. The initial state s1 ∈ S corresponds
to the situation after the execution of the fix-point at the root node. A terminal node is reached
either if all the variables are assigned (∀x ∈ X : |Dt (x)| = 1), or if a failure is detected
(∃x ∈ X : |Dt (x)| = 0). The variable selected for branching is obtained through any arbitrary
heuristic such as the standard first-fail heuristic.

Set of actions Given a state st = (Pt , xt ), an action at corresponds to the selection of a value
v ∈ D(xt ) for branching at step t . Finding the most promising value to branch on is the
problem addressed in this paper.

Transition function Given a state st = (Pt , xt ) and an action at = v, the transition
function executes three successive operations. First, it assigns the value v to the vari-
able x (i.e., D(xt+1) = v). Second, it executes the fix-point on Pt in order to prune the
domains (i.e., Pt+1 = fixPoint(Pt )). Third, it selects the next variable to branch on (i.e.,
xt+1 = nextVariable(Pt+1)). This results in a new state st+1 = (Pt+1, xt+1). Integrating the
propagation inside the transition is one important difference with [5].

Reward function The function is defined separately in Section 4.2.

4.1.2 Training algorithm

The training phase is summarized in Algorithm 1. It is mainly based on deep Q-learning and
the principles described in Section 3.1. First, the model weights and the replay buffer are
initialized (lines 9 to 11). The training is carried out for I iterations. At each iteration, an
instance P is generated from an available generator GP of instances (line 13). Ideally, this
generator should reflect the distribution of instances that need to be solved. Then, the MDP
is built and the first state is initialized (lines 14 to 16). The nested loop consists in unrolling
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an episode until a terminal state (i.e., a feasible solution or a failure) is reached. The action to
perform (i.e., the variable to assign) is selected thanks to an ε-greedy policy (lines 18 to 22).
The resulting reward and next state are subsequently inferred following the dynamics of the
MDP (lines 23 to 24). We recall that all the classical operations of the solver (selecting the
variable, executing the fix-point, etc.) are encapsulated in the transition function. The replay
buffer is also updated with the new sample (line 25). When its size is exceeded, the oldest
sample is removed from it. The weights are updated after each K iterations (lines 27 to 29).
Similarly, the target network is updated at each C iterations (lines 31). Finally, the weights
are returned when the training is over.

Algorithm 1 Overview of the training algorithm.

1 
 Pre: GP is a generator of instances related to a combinatorial problem P .
2 
 Pre: θ are the trainable weights of the model.
3 
 Pre: D is the replay buffer (see Section 3.1).
4 
 Pre: ε is the ε-greedy threshold (see Section 3.1).
5 
 Pre: I is the the number of training iterations.
6 
 Pre: K is the training rate for updating θ .
7 
 Pre: C is the refreshing rate for the target network (see Section 3.1).
8
9 θ := initializeRandomly() 
 initializing randomly of the weights

10 θ target := θ 
 initializing the target network
11 D := ∅ 
 initializing an empty buffer
12 for i from 1 to I do
13 P := takeSampleFrom(GP )

14 〈S, A, T , R〉 := buildMDP(P) 
 building the MDP of P (see Section 4.1)
15 t := 1
16 st := getInitialState(S) 
 getting the first state (see Section 4.1)
17 while st is not terminal do
18 e := getRandomValue(0, 1) 
 ε-greedy policy (see Section 3.1)
19 if e ≥ ε then
20 at := argmaxa∈A Q̂(st , a, θ)

21 else
22 at := getRandomAction(A)

23 rt := R(st , at ) 
 reward defined later in Section 4.2
24 st+1 := T (st , at ) 
 getting new state with the transition function
25 D := D ∪ 〈st , at , rt 〉 
 adding the new sample into the buffer
26 if i mod K = 0 then
27 B := getRandomSamples(D) 
 getting a mini-batch from the buffer
28 L := computeLoss(B, θ, θ target) 
 computing the loss in (4)
29 θ := AdamUpdate(L) 
 updating the weights with Adam

