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Abstract 

The e-commerce industry is quickly transforming towards more automation and technological 

advancements. With the growing intricacy of warehouse operations, there is a need for control systems 

that can efficiently handle this complexity. This study considers a Robotic Mobile Fulfillment System 

(RMFS), a semi-automated warehousing system. This system employs autonomous mobile robots 

(AMRs) to retrieve inventory racks from the storage area; this way, human activity is eliminated within 

the storage area itself. The fleet of robots both store and retrieve the inventory racks to either 

workstations, where human pickers are stationed that pick items from the racks, or replenishment 

stations, where depleted inventory racks can be restocked with items. An attractive characteristic of the 

RMFS is that it dynamically changes the positioning of the inventory racks based on the frequency of 

inventory rack requests and the state of their stock levels. The optimization objective considered in this 

study for the dynamic positioning problem of the racks within the storage area is to minimize the 

average cycle time of the mobile robots to perform retrieval and replenishment activities. We propose 

a deep reinforcement learning approach to train a decision-making agent to learn a policy for the storage 

assignment and replenishment of inventory racks. The learned policy is compared to the commonly 

used decision rules in the academic literature on this problem. The experimental results show the 

potential benefits of training an agent to learn a storage and replenishment policy. Cycle time 

improvements up to 5.4% can be achieved over the best-performing decision rules. This research 

contributes to advancing the understanding of intelligent storage assignment and replenishment 

strategies for the real-time decision-making process within an RMFS.   
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1. Introduction 

Warehouses are vital for sustainable e-commerce development, as they are a critical component of 

modern supply chain operations. They serve as a central hub for companies to store, ship, and distribute 

goods. Efficient warehouses offer several benefits, including tracking and managing a company’s 

inventory. Moreover, they can significantly reduce transportation costs and improve operational 

flexibility. The ongoing trend toward automation in warehousing environments is accelerating, and 



 

while this automation enhances efficiency, it also introduces more operational complexity within such 

environments (Azadeh et al., 2019; Boysen et al., 2019; Boysen et al., 2022). Consequently, there is a 

growing need to address and effectively manage this increasing complexity. This underscores the 

importance of developing more efficient and cost-effective scheduling policies. In essence, warehouse 

scheduling concerns assigning limited resources to optimize the storage and distribution of goods. The 

efficient management of goods within the storage areas of a warehouse results in a range of advantages, 

including reduced lead times, improved space utilization, and reduced travel times. Moreover, 

automated systems in warehousing offer inherent advantages, such as scalability and flexibility. They 

can adapt to fluctuations in order volumes by reconfiguring themselves as needed. For instance, 

dynamically changing the storage layout, increasing or reducing the number of autonomous mobile 

robots (AMRs) used in the storage area, and more. In today’s context, this scalability and flexibility are 

essential in meeting stricter customer expectations (e.g., same- or next-day delivery).     

 

The Robotic Mobile Fulfillment System (RMFS) scheduling problem considered in this work refers to 

the challenge of coordinating the movement and tasks of both robots and human pickers in an automated 

warehouse setting to fulfill customer orders efficiently. A well-designed scheduling system can improve 

efficiency, reduce costs, and enhance customer satisfaction. The overall objective is to minimize the 

average cycle time of the AMRs, which also leads to the minimization of the operational expenses (i.e., 

wages) and the capital expenses (i.e., equipment costs, maintenance costs, etc.). To maintain its 

efficiency in dynamic environments, the system has to perform well in the following aspects: 

 

1. Flexibility and adaptability: The system must adjust to fluctuating demands and unexpected 

disruptions in real time. 

2. Scalability: The system should be able to handle growing order volumes without 

compromising on efficiency.  

3. Real-time monitoring and control: Effective monitoring and control of the system are 

essential to ensure its performance and maintain high quality.  

 

The prevailing studies predominantly employ simple decision rules for assigning storage locations to 

return inventory racks and managing their replenishment. However, these approaches prioritize 

returning the rack as quickly as possible, often by minimizing distance traveled, while neglecting other 

considerations such as queuing times and distinctions between fast- and slow-moving stock. This focus 

on immediate gains reveals a short-sightedness that makes decision rules too rigid for dynamic and 

complex warehouse environments. The study by Rimélé et al. (2021) looked into learning a storage 

policy. Nevertheless, their investigation was confined to small problem instances, encompassing only 

36 storage locations and one workstation. Moreover, they did not include a scattered storage policy. 

Consequently, the intricacies associated with scalability were not addressed, limiting the 



 

generalizability of their findings. Additionally, they did not consider the replenishment decisions, which 

can significantly impact the overall cycle time. Therefore, we propose a novel approach employing a 

deep reinforcement learning (DRL) approach to address the storage location assignment and 

replenishment problem. Our contributions are as follows: 

1. Integrated problem formulation: Unlike prior studies that address replenishment and storage 

location assignment in isolation, we integrate both into a joint decision problem. We formulate 

a novel mixed-integer linear programming model to formally define the problem, which also 

serves as a baseline for evaluating alternative solution approaches. Additionally, we introduce 

a DRL model for large-scale instances to tackle these as a joint decision problem.  

2. Real-time decision making under uncertainty: The DRL model effectively handles 

uncertainty within the decision-making process, enabling the agent to dynamically adapt to 

unknown, incoming order requests in real time. Unlike traditional methods that focus on short-

term optimization, the proposed approach accounts for how current decisions impact future 

outcomes, fostering a more long-term perspective.  

3. Custom reward function: Balancing replenishment frequency with minimized cycle times 

presents a novel challenge. The reward function is specifically designed to manage this trade-

off, guiding the agent to learn a policy that minimizes both the number of replenishments and 

average cycle times. This is non-trivial, as replenishment introduces distinct cycle time 

considerations, such as queue and processing times. 

4. Efficient handling of high dimensionality in state and action space: The RMFS environment 

involves high-dimensional state and action spaces, given the large number of inventory racks, 

AMRs, and storage locations. To scale the model effectively, we applied feature engineering, 

clustered storage zones, and streamlined actions choices (e.g. action masking) to reduce 

complexity without sacrificing decision quality.  

5. Use of explainable AI: By decoding feature representations for SHAP value analysis, we 

enhance the interpretability of DRL policies within the RMFS context, providing valuable 

insights for the community. 

The remainder of the paper is structured as follows. In the following section, the related research 

concerning the operational scheduling problems in an RMFS is reviewed, emphasizing the inventory 

rack storage assignment and replenishment problems. Section 3 provides a brief problem description of 

the operational problem of interest and Section 4 presents the mathematical model for the joint 

optimization problem. Next, Section 5 presents the proposed deep reinforcement framework. 

Thereafter, Section 6 elaborates on the performance of the proposed framework compared to the 

typically used storage policies. Finally, in Section 7, the conclusions and the directions for future 

research are discussed. 



 

2. Related literature 

As stated in Enright & Wurman (2011), the RMFS scheduling problem on the operational level consists 

of various interesting assignment problems: inventory rack selection, inventory rack storage 

assignment, pick order assignment, replenishment assignment, and robot assignment problems. Table 1 

presents an overview of the existing literature.  

 

Table 1. Literature overview of relevant assignments problems in RMFS. 

Publications Pick order 

assignment 

Inventory 

rack 

selection 

Replenishment 

assignment 

Task 

assignment 

Inventory 

rack storage 

assignment 

Boysen et al. (2017) ✓         

Zou et al. (2017)       ✓   

Weidinger et al. (2018b)         ✓ 

Krenzler et al. (2018)         ✓ 

Merschformann et al. (2019) ✓ ✓ ✓   ✓ 

Yuan et al. (2019)         ✓ 

Roy et al. (2019)     ✓  ✓   

Gharehgozli & Zaerpour (2020)       ✓   

Lamballais et al. (2020)     ✓     

Valle & Beasley (2021) ✓         

Xie et al. (2021) ✓ ✓       

Rimélé et al. (2021)         ✓ 

Yang et al. (2021) ✓ ✓       

Teck et al. (2022) ✓ ✓   ✓   

Zhuang et al. (2022a) ✓ ✓       

Zhuang et al. (2022b)       ✓ ✓ 

Zhang et al. (2022) ✓     ✓   

Lamballais et al. (2022) ✓   ✓ ✓   

Lu et al. (2023)       ✓   

Jiao et al. (2023) ✓ ✓       

Cheng et al. (2024) ✓     

Li et al. (2024)    ✓  

Zhou et al. (2024)    ✓  

This study     ✓   ✓ 

 

From the literature overview in Table 1, we focus on the central topic of this paper, the inventory rack 

storage assignment and replenishment problem. Weidinger et al. (2018b) present a mixed integer 

programming (MIP) model for interval scheduling, which operates under the assumption of 

predetermined rack visits and uses a surrogate objective of minimizing the total loaded travel distance 

for robots, albeit without explicitly accounting for robot availability. They introduce an Adaptive Large 

Matheuristic Search for this model and compare it with various simple rule-based storage policies, 

concluding their method’s superiority in achieving the surrogate objective. Krenzler et al. (2018) 

developed a deterministic model for inventory rack assignment, comparing it with various storage 

policies similar to those in Weidinger et al. (2018b), as well as with genetic algorithms and binary 



 

integer programming approaches. Their testing, limited to single-workstation RMFS scenarios and 

small-to-medium-sized instances, shows that their model performs well under simplified conditions. 

Nevertheless, they acknowledge that their model does not extend efficiently to complex, multi-

workstation environments. Additionally, their approach is based on a long-term planning horizon, 

limiting their flexibility to adapt to dynamic changes within the environment.    