30 if i mod C = 0 then
31 θ target := θ 
 refreshing the target network

32 t := t + 1

33 return θ

4.1.3 Comparison with depth-first search training

We compared our restart-based training procedure using a simple terminal reward based on
the solution’s score with the backtracking-based approach of [22] using their reward at each
step (penalty of 1 for each explored node).We selected themaximum independent set problem
for this comparison with instances with 50 nodes. Results are presented using performance
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Fig. 3 Comparison of both training methods on maximum independent set (50 nodes). As a non-learned
baseline, we added the performances of an agent performing only random decisions. The shaded blue area
corresponds to the worst and best values obtained with the random agent, across 10 trials per instance. Training
is carried out on randomly generated Barabási-Albert graphs [62]; we selected this type of distribution as the
generated graphs are known to mimic human-made and natural organizations. The evaluation is performed on
20 other graphs following the same distribution

profiles [61] in Fig. 3. A detailed explanation of the experimental protocol is proposed in
Section 6.

We evaluated both methods on two metrics matching the objective for which they were
specifically trained. We look at the value of the solution obtained after a single dive (Fig. 3a)
in the tree search and the number of nodes visited to prove optimality using a depth-first
search (Fig. 3b). As expected, we observe that the agent trained with the restart-based learn-
ing strategy allows good results regarding the optimality gap for the first solution found
after a single dive. Remarkably, our method yields a comparable ability to prove optimality
compared to [22], whose primary aim was specifically to solve the problem in the minimum
number of nodes. This last result has to be mitigated as both RL-based methods lie in the
range of the random strategy (shaded blue area).

Finally, as shown in Fig. 3a, it is important to notice that the optimality gap returned by our
method is still non-negligible at the first solution obtained. The complexity of a combinatorial
problem lies mainly in closing this gap, which is why backtracking during the solving phase
is required. Experiments with backtracking are proposed in Section 6.

4.2 Propagation-based reward

The definition of our reward must be aligned with our objective of finding quickly good
solutions for the combinatorial problem.Basedonour trainingprocedure, an intuitive function
is to reward the agent proportionally to the solution quality found at the end of an episode.
In case of an infeasible solution found, a penalty can be given. The main drawback of this
rewarding scheme is that this information is only available at terminal nodes, and no reward is
provided in branching nodes. This is related to the sparse reward problem,which complicates
the training process [63]. To address this challenge, one should find a way to give informative
intermediate rewards along the solving process.

4.2.1 Formalization of the reward

We propose a new rewarding scheme based on the domain reduction of the objective variable
(i.e., the variable that must be minimized or maximized). This reduction happens either
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Fig. 4 Intermediate reward when four values are pruned from the domain

thanks to the branching assignment or the application of the fix-point. There are two main
components: (1) an intermediate reward (rmid) collected at branching nodes, and (2) terminal
reward (rend) collected only at the end of an episode. Assuming a minimization problem,
the intermediate reward follows two principles: each domain reduction of the largest values
of the domain is rewarded, and each domain reduction of the lowest values of the domain
is penalized. It is important to note that following these principles does not guarantee the
discovery of a good solution at the end of the branch. The rationale is to lead the agent
to a situation where the minimum cost can be eventually obtained while removing costly
solutions. It is formalized in (6) to (8), where rmid

t is the reward obtained at step t , and is
illustrated in Fig. 4.

As shown in (9), the terminal reward is set to -1 if the leaf node corresponds to an infeasible
solution and 0 if it is feasible. Finally, the total reward (racc) accumulated during an episode
of T steps is the sum of all intermediate rewards with the final term, as proposed in (10).

rubt = #
{
v ∈ Dt (x

obj)

∣
∣
∣ v /∈ Dt+1(x

obj) ∧ v > max
(
Dt (x

obj)
)}

(6)

r lbt = #
{
v ∈ Dt (x

obj)

∣
∣
∣ v /∈ Dt+1(x

obj) ∧ v < min
(
Dt (x

obj)
)}

(7)

rmid
t = rubt − r lbt∣

∣D1(xobj)
∣
∣

(8)

rendt = −1 if unfeasible solution found (0 otherwise) (9)

racc =
( T−1∑

t=1

rmid
t

)
+ rendT (10)

4.2.2 Comparison with the score reward

An experimental analysis of this new reward scheme (propagation-based reward) is carried
out for the graph coloring, maximum cut, and maximum independent set problems; we look
at the quality of the solution found after a single dive in the search tree. As a baseline, we
consider a reward (score reward) that only gives a value at terminal nodes (rendT ) without
an intermediate reward. Besides, we also consider the solutions returned by a random value-
selection heuristic as a baseline. Figure 5 shows the evolution of the quality of the first
solution returned (y-axis, averaged on 20 instances of the validation step) with the training
time (number of episodes in the x-axis) using for training our restart-based search strategy
defined in Section 4.1. Instances are Barabási-Albert randomly generated graphs with 50
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Fig. 5 Training curve for the two rewarding schemes, each validation step corresponds to performing a single
dive in the search tree, the score obtained refers to the quality of the solution found on the leaf node

nodes. Except for the rewarding scheme, the other parts of the architecture are unchanged.
We observe that the propagation-based reward provides a more stable training (Fig. 5a) and
can converge to a better model or, at least, to an equally good model as the terminal score
reward (Fig. 5b and c).

It should be noted that depending on the problem, the reward signal may remain sparse
inside episodes even with our definition; this explains the discrepancy across the three prob-
lems. Constraint propagationmight take several steps to reach the objective variable, meaning
that for related intermediate decisions, no value will be pruned from the domain of the
objective variable. The graph coloring problem is thus the problem for which taking these
intermediate rewards is the most beneficial. Indeed, any previously unused color added will
negatively impact the domain of the objective function, yielding an insightful negative reward.
Conversely, branching on themaximum independent set problemdoes not consistently impact
the objective function domain through the mechanism of constraint propagation, particularly
at the beginning of the search. Our method yields no worse result than the usual reward signal
in this setting. This worst-case scenario empirically validates the robustness of this reward.

4.3 Heterogeneous graph neural network architecture

An important part of the framework is the neural network architecture that we designed to
perform a prediction of the next value to branch on. A high-level representation is proposed
in Fig. 6. Four steps are carried out: (1) a CP model encoder, (2) a graph neural network
encoder, (3) a neural network decoder, and (4) an action-selection policy. They are detailed
in the next subsections.

Fig. 6 High-level overview of the neural architecture designed
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4.3.1 CP Model encoder (step 1)

The core idea is to learn for any CP model given as input, unlike [5], who require a spe-
cific encoding for each combinatorial problem. This has been achieved for mixed-integer
programs thanks to a bipartite graph representation [8] and by [22] for CP models thanks
to a tripartite graph. This last work does not leverage any feature related to the variables,
values, or constraints. We built upon this last approach by adding such features. Specifically,
let P = 〈X , D(X),C, O〉 be the combinatorial problem we want to encode. The idea con-
sists in building a simple undirected graph G(V1, V2, V3, f1, f2, f3, E1, E2) encoding all the
information of Pt from a state st = (Pt , xt ). In this representation, V1, V2, and V3 are three
sets of vertices, f1, f2, and f3 are three sets of feature vectors, and E1 with E2 are two
distinct sets of edges. This yields a graph with three types of nodes decorated with features.
The first part of the encoding we propose is as follows: (1) each variable, constraint, and
value corresponds to a specific type of node (V1 = X , V2 = C , and V3 = D), (2) each time
a variable x ∈ V1 is involved in a constraint c ∈ V2, an edge (x, c) ∈ E1 is added between
both nodes, (3) each time a value v ∈ V3 is in the domain of a variable x ∈ V1, an edge
(v, x) ∈ E2 is added between both nodes. This gives a tripartite graph representation of a
CP model generically. This is illustrated in Fig. 7. The second part of the encoding is to add
features to each node. Intuitively, the features will provide meaningful information and thus
improve the quality of the model. The features we considered are proposed below. We note
that we can easily extend this encoding by integrating new features.

1. Features attached to variables ( f1): the current domain size, the initial domain size, a
binary indication if the variable is already assigned, and a binary indication if the variable
corresponds to the objective.

2. Features attached to constraints ( f2): the constraint type (one-hot encoding), and a binary
indication if the constraint propagation has reduced domains.