 

Merschformann et al. (2019) adopt a different methodology, conducting a simulation-based analysis to 

study the pick and replenishment processes in RMFS. They explore several rule-based assignment 

policies for the pick order assignment, inventory rack selection, replenishment assignment, and 

inventory rack storage assignment problems. The study examines random, fixed, nearest, station-based, 

and class-based storage location rules for storage location assignment. Their findings suggest that the 

storage assignment decision rules had a fairly low impact on the overall system performance. However, 

they note that this may be due to the limited scale of their test warehouse layout. They expect that the 

impact of storage location policies on travel distance could increase significantly in larger warehouse 

layouts, signaling that more sophisticated strategies could yield greater benefits. A concept that our 

work investigates.  

 

Zhuang et al. (2022b) investigate inventory rack storage and task assignment through a matheuristic 

decomposition method using a rolling horizon framework combined with simulated annealing. Their 

study benchmarks the proposed framework against common policies like the nearest and shortest leg 

storage, affirming that the shortest leg policy is among the most effective in minimizing the idle time 

for human pickers and reducing system makespan. Yuan et al. (2019) focus on velocity-based storage 

policies and use a fluid model, validated through simulation, to analyze their effectiveness. Their 

findings suggest that class-based storage policies, particularly those with two or three classes, 

significantly reduce robot travel distances compared to random policies, with reductions up to 8% and 

10%, respectively. Ding et al. (2024) also explore velocity-based assignment methods to minimize total 

rack travel distances. Beyond comparing their approach to the commonly used decision rules, they 

conclude that SKU-to-rack assignments, typically a tactical decision, significantly impact overall 

system performance, as correlations between SKUs can influence retrieval efficiency.    

 

In most studies focusing on the RMFS problem, the inventory stock is assumed to be inexhaustible. 

Hence, replenishment of the inventory is unnecessary. However, this is an important concern in 

managing the storage area efficiently. The studies that do consider replenishment typically only apply 

simple decision rules. For instance, Lamballais et al. (2020) propose a Semi-Open Queueing Network 

to study the optimization of three key decision variables: (1) the number of inventory racks per stock-

keeping unit (SKU), (2) the ratio of picking stations and replenishment stations, (3) the replenishment 

level per inventory rack. They conclude that spreading the SKUs (scattered storage policy) over multiple 



 

racks can substantially improve the throughput performance. Moreover, they found that replenishing 

the racks before they were empty positively impacted the throughput performance. They impose an 

inventory replenishment level, a fraction of the maximum number of products per SKU on a rack (e.g. 

30-50% stock depletion). This level indicates when an inventory rack should visit a replenishment 

station. The study of Lamballais et al. (2022) considers a queueing network integrated within a Markov 

decision process (MDP) for the RMFS pick and replenishment processes. Here, the replenishment of 

an inventory rack occurs after every retrieval cycle with a certain probability. 

 

Reinforcement learning has increasingly gained attention as an effective method for addressing complex 

optimization problems, such as production scheduling under processing time uncertainty (Shi et al., 

2020), job shop scheduling (Gabel et al., (2012); Luo (2020); Tassel et al., (2020)), and order batch 

scheduling in warehouses (Cals et al., (2021), among others. Recently, its application within RMFS 

optimization has seen notable growth. For instance, Cheng et al. (2024) utilize deep reinforcement 

learning to minimize processing costs in batch order scheduling, where mobile robots are dynamically 

assigned to workstations and orders. To improve efficiency, they substitute traditional actions with 

heuristic-based rules in the action space, subsequently validating this approach through simulations. Li 

et al. (2024) also explore reinforcement-based multi-robot task assignment and routing methods by 

developing a mixed-integer linear programming (MILP) model with valid inequalities and a 

reinforcement learning-based hyper-heuristic framework. Their framework operates on two levels, 

leveraging high-level and low-level heuristics. They demonstrate that including valid inequalities 

provides stronger bounds and enhances the model’s efficiency. Similarly, Zhou et al. (2024) use an 

attention-based network model to optimize multi-robot scheduling with pod repositioning, 

incorporating problem-specific knowledge through a masking strategy that enhances the learning 

process for more efficient allocation and retrieval policies. The study of Rimélé et al. (2021) develops 

a Deep Q-learning agent with Reinforcement Learning (RL) to learn a dynamic storage policy and 

model their system as a Partially Observable Markov Decision Process (POMDP). They compare their 

method to the traditionally used storage policies in the industry on small-scale instances with only one 

workstation. Their results show that the proposed method, in most cases, does slightly better or is 

comparable to the shortest-leg policy. However, the limitation of this study is that it works with 

unrealistically small instances. Furthermore, many simplifying assumptions make it less relevant for 

practical applications (e.g. inexhaustible stock, no scattered storage policy, etc.). Because there is only 

one workstation, the gains over a greedy heuristic like the shortest leg policy are limited. This 

observation is also supported by the study of Merschformann et al. (2019).  

 

For the above reasons, this study will focus on large-scale instances with multiple workstations. 

Furthermore, we also consider the state of the inventory rack and whether it is close to needing 

replenishment by a replenishment station. Thus, the objective of our learning agent is to select an 



 

available storage location where the mobile robots can store the inventory rack and determine if these 

racks require replenishment of the stock they contain. Doing this efficiently should prevent stock-outs 

and result in better picking efficiency. Our learning agent is trained with deep reinforcement learning 

techniques, which will be discussed in more detail in the following sections.  

 

3. The dynamic inventory rack storage assignment and replenishment problem 

This study focuses on a semi-automated warehousing system called a Robotic Mobile Fulfillment 

System (RMFS), commonly called a rack-moving mobile robot-based warehouse. Kiva Systems 

introduced the RMFS in 2006, later becoming Amazon Robotics, when Amazon acquired the company 

in 2012 (Enright and Wurman, 2011). This system involves a rack-moving mobile robot to retrieve and 

store the requested inventory racks in the storage area, to workstations and replenishment stations (see 

Figure 1). Once unloaded, these robots can pass under stored shelves, significantly reducing travel time 

and traffic density in the aisles. Hence, human activity within the storage area is eliminated. Presenting 

inventory racks at the workstations allows for efficient picking since it eliminates unproductive human 

travel time. The human pickers at the workstations pick the correct items from the presented inventory 

racks and place them in the corresponding order totes to fulfill the retrieval requests. At the 

replenishment stations, items can be restocked to replenish the depleted racks during operation.  

 

Figure 1: A schematic overview of a RMFS layout. 

 

This paper focuses on the problem of learning a policy for the dynamic relocation of inventory racks 

within the storage area and the replenishment of these inventory racks. Each time a robot visits a 

workstation, after fulfilling its pick requests, a decision agent will make a real-time decision on whether 

to replenish or store the inventory rack at a free storage location within the storage area. The overall 



 

objective is to minimize the robots’ average cycle time, discussed in the following paragraph, as this 

impacts the makespan of the system and the total travel durations of the mobile robots.  

 

 

Figure 2: (a) A retrieval cycle of a mobile robot. (b) A replenishment cycle of a mobile robot. 

 

Given a set of stock-keeping units (SKUs) 𝐾 = {1, … , 𝑘, … , |𝐾|} and a set of customer orders 𝑂 =

{1, … , 𝑜, … , |𝑂|} that need to be fulfilled, each customer order o can consist of one or more order lines, 

with each line requiring a unique SKU k. Moreover, each order line can require different quantities to 

be fulfilled. Order-picking fulfills these customer orders with rack retrieval from the storage area. Figure 

2 (a) illustrates the rack retrieval cycle in an RMFS; it consists of several steps. Mobile robots retrieve 

inventory racks from the storage area to fulfill a customer order and transport them to a workstation. 

Whenever a mobile robot has completed a retrieval task, typically going from a workstation back to an 

open storage location (step 1), it remains there at the dwell location until a new task is assigned. 

Whenever this robot is assigned a new retrieval task, it moves from its current dwell location to the 

storage location of the requested inventory rack (step 2). Thereafter, it can lift the storage rack and 

transport the requested rack to the correct workstation (step 3). We define this as the normal retrieval 

cycle. However, in some cases, the requested inventory rack is required by multiple workstations. In 

such a case, the robot can directly bring the inventory rack from one workstation to the other (step 3’) 

before storing it away again in an unoccupied storage location in the storage area (step 1). Figure 2 (b) 

illustrates an inventory rack replenishment cycle in an RMFS. To replenish an inventory rack, after it 

has been retrieved from the storage area and has served a workstation (step 3), the mobile robots can 

bring the depleted inventory racks straight from the workstation to the replenishment station (step 4). 



 

Here, human workers replenish the depleted stock from the inventory rack. Thereafter, the mobile robot 

stores the inventory rack in the storage area in a suitable unoccupied storage space (step 5). Following 

this, the mobile robot dwells at this location until it is assigned a new task (rack retrieval or rack 

replenishment).  

 

Other than traditional warehouses, where inventory racks are fixed and stationary, the inventory rack 

assignment problem can dynamically change the storage area of the RMFS. In doing so, inventory racks 

can be strategically stored in the warehouse based on the frequency of its retrieval requests and the 

inventory levels of the rack itself. For instance, if the items on the rack are close to being depleted, 

storing them preemptively closer to the replenishment station might be interesting. The overall objective 

here is to minimize the average cycle time of the mobile robots.  

 

The main assumptions are the following: 

I. Robot breakdown does not occur, and battery management is not included. 

II. Robots travel at a constant velocity, and processing times are deterministic. 

III. Congestion and potential conflicts of mobile robots in the aisles are ignored, as 

unidirectional lanes are implemented to significantly reduce the likelihood of collisions 

and congestion. Unidirectional lanes are commonly used by major warehouse operators 

such as JD, Amazon, Swisslog, and Scallog (Duan et al., 2021, Lamballais et al., 2017, 

Xie et al., 2021, Zou et al., 2017).  

IV. The mobile robots will dwell at the location where they returned their last rack until a new 

task is assigned. 

V. Robots follow the shortest path, and unloaded robots can travel underneath the inventory 

racks in the storage area. 

VI. The mobile robots are pooled over all the workstations and replenishment station(s).  

VII. A scattered storage policy distributes the items over the inventory racks (Weidinger & 

Boysen, 2018a).  