3. Features attached to values ( f3): its numerical value.

4.3.2 Graph neural network encoder (step 2)

Once the CPmodel has been encoded as a graph, the next step is to embed this representation
as a latent vector of features for each node of the graph (see Section 3.2). We propose
to carry out this operation with a graph neural network. Unlike the standard prediction
scheme presented in (5), our graph has three types of nodes. For this reason, we opted for
a heterogeneous architecture. Concretely, a specific convolution is carried out for each node

Fig. 7 Representation computed by the CP encoder on a simple example
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type. The architecture is detailed in (11) to (13), where
⊕

is the sum-pooling ormean-pooling
aggregation, operator (.‖.) is a concatenation of vectors, Nx (n) is the set of neighbouring
nodes ofn fromV1 (variable), Nc(n) is the set of neighbouring nodes ofn fromV2 (constraint),
Nv(n) is the set of neighbouring nodes of n from V3 (value), θk1,...,10 are weight matrices at
layer k, and g is the leakyReLU activation function [64]. Another difference with the
canonical GNN equation is the integration of skip connections (h0x , h

0
c , and h0v) allowing to

keep at each layer information from the input features. This technique is ubiquitous in deep
convolutional networks such as in ResNet [65]. Finally, the initial embedding is initialized as
follows: h0x = θ11 f1, h0c = θ12 f2, and h0v = θ13 f3, where θ11,...,13 are new weight matrices.

hk+1
x = g

(
θk1 h

0
x

∥
∥ θk2 h

k
x

∥
∥ (

⊕

c∈Nc(x)

θk3 h
k
c)

∥
∥ (

⊕

v∈Nv(x)

θk4 h
k
v)

)
∀x ∈ V1 (11)

hk+1
c = g

(
θk5 h

0
c

∥
∥ θk6 h

k
c

∥
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)
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hk+1
v = g

(
θk8 h

0
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∥
∥ θk9 h

k
v

∥
∥ (

⊕

x∈Nx (v)

θk10h
k
x )

)
∀v ∈ V3 (13)

4.3.3 Neural network decoder (step 3)

At this step, a d-dimensional tensor is obtained for each graph node. Let x ∈ V1 be the
node representing the current variable selected for branching, and Vx ⊆ V3 the subset of
nodes representing the values available for x (i.e., the values that are in the domain of
the variable). The goal of the decoder is to predict a Q-value (see Section 3.1) for each
v ∈ Vx . The computation is formalized in (14), where hKx and hKv are the node embedding of
variable x and value v, respectively, after K iterations of the GNN architecture. The functions
ϕx : Rd → R

l , ϕv : Rd → R
l , ϕq : R2l → R are fully-connected neural networks. Such

a Q-value must be computed for each value v ∈ Vx . It is internally done thanks to matrix
operations, allowing a more efficient computation.

Q̂(hKx , hKv ) = ϕq

(
ϕx (h

K
x )

∥
∥ ϕv(h

K
v )

)
∀v ∈ Vx (14)

4.3.4 Action-selection policy (step 4)

Once all the Q-values have been computed for the current variable, the policy is defined by
an explorer that can decide to exploit the approximated Q-values by greedily choosing the
best action as shown in (15) or decide to select unpromising action associated with a lower
Q-value (for example, by selecting a random action with a ε-greedy policy). This behavior
derives from the trade-off between exploitation and exploration, which is necessary for early
learning when the estimates of Q-values are poor, and when only a few states have been
visited. Once trained, the Q-values should represent the branching choice leading to the best
decision according to the reward of (10).

π(v|x) = argmaxv∈Vx Q̂(hKx , hKv ) (15)

By integrating all these elements, the architecture provides a data-driven value-selection
heuristic within a constraint programming solver.
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5 Solving algorithm

This section presents how the value-selection heuristic designed in Section 4 can be used
inside a CP solver for solving new problems. First, we opted to embed our predictions
inside an iterative limited discrepancy search (ILDS) [66]. We highlight that this strategy is
different from the restart-based one used for training. Iterative limited discrepancy search
is commonly used when we are confident in the quality of the heuristic. The core idea is to
restrict the number of branching choices deviating from the heuristic (i.e., a discrepancy).
By doing so, the search will explore a subset of solutions expected to be good while giving a
chance to reconsider the value-heuristic selection which is nevertheless prone to errors. This
mechanism is enrichedwith a procedure that iteratively increases the number of discrepancies
allowed once a level has been explored.

The search procedure is depicted in Algorithm 2. It takes as input the combinatorial
problem to solve (P), the weights learned in Algorithm 1 (θ ), the graph neural network
outputting a Q-value for each value (Q̂), and the number of iterations for the ILDS (I ).
For each number i of discrepancies allowed, a new search 	 is initialized and executed
on P (line 8). Until the search is not completed, the following operations are carried out:
executing the fix-point on the current node (line 10), selecting the next variable x to branch
on (line 11), getting the related state (line 12), encoding it with the MDP definition (line 13),
taking the most promising value v thanks to the learned model (line 14), and branching on the
assignation x = v (line 15). Line 15 is also responsible to restart the search when a terminal
node is reached, as commonly done in LDS. Finally, the minimum cost solution is tracked
(line 16) and returned (line 17).