VIII. The maximum number of units per SKU in an inventory rack is predetermined and fixed.  

 

4. Mathematical Model 

To evaluate the performance of the heuristic and provide a baseline for comparison, we introduce a 

mixed-integer linear formulation for the deterministic rack storage location assignment and 

replenishment problem. This model assumes full information, where the order assignment to 

workstations, the inventory rack selection for order fulfillment, and multi-robot task assignment are 

predetermined. The proposed model makes decisions on where to store the inventory racks after they 

have fulfilled the orders at the workstations and when they should be replenished. It is assumed for this 

model that an inventory rack can only be requested once in the given time period. Moreover, initially 

each robot is queueing at a workstation with an inventory rack and predetermined fulfillment sequence. 

Thereafter, the sequence in which inventory racks are fulfilled is dependent on their arrival time at the 

workstations.  



 

The nomenclature for the variables and parameters is as follows: 

Sets 

𝑊 Set of workstations active in the warehouse environment. 𝑊 = {0, … , 𝑤, … , |𝑊| − 1} 

𝐴 Set of autonomous mobile robots active in the storage area. 𝐴 = {0, … , 𝑎, … , |𝐴| − 1} 

𝑅 Set of replenishment stations active in the warehouse environment. 𝑅 = {0, … , 𝑟, … , |𝑅| −
1} 

𝐿𝑜 Set of open storage locations in the storage area at time event 0.  
𝐿𝑜 = {0, … , 𝑙, … , |𝐿𝑜| − 1}  

𝑃 Set of requested inventory racks to fulfill orders at the workstations. 𝑃 = {0, … , 𝑝, … , |𝑃| −
1} 

𝑃𝑎 Set of requested inventory racks to be retrieved by robot 𝑎 ∈ 𝐴.  

𝐾𝑝 Set of SKUs stored in inventory rack p∈𝑃.  
𝐿 Set of potential storage locations in the storage area. 𝐿 = 𝑃 ∪ 𝐿𝑜  

𝑇 Set of decision event slots. 𝑇 = {1, … , |𝑃|} 

𝑇0 Set of the initialization slot and the subsequent decision event slots. 𝑇0 = {0, … , |𝑇|} 

Parameters 

SLlp Initial storage availability of storage location l∈L given a pod p∈𝑃 
PLp The number of picks that have to be performed to complete the order lines by pod p∈𝑃 

PT Processing time of a human operator at the workstations to pick an order line 

AT Time to either unload or load an AMR with an inventory rack in the storage area 

RT Replenishment time of a human operator at the replenishment stations to restock an SKU 

MS Max stock level 

LT Threshold stock level below which replenishment is needed  

Cwr Travel time from workstation w∈W to replenishment station r∈R 

Cwlpw’ Travel time from workstation w∈W to storage location l∈L, to storage location of pod p∈P, 

to workstation w’∈W 

Cwrlpw’ Travel time from workstation w∈W to replenishment station r∈R, to storage location l∈L, 

to storage location of pod p∈P, to workstation w’∈W 

Variables 

𝑥𝑝𝑤𝑙
𝑡  Binary variable that equals 1 if inventory rack p∈P is assigned to storage location l∈L after 

completing work at workstation w∈W at time t∈𝑇0 

𝑟𝑝𝑟
𝑡  Binary variable that equals 1 if inventory rack p∈P is assigned to a replenishment station 

r∈R at decision event t∈𝑇0  

Auxiliary variables 

𝑦𝑝𝑙
𝑡  Binary variable that equals 1 if inventory rack p∈P is occupying storage location l∈L at 

decision event t∈𝑇0  

𝑤𝑝𝑤
𝑡  Cycle time of completing a retrieval task for inventory rack p∈P at decision event t∈𝑇0 

on workstation w∈W 

𝑧𝑝𝑤
𝑡  Time at which the picking of goods from inventory rack p∈P is completed and the 

inventory rack is ready to leave the workstation w∈W at decision event t∈𝑇0   

𝑢𝑝𝑤𝑙
𝑡  Binary variable that aids in vacating inventory rack p∈P on storage location l∈L at event 

t∈𝑇0 as it is requested by workstation w∈W 

𝑣𝑝𝑘
𝑡  Binary variable that aids in restocking SKU k∈𝐾𝑝on inventory rack p∈P at event t∈𝑇0 

𝑏𝑟
𝑡 Tracks the time of the last completed replenishment at station r∈R at event t∈T 

𝑠𝑝𝑘
𝑡  Stock level of inventory rack 𝑝 ∈ 𝑃 for a given SKU k∈𝐾𝑝 at event t∈T 

𝑞𝑝𝑤𝑙
𝑡  Queueing time at the workstation w∈W for inventory rack p∈P at event t∈T 



 

𝑞𝑝𝑟
𝑡  Queueing time at replenishment station r∈R for inventory rack p∈P at event t∈T 

 

After defining the necessary sets, parameters, and variables, the mathematical formulation that 

incorporates these elements to derive the solution framework is presented below. 

 

𝑀𝑖𝑛         ∑ ∑ ∑ 𝑤𝑝𝑤
𝑡

𝑤𝜖𝑊𝑝𝜖𝑃𝑡𝜖𝑇  / (|T|-|A|)       (1)  

Subject to 

𝑦𝑝𝑙
0  = SLlp      ∀ l∈L, p∈P    (2) 

∑ 𝑦𝑝𝑙
𝑡

𝑝𝜖𝑃 ≤  1       ∀ t∈T, l∈L    (3) 

∑ ∑ ∑ 𝑥𝑝𝑤𝑙
𝑡

𝑙𝜖𝐿𝑤𝜖𝑊𝑝𝜖𝑃 = 1     ∀ t∈T     (4) 

∑ ∑ ∑ 𝑥𝑝𝑤𝑙
𝑡

𝑡𝜖𝑇𝑙𝜖𝐿𝑤𝜖𝑊 = 1     ∀ a∈A, p∈𝑃𝑎    (5) 

The objective (1) of the study is to minimize the cycle time of AMRs as they execute retrieval and 

storage tasks efficiently. The first set of constraints initializes the system and defines its general 

operations. Constraint (2) sets the initial state of storage location states, indicating whether each is 

occupied or vacant. Constraint (3) ensures that no more than one inventory rack can occupy a storage 

location at any given time. Constraint (4) enforces the requirement that each decision event must include 

a task assignment. Additionally, constraint (5) guarantees that all inventory rack requests are completed 

as part of the AMR operations.  

∑ 𝑥𝑝𝑤𝑙
𝑡

𝑤𝜖𝑊 ≤  1 − ∑ 𝑦𝑝′𝑙
𝑡−1

𝑝′𝜖𝑃       ∀ t∈T, p∈𝑃, l∈L   (6) 

𝑦𝑝𝑙
𝑡−1 + ∑ 𝑥𝑝𝑤𝑙

𝑡
𝑤𝜖𝑊 − 𝑢𝑝𝑙

𝑡  = 𝑦𝑝𝑙
𝑡      ∀ t∈T, p∈𝑃, l∈L   (7) 

𝑦𝑝𝑙
𝑡  ≥ ∑ 𝑥𝑝𝑤𝑙

𝑡
𝑤𝜖𝑊        ∀ t∈T, p∈𝑃, l∈L   (8) 

∑ ∑ 𝑥𝑝−1𝑤𝑙
𝑡

𝑙𝜖𝐿𝑤𝜖𝑊  ≥ ∑ 𝑢𝑝𝑤𝑙
𝑡

𝑙𝜖𝐿       ∀ t∈T, a∈A, p∈{1,...,|𝑃𝑎|}  (9) 

∑ ∑ 𝑢𝑝𝑤𝑙
𝑡

𝑙𝜖𝐿𝑝𝜖𝑃  ≤ 1     ∀ t∈T                 (10) 

∑ ∑ 𝑢𝑝𝑤𝑙
𝑡

𝑙𝜖𝐿𝑝𝜖𝑃  ≤ 1 − ∑ ∑ 𝑥𝑝𝑤𝑙
𝑡

𝑙𝜖𝐿𝑤𝜖𝑊    ∀ a∈A, p∈𝑃𝑎               (11) 

∑ 𝑥𝑝−1𝑤𝑙
𝑡

𝑤𝜖𝑊 + 𝑦𝑝𝑙
𝑡−1  ≤ 1    ∀ t∈T, a∈A, p∈{1,...,|𝑃𝑎|}, l∈L               (12) 

∑ 𝑦𝑝𝑙
𝑡

𝑙𝜖𝐿   ≤ 1 − ∑ ∑ 𝑥𝑝−1𝑤𝑙
𝑡

𝑙𝜖𝐿𝑤𝜖𝑊    ∀ t∈T, a∈A, p∈{1,...,|𝑃𝑎|}             (13) 

The next group of constraints governs the dynamic updates of storage locations throughout decision 

events. Constraints (6) prohibits the assignment of an inventory rack to a storage location unless that 

location is vacant. Constraints (7), (8), and (9) collectively update the storage location states. When an 

inventory rack is assigned to a location, that location transitions to being occupied, while the location 

for the subsequent rack in the AMRs sequence is marked as vacant. Constraint (10) limits the system to 

vacating only one location during a decision event, and constraint (11) prevents any location from being 

vacated after all tasks in the AMRs sequence have been completed. Constraint (12) ensures that an 



 

inventory rack cannot be assigned to the storage location of the subsequent rack in the AMR’s task 

sequence. Constraint (13) confirms that the storage location for the subsequent rack is indeed vacant 

after the preceding rack has been assigned a location.     