Algorithm 2 Integrating the learned heuristic inside a CP solver.

1 
 Pre: P is the combinatorial optimization problem to solve.
2 
 Pre: θ are the weights obtained after training in Algorithm 1.
3 
 Pre: Q̂ is the GNN giving a Q-value for each state-action pair.
4 
 Pre: I is the threshold of the iterative limited discrepancy search.
5
6 c� := ∞
7 for i from 0 to I do
8 	 := LDSearch(P, i) 
 initializing a i-limited discrepancy search
9 while 	 is not completed do

10 P := fixPoint(P)

11 x := nextVariable(P) 
 following any variable-selection heuristic
12 s := getState(x,P) 
 getting the MDP state (see Section 4.1)
13 gs := encodeState(s,P) 
 encoding the state (see Section 4.3)
14 v := argmaxa∈D(x) Q̂(gs , a, θ) 
 using the learned heuristic
15 P := branchOrRestart(	, x, v)

16 c� := min
(
c�,bestSolution(	)

)

17 return c�

6 Experiments

Thegoal of this section is to evaluate the quality of the learnedvalue-selectionheuristic and the
efficiency of the approach. Four combinatorial optimization problems are considered: graph
coloring (COL), maximum independent set (MIS), maximum cut (MAXCUT), and minimum
vertex cover (MVC).
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6.1 Experimental protocol

Three configurations for the distribution of the problems generated are proposed for each
problem: small (20 to 30 nodes), medium (40 to 50 nodes), and large (80 to 100 nodes)
instances. Training is carried out on randomly generated Barabási-Albert graph [62] with a
density factor varying between 4 and 15 according to the size of the instances. A specific
model is trained for each configuration of each combinatorial problem. The training is done
using randomlygenerated instances. Evaluation is thenperformedon20newgraphs following
the same distributions. The models are trained on an Nvidia Tesla V100 32Go GPU until
convergence. It took up to 72 hours of training time for themost difficult cases (graph coloring
with 80 nodes) and less than 1 hour for the simplest cases (graph coloring with 20 nodes).
Each operation of the CP solver during training and evaluation is carried out on a CPU Intel
Xeon Silver 4116 at 2.10GHz. The approach has been implemented in Julia and is integrated
into the solver Seapearl. The implementation is available on GitHub with BSD 3-Clause
licence.2

We compared our approach (Learned, ILDS) with two other generic value selection heuris-
tics: impact-based search (Impact) [2] and activity-based search (Activity) [3]. The standard
minDomain heuristic is used for the variable selection. Comparisons with [22] have been
provided in Section 4.1. As it has been highlighted that this approach is not suited to find
good solutions quickly, it is not included again in the next experiments. Each approach is
evaluated with a fixed node budget depending on the parameters of the distribution used to
generate the problems. For our approach, the performance obtained after the first dive in the
tree search is also monitored (Learned, 1st dive). As Impact and Activity are online learning
methods, they perform similarly to a random selection at the beginning of the search. For
this reason, the performance obtained after the first dive in the tree search with such methods
is omitted. Finally, we also included a comparison with a random selection using DFS with
the same node budget (Random). Finally, the optimal cost (OPT) has been obtained with an
exact approach without any restriction on the budget.

6.2 Results: performance of the learned heuristics

Table 1 summarizes the main results of our approach. As a general comment, our approach
can find solutions of superior quality given a node budget or find the optimal solution by
exploring fewer nodes than the baselines. Interestingly, our approach (Learned, ILDS) can
learn a branching strategy giving high-quality solutions, even without backtracking (1st
dive). For instance, a single dive for maximum cut with 50 nodes yields almost instantly a
solution with an optimality gap of 0.16, whereas a depth-first search with a random selection
(Random, DFS) required 19 seconds and roughly 53,000 nodes explored to find a solution
with a similar gap. Within this same budget, (Learned, ILDS) significantly improves the
solution and achieves an optimality gap of 0.09. It is worth highlighting that (Learned, ILDS)
took 130 seconds to explore 38,744 nodes and has, thereby, an exploration rate slower than
the other methods. This significantly increased execution time is mainly because calling
the graph neural network architecture (Section 4.3) at each tree search node is much more
computationally expensive than calling a simple heuristic. This difficulty is further discussed
in Section 6.5.

2 https://github.com/corail-research/SeaPearl.jl
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Table 1 Results for the three problems given a fixed node budget (B) related to each configuration

Graph coloring problem (COL)

20 nodes (B = 103) 40 nodes (B = 104) 80 nodes (B = 105)

Gap Node Time Gap Node Time Gap Node Time

Random DFS 0.00 378 < 1 0.00 1,735 < 1 0.00 7,211 2

Activity-based DFS 0.00 378 < 1 0.00 1,664 < 1 0.00 7,051 2

Impact-based DFS 0.00 374 < 1 0.00 1,732 < 1 0.00 7,057 2

Learned 1st dive 0.06 − < 1 0.08 − < 1 0.06 − < 1

Learned ILDS 0.00 27 < 1 0.00 104 < 1 0.00 120 < 1

Maximum independent set problem (MIS)

30 nodes (B = 103) 50 nodes (B = 104) 100 nodes (B = 105)

Gap Node Time Gap Node Time Gap Node Time

Random DFS 0.00 293 < 1 0.00 8942 1 0.10 41,774 9

Activity-based DFS 0.00 215 < 1 0.00 5807 1 0.09 35,536 7

Impact-based DFS 0.00 297 < 1 0.00 7474 1 0.10 38,154 8

Learned 1st dive 0.08 − < 1 0.09 − < 1 0.20 − < 1

Learned ILDS 0.00 88 < 1 0.00 539 1 0.02 28,392 253

Minimum vertex cover problem (MVC)

30 nodes (B = 104) 50 nodes (B = 105) 100 nodes (B = 105)

Gap Node Time Gap Node Time Gap Node Time

Random DFS 0.00 253 < 1 0.00 6,334 1 0.03 48,505 11

Activity-based DFS 0.00 359 < 1 0.00 7,684 1 0.04 36,967 9

Impact-based DFS 0.00 369 < 1 0.00 7,583 1 0.04 48,505 8

Learned 1st dive 0.05 − < 1 0.04 − < 1 0.07 − < 1

Learned ILDS 0.00 44 < 1 0.00 1,189 3 0.01 24,037 207

Maximum cut problem (MAXCUT)

20 nodes (B = 104) 50 nodes (B = 105) 80 nodes (B = 105)

Gap Node Time Gap Node Time Gap Node Time

Random DFS 0.04 4,877 1 0.17 53,110 19 0.23 50,424 25

Activity-based DFS 0.04 4,635 1 0.17 44,664 14 0.21 66,791 33

Impact-based DFS 0.03 5,959 2 0.17 47,970 17 0.21 64,602 32

Without fine-tuning

Learned 1st dive 0.15 − < 1 0.16 − < 1 0.33 − < 1

Learned ILDS 0.03 3,714 5 0.09 38,744 130 0.23 34,843 279

With fine-tuning

Learned 1st dive − − − − − − 0.09 − < 1

Learned ILDS − − − − − − 0.05 61,872 625

The average result (rounded) on the 20 test instances is reported for each configuration. Gap indicates the
optimality gap, Node gives the number of nodes explored before finding the best solution within the budget,
and Time gives the time (seconds) before finding this solution
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Concerning Activity and Impact heuristics, they yield no improvement on graph coloring
compared to a random strategy. This can be explained by the fact that this class of prob-
lem has many possible combinations of variables and values for branching. This requires
a significantly larger number of explored nodes to initialize these two heuristics efficiently.
For the three other problems, characterized by a binary domain for the values to branch on,
Activity and Impact provide significantly better results than the random strategy, which is
the expected behavior. Interestingly, (Learned, ILDS) provides the best optimality gap within
the node budget for all the situations tested, except for maximum cut with 80 nodes, without
fine-tuning. We anticipate that a larger model may be necessary to address this situation or
that the training time was not enough. The benefits of fine-tuning to tackle this challenge
are discussed in Section 6.4. Additional results are proposed in Fig. 8 using performance
profiles [61] for two hard situations (100 formaximum independent set, and 50 formaximum
cut) given a node budget of 100 or 1000 nodes.