𝑧𝑝𝑤
𝑡 ≥ 𝑧𝑝−1𝑤′

𝑡′
+ 𝑃𝑇 + 𝑤𝑝𝑤

𝑡 − 𝑀(2 − ∑ 𝑥𝑝𝑤𝑙
𝑡

𝑙𝜖𝐿 − ∑ 𝑥𝑝−1𝑤′𝑙′
𝑡′

𝑙′𝜖𝐿 )   

∀ t,t’∈𝑇, a∈A, p∈{1, . . . , |𝑃𝑎|},w,w’∈W              (14) 

𝑧𝑝𝑤
𝑡 ≥ 𝑧𝑝′𝑤

𝑡′
+ 𝑃𝑇 − 𝑀(2 − ∑ 𝑥𝑝𝑤𝑙

𝑡
𝑙𝜖𝐿 − ∑ 𝑥𝑝−1𝑤′𝑙′

𝑡′

𝑙′𝜖𝐿 )  ∀ t∈𝑇, t’∈{1,…,t}, p,p’∈P|p≠p’,w∈W   (15) 

𝑤𝑝𝑤′
𝑡 ≥ 𝐶𝑤𝑙𝑝𝑤′ + 2𝐴𝑇 + 𝑞𝑝𝑤′𝑙

𝑡 − 𝑀 ∗ (2 − ∑ 𝑥𝑝𝑤′𝑙′
𝑡

𝑙′𝜖𝐿 − 𝑥𝑝−1𝑤𝑙
𝑡′

) − 𝑀 ∑ 𝑟𝑝−1𝑟
𝑡′

𝑟𝜖𝑅    

                                 ∀ t∈𝑇, t’∈{1,…,t}, a∈A, p∈{1, . . . , |𝑃𝑎|}, l∈ L, w,w’∈W  (16) 

𝑤𝑝𝑤′
𝑡 ≥ 𝐶𝑤𝑟𝑙𝑝𝑤′ + 2𝐴𝑇 + 𝑅𝑇 + 𝑞𝑝−1𝑟

𝑡′
+ 𝑞𝑝𝑤′𝑙

𝑡 − 𝑀 ∗ (3 − ∑ 𝑥𝑝𝑤′𝑙′
𝑡

𝑙′𝜖𝐿 − 𝑥𝑝−1𝑤𝑙
𝑡′

+ 𝑟𝑝−1𝑟
𝑡′

)  

                 ∀ t∈𝑇, t’∈{0,…,t}, a∈A, p∈{1, . . . , |𝑃𝑎|}, l∈L, r∈R, w,w’∈W        (17) 

𝑞𝑝𝑤′𝑙
𝑡 ≥ 𝑧𝑝𝑤′

𝑡 − (𝑧𝑝−1𝑤′
𝑡′

+ 𝐶𝑤𝑙𝑝𝑤′ + 2𝐴𝑇 + 𝑃𝑇) − 𝑀 ∗ (2 − ∑ 𝑥𝑝𝑤′𝑙′
𝑡

𝑙′𝜖𝐿 − 𝑥𝑝−1𝑤𝑙
𝑡′

) − 𝑀 ∑ 𝑟𝑝−1𝑟
𝑡′

𝑟𝜖𝑅  

               ∀ t∈𝑇, t’∈{0,…,t}, a∈A, p∈{1, . . . , |𝑃𝑎|}, l∈L, w,w’∈W   (18) 

𝑞𝑝𝑤′𝑙
𝑡 ≥ 𝑧𝑝𝑤′

𝑡 − (𝑧𝑝−1𝑤′
𝑡′

+ 𝐶𝑤𝑟𝑙𝑝𝑤′ + 2𝐴𝑇 + 𝑃𝑇 + 𝑅𝑇 + 𝑞𝑝−1𝑟
𝑡′

) − 𝑀 ∗ (3 − ∑ 𝑥𝑝𝑤′𝑙′
𝑡

𝑙′𝜖𝐿 −

𝑥𝑝−1𝑤𝑙
𝑡′

+ 𝑟𝑝−1𝑟
𝑡′

)      ∀ t∈𝑇, t’∈{0,…,t}, a∈A, p∈{1, . . . , |𝑃𝑎|}, l∈L, w,w’∈W (19) 

𝑞𝑝𝑟
𝑡 = 𝑏𝑟

𝑡 − (𝑧𝑝𝑤
𝑡 + 𝐶𝑤𝑟)     ∀ t∈T, t’∈{0,…,t}, p,p’∈𝑃, r∈𝑅,w,w’∈W            (20) 

𝑏𝑟
𝑡 ≥ 𝑧𝑝𝑤

𝑡′
+ 𝐶𝑤𝑟 + 𝑅𝑇 +  𝑞𝑝𝑟

𝑡′  − 𝑀(1 − 𝑟𝑝𝑟
𝑡′

)         ∀ t∈T, t’∈{0,…,t}, p∈𝑃, r∈𝑅,w∈W         (21) 

Another set of constraints tracks the timing of task completions and determines cycle times. Constraint 

(14) ensures that the completion times of racks handled in sequence by an AMR follow the correct 

order. Constraint (15) enforces that inventory racks are completed in the sequence that they are 

processed at a given workstation. Constraints (16) and (17) determine the cycle time for an AMR based 

on whether it is performing a standard storage or replenishment cycle, respectively. Constraints (18), 

(19) deal with computing the queuing time at the workstations depending on the cycle that occurred 

beforehand, and constraint (20) computes the queueing times at the replenishment stations. Constraint 

(21) tracks the time of the last completed replenishment.   

𝑠𝑝𝑘
0  = MS       ∀ p∈ P, k∈ 𝐾𝑝              (22) 

𝑠𝑝𝑘
𝑡 = 𝑠𝑝𝑘

𝑡−1 − ∑ ∑ 𝑥𝑝𝑤𝑙
𝑡

𝑙𝜖𝐿𝑤𝜖𝑊  PLp +𝑣𝑝𝑘
𝑡     ∀ t∈ T, p∈ 𝑃, k∈ 𝐾𝑝              (23) 

𝑣𝑝𝑘
𝑡 ≥ 𝑀𝑆 − (𝑠𝑝𝑘

𝑡−1 − ∑ ∑ 𝑥𝑝𝑤𝑙
𝑡

𝑙𝜖𝐿𝑤𝜖𝑊  PLp) − 𝑀(1 − ∑ 𝑟𝑝𝑟
𝑡

𝑟𝜖𝑅 )  ∀ t ∈ T, p∈ 𝑃, k ∈ 𝐾𝑝          (24) 

𝑣𝑝𝑘
𝑡 ≤  𝑀𝑆 ∑ 𝑟𝑝𝑟

𝑡
𝑟𝜖𝑅       ∀ t ∈ T, p∈ 𝑃, k ∈ 𝐾𝑝              (25) 

𝑠𝑝𝑘
𝑡 ≥ 𝐿𝑇(∑ ∑ 𝑥𝑝𝑤𝑙

𝑡
𝑙𝜖𝐿𝑤𝜖𝑊 −  ∑ 𝑟𝑝𝑟

𝑡
𝑟𝜖𝑅 )      ∀ t ∈ T, p∈ 𝑃, k ∈ 𝐾𝑝              (26) 

∑ 𝑟𝑝𝑟
𝑡

𝑟𝜖𝑅 ≤ ∑ ∑ 𝑥𝑝𝑤𝑙
𝑡

𝑙𝜖𝐿𝑤𝜖𝑊      ∀ t ∈ T, p∈ 𝑃, k ∈ 𝐾𝑝              (27) 

Stock management is another critical aspect of the system, governed by the following constraints. 

Constraint (22) initializes the stock levels of the inventory racks. Constraint (23), (24), and (25) 

dynamically update stock levels by accounting for stock consumption during workstation visits and 



 

replenishment following visits to replenishment stations. Constraint (26) enforces a stock level 

threshold for each rack, triggering replenishment if the stock falls below this level. Constraint (27) 

ensures that replenishment can only occur during a decision event when that rack has been assigned a 

storage location.  

𝑥𝑝𝑤𝑙
𝑡 , 𝑦𝑝𝑙

𝑡 , 𝑢𝑝𝑤𝑙
𝑡 , 𝑟𝑝𝑟

𝑡 ∈ {0,1}    ∀ t∈T, p∈P, r∈R, l∈L,w∈W                    (28) 

𝑠𝑝𝑘
𝑡 , 𝑣𝑝𝑘

𝑡 ∈ {1,2, . . . , 𝑀𝑆}    ∀ t∈T, p∈P, k∈𝐾𝑝                          (29) 

𝑧𝑝𝑤
𝑡 , 𝑤𝑝𝑤

𝑡 , 𝑞𝑝𝑤𝑙
𝑡 , 𝑞𝑝𝑟

𝑡 , 𝑏𝑟
𝑡 ≥  0    ∀ t∈T, p∈P, l∈L,w∈W                          (30) 

Finally, the remaining constraints define the domains of decision variables. These constraints ensure 

that variables are appropriately restricted to binary values, integers specified bounds, or continuous non-

negative values, as required by the model.    

5. Methodology 

This section discusses the proposed method for solving the dynamic storage assignment and 

replenishment problem in an RMFS. Section 5.1 details our design of a Reinforcement Learning (RL) 

model for the problem, including creating the action space, state space, and reward function to train the 

model effectively. In Section 5.2, we briefly discuss the commonly used decision rules from the 

academic literature in dealing with this problem.   

 

5.1. Deep reinforcement learning agent 

In the literature on decision rules concerning optimizing material handling resources, relatively simple 

rules are used to schedule the available resources. In cases where the decision rules are more advanced, 

they typically only work for a specific problem. Thus, when new problems are defined or additional 

constraints are added, these rules must be adapted. This process is time-consuming and requires 

significant in-depth expert knowledge concerning the problem. However, instead of spending much 

time developing these rules, letting an agent learn the best decision rules/policies is possible. To do so, 

the agent has to interact and learn from its environment, where storing them preemptively closer to the 

replenishment station might be interesting (Cals et al., 2021).  

DRL combines RL techniques and Deep Learning (DL). The technique is a general framework for 

solving complex problems involving sequential decision-making. RL focuses on learning through trial 

and error. The learning agent interacts with the environment by taking actions after observing the 

environment. This process continues, where the environment moves to a new state (s’) after an action 

has been taken, and the learning agent makes a new action based on this new perceived state. The 

overarching goal of RL is to learn through a series of actions and formulate a policy (π) (Tassel et al., 

2020). On its own, RL is limited to applications where the states are low-dimensional. To overcome 

this limitation, DL has been introduced (Luo, 2020). In short, DL involves training neural networks to 



 

perceive high-dimensional states. The neural networks allow us to approximate either a value or policy 

function and can learn to map states to values. Essentially, there are three crucial elements for effective 

interactions between the agent and the environment (see Figure 4): the state (s) of the environment, an 

action (a), and a reward (r) (Nguyen et al., 2020).  

 

Figure 4: Interaction scheme of a deep reinforcement learning agent and the environment. 

In the DRL field, several algorithms are typically categorized into either value-based or policy-based 

approaches (Arulkumaran et al., 2017). The first approach tries to approximate the state-value function. 

The latter tries to learn the policy directly. Both approaches have their advantages and disadvantages. 

One of the main drawbacks of both these approaches is that they normally use a table memory for 

learning, which limits their use case for complex problems due to a lack of memory. Unlike traditional 

table-based approaches, which require storing all possible state-action pairs, modern policy and value-

based DRL methods employ function approximators such as deep neural networks (DNNs). This 

significantly reduces memory requirements and enables the application of these methods for more 

complex problems with large state and action spaces. Another approach, the proximal policy 

optimization method (see Algorithm 1), has been proposed to address this issue. In Appendix A, a more 

detailed explanation of the policy update expressions is provided. The hyperparameters chosen for this 

algorithm are detailed in Table 9 (see Appendix A). This approach combines value-based, which 

estimates the value of actions in a given state, and policy-based approaches, which seek strategies for 

action selection based on the current state (Schulman et al., 2017). It separates the memory structure for 

an agent into both an actor and a critic and focuses on learning the policy and the state-values function 

(Tassel et al., 2020; Tang et al., 2021). The actor selects an action based on the current policy, and the 

critic evaluates this selected action. The critic informs the actor how good this action was and helps the 

actor adjust and improve its policy by a temporal difference (TD) error, allowing it to predict a future 

tendency of a selected action. The TD method reduces the error between the predicted and actual state(-

action) values. The TD method updates during episodes, which helps the convergence of the learning 



 

process (Nguyen et al., 2020). Moreover, the experience replay buffer also aids the convergence 

behavior of the learning process by learning from previous experiences. It is a library containing past 

experiences captured by an agent interacting with its environment. PPO is particularly well-suited for 

this problem due to its combination of the following characteristics:  

● Stability: PPO achieves a good balance between exploration and exploitation by constraining 

policy updates within a clipped range, preventing overly aggressive updates that can destabilize 

training.  

● Sample efficiency: By allowing multiple epochs of mini-batch updates for a given set of 

experiences, PPO makes efficient use of collected data, which is critical in environments where 

data collection can be expensive or time-consuming.  

● Versatility: PPO has demonstrated robust performance across a wide range of environments, 

making it a good candidate for addressing complex, high-dimensional problems like the one 

discussed in this paper. 

Algorithm 1  Proximal Policy Optimization 

1 Initialize policy parameter θ, value network parameter ф, episodes N, clip range ϵ  

2 Env ← initializeEnv() 
3 for  i ∈ {1, …, |N|} do 

4         for  t ∈ {1, …, |T|} do        (where T are the timesteps) 

5                Run policy 𝜋𝜃 and collect (𝑠𝑡, 𝑎𝑡, 𝑟𝑡) 

6                Estimate advantages Â𝑡= 𝐺𝑡 − 𝑉ф(𝑠𝑡)     (where 𝐺𝑡 is calculated with Eq. 1) 

7         end for 

8         𝜋𝑜𝑙𝑑 ← 𝜋𝜃 

9         Update actor policy with the gradient  

           𝛻𝐿𝐶𝐿𝐼𝑃(𝜃)  = 𝐸[𝛻(𝑚𝑖𝑛(𝑞(𝜃)Â𝑡 , 𝑐𝑙𝑖𝑝(𝑞(𝜃),1˗ 𝜖, 1 + 𝜖)Â𝑡))],where 𝑞(𝜃) = 𝜋𝜃/𝜋𝑜𝑙𝑑 
10          Update critic value function with the gradient 𝛻𝐿𝜃(ф)    

11 end for 

Since the introduction of deep learning in reinforcement learning techniques, its application in 

scheduling problems became possible due to its ability to perceive and interpret the complex state of 

the scheduling environments. However, it is important to correctly define the action space, state 

representation, and reward function for the learning agent(s) to learn a policy (π) properly.  

5.1.1. Action space 

At the beginning of the training process, the learning agent will tend to choose actions at random instead 

of basing itself on the value function. However, in later stages of the learning process, the probability 

that a chosen action is based on the value function increases. The ε denotes the probability of an action 

chosen randomly; this ε-value decreases over time (Shi et al., 2020). Furthermore, there are scenarios 

where specific actions are unavailable or impossible to execute. For instance, it should be impossible 

for the agent to relocate an inventory pod to a storage zone already occupied by other inventory racks. 

However, the action space should remain constant. Thus, these storage zones cannot be left out of the 



 

action space. To cope with this, we mask the invalid actions (Huang and Ontañón, 2020). Action masks 

restrict the set of actions the agent can select and only sample actions from the valid set of actions. 

Moreover, it aids in improving the efficiency of the learning process of the learning agent as it reduces 

the exploration space. The resulting action space is a vector with a relocation action for each storage 

zone in the storage area and an action instructing a replenishment and a relocation move for each storage 

zone. Hence, the size of the action space depends on the amount of storage zones in the storage area. 

Once the model selects a storage zone, the specific storage location within that zone is determined using 

the shortest leg strategy, as detailed in Section 5.2.  

Action Space = [Zone 1, Zone 2, …, Zone n, Replenishment + Zone 1, Replenishment + Zone 2, …, 

Replenishment + Zone n] 

5.1.2. State space 

The state vector represents the current state of the warehouse environment. This state vector allows the 

learning agent to select an action. Basically, it acts as a window for the agent to interpret the 

environment. Hence, when an action is taken, the state of the environment changes at a certain time 

step, and the state vector has to change accordingly. The scheduling agent is rewarded immediately 

after the action according to the policy (possibly random) chosen. Furthermore, all the features in the 

state space are normalized to help the learning process (Andrychowicz et al., 2020). The state features 

are listed in Table 2. 

Table 2: State space features. 

State Description 

Rank turnover rate The relative rank of the inventory rack’s average turnover (one feature).  

Zone next retrieval The zone of the next retrieval task of the mobile robot (one-hot encoding).  

Occupation levels The occupation level in a storage area refers to the extent to which the available 

storage locations within a certain zone are occupied (a feature for each zone).  

Traffic density The number of robots traveling towards each zone to retrieve an inventory pod or to 

the replenishment station (a feature for each zone and replenishment station).  

Station Id The identifier of the workstation where the rack is currently at (one-hot encoding). 

Storage cycle time The estimated storage cycle time for each zone (a feature for each zone). 

Replenish cycle time The estimated replenishment cycle time to each zone (a feature for each zone). 

Estimated queue The estimated queue time at the replenishment station (one feature). 

Stock level The current level of stock present on the inventory rack. (a feature for each unique 

SKU in the inventory rack). 

SKU similarity A similarity index score is determined for each storage zone, indicating how many 

SKUs in the inventory rack to be stored are already present within the storage zone. 

 



 

5.1.3. Reward function 

Through a reward, the scheduling agents learn whether a certain action in a certain state was a 

preferential decision. Hence, it allows the agents to update their policy accordingly. The reward system 

does not only look at the immediate impact of an action on the environment. It can also incorporate the 

impact of an action now on its future state by including a discount factor (γ) between 0 ≤ γ ≤ 1. When 

γ is close to 0, it values a short-term result more than a long-term one and vice versa. The following 

function (31) is used to calculate the return value at timestep t: 

                          𝐺𝑡 = 𝑅𝑡 + 𝛾 𝑅𝑡+1 + 𝛾2𝑅𝑡+2+. . . +𝛾𝑇−𝑡−1 𝑅𝑇                                     (31) 

The intelligent learning agents aim to find an optimal policy (π*) that maximizes the expected sum of 

the long-term rewards. Based on the state, either direct storage location assignment or replenishment 

and storage location assignment (as shown in Figure 3), the cycle time can be determined as follows: 

1. Storage action: The cycle time estimation starts with the inventory rack’s location at a 

workstation. We compute the travel time from the workstation to the selected storage location 

within a certain storage zone. Thereafter, we then calculate the travel time from the storage location 

to the new retrieval task’s location and finally from there back to the workstation where the new 

rack is requested. This estimation includes the pick-and-place actions associated with handling the 

inventory racks at the storage locations. These calculations are performed for each storage zone 

that is not fully occupied, resulting in an estimated storage cycle length for each zone.  

2. Replenishment action: For replenishment actions, we first calculate the travel time from the 

workstation to the assigned replenishment station. We then include an estimate of any queuing 

time at the replenishment station, followed by the time required for the actual replenishment 

process. After restocking, we calculate the time required to transport the inventory rack back to the 

storage area, following the same steps used in the storage action. However, in this case, the 

transport is from the replenishment station to the designated storage location. These replenishment 

cycle estimations are similarly conducted for all potential storage zones. 