6.3 Analysis: generalization to larger instances

Figure 9 illustrates the generalization capabilities of the learned heuristic across 20 new
instances of increasing sizes, without necessitating retraining. The heuristic maintains com-
mendable performance on instanceswhose sizes are akin to those encountered during training
(i.e., at most 25 additional nodes). This observation suggests that incorporating a broader
range of instance sizes and a greater diversity of nodes during the training phase could further
enhance performance.

However, there is a noticeable performance decline in solving maximum cut,maximum
independent set, and minimum vertex cover problems for the strategies (Learned, 1st dive)
and (Learned, ILDS). Specifically, as the problem size increases, the performance gap aligns
more closely with the random heuristic. Contrastingly, the model trained on graph coloring
displays remarkable robustness, consistently achieving the optimal solution for instances
with a budget of 1,000 nodes, regardless of size variation, up to 160 variables. This stands in

Fig. 8 Best solutions found within a restricted node budget on largest instances for the three problems con-
sidered. We set a small budget to evaluate the ability of each approach to find quickly a good solution, which
is the objective aimed by this work. The performance profile ratio is computed using the optimal solution
as a reference. Within the same maximal number of nodes visited (1000), we observe that (Learned, ILDS)
dominate all the other methods. Besides, we still perform better than the baselines when restricting ten times
the budget for (Learned, ILDS)
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Fig. 9 Analysis of the generalization ability on larger instances.Graph coloring is on the top-left,maximum cut
on the top-right,maximum independent set on the bottom-left, andminimum vertex cover on the bottom-right.
Each plot presents three curves: the performance of the learned heuristic with a single dive, the performance
of the learned heuristic with a budget of 1,000 nodes with ILDS, and the performance with of the random
heuristic a budget of 1,000 nodes with DFS

contrast to the random heuristic, which consistently fails to identify high-quality solutions
within the same computational budget (gap exceeding the threshold on the y-axis).

6.4 Analysis: handling OOD instances with fine-tuning

This experiment focuses on the maximum cut problem with 80 nodes, where the model
initially failed to outperform baselines (Table 1), likely due to time budget limitations in
training. To address this, we applied fine-tuning, starting from a model trained on maximum
independent set instances (100 nodes) and fine-tuning it on maximum cut instances (80
nodes) for up to 10,000 epochs (approximately 30 hours). Figure 10 shows the results for: (1)
a model trained from scratch onmaximum cut, (2) a model trained onmaximum independent
set and fine-tuned on maximum cut, and (3) the random baseline. The fine-tuned model
significantly outperforms the one trained from scratch within the same training budget and
is now competitive with the baselines, which was not the case for the vanilla model. This
experiment highlights the benefits of fine-tuning for handling out-of-distribution instances
with a lower training time budget.

6.5 Discussions and opportunities of further research

The previous experiments showcased the promise of this framework to quickly find good
solutions towards a generic value-selection heuristic inside a CP solver. There are nonetheless
open challenges that must be considered for practical use. Six of them are discussed. It is
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Fig. 10 Analysis of our approach’s fine-tuning ability. The x-axis represents the number of epochs used for
fine-tuning on maximum cut instances (80 nodes), and the y-axis shows the optimality gap of the models on
20 maximum cut instances

worth noting that several of these challenges overlap with those identified by [48] for the
broader application of graph neural networks in combinatorial optimization.

Challenge 1: scalability of the representation

Our approach faces a double penalty regarding its scaling capability: as the problem grows
larger, the tripartite representation increases significantly in size, which results in a longer
computation time required to make one branching decision. This impacts both training and
evaluation. Additionally, the number of nodes (and, therefore, decisions to be made) in the
search tree grows exponentially with the problem size, exacerbating the aforementioned phe-
nomenon. This issue has also been observed by [24]. Consequently, our approach is penalized
twice due to the exponential behavior of combinatorial problems. As a concrete example,
graph coloring instances with 80 nodes require 72 hours of training on a GPU, while only
1 hour is required for the smallest instances. An interesting research direction to mitigate
this difficulty is to build a mechanism to compact the representation, for instance, thanks
to network pruning tools [67] or with transfer learning. Another idea is to call the model
only in a few nodes, in a similar fashion as [12] did for decision-diagram-based branch-and-
bound [68]. Analyzing how the lottery hypothesis could be applied in our situation is also an
interesting direction [69]. On a lower level of computation, standard constraint programming
solvers perform sequential decisions and are therefore optimized for CPU architecture. Con-
cerning the training, it is carried out on a GPU. In the current implementation, each branching
decision requires loading the entire tripartite graph on the Video RAM, which is inefficient.
We believe much work could be done to optimize this CPU/GPU architecture, for instance by
delegating other operations on the GPUs, such as the propagation of few constraints [70–72].