The reward function is expressed in Equation (32) based on the state-action pair as follows: 

𝑟(𝑠, 𝑎) = {
𝑅𝑡 = 𝑇̅ − 𝑇 𝑠 (𝑇̅/ 𝑇𝑠̅)                                            𝑖𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 =  𝑠𝑡𝑜𝑟𝑎𝑔𝑒             

 𝑅𝑡 = 𝑇̅ − 𝑇 𝑟 (𝑇̅ / 𝑇𝑟̅ )  + ⍺ (𝜏 + 𝑇𝑞𝑢𝑒𝑢𝑒) 𝑆    𝑖𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 =  𝑟𝑒𝑝𝑙𝑒𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡
 

 

After each decision the agent makes, the reward is computed based on the two primary actions described 

above. The reward structure is designed to balance both cycle lengths while minimizing replenishment 

frequency. The cycle length T̅ represents the overall average of all cycles performed by the AMRs and 

is updated at the end of each complete simulation run if a better average cycle length is found. Rather 

than calculating it dynamically during the simulation, it is computed at the end to prevent oscillations 



 

in the learning process. At the beginning of the model’s training phase, the cycle length is initialized 

based on the best-performing decision rule (velocity-based storage location assignment). From there, 

the cycle length is updated with any improvements found in subsequent run, ensuring stability in the 

learning process while gradually optimizing the average cycle length over time. In the storage action, 

the reward encourages the agent to minimize the current storage length (𝑇𝑠). This is achieved by 

calculating the difference between the 𝑇̅ and the normalized 𝑇𝑠. The current cycle length is normalized 

by multiplying it by the ratio between 𝑇̅ and the average storage cycle time (𝑇𝑠̅). This ensures that the 

reward reflects how much the current storage decision deviates from the overall average cycle time, 

with the agent striving to minimize storage cycle times, and, as a result, the average reward should 

converge closer to zero.  

In the replenishment action, the reward is analogously designed to minimize the current replenishment 

cycle length (𝑇 𝑟). It is calculated by subtracting the normalized replenishment cycle length from 𝑇̅, 

aligning the goal of minimizing replenishment times with overall system performance. Since 

replenishment cycles are significantly longer than storage cycles, an additional penalty factor is 

introduced to maintain balance. This penalty is calculated as the weight factor (⍺) multiplied by the sum 

of the replenishment time required for each SKU at the station (𝜏) and the queueing time (𝑇𝑞𝑢𝑒𝑢𝑒) the 

inventory rack will experience. The weight factor ⍺ is computed as the ratio between the 𝑇𝑟̅ and the 𝑇𝑠̅, 

adjusted by the ratio of average number of replenishment actions and storage actions. Furthermore, a 

stock level factor (S) is also introduced, calculated as the difference between the current stock level of 

the inventory rack and the replenishment threshold, to ensure replenishments occur only when 

necessary. These averages are updated after each complete simulation run.          

5.2. Benchmark decision rules 

We compare the proposed method against the commonly studied storage policies (see Figure 3) for 

autonomous storage and retrieval systems (AS/RS):   

■ Fixed storage policy: This policy simply dictates that an inventory rack has a fixed location 

within the storage area and should always return to this location after fulfilling its purpose. 

■ Random storage policy: This policy randomly assigns an available storage location to the 

inventory racks that must be returned to the storage area.  

■ Nearest storage policy: This policy looks into finding the nearest available storage location 

from the current location of the inventory rack that has to be returned to the storage area 

(Weidinger et al., 2018b). 

■ Shortest leg storage policy: This policy, in addition to looking for the nearest available storage 

location from the current location of the inventory rack to be returned to the storage area, 

considers the location of the AMR’s next retrieval task (Van Den Berg et al., 2000; Rimélé et 

al., 2021; Zhuang et al., 2022b). Thus, it minimizes the total travel time from the location when 



 

the storage cycle starts to the location of the AMR’s next retrieval task. In essence, this policy 

attempts to greedily optimize the immediate cycle times of each AMR. 

■ Velocity-based policy: The policy, commonly also referred to as turnover-based, aims to 

minimize the cycle time of AMRs by positioning frequently requested inventory racks, those 

containing fast-moving items, closer to workstations. The policy is based on the approaches of 

Yuan et al. (2019) and Ding et al. (2024). Racks currently at the workstations are ranked by 

velocity, which refers to item requests’ frequency. Higher-demand racks are ranked higher, and 

storage locations are evaluated starting from these racks. Using the shortest leg principle, 

locations are chosen. Once a location is found, this location is temporarily reserved and 

excluded from consideration for subsequent racks. This process repeats iteratively until a 

storage location is found for the rack under consideration. Finally, only this location is actually 

assigned.  

Figure 3: Visualization of the commonly used decision rules for storage location assignment. 

 

The order assignment and sequencing, the inventory rack selection, and the task assignment to the 

AMRs is considered given. We refer to our approach in Teck et al. (2023) for these assignment and 

sequencing problems. The replenishment strategy considered in this study, used as a benchmark for the 

learning agent, is based on the replenishment approach described in Lamballais et al. (2020), where the 

inventory level of rack j is monitored and given an inventory class. They define an inventory class as 

the number of units remaining on the inventory rack. They establish the replenishment level, denoted 

by ξ, a fraction of the maximum number of units U on the inventory rack. Thus, the replenishment point 

for a given rack would be ξU. Following this, they make two inventory classes: the inventory class 

where j ˃ ξU, in this class racks, are allowed to be returned to the storage area, and the inventory class 

where j ≤ ξU, in this class, racks have to be moved to the replenishment station.  

 

6. Numerical experiments 

The proposed solution approach has been implemented using Python 3.8, and the numerical experiments 

were executed on the Narval high-performance cluster of Compute Canada. The cluster hardware 



 

specifications are 2 AMD Rome 7532 CPUs 2.4 GHz 256M cache L3. The learning time of each model 

was limited to 10000 episodes of each 10000 time-step or four days of running time.   

In Section 6.1, a brief description of the characteristics of the generated instances is provided. Section 

6.2 presents the results of the numerical experiments. Section 6.3 briefly studies the impact of the zoning 

strategy on the system performance. Finally, Section 6.4 provides some discussion of the model’s detail, 

thus enhancing its explainability.  

 

6.1. Problem instances 

To assess the performance of the proposed model, we generate a set of problem instances that vary in 

terms of the number of storage locations within the storage area and their layout. Moreover, as the 

storage area expands, the number of AMRs and workstations also increases to achieve a server 

utilization rate of 60 to 80 percent. Each simulation run corresponds to 8 to 10 hours, a typical human 

operator workday. The customer orders within these problem instances consist of an average of 1.6 

order lines, with most orders having only 1 or 2 order lines. In these systems, workstation capacity is 

defined as the number of customer orders that can be handled simultaneously. Per industry standards, 

the workstation capacity ranges from 4 to 20 orders. The general layout of the warehouse for all 

instances in this study is based on configurations used in previous research focusing on the impact of 

warehouse layouts on system performance (Lamballais et al., 2020). Table 3 presents additional 

information on the characteristics and considerations in generating the problem instances used for 

evaluation in this study. 

Table 3: Characteristics of problem instances. 

Characteristic Unit Value 

Number of vertical shelves in a block - 2 

Number of horizontal shelves in a block - 5 

Number of storage locations - 180 - 900 

Width of side aisle m 5 

Unit length m 1 

Number of AMRs  - 10 - 18 

AMR velocity m/s 0.6 

Time for pod lifting and storing s 3 

Number of workstations (w) - 2 - 3 

Buffer at workstations - 5 

Station order capacity - 10 

Picking time per SKU s 10 

Replenishment time per SKU (𝜏) s 15 

Replenishment threshold  % 30 

 

Theoretically, the AMRs operating in an RMFS can have speeds up to 1.78 meters per second. However, 

this excludes the time the AMRs take to perform turns and the time lost due to congestion within the 

storage area. Thus, we assume a constant velocity of 0.6 meters per second. The picking time at the 

workstations is deterministic for each SKU retrieved from the inventory rack. Similarly, the 

replenishment time for restocking SKUs on the inventory racks is also deterministic. The study 



 

considers a diverse range of storage area sizes, with storage capacity between 180 and 900 storage 

locations (i). Furthermore, depending on the storage area layouts, different zones (z) can be defined. 

Figure 5 shows an example of a storage area with multiple different layouts for the same storage 

capacity. 

Figure 5: Different storage area layouts for instances 10 (left), 11 (middle), and 12 (right). Instance layouts can 

be found through the link: https://www.mech.kuleuven.be/en/cib/rmfs. 

 

6.2. Numerical results 

This subsection presents the results of the experimental study, comparing the proposed solution 

approach to commonly used decision rules. Average cycle time serves as a robust metric, encompassing 

both travel and processing efficiencies, and is particularly suitable for evaluating the system’s dynamic 

demands related to joint replenishment and storage location assignments. Traditionally, storage location 

assignment studies prioritize minimizing total travel distance as the primary metric of system 

performance. However, this approach overlooks the influence of queuing and processing times at 

stations, which significantly impact overall system throughput.  

Table 4: Comparative results of the heuristic methods and the full-information model on instances with 100 

storage locations, one workstation and replenishment station, and 3 AMRs with 3-hour computation cutoff 

(Optimality Gap calculated as: 
|Objective Bound – Objective Value|

|Objective Value|
×  100%). 

Section 4 presents the mathematical model for the deterministic joint storage location allocation and 

replenishment, serving as a formal foundation for analyzing the optimization problem. The results, 

summarized in Table 4, provide a benchmark for comparison with alternative methods, helping to 

contextualize their performance relative to an optimal yet computationally expensive approach. 

Notably, the number of rack visits is directly tied to the number of decisions made by the model. The 

reported optimality gap for the full-information model does not reflect the performance of the DRL 

Rack 

visits 

Full-information model  Shortest Leg  Velocity-based  DRL 

Avg. cycle 

time [s] 

Optimality  

Gap [%] 

 Avg. cycle 

time [s] 

Δ 

[%] 

 Avg. cycle 

time [s] 

Δ 

[%] 

 Avg. cycle 

time [s] 

Δ 

[%] 

12 66.0 63.6  66.7 1.1  68.3 3.5  69.7 5.6 

15 77.3 61.2  82.0 6.1  85.0 10.0  84.2 8.9 

18 71.6 58.1  73.3 2.4  74.0 3.4  71.8 0.3 

https://www.mech.kuleuven.be/en/cib/rmfs


 

approach. The optimality gap refers to the gap obtained by Gurobi when solving the offline full-

information model. Given the time limit, Gurobi is able to close only a portion of the gap, even for 

small-sized instances. This demonstrates the intractability of the model. However, the feasible solution 

it generates can be used to evaluate the performance of the heuristic. The difference (Δ) between the 

solution of the full-information model and the DRL solution indicate that the heuristic performs well. 