Challenge 2: tackling highly constrained problems

The experiments proposed in the paper considered combinatorial problems where the dif-
ficulty lay in finding the best solution. Still, it was easy to find a feasible solution, even
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of poor quality. We empirically observed that the learning performance largely depends on
the abundance of feasible solutions in the search space. This is explained by the definition
of the reward, which is based on the propagation occurring on the objective variable (see
rmid
t in Section 4.2). However, when feasible solutions are not easily obtained, such as in
highly constrained problems, the reward signal becomes less informative. Addressing such
combinatorial problems remains an open challenge. We believe an extension of the reward
signal can address this in order to handle other situations.

Challenge 3: learning a combined variable/value heuristic

Although this work proposes to learn a value-selection heuristic, learning how to branch on
variables has already been considered in the literature [20]. An interesting research direction
is to adapt this architecture to learn a variable-selection and a value-selection heuristic in a
unified way. A possible direction is to consider a model with a double-head decoder, the first
for selecting the variable and the second for selecting the value. On the training aspect, two
reinforcement learning agents could be trained, with an the incentive to cooperate with the
information sharing [73].

Challenge 4: proving the optimality of a solution

The goal pursued in this paper is to find the best solution as quickly as possible. Another
direction is to guide the search to speed-up the optimality proof. It is what has been proposed
by [22]. In practice, finding good solutions and proving optimality are complementary aspects
inside a constraint programming solver and should be both considered. Possible directions
to do so could be to redefine the reward function appropriately or to revise the definition of
an episode, as proposed by [19] with TreeMDPs.

Challenge 5: handling out-of-distributions instances

Section 6.3 underscored the challenge of generalizing to instances that diverge from the
distribution encountered during training, a well-documented issue in the field of machine
learning research [74]. Addressing this challenge is pivotal for the practical application and
deployment of machine learning models. Fine-tuning methods, as explored in Section 6.4,
have shown success in various learning tasks [75, 76] and offer a promising solution to this
challenge [77].

Challenge 6: selecting an appropriate graph neural network

Beyond issues of generalization, graph neural networks face inherent computational limita-
tions. [78] demonstrated that the ability of any GNN architecture to differentiate between
non-isomorphic graphs is constrained by the capabilities of the 1-dimensional Weisfeiler-
Leman algorithm. This polynomial-time heuristic for the graph isomorphism problem has
notable limitations, such as its failure to recognize cyclic information or to differentiate non-
isomorphic bipartite graphs effectively [79]. In the context of branching for mixed-integer
programming, [80] pinpointed a critical limitation concerning the expressive power of graph
neural networks. Specifically, they highlighted that there exist instances with different strong
branching scores that cannot be distinguished by any GNN based on message passing (as
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ours), irrespective of the network’s parameter count. This discovery underscores the neces-
sity of exploring suitable architectures for branching, marking it as a compelling avenue for
future research.

7 Conclusion

The efficiency of constraint programming solvers is partially due to the branching heuristics
used to guide the search. In practice, value-selection heuristics are often designed thanks to
problem-specific expert knowledge, often out of reach for non-practitioners. In this paper, we
proposed a method based on reinforcement learning for obtaining such a heuristic, thanks to
historical data, characterized by problem instances following the same distribution of the one
thatmust be solved. This has been achieved thanks to a restart-based training procedure, a non-
sparse reward signal, and a heterogeneous graph neural network architecture. Experiments on
four combinatorial optimization problems show that the framework can find better solutions
close to optimality in fewer nodes visited than other generic baselines. Several limitations
and challenges (e.g., tractability for larger or real-world instances, transfer learning, sparsity
of the reward signal) have been identified, and addressing them is part of future work. We
also plan to consider other combinatorial problems, such as the ones proposed in XCSP3
competitions [81].
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