However, it is important to note that the scheduling horizon considered is short, whereas the alternative 

methods are designed to focus on longer-term optimization. Overall, these findings underscore the 

mathematical model’s limitations in serving as a practical decision-support tool for real-world 

applications. Additionally, the model assumes perfect knowledge of the environment, which is 

unrealistic given the dynamic nature of warehouse operations.  

 

Table 5 summarizes the average cycle times of the AMRs across various warehouse layouts. As 

anticipated and aligned with existing academic literature, the velocity-based approach is the top-

performing decision rule approach. The shortest leg rule follows closely, exhibiting competitive 

performance, particularly in smaller instances. Furthermore, the random, fixed, and nearest location 

rules exhibit significant underperformance compared to all methods, with performance differences 

going up to approximately 25% compared to DRL. Notably, the DRL decision-maker consistently 

outperforms the other rule-based approaches, demonstrating improvement gains of up to 5.4% 

compared to the velocity-based method. On average, this reduction in cycle times result in a 4.1% 

decrease in the system’s makespan and a 6.3% reduction in the total distance traveled by the mobile 

robots. Moreover, performance gains consistently increase alongside the size of problem instances when 

comparing simpler decision rules (e.g., random, fixed, nearest) to more intelligent rules (e.g., shortest 

leg, velocity-based, and DRL). This indicates that, in larger problem instances, more sophisticated 

decision-making processes offer significant advantages. This underscores the effectiveness of 

intelligent storage location assignment and replenishment strategies, which are better equipped to 

comprehend the intricacies of the problem at hand, leading to notable improvements in performance.    

Table 5: Comparative study of the different decision rules and the proposed decision-maker  

(i represents the number of storage locations, w number of workstations, z number of storage zones, and 

Imp. the improvement compared to the best decision rule). The last column provides the performance gain 

of our DRL over the most effective decision rule on the same instance.  

Instance i w AMR z Avg. cycle time [s] Imp. 

[%] Random Fixed  Nearest Shortest 

Leg 

Velocity-

based 

DRL 

1 180 2 10 9 107.7 108.6 100.9 96.9 95.5 91.1 4.9 

2 9 124.5 124.3 115.0 113.6 111.2 106.0 4.9 

3 9 106.7 105.9 99.6 94.8 93.6 88.9 5.3 

4 300 10 118.7 118.7 111.1 105.1 103.6 99.0 4.6 

5 10 121.5 124.3 113.0 111.5 106.4 101.9 4.3 

6 9 114.9 115.7 103.5 100.6 97.9 94.6 3.5 

7 480 3 18 12 133.1 134.1 121.8 117.4 113.6 107.9 5.2 



 

8 12 139.0 142.6 127.7 123.4 119.6 113.5 5.4 

9 12 130.5 128.9 118.7 110.7 109.1 104.4 4.5 

10 600 9 137.8 138.3 127.9 121.3 116.3 111.6 4.2 

11 10 153.9 157.6 143.0 136.1 130.9 124.5 5.1 

12 10 138.0 135.2 124.1 117.5 113.8 110.2 3.2 

13 900 9 159.3 161.1 145.3 135.6 130.9 126.2 3.8 

14 9 161.3 164.5 147.9 139.1 133.0 127.8 4.1 

15 9 155.9 150.8 140.0 129.3 125.1 120.8 3.6 

 

A more comprehensive comparison between the best-performing decision rule, velocity-based, and the 

proposed solution approach reveals improvements in both the storage and replenishment cycles. Table 

6 presents various metrics, including average storage cycle time (𝑇𝑠̅), average replenish cycle time (𝑇𝑟̅), 

average wait time (𝑇𝑤𝑎𝑖𝑡) at the replenish stations resulting from queueing, and the average number of 

replenishments (Repl.) performed during a simulation run. Intuitively, minimizing the wait times at the 

replenishment stations is to be expected. However, this typically implies an increase in replenishments 

compared to the simple replenishment rule, which waits until the threshold value is met. Conversely, 

the learning agent can proactively assign an inventory rack for replenishment to mitigate longer queues. 

Replenishment cycles, including replenishment times, are inherently longer than storage cycles, 

negatively impacting the average cycle time. Consequently, a delicate balance exists between queue 

time and the number of replenishments.  

Table 6: Comparative study of the best performing decision rule and the proposed decision-maker. 

Instance i Velocity-based  DRL 

𝑇𝑠̅[s] 𝑇𝑟̅ [s] 𝑇𝑤𝑎𝑖𝑡  [s] Repl.  𝑇𝑠̅[s] 𝑇𝑟̅  [s] 𝑇𝑤𝑎𝑖𝑡  [s] Repl. 

1 180 79.6 253.5 34.2 252  76.8 231.3 25.3 255 

2 93.2 296.6 20.0 208  84.8 287.7 21.2 256 

3 79.0 228.5 29.7 230  76.2 216.8 26.6 214 

4 300 92.6 279.3 12.0 151  88.9 267.1 18.9 149 

5 94.6 294.5 17.2 154  89.8 273.9 14.0 174 

6 89.1 251.5 19.9 140  86.5 234.0 14.3 141 

7 480 104.0 325.1 34.0 152  100.2 296.3 25.4 143 

8 108.0 351.3 27.3 184  102.6 323.6 23.9 198 

9 102.5 283.0 26.4 145  97.8 261.8 27.7 168 

10 600 109.2 313.0 21.5 141  104.3 299.6 28.3 153 

11 119.6 378.7 15.3 178  112.7 364.0 24.0 194 

12 109.4 278.1 10.3 104  105.7 267.9 24.8 117 

13 900 123.8 381.5 21.3 125  120.2 355.6 19.1 117 

14 126.6 386.4 9.7 109  122.7 359.5 9.2 95 

15 121.1 322.3 7.5 89  118.0 287.7 5.5 76 

 

The numerical results in Table 6 indicate that the DRL agent consistently achieves lower average 

storage and replenishment cycles across all scenarios. While waiting times are often lower compared to 

the velocity-based approach, this is not always the case, possibly due to their limited impact on overall 

average cycle time in certain scenarios. Lower wait times are more evident in instances with higher 

replenishments, where their cumulative effect is greater. Figure 6 illustrates the characteristic training 

curve of the decision-maker. In the initial stages of the learning process, the agent commences by 



 

randomly allocating inventory racks to storage locations and replenishment activities. Gradually, the 

agent refines its policy through a series of trial-and-error actions.  

 
Figure 6: Learning process of the decision-maker on a training instance with 600 storage locations.  

 

The models exhibit superior performance when evaluated on problem instances they were trained on, 

surpassing conventional decision rules. However, their utility extends beyond these specific instances. 

These models can effectively adapt if alternative instances maintain similarity to the originals in terms 

of crucial parameters such as the state space, ensuring consistency in factors like the number of storage 

zones, workstations, and the number of SKUs on inventory racks being provided. While certain aspects 

must remain unchanged to ensure compatibility, there is flexibility in how, for instance, SKUs are 

distributed among the inventory racks and the positioning of the stations. This adaptability enables the 

models to tackle diverse scenarios. Hence, the test instances are generated with the same parameters as 

presented in Table 3. However, the SKU distribution among the racks and order list are different. Table 

7 presents a comparative analysis of the model’s performance on alternative problem instances against 

that of the velocity-based decision rule. We showcase its generalizability, reinforcing its applicability 

beyond the confines of its training data.     

Table 7: Validation experiments on alternative problem instances. 

Instance T̅ [s] Imp. 

[%] 

Instance T̅ [s] Imp. [%] 

Velocity-based DRL Velocity-based DRL 

1 94.4 90.6 4.2 9 108.5 104.5 3.8 

2 112.7 107.5 4.9 10 116.3 112.2 3.6 

3 92.7 89.0 4.1 11 128.9 124.2 3.8 

4 103.3 98.9 4.5 12 114.3 110.7 3.3 

5 106.6 102.2 4.3 13 128.8 125.7 2.4 

6 98.1 95.2 3.1 14 133.9 128.4 4.2 

7 112.1 109.1 2.7 15 126.3 121.9 3.7 

8 120.4 115.7 4.1     



 

6.3. Impact of storage zoning strategy  

In the context of a specific warehouse layout, selecting different strategies significantly impacts the 

optimization potential available to the decision-maker. However, this decision involves a delicate trade-

off between optimization potential and the duration of the decision-maker’s learning process.  

 

 
Figure 7: Various storage zoning strategies for instance 10. 

 

In Figure 7, several different zoning strategies are shown for a storage area with 600 storage locations. 

Increasing the number of storage zones directly expands the decision-maker’s action space, potentially 

slowing the learning process. Moreover, the size of the storage areas plays a critical role. Designing 

overly large zones may compromise the optimization potential, leading to suboptimal storage location 

assignment for slow-moving inventory in locations more suitable for faster-moving inventory. On the 

other hand, creating excessively small zones may lead to a loss of critical information for the decision-

maker concerning specific environmental states, such as the SKU similarity. Striking the right balance 

is essential, as too many smaller zones can also increase the complexity of the learning relationship 

between adjacent zones, posing challenges for the learning agent. The subsequent table (Table 8) 

showcases the impact of various zoning strategies on the average cycle time within the storage area. In 

this context, the best design consisted of 9 storage zones.  

 

 

 

 

 

 

 



 

Table 8: Impact of different storage zoning strategies on the system performance for instance 10. The gap is 

relative to the best average cycle time out of the series of experiments for the given instance. 

 

 

 

 

 

 

 

 

 

6.4. Explainable AI 

One notable drawback of deep reinforcement learning is its tendency to be perceived as a “black box”, 

where the underlying decision-making processes are difficult to interpret. This lack of transparency 

makes it challenging to understand why the model selects specific actions in given states, highlighting 

the importance of addressing the explainability issue. To shed light on the model’s inner workings, we 

use SHapley Additive exPlanations (SHAP), which helps interpret how individual state features 

contribute to the decision-making process. SHAP is based on game theory, where the overall reward of 

a game is fairly distributed among its players. In our context, the “players” are the state features, and 

the goal is to understand how each feature influences the selection of a particular action.  

 

 
Figure 8: A beeswarm plot illustrating the SHAP values of a set of 1000 observations. 

 

Figure 8 demonstrates how various state features affect SHAP values, providing insight into their impact 

on the model’s outputs. To apply this method effectively, it is necessary to decode features that have 

been encoded as arrays into their real-world equivalents. For example, the station identifier is 

represented through one-hot encoding, where an array consists of zeros, and a single one indicates the 

z Avg. cycle time [s] Gap [%] 

2 115.9 -3.8 

4 115.3 -3.2 

6 113.3 -1.5 

9 111.6 0.0 

10 114.6 -2.6 

12 113.4 -1.6 

15 115.2 -3.1 



 

current location of the inventory rack at a workstation. By decoding this array (e.g., [0, 0, 1] corresponds 

to station identifier 3), we can better interpret the SHAP values and, in turn, the model’s decision-

making process.  

  

As anticipated, the most impact stems from the cycle time estimations and information regarding the 

zone of the next retrieval task. While the plot does not directly convey whether higher or lower values 

of cycle times result in higher or lower SHAP values, the interpretation becomes more straightforward 

for the feature representing the zone of the next retrieval. Specifically, lower values of this zone are 

likely to correspond to lower SHAP values, indicating the model’s preference for zones closer to the 

indicated retrieval zone. Similar reasoning applies to the station identifiers, as depicted in Figure 7; 

certain workstations are closer to specific zones, influencing the model’s probability of choosing storage 

zones nearby. Furthermore, the stock level’s impact aligns with expectations, where lower stock levels 

on inventory racks correlate with higher SHAP values. This makes sense, considering that 

replenishment actions with lower stock levels yield higher output numbers, as the replenishment actions 

are in the second half of the action space (Section 5.2.1).     

 

 
Figure 9: A waterfall plot illustrating the impact of each feature state on the decision of an action during the 

warehouse operations. 

 

The waterfall plot in Figure 9 provides an insightful breakdown of the RL agent’s decision-making 

process for a particular state in the environment. The x-axis shows the cumulative SHAP values, 

indicating the incremental impact of each feature on the model’s output. At the same time, the y-axis 

lists the relevant features, with their actual values shown in grey text. This plot starts from the model’s 

base prediction, E[f(x)], which represents the average output across the training set (3.67 in this case), 

and moves step-by-step through each feature’s contribution. To interpret the waterfall plot, one reads 

from the bottom up. As each feature is evaluated, it adds to or subtracts from the base prediction. Red 



 

bars signify positive contributions that push the prediction upward, while blue bars indicate negative 

effects that push it downward. These contributions accumulate sequentially, illustrating how each 

feature shifts the prediction to reach its final value.  

 

In this example, only a few features significantly influence the decision. Specifically, features like the 

expected wait time and the turnover rank of the inventory rack exert minimal impact. In contrast, the 

next retrieval task zone, station identifier, and the estimated cycle times notably shape the output. For 

instance, the next retrieval task zone drives the output upwards, suggesting a preference toward storage 

zone 7. However, combining the station identifier and cycle time features ultimately determines the 

final output by anchoring it at 3, corresponding to storage zone 4. Thus, this choice has been influenced 

by the advantageous proximity of workstation 2 to zone 4.   

 

7. Conclusions and Future Research 

This study considers the storage location assignment and the inventory rack replenishment problem in 

an RMFS, wherein AMRs have the ability to retrieve and store movable inventory racks in the storage 

area. The primary objective of this study is to minimize the average cycle times of the mobile robots 

while minimizing the queuing times at the replenishment station. We examine the system performance 

under various warehouse settings, focusing on validating the effectiveness of the proposed deep 

reinforcement learning approach. We also conduct comparative assessments against commonly used 

decision rules in the existing academic literature.  

 

From the experimental results, we conclude that the commonly used decision rules yield suboptimal 

cycle times for mobile robots in an RMFS. The proposed learning agent demonstrates the capability to 

enhance warehouse storage and replenishment operations significantly, the simulation results from the 

experimental study also support this claim. The proposed agent consistently outperforms traditional 

decision rules in all instances, yielding significant gains with cycle times reduced by instances. In all 

instances, the proposed agent consistently outperforms traditional decision rules, yielding significant 

gains with cycle times reduced by up to 5.4%. Furthermore, the design of storage zones is an important 

consideration to improve both the learning process and the quality of decisions made by the decision-

maker. The size of these zones matters, as overly small zones may lead to information loss within the 

state environment, hindering the learning process. Alternatively, excessively large zones risk sacrificing 

some optimization potential. Striking the right balance in storage zone design is imperative. By utilizing 

explainable AI methodologies, such as SHAP, we can identify the features that significantly impact the 

decision-making process. This analysis not only enhances our understanding of the model behavior but 

also enables the future development of more sophisticated heuristic methods based on the insights 

gained.  

 



 

While the proposed method offers significant potential, it is important to acknowledge several key 

limitations and outline directions for future research. First, the current learning framework does not 

explicitly assign storage location for inventory racks. This omission was intended to reduce the 

complexity of the action space, which can otherwise hinder the learning process. However, this 

simplification may limit the potential improvements in cycle time lengths for AMRs. Exploring whether 

explicit storage location assignment could enhance performance is an interesting avenue for future 

investigation, even if it would introduce more complexity. Secondly, alternative optimization 

approaches, such as predict-and-optimize methodologies, could be explored. However, balancing 

computational efficiency with solution quality remains a challenge, as the proposed mathematical 

model highlights the problem’s computational complexity. To make these approaches viable, future 

research must focus on enhancing scalability. Finally, the model assumes minimal interactions between 

AMRs, which simplifies congestion management. While this assumption is valid for systems with 

unidirectional lanes, it may not hold in large-scale environments or environments with bidirectional 

lanes where congestion or conflicts between AMRs are more frequent. Addressing this limitation would 

require a more sophisticated, multi-agent learning approach. Additionally, introducing customer order 

trends (e.g., seasonality), which are common in certain e-commerce applications, could be valuable. 

Analyzing the model’s ability to recognize and adapt to such patterns may lead to better optimization 

of inventory rack assignments and improve overall system efficiency.  
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9. Appendices 

Appendix A. Proximal Policy Optimization 

PPO optimizes the policy using a surrogate objective. It employs both an actor (policy) and a critic 

(value function) in its updates. The core idea behind PPO is to ensure that updates do not deviate too 

drastically from the previous policy, thereby stabilizing the learning process. 

 

1. Actor Policy Update (Gradient of Surrogate Loss) 

The policy 𝜋𝜃 aims to maximize the expected cumulative reward. The actor’s policy update is based on 

the following surrogate objective function: 

          𝛻𝐿𝐶𝐿𝐼𝑃(𝜃)  = 𝐸[𝛻(𝑚𝑖𝑛(𝑞(𝜃)Â𝑡 , 𝑐𝑙𝑖𝑝(𝑞(𝜃),1˗ 𝜖, 1 + 𝜖)Â𝑡))] 

Where:  

• 𝑞(𝜃)  =  
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
 is the probability ratio between the new policy 𝜋𝜃 and the old policy 𝜋𝑜𝑙𝑑 

for a given state-action pair (𝑠𝑡 , 𝑎𝑡). 



 

• Â𝑡 is the advantage estimate at time t, which measures how much better the action 𝑎𝑡 taken at 

state 𝑠𝑡 is compared to the average action. 

• clip(𝑞(𝜃),1˗ ϵ, 1 + ϵ) is the clip function, which limits the value of the probability ratio 𝑞(𝜃), 

ensuring that the update does not exceed a threshold 𝜖 in either direction.  

2. Critic Value Function Update (Gradient of Value Loss) 

The critic estimates the value function 𝑉(𝑠𝑡), which is used to calculate the advantage Â𝑡=𝐺𝑡−𝑉(𝑠𝑡). 

The critic is updated by minimizing the following loss function: 

𝛻𝐿𝜃(ф) = 𝐸[(𝑉𝜃(𝑠𝑡)  −  𝐺𝑡)2] 

Where: 

• 𝑉𝜃(𝑠𝑡) is the estimated value of state 𝑠𝑡 by the critic. 

• 𝐺𝑡 is the return at time t, which is computed from the rewards received and a discount factor γ. 

 

The hyperparameters for the Proximal Policy Optimization (PPO) algorithm were selected based on 

established best practices and fine-tuned through empirical experimentation to suit the proposed 

model’s dynamics. The learning rate of 0.0003 was chosen to ensure stable convergence, preventing 

large weight update that could cause instability and balance exploration and exploitation. The discount 

factor was set to 0.99 to appropriately weigh long-term and short-term rewards. Lowering this value led 

to an overemphasis on immediate rewards, which negatively impacted decision-making for task such 

as storage location assignment. Similarly, the clip range was reduced from 0.2 to 0.1, which improved 

stability by limiting the magnitude of policy updates and preventing overcorrection. 

Table 9: Hyperparameters used for the PPO model. 

Hyperparameter Value 

Hidden layers 2 

Optimizer Adam 

Discount factor 0.99 

Clip range 0.1 

Value network coefficient 0.5 

Learning rate 0.0003 

Batch size 64 

Episodes 10000 

Time steps 10000 
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